ip_input.c revision 1.88 1 /* $NetBSD: ip_input.c,v 1.88 1999/06/26 06:16:48 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Public Access Networks Corporation ("Panix"). It was developed under
9 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1993
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
73 */
74
75 #include "opt_gateway.h"
76 #include "opt_pfil_hooks.h"
77 #include "opt_mrouting.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/domain.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/errno.h>
88 #include <sys/time.h>
89 #include <sys/kernel.h>
90 #include <sys/proc.h>
91 #include <sys/pool.h>
92
93 #include <vm/vm.h>
94 #include <sys/sysctl.h>
95
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/route.h>
99 #include <net/pfil.h>
100
101 #include <netinet/in.h>
102 #include <netinet/in_systm.h>
103 #include <netinet/ip.h>
104 #include <netinet/in_pcb.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/ip_icmp.h>
108
109 #ifndef IPFORWARDING
110 #ifdef GATEWAY
111 #define IPFORWARDING 1 /* forward IP packets not for us */
112 #else /* GATEWAY */
113 #define IPFORWARDING 0 /* don't forward IP packets not for us */
114 #endif /* GATEWAY */
115 #endif /* IPFORWARDING */
116 #ifndef IPSENDREDIRECTS
117 #define IPSENDREDIRECTS 1
118 #endif
119 #ifndef IPFORWSRCRT
120 #define IPFORWSRCRT 1 /* forward source-routed packets */
121 #endif
122 #ifndef IPALLOWSRCRT
123 #define IPALLOWSRCRT 1 /* allow source-routed packets */
124 #endif
125 #ifndef IPMTUDISC
126 #define IPMTUDISC 0
127 #endif
128 #ifndef IPMTUDISCTIMEOUT
129 #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */
130 #endif
131
132 /*
133 * Note: DIRECTED_BROADCAST is handled this way so that previous
134 * configuration using this option will Just Work.
135 */
136 #ifndef IPDIRECTEDBCAST
137 #ifdef DIRECTED_BROADCAST
138 #define IPDIRECTEDBCAST 1
139 #else
140 #define IPDIRECTEDBCAST 0
141 #endif /* DIRECTED_BROADCAST */
142 #endif /* IPDIRECTEDBCAST */
143 int ipforwarding = IPFORWARDING;
144 int ipsendredirects = IPSENDREDIRECTS;
145 int ip_defttl = IPDEFTTL;
146 int ip_forwsrcrt = IPFORWSRCRT;
147 int ip_directedbcast = IPDIRECTEDBCAST;
148 int ip_allowsrcrt = IPALLOWSRCRT;
149 int ip_mtudisc = IPMTUDISC;
150 u_int ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
151 #ifdef DIAGNOSTIC
152 int ipprintfs = 0;
153 #endif
154
155 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
156
157 extern struct domain inetdomain;
158 extern struct protosw inetsw[];
159 u_char ip_protox[IPPROTO_MAX];
160 int ipqmaxlen = IFQ_MAXLEN;
161 struct in_ifaddrhead in_ifaddr;
162 struct in_ifaddrhashhead *in_ifaddrhashtbl;
163 struct ifqueue ipintrq;
164 struct ipstat ipstat;
165 u_int16_t ip_id;
166 int ip_defttl;
167
168 struct ipqhead ipq;
169 int ipq_locked;
170
171 static __inline int ipq_lock_try __P((void));
172 static __inline void ipq_unlock __P((void));
173
174 static __inline int
175 ipq_lock_try()
176 {
177 int s;
178
179 s = splimp();
180 if (ipq_locked) {
181 splx(s);
182 return (0);
183 }
184 ipq_locked = 1;
185 splx(s);
186 return (1);
187 }
188
189 static __inline void
190 ipq_unlock()
191 {
192 int s;
193
194 s = splimp();
195 ipq_locked = 0;
196 splx(s);
197 }
198
199 #ifdef DIAGNOSTIC
200 #define IPQ_LOCK() \
201 do { \
202 if (ipq_lock_try() == 0) { \
203 printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \
204 panic("ipq_lock"); \
205 } \
206 } while (0)
207 #define IPQ_LOCK_CHECK() \
208 do { \
209 if (ipq_locked == 0) { \
210 printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \
211 panic("ipq lock check"); \
212 } \
213 } while (0)
214 #else
215 #define IPQ_LOCK() (void) ipq_lock_try()
216 #define IPQ_LOCK_CHECK() /* nothing */
217 #endif
218
219 #define IPQ_UNLOCK() ipq_unlock()
220
221 struct pool ipqent_pool;
222
223 /*
224 * We need to save the IP options in case a protocol wants to respond
225 * to an incoming packet over the same route if the packet got here
226 * using IP source routing. This allows connection establishment and
227 * maintenance when the remote end is on a network that is not known
228 * to us.
229 */
230 int ip_nhops = 0;
231 static struct ip_srcrt {
232 struct in_addr dst; /* final destination */
233 char nop; /* one NOP to align */
234 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
235 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
236 } ip_srcrt;
237
238 static void save_rte __P((u_char *, struct in_addr));
239
240 /*
241 * IP initialization: fill in IP protocol switch table.
242 * All protocols not implemented in kernel go to raw IP protocol handler.
243 */
244 void
245 ip_init()
246 {
247 register struct protosw *pr;
248 register int i;
249
250 pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl",
251 0, NULL, NULL, M_IPQ);
252
253 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
254 if (pr == 0)
255 panic("ip_init");
256 for (i = 0; i < IPPROTO_MAX; i++)
257 ip_protox[i] = pr - inetsw;
258 for (pr = inetdomain.dom_protosw;
259 pr < inetdomain.dom_protoswNPROTOSW; pr++)
260 if (pr->pr_domain->dom_family == PF_INET &&
261 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
262 ip_protox[pr->pr_protocol] = pr - inetsw;
263 LIST_INIT(&ipq);
264 ip_id = time.tv_sec & 0xffff;
265 ipintrq.ifq_maxlen = ipqmaxlen;
266 TAILQ_INIT(&in_ifaddr);
267 in_ifaddrhashtbl =
268 hashinit(IN_IFADDR_HASH_SIZE, M_IFADDR, M_WAITOK, &in_ifaddrhash);
269 if (ip_mtudisc != 0)
270 ip_mtudisc_timeout_q =
271 rt_timer_queue_create(ip_mtudisc_timeout);
272 #ifdef GATEWAY
273 ipflow_init();
274 #endif
275 }
276
277 struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
278 struct route ipforward_rt;
279
280 /*
281 * Ip input routine. Checksum and byte swap header. If fragmented
282 * try to reassemble. Process options. Pass to next level.
283 */
284 void
285 ipintr()
286 {
287 register struct ip *ip = NULL;
288 register struct mbuf *m;
289 register struct ipq *fp;
290 register struct in_ifaddr *ia;
291 register struct ifaddr *ifa;
292 struct ipqent *ipqe;
293 int hlen = 0, mff, len, s;
294 #ifdef PFIL_HOOKS
295 struct packet_filter_hook *pfh;
296 struct mbuf *m0;
297 int rv;
298 #endif /* PFIL_HOOKS */
299
300 next:
301 /*
302 * Get next datagram off input queue and get IP header
303 * in first mbuf.
304 */
305 s = splimp();
306 IF_DEQUEUE(&ipintrq, m);
307 splx(s);
308 if (m == 0)
309 return;
310 #ifdef DIAGNOSTIC
311 if ((m->m_flags & M_PKTHDR) == 0)
312 panic("ipintr no HDR");
313 #endif
314 /*
315 * If no IP addresses have been set yet but the interfaces
316 * are receiving, can't do anything with incoming packets yet.
317 */
318 if (in_ifaddr.tqh_first == 0)
319 goto bad;
320 ipstat.ips_total++;
321 if (m->m_len < sizeof (struct ip) &&
322 (m = m_pullup(m, sizeof (struct ip))) == 0) {
323 ipstat.ips_toosmall++;
324 goto next;
325 }
326 ip = mtod(m, struct ip *);
327 if (ip->ip_v != IPVERSION) {
328 ipstat.ips_badvers++;
329 goto bad;
330 }
331 hlen = ip->ip_hl << 2;
332 if (hlen < sizeof(struct ip)) { /* minimum header length */
333 ipstat.ips_badhlen++;
334 goto bad;
335 }
336 if (hlen > m->m_len) {
337 if ((m = m_pullup(m, hlen)) == 0) {
338 ipstat.ips_badhlen++;
339 goto next;
340 }
341 ip = mtod(m, struct ip *);
342 }
343 /*
344 * we drop packets that have a multicast address as source
345 * as wanted by rfc 1112
346 */
347 if (IN_MULTICAST(ip->ip_src.s_addr)) {
348 goto bad;
349 }
350
351 if (in_cksum(m, hlen) != 0) {
352 ipstat.ips_badsum++;
353 goto bad;
354 }
355
356 /*
357 * Convert fields to host representation.
358 */
359 NTOHS(ip->ip_len);
360 NTOHS(ip->ip_off);
361 len = ip->ip_len;
362
363 /*
364 * Check for additional length bogosity
365 */
366 if (len < hlen) {
367 ipstat.ips_badlen++;
368 goto bad;
369 }
370
371 /*
372 * Check that the amount of data in the buffers
373 * is as at least much as the IP header would have us expect.
374 * Trim mbufs if longer than we expect.
375 * Drop packet if shorter than we expect.
376 */
377 if (m->m_pkthdr.len < len) {
378 ipstat.ips_tooshort++;
379 goto bad;
380 }
381 if (m->m_pkthdr.len > len) {
382 if (m->m_len == m->m_pkthdr.len) {
383 m->m_len = len;
384 m->m_pkthdr.len = len;
385 } else
386 m_adj(m, len - m->m_pkthdr.len);
387 }
388
389 /*
390 * Assume that we can create a fast-forward IP flow entry
391 * based on this packet.
392 */
393 m->m_flags |= M_CANFASTFWD;
394
395 #ifdef PFIL_HOOKS
396 /*
397 * Run through list of hooks for input packets. If there are any
398 * filters which require that additional packets in the flow are
399 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
400 * Note that filters must _never_ set this flag, as another filter
401 * in the list may have previously cleared it.
402 */
403 m0 = m;
404 for (pfh = pfil_hook_get(PFIL_IN); pfh; pfh = pfh->pfil_link.tqe_next)
405 if (pfh->pfil_func) {
406 rv = pfh->pfil_func(ip, hlen, m->m_pkthdr.rcvif, 0, &m0);
407 if (rv)
408 goto next;
409 m = m0;
410 if (m == NULL)
411 goto next;
412 ip = mtod(m, struct ip *);
413 }
414 #endif /* PFIL_HOOKS */
415
416 /*
417 * Process options and, if not destined for us,
418 * ship it on. ip_dooptions returns 1 when an
419 * error was detected (causing an icmp message
420 * to be sent and the original packet to be freed).
421 */
422 ip_nhops = 0; /* for source routed packets */
423 if (hlen > sizeof (struct ip) && ip_dooptions(m))
424 goto next;
425
426 /*
427 * Check our list of addresses, to see if the packet is for us.
428 */
429 INADDR_TO_IA(ip->ip_dst, ia);
430 if (ia != NULL)
431 goto ours;
432 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
433 for (ifa = m->m_pkthdr.rcvif->if_addrlist.tqh_first;
434 ifa != NULL; ifa = ifa->ifa_list.tqe_next) {
435 if (ifa->ifa_addr->sa_family != AF_INET) continue;
436 ia = ifatoia(ifa);
437 if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) ||
438 in_hosteq(ip->ip_dst, ia->ia_netbroadcast) ||
439 /*
440 * Look for all-0's host part (old broadcast addr),
441 * either for subnet or net.
442 */
443 ip->ip_dst.s_addr == ia->ia_subnet ||
444 ip->ip_dst.s_addr == ia->ia_net)
445 goto ours;
446 /*
447 * An interface with IP address zero accepts
448 * all packets that arrive on that interface.
449 */
450 if (in_nullhost(ia->ia_addr.sin_addr))
451 goto ours;
452 }
453 }
454 if (IN_MULTICAST(ip->ip_dst.s_addr)) {
455 struct in_multi *inm;
456 #ifdef MROUTING
457 extern struct socket *ip_mrouter;
458
459 if (m->m_flags & M_EXT) {
460 if ((m = m_pullup(m, hlen)) == 0) {
461 ipstat.ips_toosmall++;
462 goto next;
463 }
464 ip = mtod(m, struct ip *);
465 }
466
467 if (ip_mrouter) {
468 /*
469 * If we are acting as a multicast router, all
470 * incoming multicast packets are passed to the
471 * kernel-level multicast forwarding function.
472 * The packet is returned (relatively) intact; if
473 * ip_mforward() returns a non-zero value, the packet
474 * must be discarded, else it may be accepted below.
475 *
476 * (The IP ident field is put in the same byte order
477 * as expected when ip_mforward() is called from
478 * ip_output().)
479 */
480 if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
481 ipstat.ips_cantforward++;
482 m_freem(m);
483 goto next;
484 }
485
486 /*
487 * The process-level routing demon needs to receive
488 * all multicast IGMP packets, whether or not this
489 * host belongs to their destination groups.
490 */
491 if (ip->ip_p == IPPROTO_IGMP)
492 goto ours;
493 ipstat.ips_forward++;
494 }
495 #endif
496 /*
497 * See if we belong to the destination multicast group on the
498 * arrival interface.
499 */
500 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
501 if (inm == NULL) {
502 ipstat.ips_cantforward++;
503 m_freem(m);
504 goto next;
505 }
506 goto ours;
507 }
508 if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
509 in_nullhost(ip->ip_dst))
510 goto ours;
511
512 /*
513 * Not for us; forward if possible and desirable.
514 */
515 if (ipforwarding == 0) {
516 ipstat.ips_cantforward++;
517 m_freem(m);
518 } else
519 ip_forward(m, 0);
520 goto next;
521
522 ours:
523 /*
524 * If offset or IP_MF are set, must reassemble.
525 * Otherwise, nothing need be done.
526 * (We could look in the reassembly queue to see
527 * if the packet was previously fragmented,
528 * but it's not worth the time; just let them time out.)
529 */
530 if (ip->ip_off & ~(IP_DF|IP_RF)) {
531 /*
532 * Look for queue of fragments
533 * of this datagram.
534 */
535 IPQ_LOCK();
536 for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
537 if (ip->ip_id == fp->ipq_id &&
538 in_hosteq(ip->ip_src, fp->ipq_src) &&
539 in_hosteq(ip->ip_dst, fp->ipq_dst) &&
540 ip->ip_p == fp->ipq_p)
541 goto found;
542 fp = 0;
543 found:
544
545 /*
546 * Adjust ip_len to not reflect header,
547 * set ipqe_mff if more fragments are expected,
548 * convert offset of this to bytes.
549 */
550 ip->ip_len -= hlen;
551 mff = (ip->ip_off & IP_MF) != 0;
552 if (mff) {
553 /*
554 * Make sure that fragments have a data length
555 * that's a non-zero multiple of 8 bytes.
556 */
557 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
558 ipstat.ips_badfrags++;
559 IPQ_UNLOCK();
560 goto bad;
561 }
562 }
563 ip->ip_off <<= 3;
564
565 /*
566 * If datagram marked as having more fragments
567 * or if this is not the first fragment,
568 * attempt reassembly; if it succeeds, proceed.
569 */
570 if (mff || ip->ip_off) {
571 ipstat.ips_fragments++;
572 ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
573 if (ipqe == NULL) {
574 ipstat.ips_rcvmemdrop++;
575 IPQ_UNLOCK();
576 goto bad;
577 }
578 ipqe->ipqe_mff = mff;
579 ipqe->ipqe_m = m;
580 ipqe->ipqe_ip = ip;
581 m = ip_reass(ipqe, fp);
582 if (m == 0) {
583 IPQ_UNLOCK();
584 goto next;
585 }
586 ipstat.ips_reassembled++;
587 ip = mtod(m, struct ip *);
588 hlen = ip->ip_hl << 2;
589 ip->ip_len += hlen;
590 } else
591 if (fp)
592 ip_freef(fp);
593 IPQ_UNLOCK();
594 }
595
596 /*
597 * Switch out to protocol's input routine.
598 */
599 #if IFA_STATS
600 ia->ia_ifa.ifa_data.ifad_inbytes += ip->ip_len;
601 #endif
602 ipstat.ips_delivered++;
603 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
604 goto next;
605 bad:
606 m_freem(m);
607 goto next;
608 }
609
610 /*
611 * Take incoming datagram fragment and try to
612 * reassemble it into whole datagram. If a chain for
613 * reassembly of this datagram already exists, then it
614 * is given as fp; otherwise have to make a chain.
615 */
616 struct mbuf *
617 ip_reass(ipqe, fp)
618 register struct ipqent *ipqe;
619 register struct ipq *fp;
620 {
621 register struct mbuf *m = ipqe->ipqe_m;
622 register struct ipqent *nq, *p, *q;
623 struct ip *ip;
624 struct mbuf *t;
625 int hlen = ipqe->ipqe_ip->ip_hl << 2;
626 int i, next;
627
628 IPQ_LOCK_CHECK();
629
630 /*
631 * Presence of header sizes in mbufs
632 * would confuse code below.
633 */
634 m->m_data += hlen;
635 m->m_len -= hlen;
636
637 /*
638 * If first fragment to arrive, create a reassembly queue.
639 */
640 if (fp == 0) {
641 MALLOC(fp, struct ipq *, sizeof (struct ipq),
642 M_FTABLE, M_NOWAIT);
643 if (fp == NULL)
644 goto dropfrag;
645 LIST_INSERT_HEAD(&ipq, fp, ipq_q);
646 fp->ipq_ttl = IPFRAGTTL;
647 fp->ipq_p = ipqe->ipqe_ip->ip_p;
648 fp->ipq_id = ipqe->ipqe_ip->ip_id;
649 LIST_INIT(&fp->ipq_fragq);
650 fp->ipq_src = ipqe->ipqe_ip->ip_src;
651 fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
652 p = NULL;
653 goto insert;
654 }
655
656 /*
657 * Find a segment which begins after this one does.
658 */
659 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
660 p = q, q = q->ipqe_q.le_next)
661 if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
662 break;
663
664 /*
665 * If there is a preceding segment, it may provide some of
666 * our data already. If so, drop the data from the incoming
667 * segment. If it provides all of our data, drop us.
668 */
669 if (p != NULL) {
670 i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
671 ipqe->ipqe_ip->ip_off;
672 if (i > 0) {
673 if (i >= ipqe->ipqe_ip->ip_len)
674 goto dropfrag;
675 m_adj(ipqe->ipqe_m, i);
676 ipqe->ipqe_ip->ip_off += i;
677 ipqe->ipqe_ip->ip_len -= i;
678 }
679 }
680
681 /*
682 * While we overlap succeeding segments trim them or,
683 * if they are completely covered, dequeue them.
684 */
685 for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
686 q->ipqe_ip->ip_off; q = nq) {
687 i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
688 q->ipqe_ip->ip_off;
689 if (i < q->ipqe_ip->ip_len) {
690 q->ipqe_ip->ip_len -= i;
691 q->ipqe_ip->ip_off += i;
692 m_adj(q->ipqe_m, i);
693 break;
694 }
695 nq = q->ipqe_q.le_next;
696 m_freem(q->ipqe_m);
697 LIST_REMOVE(q, ipqe_q);
698 pool_put(&ipqent_pool, q);
699 }
700
701 insert:
702 /*
703 * Stick new segment in its place;
704 * check for complete reassembly.
705 */
706 if (p == NULL) {
707 LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
708 } else {
709 LIST_INSERT_AFTER(p, ipqe, ipqe_q);
710 }
711 next = 0;
712 for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
713 p = q, q = q->ipqe_q.le_next) {
714 if (q->ipqe_ip->ip_off != next)
715 return (0);
716 next += q->ipqe_ip->ip_len;
717 }
718 if (p->ipqe_mff)
719 return (0);
720
721 /*
722 * Reassembly is complete. Check for a bogus message size and
723 * concatenate fragments.
724 */
725 q = fp->ipq_fragq.lh_first;
726 ip = q->ipqe_ip;
727 if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
728 ipstat.ips_toolong++;
729 ip_freef(fp);
730 return (0);
731 }
732 m = q->ipqe_m;
733 t = m->m_next;
734 m->m_next = 0;
735 m_cat(m, t);
736 nq = q->ipqe_q.le_next;
737 pool_put(&ipqent_pool, q);
738 for (q = nq; q != NULL; q = nq) {
739 t = q->ipqe_m;
740 nq = q->ipqe_q.le_next;
741 pool_put(&ipqent_pool, q);
742 m_cat(m, t);
743 }
744
745 /*
746 * Create header for new ip packet by
747 * modifying header of first packet;
748 * dequeue and discard fragment reassembly header.
749 * Make header visible.
750 */
751 ip->ip_len = next;
752 ip->ip_src = fp->ipq_src;
753 ip->ip_dst = fp->ipq_dst;
754 LIST_REMOVE(fp, ipq_q);
755 FREE(fp, M_FTABLE);
756 m->m_len += (ip->ip_hl << 2);
757 m->m_data -= (ip->ip_hl << 2);
758 /* some debugging cruft by sklower, below, will go away soon */
759 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
760 register int plen = 0;
761 for (t = m; t; t = t->m_next)
762 plen += t->m_len;
763 m->m_pkthdr.len = plen;
764 }
765 return (m);
766
767 dropfrag:
768 ipstat.ips_fragdropped++;
769 m_freem(m);
770 pool_put(&ipqent_pool, ipqe);
771 return (0);
772 }
773
774 /*
775 * Free a fragment reassembly header and all
776 * associated datagrams.
777 */
778 void
779 ip_freef(fp)
780 struct ipq *fp;
781 {
782 register struct ipqent *q, *p;
783
784 IPQ_LOCK_CHECK();
785
786 for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
787 p = q->ipqe_q.le_next;
788 m_freem(q->ipqe_m);
789 LIST_REMOVE(q, ipqe_q);
790 pool_put(&ipqent_pool, q);
791 }
792 LIST_REMOVE(fp, ipq_q);
793 FREE(fp, M_FTABLE);
794 }
795
796 /*
797 * IP timer processing;
798 * if a timer expires on a reassembly
799 * queue, discard it.
800 */
801 void
802 ip_slowtimo()
803 {
804 register struct ipq *fp, *nfp;
805 int s = splsoftnet();
806
807 IPQ_LOCK();
808 for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
809 nfp = fp->ipq_q.le_next;
810 if (--fp->ipq_ttl == 0) {
811 ipstat.ips_fragtimeout++;
812 ip_freef(fp);
813 }
814 }
815 IPQ_UNLOCK();
816 #ifdef GATEWAY
817 ipflow_slowtimo();
818 #endif
819 splx(s);
820 }
821
822 /*
823 * Drain off all datagram fragments.
824 */
825 void
826 ip_drain()
827 {
828
829 /*
830 * We may be called from a device's interrupt context. If
831 * the ipq is already busy, just bail out now.
832 */
833 if (ipq_lock_try() == 0)
834 return;
835
836 while (ipq.lh_first != NULL) {
837 ipstat.ips_fragdropped++;
838 ip_freef(ipq.lh_first);
839 }
840
841 IPQ_UNLOCK();
842 }
843
844 /*
845 * Do option processing on a datagram,
846 * possibly discarding it if bad options are encountered,
847 * or forwarding it if source-routed.
848 * Returns 1 if packet has been forwarded/freed,
849 * 0 if the packet should be processed further.
850 */
851 int
852 ip_dooptions(m)
853 struct mbuf *m;
854 {
855 register struct ip *ip = mtod(m, struct ip *);
856 register u_char *cp;
857 register struct ip_timestamp *ipt;
858 register struct in_ifaddr *ia;
859 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
860 struct in_addr *sin, dst;
861 n_time ntime;
862
863 dst = ip->ip_dst;
864 cp = (u_char *)(ip + 1);
865 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
866 for (; cnt > 0; cnt -= optlen, cp += optlen) {
867 opt = cp[IPOPT_OPTVAL];
868 if (opt == IPOPT_EOL)
869 break;
870 if (opt == IPOPT_NOP)
871 optlen = 1;
872 else {
873 optlen = cp[IPOPT_OLEN];
874 if (optlen <= 0 || optlen > cnt) {
875 code = &cp[IPOPT_OLEN] - (u_char *)ip;
876 goto bad;
877 }
878 }
879 switch (opt) {
880
881 default:
882 break;
883
884 /*
885 * Source routing with record.
886 * Find interface with current destination address.
887 * If none on this machine then drop if strictly routed,
888 * or do nothing if loosely routed.
889 * Record interface address and bring up next address
890 * component. If strictly routed make sure next
891 * address is on directly accessible net.
892 */
893 case IPOPT_LSRR:
894 case IPOPT_SSRR:
895 if (ip_allowsrcrt == 0) {
896 type = ICMP_UNREACH;
897 code = ICMP_UNREACH_NET_PROHIB;
898 goto bad;
899 }
900 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
901 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
902 goto bad;
903 }
904 ipaddr.sin_addr = ip->ip_dst;
905 ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
906 if (ia == 0) {
907 if (opt == IPOPT_SSRR) {
908 type = ICMP_UNREACH;
909 code = ICMP_UNREACH_SRCFAIL;
910 goto bad;
911 }
912 /*
913 * Loose routing, and not at next destination
914 * yet; nothing to do except forward.
915 */
916 break;
917 }
918 off--; /* 0 origin */
919 if (off > optlen - sizeof(struct in_addr)) {
920 /*
921 * End of source route. Should be for us.
922 */
923 save_rte(cp, ip->ip_src);
924 break;
925 }
926 /*
927 * locate outgoing interface
928 */
929 bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
930 sizeof(ipaddr.sin_addr));
931 if (opt == IPOPT_SSRR) {
932 #define INA struct in_ifaddr *
933 #define SA struct sockaddr *
934 ia = (INA)ifa_ifwithladdr((SA)&ipaddr);
935 } else
936 ia = ip_rtaddr(ipaddr.sin_addr);
937 if (ia == 0) {
938 type = ICMP_UNREACH;
939 code = ICMP_UNREACH_SRCFAIL;
940 goto bad;
941 }
942 ip->ip_dst = ipaddr.sin_addr;
943 bcopy((caddr_t)&ia->ia_addr.sin_addr,
944 (caddr_t)(cp + off), sizeof(struct in_addr));
945 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
946 /*
947 * Let ip_intr's mcast routing check handle mcast pkts
948 */
949 forward = !IN_MULTICAST(ip->ip_dst.s_addr);
950 break;
951
952 case IPOPT_RR:
953 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
954 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
955 goto bad;
956 }
957 /*
958 * If no space remains, ignore.
959 */
960 off--; /* 0 origin */
961 if (off > optlen - sizeof(struct in_addr))
962 break;
963 bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
964 sizeof(ipaddr.sin_addr));
965 /*
966 * locate outgoing interface; if we're the destination,
967 * use the incoming interface (should be same).
968 */
969 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
970 (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
971 type = ICMP_UNREACH;
972 code = ICMP_UNREACH_HOST;
973 goto bad;
974 }
975 bcopy((caddr_t)&ia->ia_addr.sin_addr,
976 (caddr_t)(cp + off), sizeof(struct in_addr));
977 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
978 break;
979
980 case IPOPT_TS:
981 code = cp - (u_char *)ip;
982 ipt = (struct ip_timestamp *)cp;
983 if (ipt->ipt_len < 5)
984 goto bad;
985 if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
986 if (++ipt->ipt_oflw == 0)
987 goto bad;
988 break;
989 }
990 sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
991 switch (ipt->ipt_flg) {
992
993 case IPOPT_TS_TSONLY:
994 break;
995
996 case IPOPT_TS_TSANDADDR:
997 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
998 sizeof(struct in_addr) > ipt->ipt_len)
999 goto bad;
1000 ipaddr.sin_addr = dst;
1001 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1002 m->m_pkthdr.rcvif);
1003 if (ia == 0)
1004 continue;
1005 bcopy((caddr_t)&ia->ia_addr.sin_addr,
1006 (caddr_t)sin, sizeof(struct in_addr));
1007 ipt->ipt_ptr += sizeof(struct in_addr);
1008 break;
1009
1010 case IPOPT_TS_PRESPEC:
1011 if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1012 sizeof(struct in_addr) > ipt->ipt_len)
1013 goto bad;
1014 bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
1015 sizeof(struct in_addr));
1016 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1017 continue;
1018 ipt->ipt_ptr += sizeof(struct in_addr);
1019 break;
1020
1021 default:
1022 goto bad;
1023 }
1024 ntime = iptime();
1025 bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
1026 sizeof(n_time));
1027 ipt->ipt_ptr += sizeof(n_time);
1028 }
1029 }
1030 if (forward) {
1031 if (ip_forwsrcrt == 0) {
1032 type = ICMP_UNREACH;
1033 code = ICMP_UNREACH_SRCFAIL;
1034 goto bad;
1035 }
1036 ip_forward(m, 1);
1037 return (1);
1038 }
1039 return (0);
1040 bad:
1041 icmp_error(m, type, code, 0, 0);
1042 ipstat.ips_badoptions++;
1043 return (1);
1044 }
1045
1046 /*
1047 * Given address of next destination (final or next hop),
1048 * return internet address info of interface to be used to get there.
1049 */
1050 struct in_ifaddr *
1051 ip_rtaddr(dst)
1052 struct in_addr dst;
1053 {
1054 register struct sockaddr_in *sin;
1055
1056 sin = satosin(&ipforward_rt.ro_dst);
1057
1058 if (ipforward_rt.ro_rt == 0 || !in_hosteq(dst, sin->sin_addr)) {
1059 if (ipforward_rt.ro_rt) {
1060 RTFREE(ipforward_rt.ro_rt);
1061 ipforward_rt.ro_rt = 0;
1062 }
1063 sin->sin_family = AF_INET;
1064 sin->sin_len = sizeof(*sin);
1065 sin->sin_addr = dst;
1066
1067 rtalloc(&ipforward_rt);
1068 }
1069 if (ipforward_rt.ro_rt == 0)
1070 return ((struct in_ifaddr *)0);
1071 return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
1072 }
1073
1074 /*
1075 * Save incoming source route for use in replies,
1076 * to be picked up later by ip_srcroute if the receiver is interested.
1077 */
1078 void
1079 save_rte(option, dst)
1080 u_char *option;
1081 struct in_addr dst;
1082 {
1083 unsigned olen;
1084
1085 olen = option[IPOPT_OLEN];
1086 #ifdef DIAGNOSTIC
1087 if (ipprintfs)
1088 printf("save_rte: olen %d\n", olen);
1089 #endif
1090 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1091 return;
1092 bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
1093 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1094 ip_srcrt.dst = dst;
1095 }
1096
1097 /*
1098 * Retrieve incoming source route for use in replies,
1099 * in the same form used by setsockopt.
1100 * The first hop is placed before the options, will be removed later.
1101 */
1102 struct mbuf *
1103 ip_srcroute()
1104 {
1105 register struct in_addr *p, *q;
1106 register struct mbuf *m;
1107
1108 if (ip_nhops == 0)
1109 return ((struct mbuf *)0);
1110 m = m_get(M_DONTWAIT, MT_SOOPTS);
1111 if (m == 0)
1112 return ((struct mbuf *)0);
1113
1114 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1115
1116 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1117 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1118 OPTSIZ;
1119 #ifdef DIAGNOSTIC
1120 if (ipprintfs)
1121 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1122 #endif
1123
1124 /*
1125 * First save first hop for return route
1126 */
1127 p = &ip_srcrt.route[ip_nhops - 1];
1128 *(mtod(m, struct in_addr *)) = *p--;
1129 #ifdef DIAGNOSTIC
1130 if (ipprintfs)
1131 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1132 #endif
1133
1134 /*
1135 * Copy option fields and padding (nop) to mbuf.
1136 */
1137 ip_srcrt.nop = IPOPT_NOP;
1138 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1139 bcopy((caddr_t)&ip_srcrt.nop,
1140 mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
1141 q = (struct in_addr *)(mtod(m, caddr_t) +
1142 sizeof(struct in_addr) + OPTSIZ);
1143 #undef OPTSIZ
1144 /*
1145 * Record return path as an IP source route,
1146 * reversing the path (pointers are now aligned).
1147 */
1148 while (p >= ip_srcrt.route) {
1149 #ifdef DIAGNOSTIC
1150 if (ipprintfs)
1151 printf(" %x", ntohl(q->s_addr));
1152 #endif
1153 *q++ = *p--;
1154 }
1155 /*
1156 * Last hop goes to final destination.
1157 */
1158 *q = ip_srcrt.dst;
1159 #ifdef DIAGNOSTIC
1160 if (ipprintfs)
1161 printf(" %x\n", ntohl(q->s_addr));
1162 #endif
1163 return (m);
1164 }
1165
1166 /*
1167 * Strip out IP options, at higher
1168 * level protocol in the kernel.
1169 * Second argument is buffer to which options
1170 * will be moved, and return value is their length.
1171 * XXX should be deleted; last arg currently ignored.
1172 */
1173 void
1174 ip_stripoptions(m, mopt)
1175 register struct mbuf *m;
1176 struct mbuf *mopt;
1177 {
1178 register int i;
1179 struct ip *ip = mtod(m, struct ip *);
1180 register caddr_t opts;
1181 int olen;
1182
1183 olen = (ip->ip_hl << 2) - sizeof (struct ip);
1184 opts = (caddr_t)(ip + 1);
1185 i = m->m_len - (sizeof (struct ip) + olen);
1186 bcopy(opts + olen, opts, (unsigned)i);
1187 m->m_len -= olen;
1188 if (m->m_flags & M_PKTHDR)
1189 m->m_pkthdr.len -= olen;
1190 ip->ip_len -= olen;
1191 ip->ip_hl = sizeof (struct ip) >> 2;
1192 }
1193
1194 int inetctlerrmap[PRC_NCMDS] = {
1195 0, 0, 0, 0,
1196 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1197 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1198 EMSGSIZE, EHOSTUNREACH, 0, 0,
1199 0, 0, 0, 0,
1200 ENOPROTOOPT
1201 };
1202
1203 /*
1204 * Forward a packet. If some error occurs return the sender
1205 * an icmp packet. Note we can't always generate a meaningful
1206 * icmp message because icmp doesn't have a large enough repertoire
1207 * of codes and types.
1208 *
1209 * If not forwarding, just drop the packet. This could be confusing
1210 * if ipforwarding was zero but some routing protocol was advancing
1211 * us as a gateway to somewhere. However, we must let the routing
1212 * protocol deal with that.
1213 *
1214 * The srcrt parameter indicates whether the packet is being forwarded
1215 * via a source route.
1216 */
1217 void
1218 ip_forward(m, srcrt)
1219 struct mbuf *m;
1220 int srcrt;
1221 {
1222 register struct ip *ip = mtod(m, struct ip *);
1223 register struct sockaddr_in *sin;
1224 register struct rtentry *rt;
1225 int error, type = 0, code = 0;
1226 struct mbuf *mcopy;
1227 n_long dest;
1228 struct ifnet *destifp;
1229
1230 dest = 0;
1231 #ifdef DIAGNOSTIC
1232 if (ipprintfs)
1233 printf("forward: src %2.2x dst %2.2x ttl %x\n",
1234 ntohl(ip->ip_src.s_addr),
1235 ntohl(ip->ip_dst.s_addr), ip->ip_ttl);
1236 #endif
1237 if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
1238 ipstat.ips_cantforward++;
1239 m_freem(m);
1240 return;
1241 }
1242 if (ip->ip_ttl <= IPTTLDEC) {
1243 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1244 return;
1245 }
1246 ip->ip_ttl -= IPTTLDEC;
1247
1248 sin = satosin(&ipforward_rt.ro_dst);
1249 if ((rt = ipforward_rt.ro_rt) == 0 ||
1250 !in_hosteq(ip->ip_dst, sin->sin_addr)) {
1251 if (ipforward_rt.ro_rt) {
1252 RTFREE(ipforward_rt.ro_rt);
1253 ipforward_rt.ro_rt = 0;
1254 }
1255 sin->sin_family = AF_INET;
1256 sin->sin_len = sizeof(struct sockaddr_in);
1257 sin->sin_addr = ip->ip_dst;
1258
1259 rtalloc(&ipforward_rt);
1260 if (ipforward_rt.ro_rt == 0) {
1261 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1262 return;
1263 }
1264 rt = ipforward_rt.ro_rt;
1265 }
1266
1267 /*
1268 * Save at most 68 bytes of the packet in case
1269 * we need to generate an ICMP message to the src.
1270 */
1271 mcopy = m_copy(m, 0, imin((int)ip->ip_len, 68));
1272
1273 /*
1274 * If forwarding packet using same interface that it came in on,
1275 * perhaps should send a redirect to sender to shortcut a hop.
1276 * Only send redirect if source is sending directly to us,
1277 * and if packet was not source routed (or has any options).
1278 * Also, don't send redirect if forwarding using a default route
1279 * or a route modified by a redirect.
1280 */
1281 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1282 (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1283 !in_nullhost(satosin(rt_key(rt))->sin_addr) &&
1284 ipsendredirects && !srcrt) {
1285 if (rt->rt_ifa &&
1286 (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
1287 ifatoia(rt->rt_ifa)->ia_subnet) {
1288 if (rt->rt_flags & RTF_GATEWAY)
1289 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1290 else
1291 dest = ip->ip_dst.s_addr;
1292 /*
1293 * Router requirements says to only send host
1294 * redirects.
1295 */
1296 type = ICMP_REDIRECT;
1297 code = ICMP_REDIRECT_HOST;
1298 #ifdef DIAGNOSTIC
1299 if (ipprintfs)
1300 printf("redirect (%d) to %x\n", code,
1301 (u_int32_t)dest);
1302 #endif
1303 }
1304 }
1305
1306 error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1307 (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
1308 if (error)
1309 ipstat.ips_cantforward++;
1310 else {
1311 ipstat.ips_forward++;
1312 if (type)
1313 ipstat.ips_redirectsent++;
1314 else {
1315 if (mcopy) {
1316 #ifdef GATEWAY
1317 if (mcopy->m_flags & M_CANFASTFWD)
1318 ipflow_create(&ipforward_rt, mcopy);
1319 #endif
1320 m_freem(mcopy);
1321 }
1322 return;
1323 }
1324 }
1325 if (mcopy == NULL)
1326 return;
1327 destifp = NULL;
1328
1329 switch (error) {
1330
1331 case 0: /* forwarded, but need redirect */
1332 /* type, code set above */
1333 break;
1334
1335 case ENETUNREACH: /* shouldn't happen, checked above */
1336 case EHOSTUNREACH:
1337 case ENETDOWN:
1338 case EHOSTDOWN:
1339 default:
1340 type = ICMP_UNREACH;
1341 code = ICMP_UNREACH_HOST;
1342 break;
1343
1344 case EMSGSIZE:
1345 type = ICMP_UNREACH;
1346 code = ICMP_UNREACH_NEEDFRAG;
1347 if (ipforward_rt.ro_rt)
1348 destifp = ipforward_rt.ro_rt->rt_ifp;
1349 ipstat.ips_cantfrag++;
1350 break;
1351
1352 case ENOBUFS:
1353 type = ICMP_SOURCEQUENCH;
1354 code = 0;
1355 break;
1356 }
1357 icmp_error(mcopy, type, code, dest, destifp);
1358 }
1359
1360 void
1361 ip_savecontrol(inp, mp, ip, m)
1362 register struct inpcb *inp;
1363 register struct mbuf **mp;
1364 register struct ip *ip;
1365 register struct mbuf *m;
1366 {
1367
1368 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1369 struct timeval tv;
1370
1371 microtime(&tv);
1372 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1373 SCM_TIMESTAMP, SOL_SOCKET);
1374 if (*mp)
1375 mp = &(*mp)->m_next;
1376 }
1377 if (inp->inp_flags & INP_RECVDSTADDR) {
1378 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1379 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1380 if (*mp)
1381 mp = &(*mp)->m_next;
1382 }
1383 #ifdef notyet
1384 /*
1385 * XXX
1386 * Moving these out of udp_input() made them even more broken
1387 * than they already were.
1388 * - fenner (at) parc.xerox.com
1389 */
1390 /* options were tossed already */
1391 if (inp->inp_flags & INP_RECVOPTS) {
1392 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1393 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1394 if (*mp)
1395 mp = &(*mp)->m_next;
1396 }
1397 /* ip_srcroute doesn't do what we want here, need to fix */
1398 if (inp->inp_flags & INP_RECVRETOPTS) {
1399 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1400 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1401 if (*mp)
1402 mp = &(*mp)->m_next;
1403 }
1404 #endif
1405 if (inp->inp_flags & INP_RECVIF) {
1406 struct sockaddr_dl sdl;
1407
1408 sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1409 sdl.sdl_family = AF_LINK;
1410 sdl.sdl_index = m->m_pkthdr.rcvif ?
1411 m->m_pkthdr.rcvif->if_index : 0;
1412 sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1413 *mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1414 IP_RECVIF, IPPROTO_IP);
1415 if (*mp)
1416 mp = &(*mp)->m_next;
1417 }
1418 }
1419
1420 int
1421 ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
1422 int *name;
1423 u_int namelen;
1424 void *oldp;
1425 size_t *oldlenp;
1426 void *newp;
1427 size_t newlen;
1428 {
1429 extern int subnetsarelocal, hostzeroisbroadcast;
1430
1431 int error, old;
1432
1433 /* All sysctl names at this level are terminal. */
1434 if (namelen != 1)
1435 return (ENOTDIR);
1436
1437 switch (name[0]) {
1438 case IPCTL_FORWARDING:
1439 return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
1440 case IPCTL_SENDREDIRECTS:
1441 return (sysctl_int(oldp, oldlenp, newp, newlen,
1442 &ipsendredirects));
1443 case IPCTL_DEFTTL:
1444 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
1445 #ifdef notyet
1446 case IPCTL_DEFMTU:
1447 return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1448 #endif
1449 case IPCTL_FORWSRCRT:
1450 /* Don't allow this to change in a secure environment. */
1451 if (securelevel > 0)
1452 return (sysctl_rdint(oldp, oldlenp, newp,
1453 ip_forwsrcrt));
1454 else
1455 return (sysctl_int(oldp, oldlenp, newp, newlen,
1456 &ip_forwsrcrt));
1457 case IPCTL_DIRECTEDBCAST:
1458 return (sysctl_int(oldp, oldlenp, newp, newlen,
1459 &ip_directedbcast));
1460 case IPCTL_ALLOWSRCRT:
1461 return (sysctl_int(oldp, oldlenp, newp, newlen,
1462 &ip_allowsrcrt));
1463 case IPCTL_SUBNETSARELOCAL:
1464 return (sysctl_int(oldp, oldlenp, newp, newlen,
1465 &subnetsarelocal));
1466 case IPCTL_MTUDISC:
1467 error = sysctl_int(oldp, oldlenp, newp, newlen,
1468 &ip_mtudisc);
1469 if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1470 ip_mtudisc_timeout_q =
1471 rt_timer_queue_create(ip_mtudisc_timeout);
1472 } else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1473 rt_timer_queue_destroy(ip_mtudisc_timeout_q, TRUE);
1474 ip_mtudisc_timeout_q = NULL;
1475 }
1476 return error;
1477 case IPCTL_ANONPORTMIN:
1478 old = anonportmin;
1479 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmin);
1480 if (anonportmin >= anonportmax || anonportmin > 65535
1481 #ifndef IPNOPRIVPORTS
1482 || anonportmin < IPPORT_RESERVED
1483 #endif
1484 ) {
1485 anonportmin = old;
1486 return (EINVAL);
1487 }
1488 return (error);
1489 case IPCTL_ANONPORTMAX:
1490 old = anonportmax;
1491 error = sysctl_int(oldp, oldlenp, newp, newlen, &anonportmax);
1492 if (anonportmin >= anonportmax || anonportmax > 65535
1493 #ifndef IPNOPRIVPORTS
1494 || anonportmax < IPPORT_RESERVED
1495 #endif
1496 ) {
1497 anonportmax = old;
1498 return (EINVAL);
1499 }
1500 return (error);
1501 case IPCTL_MTUDISCTIMEOUT:
1502 error = sysctl_int(oldp, oldlenp, newp, newlen,
1503 &ip_mtudisc_timeout);
1504 if (ip_mtudisc_timeout_q != NULL)
1505 rt_timer_queue_change(ip_mtudisc_timeout_q,
1506 ip_mtudisc_timeout);
1507 return (error);
1508 #ifdef GATEWAY
1509 case IPCTL_MAXFLOWS:
1510 {
1511 int s;
1512
1513 error = sysctl_int(oldp, oldlenp, newp, newlen,
1514 &ip_maxflows);
1515 s = splsoftnet();
1516 ipflow_reap(0);
1517 splx(s);
1518 return (error);
1519 }
1520 #endif
1521 case IPCTL_HOSTZEROBROADCAST:
1522 return (sysctl_int(oldp, oldlenp, newp, newlen,
1523 &hostzeroisbroadcast));
1524
1525 default:
1526 return (EOPNOTSUPP);
1527 }
1528 /* NOTREACHED */
1529 }
1530