ip_mroute.c revision 1.111 1 /* $NetBSD: ip_mroute.c,v 1.111 2008/02/06 03:20:51 matt Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35 */
36
37 /*
38 * Copyright (c) 1989 Stephen Deering
39 *
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72 */
73
74 /*
75 * IP multicast forwarding procedures
76 *
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
89 *
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
93 */
94
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.111 2008/02/06 03:20:51 matt Exp $");
97
98 #include "opt_inet.h"
99 #include "opt_ipsec.h"
100 #include "opt_pim.h"
101
102 #ifdef PIM
103 #define _PIM_VT 1
104 #endif
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/ioctl.h>
117 #include <sys/syslog.h>
118
119 #include <net/if.h>
120 #include <net/route.h>
121 #include <net/raw_cb.h>
122
123 #include <netinet/in.h>
124 #include <netinet/in_var.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/udp.h>
130 #include <netinet/igmp.h>
131 #include <netinet/igmp_var.h>
132 #include <netinet/ip_mroute.h>
133 #ifdef PIM
134 #include <netinet/pim.h>
135 #include <netinet/pim_var.h>
136 #endif
137 #include <netinet/ip_encap.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #endif
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #endif
148
149 #include <machine/stdarg.h>
150
151 #define IP_MULTICASTOPTS 0
152 #define M_PULLUP(m, len) \
153 do { \
154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
155 (m) = m_pullup((m), (len)); \
156 } while (/*CONSTCOND*/ 0)
157
158 /*
159 * Globals. All but ip_mrouter and ip_mrtproto could be static,
160 * except for netstat or debugging purposes.
161 */
162 struct socket *ip_mrouter = NULL;
163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
164
165 #define NO_RTE_FOUND 0x1
166 #define RTE_FOUND 0x2
167
168 #define MFCHASH(a, g) \
169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
172 u_long mfchash;
173
174 u_char nexpire[MFCTBLSIZ];
175 struct vif viftable[MAXVIFS];
176 struct mrtstat mrtstat;
177 u_int mrtdebug = 0; /* debug level */
178 #define DEBUG_MFC 0x02
179 #define DEBUG_FORWARD 0x04
180 #define DEBUG_EXPIRE 0x08
181 #define DEBUG_XMIT 0x10
182 #define DEBUG_PIM 0x20
183
184 #define VIFI_INVALID ((vifi_t) -1)
185
186 u_int tbfdebug = 0; /* tbf debug level */
187 #ifdef RSVP_ISI
188 u_int rsvpdebug = 0; /* rsvp debug level */
189 extern struct socket *ip_rsvpd;
190 extern int rsvp_on;
191 #endif /* RSVP_ISI */
192
193 /* vif attachment using sys/netinet/ip_encap.c */
194 static void vif_input(struct mbuf *, ...);
195 static int vif_encapcheck(struct mbuf *, int, int, void *);
196
197 static const struct protosw vif_protosw =
198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
199 vif_input, rip_output, 0, rip_ctloutput,
200 rip_usrreq,
201 0, 0, 0, 0,
202 };
203
204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
205 #define UPCALL_EXPIRE 6 /* number of timeouts */
206
207 /*
208 * Define the token bucket filter structures
209 */
210
211 #define TBF_REPROCESS (hz / 100) /* 100x / second */
212
213 static int get_sg_cnt(struct sioc_sg_req *);
214 static int get_vif_cnt(struct sioc_vif_req *);
215 static int ip_mrouter_init(struct socket *, struct mbuf *);
216 static int get_version(struct mbuf *);
217 static int set_assert(struct mbuf *);
218 static int get_assert(struct mbuf *);
219 static int add_vif(struct mbuf *);
220 static int del_vif(struct mbuf *);
221 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
222 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
223 static void expire_mfc(struct mfc *);
224 static int add_mfc(struct mbuf *);
225 #ifdef UPCALL_TIMING
226 static void collate(struct timeval *);
227 #endif
228 static int del_mfc(struct mbuf *);
229 static int set_api_config(struct mbuf *); /* chose API capabilities */
230 static int get_api_support(struct mbuf *);
231 static int get_api_config(struct mbuf *);
232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
233 static void expire_upcalls(void *);
234 #ifdef RSVP_ISI
235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
236 #else
237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
238 #endif
239 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
240 static void encap_send(struct ip *, struct vif *, struct mbuf *);
241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
242 static void tbf_queue(struct vif *, struct mbuf *);
243 static void tbf_process_q(struct vif *);
244 static void tbf_reprocess_q(void *);
245 static int tbf_dq_sel(struct vif *, struct ip *);
246 static void tbf_send_packet(struct vif *, struct mbuf *);
247 static void tbf_update_tokens(struct vif *);
248 static int priority(struct vif *, struct ip *);
249
250 /*
251 * Bandwidth monitoring
252 */
253 static void free_bw_list(struct bw_meter *);
254 static int add_bw_upcall(struct mbuf *);
255 static int del_bw_upcall(struct mbuf *);
256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
258 static void bw_upcalls_send(void);
259 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
260 static void unschedule_bw_meter(struct bw_meter *);
261 static void bw_meter_process(void);
262 static void expire_bw_upcalls_send(void *);
263 static void expire_bw_meter_process(void *);
264
265 #ifdef PIM
266 static int pim_register_send(struct ip *, struct vif *,
267 struct mbuf *, struct mfc *);
268 static int pim_register_send_rp(struct ip *, struct vif *,
269 struct mbuf *, struct mfc *);
270 static int pim_register_send_upcall(struct ip *, struct vif *,
271 struct mbuf *, struct mfc *);
272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
273 #endif
274
275 /*
276 * 'Interfaces' associated with decapsulator (so we can tell
277 * packets that went through it from ones that get reflected
278 * by a broken gateway). These interfaces are never linked into
279 * the system ifnet list & no routes point to them. I.e., packets
280 * can't be sent this way. They only exist as a placeholder for
281 * multicast source verification.
282 */
283 #if 0
284 struct ifnet multicast_decap_if[MAXVIFS];
285 #endif
286
287 #define ENCAP_TTL 64
288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
289
290 /* prototype IP hdr for encapsulated packets */
291 struct ip multicast_encap_iphdr = {
292 .ip_hl = sizeof(struct ip) >> 2,
293 .ip_v = IPVERSION,
294 .ip_len = sizeof(struct ip),
295 .ip_ttl = ENCAP_TTL,
296 .ip_p = ENCAP_PROTO,
297 };
298
299 /*
300 * Bandwidth meter variables and constants
301 */
302
303 /*
304 * Pending timeouts are stored in a hash table, the key being the
305 * expiration time. Periodically, the entries are analysed and processed.
306 */
307 #define BW_METER_BUCKETS 1024
308 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
309 struct callout bw_meter_ch;
310 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
311
312 /*
313 * Pending upcalls are stored in a vector which is flushed when
314 * full, or periodically
315 */
316 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
317 static u_int bw_upcalls_n; /* # of pending upcalls */
318 struct callout bw_upcalls_ch;
319 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
320
321 #ifdef PIM
322 struct pimstat pimstat;
323
324 /*
325 * Note: the PIM Register encapsulation adds the following in front of a
326 * data packet:
327 *
328 * struct pim_encap_hdr {
329 * struct ip ip;
330 * struct pim_encap_pimhdr pim;
331 * }
332 *
333 */
334
335 struct pim_encap_pimhdr {
336 struct pim pim;
337 uint32_t flags;
338 };
339
340 static struct ip pim_encap_iphdr = {
341 .ip_v = IPVERSION,
342 .ip_hl = sizeof(struct ip) >> 2,
343 .ip_len = sizeof(struct ip),
344 .ip_ttl = ENCAP_TTL,
345 .ip_p = IPPROTO_PIM,
346 };
347
348 static struct pim_encap_pimhdr pim_encap_pimhdr = {
349 {
350 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
351 0, /* reserved */
352 0, /* checksum */
353 },
354 0 /* flags */
355 };
356
357 static struct ifnet multicast_register_if;
358 static vifi_t reg_vif_num = VIFI_INVALID;
359 #endif /* PIM */
360
361
362 /*
363 * Private variables.
364 */
365 static vifi_t numvifs = 0;
366
367 static struct callout expire_upcalls_ch;
368
369 /*
370 * whether or not special PIM assert processing is enabled.
371 */
372 static int pim_assert;
373 /*
374 * Rate limit for assert notification messages, in usec
375 */
376 #define ASSERT_MSG_TIME 3000000
377
378 /*
379 * Kernel multicast routing API capabilities and setup.
380 * If more API capabilities are added to the kernel, they should be
381 * recorded in `mrt_api_support'.
382 */
383 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
384 MRT_MFC_FLAGS_BORDER_VIF |
385 MRT_MFC_RP |
386 MRT_MFC_BW_UPCALL);
387 static u_int32_t mrt_api_config = 0;
388
389 /*
390 * Find a route for a given origin IP address and Multicast group address
391 * Type of service parameter to be added in the future!!!
392 * Statistics are updated by the caller if needed
393 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
394 */
395 static struct mfc *
396 mfc_find(struct in_addr *o, struct in_addr *g)
397 {
398 struct mfc *rt;
399
400 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
401 if (in_hosteq(rt->mfc_origin, *o) &&
402 in_hosteq(rt->mfc_mcastgrp, *g) &&
403 (rt->mfc_stall == NULL))
404 break;
405 }
406
407 return (rt);
408 }
409
410 /*
411 * Macros to compute elapsed time efficiently
412 * Borrowed from Van Jacobson's scheduling code
413 */
414 #define TV_DELTA(a, b, delta) do { \
415 int xxs; \
416 delta = (a).tv_usec - (b).tv_usec; \
417 xxs = (a).tv_sec - (b).tv_sec; \
418 switch (xxs) { \
419 case 2: \
420 delta += 1000000; \
421 /* fall through */ \
422 case 1: \
423 delta += 1000000; \
424 /* fall through */ \
425 case 0: \
426 break; \
427 default: \
428 delta += (1000000 * xxs); \
429 break; \
430 } \
431 } while (/*CONSTCOND*/ 0)
432
433 #ifdef UPCALL_TIMING
434 u_int32_t upcall_data[51];
435 #endif /* UPCALL_TIMING */
436
437 /*
438 * Handle MRT setsockopt commands to modify the multicast routing tables.
439 */
440 int
441 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
442 {
443 int error;
444
445 if (optname != MRT_INIT && so != ip_mrouter)
446 error = ENOPROTOOPT;
447 else
448 switch (optname) {
449 case MRT_INIT:
450 error = ip_mrouter_init(so, *m);
451 break;
452 case MRT_DONE:
453 error = ip_mrouter_done();
454 break;
455 case MRT_ADD_VIF:
456 error = add_vif(*m);
457 break;
458 case MRT_DEL_VIF:
459 error = del_vif(*m);
460 break;
461 case MRT_ADD_MFC:
462 error = add_mfc(*m);
463 break;
464 case MRT_DEL_MFC:
465 error = del_mfc(*m);
466 break;
467 case MRT_ASSERT:
468 error = set_assert(*m);
469 break;
470 case MRT_API_CONFIG:
471 error = set_api_config(*m);
472 break;
473 case MRT_ADD_BW_UPCALL:
474 error = add_bw_upcall(*m);
475 break;
476 case MRT_DEL_BW_UPCALL:
477 error = del_bw_upcall(*m);
478 break;
479 default:
480 error = ENOPROTOOPT;
481 break;
482 }
483
484 if (*m)
485 m_free(*m);
486 return (error);
487 }
488
489 /*
490 * Handle MRT getsockopt commands
491 */
492 int
493 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
494 {
495 int error;
496
497 if (so != ip_mrouter)
498 error = ENOPROTOOPT;
499 else {
500 *m = m_get(M_WAIT, MT_SOOPTS);
501 MCLAIM(*m, so->so_mowner);
502
503 switch (optname) {
504 case MRT_VERSION:
505 error = get_version(*m);
506 break;
507 case MRT_ASSERT:
508 error = get_assert(*m);
509 break;
510 case MRT_API_SUPPORT:
511 error = get_api_support(*m);
512 break;
513 case MRT_API_CONFIG:
514 error = get_api_config(*m);
515 break;
516 default:
517 error = ENOPROTOOPT;
518 break;
519 }
520
521 if (error)
522 m_free(*m);
523 }
524
525 return (error);
526 }
527
528 /*
529 * Handle ioctl commands to obtain information from the cache
530 */
531 int
532 mrt_ioctl(struct socket *so, u_long cmd, void *data)
533 {
534 int error;
535
536 if (so != ip_mrouter)
537 error = EINVAL;
538 else
539 switch (cmd) {
540 case SIOCGETVIFCNT:
541 error = get_vif_cnt((struct sioc_vif_req *)data);
542 break;
543 case SIOCGETSGCNT:
544 error = get_sg_cnt((struct sioc_sg_req *)data);
545 break;
546 default:
547 error = EINVAL;
548 break;
549 }
550
551 return (error);
552 }
553
554 /*
555 * returns the packet, byte, rpf-failure count for the source group provided
556 */
557 static int
558 get_sg_cnt(struct sioc_sg_req *req)
559 {
560 int s;
561 struct mfc *rt;
562
563 s = splsoftnet();
564 rt = mfc_find(&req->src, &req->grp);
565 if (rt == NULL) {
566 splx(s);
567 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
568 return (EADDRNOTAVAIL);
569 }
570 req->pktcnt = rt->mfc_pkt_cnt;
571 req->bytecnt = rt->mfc_byte_cnt;
572 req->wrong_if = rt->mfc_wrong_if;
573 splx(s);
574
575 return (0);
576 }
577
578 /*
579 * returns the input and output packet and byte counts on the vif provided
580 */
581 static int
582 get_vif_cnt(struct sioc_vif_req *req)
583 {
584 vifi_t vifi = req->vifi;
585
586 if (vifi >= numvifs)
587 return (EINVAL);
588
589 req->icount = viftable[vifi].v_pkt_in;
590 req->ocount = viftable[vifi].v_pkt_out;
591 req->ibytes = viftable[vifi].v_bytes_in;
592 req->obytes = viftable[vifi].v_bytes_out;
593
594 return (0);
595 }
596
597 /*
598 * Enable multicast routing
599 */
600 static int
601 ip_mrouter_init(struct socket *so, struct mbuf *m)
602 {
603 int *v;
604
605 if (mrtdebug)
606 log(LOG_DEBUG,
607 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
608 so->so_type, so->so_proto->pr_protocol);
609
610 if (so->so_type != SOCK_RAW ||
611 so->so_proto->pr_protocol != IPPROTO_IGMP)
612 return (EOPNOTSUPP);
613
614 if (m == NULL || m->m_len != sizeof(int))
615 return (EINVAL);
616
617 v = mtod(m, int *);
618 if (*v != 1)
619 return (EINVAL);
620
621 if (ip_mrouter != NULL)
622 return (EADDRINUSE);
623
624 ip_mrouter = so;
625
626 mfchashtbl =
627 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
628 bzero((void *)nexpire, sizeof(nexpire));
629
630 pim_assert = 0;
631
632 callout_init(&expire_upcalls_ch, 0);
633 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
634 expire_upcalls, NULL);
635
636 callout_init(&bw_upcalls_ch, 0);
637 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
638 expire_bw_upcalls_send, NULL);
639
640 callout_init(&bw_meter_ch, 0);
641 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
642 expire_bw_meter_process, NULL);
643
644 if (mrtdebug)
645 log(LOG_DEBUG, "ip_mrouter_init\n");
646
647 return (0);
648 }
649
650 /*
651 * Disable multicast routing
652 */
653 int
654 ip_mrouter_done(void)
655 {
656 vifi_t vifi;
657 struct vif *vifp;
658 int i;
659 int s;
660
661 s = splsoftnet();
662
663 /* Clear out all the vifs currently in use. */
664 for (vifi = 0; vifi < numvifs; vifi++) {
665 vifp = &viftable[vifi];
666 if (!in_nullhost(vifp->v_lcl_addr))
667 reset_vif(vifp);
668 }
669
670 numvifs = 0;
671 pim_assert = 0;
672 mrt_api_config = 0;
673
674 callout_stop(&expire_upcalls_ch);
675 callout_stop(&bw_upcalls_ch);
676 callout_stop(&bw_meter_ch);
677
678 /*
679 * Free all multicast forwarding cache entries.
680 */
681 for (i = 0; i < MFCTBLSIZ; i++) {
682 struct mfc *rt, *nrt;
683
684 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
685 nrt = LIST_NEXT(rt, mfc_hash);
686
687 expire_mfc(rt);
688 }
689 }
690
691 bzero((void *)nexpire, sizeof(nexpire));
692 free(mfchashtbl, M_MRTABLE);
693 mfchashtbl = NULL;
694
695 bw_upcalls_n = 0;
696 bzero(bw_meter_timers, sizeof(bw_meter_timers));
697
698 /* Reset de-encapsulation cache. */
699
700 ip_mrouter = NULL;
701
702 splx(s);
703
704 if (mrtdebug)
705 log(LOG_DEBUG, "ip_mrouter_done\n");
706
707 return (0);
708 }
709
710 void
711 ip_mrouter_detach(struct ifnet *ifp)
712 {
713 int vifi, i;
714 struct vif *vifp;
715 struct mfc *rt;
716 struct rtdetq *rte;
717
718 /* XXX not sure about side effect to userland routing daemon */
719 for (vifi = 0; vifi < numvifs; vifi++) {
720 vifp = &viftable[vifi];
721 if (vifp->v_ifp == ifp)
722 reset_vif(vifp);
723 }
724 for (i = 0; i < MFCTBLSIZ; i++) {
725 if (nexpire[i] == 0)
726 continue;
727 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
728 for (rte = rt->mfc_stall; rte; rte = rte->next) {
729 if (rte->ifp == ifp)
730 rte->ifp = NULL;
731 }
732 }
733 }
734 }
735
736 static int
737 get_version(struct mbuf *m)
738 {
739 int *v = mtod(m, int *);
740
741 *v = 0x0305; /* XXX !!!! */
742 m->m_len = sizeof(int);
743 return (0);
744 }
745
746 /*
747 * Set PIM assert processing global
748 */
749 static int
750 set_assert(struct mbuf *m)
751 {
752 int *i;
753
754 if (m == NULL || m->m_len != sizeof(int))
755 return (EINVAL);
756
757 i = mtod(m, int *);
758 pim_assert = !!*i;
759 return (0);
760 }
761
762 /*
763 * Get PIM assert processing global
764 */
765 static int
766 get_assert(struct mbuf *m)
767 {
768 int *i = mtod(m, int *);
769
770 *i = pim_assert;
771 m->m_len = sizeof(int);
772 return (0);
773 }
774
775 /*
776 * Configure API capabilities
777 */
778 static int
779 set_api_config(struct mbuf *m)
780 {
781 int i;
782 u_int32_t *apival;
783
784 if (m == NULL || m->m_len < sizeof(u_int32_t))
785 return (EINVAL);
786
787 apival = mtod(m, u_int32_t *);
788
789 /*
790 * We can set the API capabilities only if it is the first operation
791 * after MRT_INIT. I.e.:
792 * - there are no vifs installed
793 * - pim_assert is not enabled
794 * - the MFC table is empty
795 */
796 if (numvifs > 0) {
797 *apival = 0;
798 return (EPERM);
799 }
800 if (pim_assert) {
801 *apival = 0;
802 return (EPERM);
803 }
804 for (i = 0; i < MFCTBLSIZ; i++) {
805 if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
806 *apival = 0;
807 return (EPERM);
808 }
809 }
810
811 mrt_api_config = *apival & mrt_api_support;
812 *apival = mrt_api_config;
813
814 return (0);
815 }
816
817 /*
818 * Get API capabilities
819 */
820 static int
821 get_api_support(struct mbuf *m)
822 {
823 u_int32_t *apival;
824
825 if (m == NULL || m->m_len < sizeof(u_int32_t))
826 return (EINVAL);
827
828 apival = mtod(m, u_int32_t *);
829
830 *apival = mrt_api_support;
831
832 return (0);
833 }
834
835 /*
836 * Get API configured capabilities
837 */
838 static int
839 get_api_config(struct mbuf *m)
840 {
841 u_int32_t *apival;
842
843 if (m == NULL || m->m_len < sizeof(u_int32_t))
844 return (EINVAL);
845
846 apival = mtod(m, u_int32_t *);
847
848 *apival = mrt_api_config;
849
850 return (0);
851 }
852
853 /*
854 * Add a vif to the vif table
855 */
856 static int
857 add_vif(struct mbuf *m)
858 {
859 struct vifctl *vifcp;
860 struct vif *vifp;
861 struct ifaddr *ifa;
862 struct ifnet *ifp;
863 struct ifreq ifr;
864 int error, s;
865 struct sockaddr_in sin;
866
867 if (m == NULL || m->m_len < sizeof(struct vifctl))
868 return (EINVAL);
869
870 vifcp = mtod(m, struct vifctl *);
871 if (vifcp->vifc_vifi >= MAXVIFS)
872 return (EINVAL);
873 if (in_nullhost(vifcp->vifc_lcl_addr))
874 return (EADDRNOTAVAIL);
875
876 vifp = &viftable[vifcp->vifc_vifi];
877 if (!in_nullhost(vifp->v_lcl_addr))
878 return (EADDRINUSE);
879
880 /* Find the interface with an address in AF_INET family. */
881 #ifdef PIM
882 if (vifcp->vifc_flags & VIFF_REGISTER) {
883 /*
884 * XXX: Because VIFF_REGISTER does not really need a valid
885 * local interface (e.g. it could be 127.0.0.2), we don't
886 * check its address.
887 */
888 ifp = NULL;
889 } else
890 #endif
891 {
892 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
893 ifa = ifa_ifwithaddr(sintosa(&sin));
894 if (ifa == NULL)
895 return (EADDRNOTAVAIL);
896 ifp = ifa->ifa_ifp;
897 }
898
899 if (vifcp->vifc_flags & VIFF_TUNNEL) {
900 if (vifcp->vifc_flags & VIFF_SRCRT) {
901 log(LOG_ERR, "source routed tunnels not supported\n");
902 return (EOPNOTSUPP);
903 }
904
905 /* attach this vif to decapsulator dispatch table */
906 /*
907 * XXX Use addresses in registration so that matching
908 * can be done with radix tree in decapsulator. But,
909 * we need to check inner header for multicast, so
910 * this requires both radix tree lookup and then a
911 * function to check, and this is not supported yet.
912 */
913 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
914 vif_encapcheck, &vif_protosw, vifp);
915 if (!vifp->v_encap_cookie)
916 return (EINVAL);
917
918 /* Create a fake encapsulation interface. */
919 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
920 bzero(ifp, sizeof(*ifp));
921 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
922 "mdecap%d", vifcp->vifc_vifi);
923
924 /* Prepare cached route entry. */
925 bzero(&vifp->v_route, sizeof(vifp->v_route));
926 #ifdef PIM
927 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
928 ifp = &multicast_register_if;
929 if (mrtdebug)
930 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
931 (void *)ifp);
932 if (reg_vif_num == VIFI_INVALID) {
933 bzero(ifp, sizeof(*ifp));
934 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
935 "register_vif");
936 ifp->if_flags = IFF_LOOPBACK;
937 bzero(&vifp->v_route, sizeof(vifp->v_route));
938 reg_vif_num = vifcp->vifc_vifi;
939 }
940 #endif
941 } else {
942 /* Make sure the interface supports multicast. */
943 if ((ifp->if_flags & IFF_MULTICAST) == 0)
944 return (EOPNOTSUPP);
945
946 /* Enable promiscuous reception of all IP multicasts. */
947 sockaddr_in_init(&sin, &zeroin_addr, 0);
948 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin));
949 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (void *)&ifr);
950 if (error)
951 return (error);
952 }
953
954 s = splsoftnet();
955
956 /* Define parameters for the tbf structure. */
957 vifp->tbf_q = NULL;
958 vifp->tbf_t = &vifp->tbf_q;
959 microtime(&vifp->tbf_last_pkt_t);
960 vifp->tbf_n_tok = 0;
961 vifp->tbf_q_len = 0;
962 vifp->tbf_max_q_len = MAXQSIZE;
963
964 vifp->v_flags = vifcp->vifc_flags;
965 vifp->v_threshold = vifcp->vifc_threshold;
966 /* scaling up here allows division by 1024 in critical code */
967 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
968 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
969 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
970 vifp->v_ifp = ifp;
971 /* Initialize per vif pkt counters. */
972 vifp->v_pkt_in = 0;
973 vifp->v_pkt_out = 0;
974 vifp->v_bytes_in = 0;
975 vifp->v_bytes_out = 0;
976
977 callout_init(&vifp->v_repq_ch, 0);
978
979 #ifdef RSVP_ISI
980 vifp->v_rsvp_on = 0;
981 vifp->v_rsvpd = NULL;
982 #endif /* RSVP_ISI */
983
984 splx(s);
985
986 /* Adjust numvifs up if the vifi is higher than numvifs. */
987 if (numvifs <= vifcp->vifc_vifi)
988 numvifs = vifcp->vifc_vifi + 1;
989
990 if (mrtdebug)
991 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
992 vifcp->vifc_vifi,
993 ntohl(vifcp->vifc_lcl_addr.s_addr),
994 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
995 ntohl(vifcp->vifc_rmt_addr.s_addr),
996 vifcp->vifc_threshold,
997 vifcp->vifc_rate_limit);
998
999 return (0);
1000 }
1001
1002 void
1003 reset_vif(struct vif *vifp)
1004 {
1005 struct mbuf *m, *n;
1006 struct ifnet *ifp;
1007 struct ifreq ifr;
1008 struct sockaddr_in sin;
1009
1010 callout_stop(&vifp->v_repq_ch);
1011
1012 /* detach this vif from decapsulator dispatch table */
1013 encap_detach(vifp->v_encap_cookie);
1014 vifp->v_encap_cookie = NULL;
1015
1016 /*
1017 * Free packets queued at the interface
1018 */
1019 for (m = vifp->tbf_q; m != NULL; m = n) {
1020 n = m->m_nextpkt;
1021 m_freem(m);
1022 }
1023
1024 if (vifp->v_flags & VIFF_TUNNEL)
1025 free(vifp->v_ifp, M_MRTABLE);
1026 else if (vifp->v_flags & VIFF_REGISTER) {
1027 #ifdef PIM
1028 reg_vif_num = VIFI_INVALID;
1029 #endif
1030 } else {
1031 sockaddr_in_init(&sin, &zeroin_addr, 0);
1032 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin));
1033 ifp = vifp->v_ifp;
1034 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (void *)&ifr);
1035 }
1036 bzero((void *)vifp, sizeof(*vifp));
1037 }
1038
1039 /*
1040 * Delete a vif from the vif table
1041 */
1042 static int
1043 del_vif(struct mbuf *m)
1044 {
1045 vifi_t *vifip;
1046 struct vif *vifp;
1047 vifi_t vifi;
1048 int s;
1049
1050 if (m == NULL || m->m_len < sizeof(vifi_t))
1051 return (EINVAL);
1052
1053 vifip = mtod(m, vifi_t *);
1054 if (*vifip >= numvifs)
1055 return (EINVAL);
1056
1057 vifp = &viftable[*vifip];
1058 if (in_nullhost(vifp->v_lcl_addr))
1059 return (EADDRNOTAVAIL);
1060
1061 s = splsoftnet();
1062
1063 reset_vif(vifp);
1064
1065 /* Adjust numvifs down */
1066 for (vifi = numvifs; vifi > 0; vifi--)
1067 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
1068 break;
1069 numvifs = vifi;
1070
1071 splx(s);
1072
1073 if (mrtdebug)
1074 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
1075
1076 return (0);
1077 }
1078
1079 /*
1080 * update an mfc entry without resetting counters and S,G addresses.
1081 */
1082 static void
1083 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1084 {
1085 int i;
1086
1087 rt->mfc_parent = mfccp->mfcc_parent;
1088 for (i = 0; i < numvifs; i++) {
1089 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1090 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1091 MRT_MFC_FLAGS_ALL;
1092 }
1093 /* set the RP address */
1094 if (mrt_api_config & MRT_MFC_RP)
1095 rt->mfc_rp = mfccp->mfcc_rp;
1096 else
1097 rt->mfc_rp = zeroin_addr;
1098 }
1099
1100 /*
1101 * fully initialize an mfc entry from the parameter.
1102 */
1103 static void
1104 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1105 {
1106 rt->mfc_origin = mfccp->mfcc_origin;
1107 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1108
1109 update_mfc_params(rt, mfccp);
1110
1111 /* initialize pkt counters per src-grp */
1112 rt->mfc_pkt_cnt = 0;
1113 rt->mfc_byte_cnt = 0;
1114 rt->mfc_wrong_if = 0;
1115 timerclear(&rt->mfc_last_assert);
1116 }
1117
1118 static void
1119 expire_mfc(struct mfc *rt)
1120 {
1121 struct rtdetq *rte, *nrte;
1122
1123 free_bw_list(rt->mfc_bw_meter);
1124
1125 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1126 nrte = rte->next;
1127 m_freem(rte->m);
1128 free(rte, M_MRTABLE);
1129 }
1130
1131 LIST_REMOVE(rt, mfc_hash);
1132 free(rt, M_MRTABLE);
1133 }
1134
1135 /*
1136 * Add an mfc entry
1137 */
1138 static int
1139 add_mfc(struct mbuf *m)
1140 {
1141 struct mfcctl2 mfcctl2;
1142 struct mfcctl2 *mfccp;
1143 struct mfc *rt;
1144 u_int32_t hash = 0;
1145 struct rtdetq *rte, *nrte;
1146 u_short nstl;
1147 int s;
1148 int mfcctl_size = sizeof(struct mfcctl);
1149
1150 if (mrt_api_config & MRT_API_FLAGS_ALL)
1151 mfcctl_size = sizeof(struct mfcctl2);
1152
1153 if (m == NULL || m->m_len < mfcctl_size)
1154 return (EINVAL);
1155
1156 /*
1157 * select data size depending on API version.
1158 */
1159 if (mrt_api_config & MRT_API_FLAGS_ALL) {
1160 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
1161 bcopy(mp2, (void *)&mfcctl2, sizeof(*mp2));
1162 } else {
1163 struct mfcctl *mp = mtod(m, struct mfcctl *);
1164 memcpy(&mfcctl2, mp, sizeof(*mp));
1165 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0,
1166 sizeof(mfcctl2) - sizeof(struct mfcctl));
1167 }
1168 mfccp = &mfcctl2;
1169
1170 s = splsoftnet();
1171 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1172
1173 /* If an entry already exists, just update the fields */
1174 if (rt) {
1175 if (mrtdebug & DEBUG_MFC)
1176 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1177 ntohl(mfccp->mfcc_origin.s_addr),
1178 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1179 mfccp->mfcc_parent);
1180
1181 update_mfc_params(rt, mfccp);
1182
1183 splx(s);
1184 return (0);
1185 }
1186
1187 /*
1188 * Find the entry for which the upcall was made and update
1189 */
1190 nstl = 0;
1191 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1192 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1193 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1194 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1195 rt->mfc_stall != NULL) {
1196 if (nstl++)
1197 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1198 "multiple kernel entries",
1199 ntohl(mfccp->mfcc_origin.s_addr),
1200 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1201 mfccp->mfcc_parent, rt->mfc_stall);
1202
1203 if (mrtdebug & DEBUG_MFC)
1204 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1205 ntohl(mfccp->mfcc_origin.s_addr),
1206 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1207 mfccp->mfcc_parent, rt->mfc_stall);
1208
1209 rte = rt->mfc_stall;
1210 init_mfc_params(rt, mfccp);
1211 rt->mfc_stall = NULL;
1212
1213 rt->mfc_expire = 0; /* Don't clean this guy up */
1214 nexpire[hash]--;
1215
1216 /* free packets Qed at the end of this entry */
1217 for (; rte != NULL; rte = nrte) {
1218 nrte = rte->next;
1219 if (rte->ifp) {
1220 #ifdef RSVP_ISI
1221 ip_mdq(rte->m, rte->ifp, rt, -1);
1222 #else
1223 ip_mdq(rte->m, rte->ifp, rt);
1224 #endif /* RSVP_ISI */
1225 }
1226 m_freem(rte->m);
1227 #ifdef UPCALL_TIMING
1228 collate(&rte->t);
1229 #endif /* UPCALL_TIMING */
1230 free(rte, M_MRTABLE);
1231 }
1232 }
1233 }
1234
1235 /*
1236 * It is possible that an entry is being inserted without an upcall
1237 */
1238 if (nstl == 0) {
1239 /*
1240 * No mfc; make a new one
1241 */
1242 if (mrtdebug & DEBUG_MFC)
1243 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1244 ntohl(mfccp->mfcc_origin.s_addr),
1245 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1246 mfccp->mfcc_parent);
1247
1248 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1249 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1250 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1251 init_mfc_params(rt, mfccp);
1252 if (rt->mfc_expire)
1253 nexpire[hash]--;
1254 rt->mfc_expire = 0;
1255 break; /* XXX */
1256 }
1257 }
1258 if (rt == NULL) { /* no upcall, so make a new entry */
1259 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1260 M_NOWAIT);
1261 if (rt == NULL) {
1262 splx(s);
1263 return (ENOBUFS);
1264 }
1265
1266 init_mfc_params(rt, mfccp);
1267 rt->mfc_expire = 0;
1268 rt->mfc_stall = NULL;
1269 rt->mfc_bw_meter = NULL;
1270
1271 /* insert new entry at head of hash chain */
1272 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1273 }
1274 }
1275
1276 splx(s);
1277 return (0);
1278 }
1279
1280 #ifdef UPCALL_TIMING
1281 /*
1282 * collect delay statistics on the upcalls
1283 */
1284 static void
1285 collate(struct timeval *t)
1286 {
1287 u_int32_t d;
1288 struct timeval tp;
1289 u_int32_t delta;
1290
1291 microtime(&tp);
1292
1293 if (timercmp(t, &tp, <)) {
1294 TV_DELTA(tp, *t, delta);
1295
1296 d = delta >> 10;
1297 if (d > 50)
1298 d = 50;
1299
1300 ++upcall_data[d];
1301 }
1302 }
1303 #endif /* UPCALL_TIMING */
1304
1305 /*
1306 * Delete an mfc entry
1307 */
1308 static int
1309 del_mfc(struct mbuf *m)
1310 {
1311 struct mfcctl2 mfcctl2;
1312 struct mfcctl2 *mfccp;
1313 struct mfc *rt;
1314 int s;
1315 int mfcctl_size = sizeof(struct mfcctl);
1316 struct mfcctl *mp = mtod(m, struct mfcctl *);
1317
1318 /*
1319 * XXX: for deleting MFC entries the information in entries
1320 * of size "struct mfcctl" is sufficient.
1321 */
1322
1323 if (m == NULL || m->m_len < mfcctl_size)
1324 return (EINVAL);
1325
1326 memcpy(&mfcctl2, mp, sizeof(*mp));
1327 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0,
1328 sizeof(mfcctl2) - sizeof(struct mfcctl));
1329
1330 mfccp = &mfcctl2;
1331
1332 if (mrtdebug & DEBUG_MFC)
1333 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1334 ntohl(mfccp->mfcc_origin.s_addr),
1335 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1336
1337 s = splsoftnet();
1338
1339 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1340 if (rt == NULL) {
1341 splx(s);
1342 return (EADDRNOTAVAIL);
1343 }
1344
1345 /*
1346 * free the bw_meter entries
1347 */
1348 free_bw_list(rt->mfc_bw_meter);
1349 rt->mfc_bw_meter = NULL;
1350
1351 LIST_REMOVE(rt, mfc_hash);
1352 free(rt, M_MRTABLE);
1353
1354 splx(s);
1355 return (0);
1356 }
1357
1358 static int
1359 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1360 {
1361 if (s) {
1362 if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1363 (struct mbuf *)NULL) != 0) {
1364 sorwakeup(s);
1365 return (0);
1366 }
1367 }
1368 m_freem(mm);
1369 return (-1);
1370 }
1371
1372 /*
1373 * IP multicast forwarding function. This function assumes that the packet
1374 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1375 * pointed to by "ifp", and the packet is to be relayed to other networks
1376 * that have members of the packet's destination IP multicast group.
1377 *
1378 * The packet is returned unscathed to the caller, unless it is
1379 * erroneous, in which case a non-zero return value tells the caller to
1380 * discard it.
1381 */
1382
1383 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1384 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1385
1386 int
1387 #ifdef RSVP_ISI
1388 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1389 #else
1390 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1391 #endif /* RSVP_ISI */
1392 {
1393 struct ip *ip = mtod(m, struct ip *);
1394 struct mfc *rt;
1395 static int srctun = 0;
1396 struct mbuf *mm;
1397 struct sockaddr_in sin;
1398 int s;
1399 vifi_t vifi;
1400
1401 if (mrtdebug & DEBUG_FORWARD)
1402 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1403 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1404
1405 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1406 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1407 /*
1408 * Packet arrived via a physical interface or
1409 * an encapsulated tunnel or a register_vif.
1410 */
1411 } else {
1412 /*
1413 * Packet arrived through a source-route tunnel.
1414 * Source-route tunnels are no longer supported.
1415 */
1416 if ((srctun++ % 1000) == 0)
1417 log(LOG_ERR,
1418 "ip_mforward: received source-routed packet from %x\n",
1419 ntohl(ip->ip_src.s_addr));
1420
1421 return (1);
1422 }
1423
1424 #ifdef RSVP_ISI
1425 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1426 if (ip->ip_ttl < MAXTTL)
1427 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1428 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1429 struct vif *vifp = viftable + vifi;
1430 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1431 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1432 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1433 vifp->v_ifp->if_xname);
1434 }
1435 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1436 }
1437 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1438 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1439 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1440 }
1441 #endif /* RSVP_ISI */
1442
1443 /*
1444 * Don't forward a packet with time-to-live of zero or one,
1445 * or a packet destined to a local-only group.
1446 */
1447 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1448 return (0);
1449
1450 /*
1451 * Determine forwarding vifs from the forwarding cache table
1452 */
1453 s = splsoftnet();
1454 ++mrtstat.mrts_mfc_lookups;
1455 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1456
1457 /* Entry exists, so forward if necessary */
1458 if (rt != NULL) {
1459 splx(s);
1460 #ifdef RSVP_ISI
1461 return (ip_mdq(m, ifp, rt, -1));
1462 #else
1463 return (ip_mdq(m, ifp, rt));
1464 #endif /* RSVP_ISI */
1465 } else {
1466 /*
1467 * If we don't have a route for packet's origin,
1468 * Make a copy of the packet & send message to routing daemon
1469 */
1470
1471 struct mbuf *mb0;
1472 struct rtdetq *rte;
1473 u_int32_t hash;
1474 int hlen = ip->ip_hl << 2;
1475 #ifdef UPCALL_TIMING
1476 struct timeval tp;
1477
1478 microtime(&tp);
1479 #endif /* UPCALL_TIMING */
1480
1481 ++mrtstat.mrts_mfc_misses;
1482
1483 mrtstat.mrts_no_route++;
1484 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1485 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1486 ntohl(ip->ip_src.s_addr),
1487 ntohl(ip->ip_dst.s_addr));
1488
1489 /*
1490 * Allocate mbufs early so that we don't do extra work if we are
1491 * just going to fail anyway. Make sure to pullup the header so
1492 * that other people can't step on it.
1493 */
1494 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1495 M_NOWAIT);
1496 if (rte == NULL) {
1497 splx(s);
1498 return (ENOBUFS);
1499 }
1500 mb0 = m_copypacket(m, M_DONTWAIT);
1501 M_PULLUP(mb0, hlen);
1502 if (mb0 == NULL) {
1503 free(rte, M_MRTABLE);
1504 splx(s);
1505 return (ENOBUFS);
1506 }
1507
1508 /* is there an upcall waiting for this flow? */
1509 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1510 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1511 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1512 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1513 rt->mfc_stall != NULL)
1514 break;
1515 }
1516
1517 if (rt == NULL) {
1518 int i;
1519 struct igmpmsg *im;
1520
1521 /*
1522 * Locate the vifi for the incoming interface for
1523 * this packet.
1524 * If none found, drop packet.
1525 */
1526 for (vifi = 0; vifi < numvifs &&
1527 viftable[vifi].v_ifp != ifp; vifi++)
1528 ;
1529 if (vifi >= numvifs) /* vif not found, drop packet */
1530 goto non_fatal;
1531
1532 /* no upcall, so make a new entry */
1533 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1534 M_NOWAIT);
1535 if (rt == NULL)
1536 goto fail;
1537
1538 /*
1539 * Make a copy of the header to send to the user level
1540 * process
1541 */
1542 mm = m_copym(m, 0, hlen, M_DONTWAIT);
1543 M_PULLUP(mm, hlen);
1544 if (mm == NULL)
1545 goto fail1;
1546
1547 /*
1548 * Send message to routing daemon to install
1549 * a route into the kernel table
1550 */
1551
1552 im = mtod(mm, struct igmpmsg *);
1553 im->im_msgtype = IGMPMSG_NOCACHE;
1554 im->im_mbz = 0;
1555 im->im_vif = vifi;
1556
1557 mrtstat.mrts_upcalls++;
1558
1559 sockaddr_in_init(&sin, &ip->ip_src, 0);
1560 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1561 log(LOG_WARNING,
1562 "ip_mforward: ip_mrouter socket queue full\n");
1563 ++mrtstat.mrts_upq_sockfull;
1564 fail1:
1565 free(rt, M_MRTABLE);
1566 fail:
1567 free(rte, M_MRTABLE);
1568 m_freem(mb0);
1569 splx(s);
1570 return (ENOBUFS);
1571 }
1572
1573 /* insert new entry at head of hash chain */
1574 rt->mfc_origin = ip->ip_src;
1575 rt->mfc_mcastgrp = ip->ip_dst;
1576 rt->mfc_pkt_cnt = 0;
1577 rt->mfc_byte_cnt = 0;
1578 rt->mfc_wrong_if = 0;
1579 rt->mfc_expire = UPCALL_EXPIRE;
1580 nexpire[hash]++;
1581 for (i = 0; i < numvifs; i++) {
1582 rt->mfc_ttls[i] = 0;
1583 rt->mfc_flags[i] = 0;
1584 }
1585 rt->mfc_parent = -1;
1586
1587 /* clear the RP address */
1588 rt->mfc_rp = zeroin_addr;
1589
1590 rt->mfc_bw_meter = NULL;
1591
1592 /* link into table */
1593 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1594 /* Add this entry to the end of the queue */
1595 rt->mfc_stall = rte;
1596 } else {
1597 /* determine if q has overflowed */
1598 struct rtdetq **p;
1599 int npkts = 0;
1600
1601 /*
1602 * XXX ouch! we need to append to the list, but we
1603 * only have a pointer to the front, so we have to
1604 * scan the entire list every time.
1605 */
1606 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1607 if (++npkts > MAX_UPQ) {
1608 mrtstat.mrts_upq_ovflw++;
1609 non_fatal:
1610 free(rte, M_MRTABLE);
1611 m_freem(mb0);
1612 splx(s);
1613 return (0);
1614 }
1615
1616 /* Add this entry to the end of the queue */
1617 *p = rte;
1618 }
1619
1620 rte->next = NULL;
1621 rte->m = mb0;
1622 rte->ifp = ifp;
1623 #ifdef UPCALL_TIMING
1624 rte->t = tp;
1625 #endif /* UPCALL_TIMING */
1626
1627 splx(s);
1628
1629 return (0);
1630 }
1631 }
1632
1633
1634 /*ARGSUSED*/
1635 static void
1636 expire_upcalls(void *v)
1637 {
1638 int i;
1639 int s;
1640
1641 s = splsoftnet();
1642
1643 for (i = 0; i < MFCTBLSIZ; i++) {
1644 struct mfc *rt, *nrt;
1645
1646 if (nexpire[i] == 0)
1647 continue;
1648
1649 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1650 nrt = LIST_NEXT(rt, mfc_hash);
1651
1652 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1653 continue;
1654 nexpire[i]--;
1655
1656 /*
1657 * free the bw_meter entries
1658 */
1659 while (rt->mfc_bw_meter != NULL) {
1660 struct bw_meter *x = rt->mfc_bw_meter;
1661
1662 rt->mfc_bw_meter = x->bm_mfc_next;
1663 free(x, M_BWMETER);
1664 }
1665
1666 ++mrtstat.mrts_cache_cleanups;
1667 if (mrtdebug & DEBUG_EXPIRE)
1668 log(LOG_DEBUG,
1669 "expire_upcalls: expiring (%x %x)\n",
1670 ntohl(rt->mfc_origin.s_addr),
1671 ntohl(rt->mfc_mcastgrp.s_addr));
1672
1673 expire_mfc(rt);
1674 }
1675 }
1676
1677 splx(s);
1678 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1679 expire_upcalls, NULL);
1680 }
1681
1682 /*
1683 * Packet forwarding routine once entry in the cache is made
1684 */
1685 static int
1686 #ifdef RSVP_ISI
1687 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1688 #else
1689 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1690 #endif /* RSVP_ISI */
1691 {
1692 struct ip *ip = mtod(m, struct ip *);
1693 vifi_t vifi;
1694 struct vif *vifp;
1695 struct sockaddr_in sin;
1696 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1697
1698 /*
1699 * Macro to send packet on vif. Since RSVP packets don't get counted on
1700 * input, they shouldn't get counted on output, so statistics keeping is
1701 * separate.
1702 */
1703 #define MC_SEND(ip, vifp, m) do { \
1704 if ((vifp)->v_flags & VIFF_TUNNEL) \
1705 encap_send((ip), (vifp), (m)); \
1706 else \
1707 phyint_send((ip), (vifp), (m)); \
1708 } while (/*CONSTCOND*/ 0)
1709
1710 #ifdef RSVP_ISI
1711 /*
1712 * If xmt_vif is not -1, send on only the requested vif.
1713 *
1714 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1715 */
1716 if (xmt_vif < numvifs) {
1717 #ifdef PIM
1718 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1719 pim_register_send(ip, viftable + xmt_vif, m, rt);
1720 else
1721 #endif
1722 MC_SEND(ip, viftable + xmt_vif, m);
1723 return (1);
1724 }
1725 #endif /* RSVP_ISI */
1726
1727 /*
1728 * Don't forward if it didn't arrive from the parent vif for its origin.
1729 */
1730 vifi = rt->mfc_parent;
1731 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1732 /* came in the wrong interface */
1733 if (mrtdebug & DEBUG_FORWARD)
1734 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1735 ifp, vifi,
1736 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1737 ++mrtstat.mrts_wrong_if;
1738 ++rt->mfc_wrong_if;
1739 /*
1740 * If we are doing PIM assert processing, send a message
1741 * to the routing daemon.
1742 *
1743 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1744 * can complete the SPT switch, regardless of the type
1745 * of the iif (broadcast media, GRE tunnel, etc).
1746 */
1747 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1748 struct timeval now;
1749 u_int32_t delta;
1750
1751 #ifdef PIM
1752 if (ifp == &multicast_register_if)
1753 pimstat.pims_rcv_registers_wrongiif++;
1754 #endif
1755
1756 /* Get vifi for the incoming packet */
1757 for (vifi = 0;
1758 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1759 vifi++)
1760 ;
1761 if (vifi >= numvifs) {
1762 /* The iif is not found: ignore the packet. */
1763 return (0);
1764 }
1765
1766 if (rt->mfc_flags[vifi] &
1767 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1768 /* WRONGVIF disabled: ignore the packet */
1769 return (0);
1770 }
1771
1772 microtime(&now);
1773
1774 TV_DELTA(rt->mfc_last_assert, now, delta);
1775
1776 if (delta > ASSERT_MSG_TIME) {
1777 struct igmpmsg *im;
1778 int hlen = ip->ip_hl << 2;
1779 struct mbuf *mm =
1780 m_copym(m, 0, hlen, M_DONTWAIT);
1781
1782 M_PULLUP(mm, hlen);
1783 if (mm == NULL)
1784 return (ENOBUFS);
1785
1786 rt->mfc_last_assert = now;
1787
1788 im = mtod(mm, struct igmpmsg *);
1789 im->im_msgtype = IGMPMSG_WRONGVIF;
1790 im->im_mbz = 0;
1791 im->im_vif = vifi;
1792
1793 mrtstat.mrts_upcalls++;
1794
1795 sockaddr_in_init(&sin, &im->im_src, 0);
1796 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1797 log(LOG_WARNING,
1798 "ip_mforward: ip_mrouter socket queue full\n");
1799 ++mrtstat.mrts_upq_sockfull;
1800 return (ENOBUFS);
1801 }
1802 }
1803 }
1804 return (0);
1805 }
1806
1807 /* If I sourced this packet, it counts as output, else it was input. */
1808 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1809 viftable[vifi].v_pkt_out++;
1810 viftable[vifi].v_bytes_out += plen;
1811 } else {
1812 viftable[vifi].v_pkt_in++;
1813 viftable[vifi].v_bytes_in += plen;
1814 }
1815 rt->mfc_pkt_cnt++;
1816 rt->mfc_byte_cnt += plen;
1817
1818 /*
1819 * For each vif, decide if a copy of the packet should be forwarded.
1820 * Forward if:
1821 * - the ttl exceeds the vif's threshold
1822 * - there are group members downstream on interface
1823 */
1824 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1825 if ((rt->mfc_ttls[vifi] > 0) &&
1826 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1827 vifp->v_pkt_out++;
1828 vifp->v_bytes_out += plen;
1829 #ifdef PIM
1830 if (vifp->v_flags & VIFF_REGISTER)
1831 pim_register_send(ip, vifp, m, rt);
1832 else
1833 #endif
1834 MC_SEND(ip, vifp, m);
1835 }
1836
1837 /*
1838 * Perform upcall-related bw measuring.
1839 */
1840 if (rt->mfc_bw_meter != NULL) {
1841 struct bw_meter *x;
1842 struct timeval now;
1843
1844 microtime(&now);
1845 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1846 bw_meter_receive_packet(x, plen, &now);
1847 }
1848
1849 return (0);
1850 }
1851
1852 #ifdef RSVP_ISI
1853 /*
1854 * check if a vif number is legal/ok. This is used by ip_output.
1855 */
1856 int
1857 legal_vif_num(int vif)
1858 {
1859 if (vif >= 0 && vif < numvifs)
1860 return (1);
1861 else
1862 return (0);
1863 }
1864 #endif /* RSVP_ISI */
1865
1866 static void
1867 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1868 {
1869 struct mbuf *mb_copy;
1870 int hlen = ip->ip_hl << 2;
1871
1872 /*
1873 * Make a new reference to the packet; make sure that
1874 * the IP header is actually copied, not just referenced,
1875 * so that ip_output() only scribbles on the copy.
1876 */
1877 mb_copy = m_copypacket(m, M_DONTWAIT);
1878 M_PULLUP(mb_copy, hlen);
1879 if (mb_copy == NULL)
1880 return;
1881
1882 if (vifp->v_rate_limit <= 0)
1883 tbf_send_packet(vifp, mb_copy);
1884 else
1885 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1886 ntohs(ip->ip_len));
1887 }
1888
1889 static void
1890 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1891 {
1892 struct mbuf *mb_copy;
1893 struct ip *ip_copy;
1894 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1895
1896 /* Take care of delayed checksums */
1897 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1898 in_delayed_cksum(m);
1899 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1900 }
1901
1902 /*
1903 * copy the old packet & pullup it's IP header into the
1904 * new mbuf so we can modify it. Try to fill the new
1905 * mbuf since if we don't the ethernet driver will.
1906 */
1907 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1908 if (mb_copy == NULL)
1909 return;
1910 mb_copy->m_data += max_linkhdr;
1911 mb_copy->m_pkthdr.len = len;
1912 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1913
1914 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1915 m_freem(mb_copy);
1916 return;
1917 }
1918 i = MHLEN - max_linkhdr;
1919 if (i > len)
1920 i = len;
1921 mb_copy = m_pullup(mb_copy, i);
1922 if (mb_copy == NULL)
1923 return;
1924
1925 /*
1926 * fill in the encapsulating IP header.
1927 */
1928 ip_copy = mtod(mb_copy, struct ip *);
1929 *ip_copy = multicast_encap_iphdr;
1930 if (len < IP_MINFRAGSIZE)
1931 ip_copy->ip_id = 0;
1932 else
1933 ip_copy->ip_id = ip_newid(NULL);
1934 ip_copy->ip_len = htons(len);
1935 ip_copy->ip_src = vifp->v_lcl_addr;
1936 ip_copy->ip_dst = vifp->v_rmt_addr;
1937
1938 /*
1939 * turn the encapsulated IP header back into a valid one.
1940 */
1941 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
1942 --ip->ip_ttl;
1943 ip->ip_sum = 0;
1944 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1945 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1946 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1947
1948 if (vifp->v_rate_limit <= 0)
1949 tbf_send_packet(vifp, mb_copy);
1950 else
1951 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1952 }
1953
1954 /*
1955 * De-encapsulate a packet and feed it back through ip input.
1956 */
1957 static void
1958 vif_input(struct mbuf *m, ...)
1959 {
1960 int off, proto;
1961 va_list ap;
1962 struct vif *vifp;
1963 int s;
1964 struct ifqueue *ifq;
1965
1966 va_start(ap, m);
1967 off = va_arg(ap, int);
1968 proto = va_arg(ap, int);
1969 va_end(ap);
1970
1971 vifp = (struct vif *)encap_getarg(m);
1972 if (!vifp || proto != ENCAP_PROTO) {
1973 m_freem(m);
1974 mrtstat.mrts_bad_tunnel++;
1975 return;
1976 }
1977
1978 m_adj(m, off);
1979 m->m_pkthdr.rcvif = vifp->v_ifp;
1980 ifq = &ipintrq;
1981 s = splnet();
1982 if (IF_QFULL(ifq)) {
1983 IF_DROP(ifq);
1984 m_freem(m);
1985 } else {
1986 IF_ENQUEUE(ifq, m);
1987 /*
1988 * normally we would need a "schednetisr(NETISR_IP)"
1989 * here but we were called by ip_input and it is going
1990 * to loop back & try to dequeue the packet we just
1991 * queued as soon as we return so we avoid the
1992 * unnecessary software interrrupt.
1993 */
1994 }
1995 splx(s);
1996 }
1997
1998 /*
1999 * Check if the packet should be received on the vif denoted by arg.
2000 * (The encap selection code will call this once per vif since each is
2001 * registered separately.)
2002 */
2003 static int
2004 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
2005 {
2006 struct vif *vifp;
2007 struct ip ip;
2008
2009 #ifdef DIAGNOSTIC
2010 if (!arg || proto != IPPROTO_IPV4)
2011 panic("unexpected arg in vif_encapcheck");
2012 #endif
2013
2014 /*
2015 * Accept the packet only if the inner heaader is multicast
2016 * and the outer header matches a tunnel-mode vif. Order
2017 * checks in the hope that common non-matching packets will be
2018 * rejected quickly. Assume that unicast IPv4 traffic in a
2019 * parallel tunnel (e.g. gif(4)) is unlikely.
2020 */
2021
2022 /* Obtain the outer IP header and the vif pointer. */
2023 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
2024 vifp = (struct vif *)arg;
2025
2026 /*
2027 * The outer source must match the vif's remote peer address.
2028 * For a multicast router with several tunnels, this is the
2029 * only check that will fail on packets in other tunnels,
2030 * assuming the local address is the same.
2031 */
2032 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
2033 return 0;
2034
2035 /* The outer destination must match the vif's local address. */
2036 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
2037 return 0;
2038
2039 /* The vif must be of tunnel type. */
2040 if ((vifp->v_flags & VIFF_TUNNEL) == 0)
2041 return 0;
2042
2043 /* Check that the inner destination is multicast. */
2044 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
2045 if (!IN_MULTICAST(ip.ip_dst.s_addr))
2046 return 0;
2047
2048 /*
2049 * We have checked that both the outer src and dst addresses
2050 * match the vif, and that the inner destination is multicast
2051 * (224/5). By claiming more than 64, we intend to
2052 * preferentially take packets that also match a parallel
2053 * gif(4).
2054 */
2055 return 32 + 32 + 5;
2056 }
2057
2058 /*
2059 * Token bucket filter module
2060 */
2061 static void
2062 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
2063 {
2064
2065 if (len > MAX_BKT_SIZE) {
2066 /* drop if packet is too large */
2067 mrtstat.mrts_pkt2large++;
2068 m_freem(m);
2069 return;
2070 }
2071
2072 tbf_update_tokens(vifp);
2073
2074 /*
2075 * If there are enough tokens, and the queue is empty, send this packet
2076 * out immediately. Otherwise, try to insert it on this vif's queue.
2077 */
2078 if (vifp->tbf_q_len == 0) {
2079 if (len <= vifp->tbf_n_tok) {
2080 vifp->tbf_n_tok -= len;
2081 tbf_send_packet(vifp, m);
2082 } else {
2083 /* queue packet and timeout till later */
2084 tbf_queue(vifp, m);
2085 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2086 tbf_reprocess_q, vifp);
2087 }
2088 } else {
2089 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
2090 !tbf_dq_sel(vifp, ip)) {
2091 /* queue full, and couldn't make room */
2092 mrtstat.mrts_q_overflow++;
2093 m_freem(m);
2094 } else {
2095 /* queue length low enough, or made room */
2096 tbf_queue(vifp, m);
2097 tbf_process_q(vifp);
2098 }
2099 }
2100 }
2101
2102 /*
2103 * adds a packet to the queue at the interface
2104 */
2105 static void
2106 tbf_queue(struct vif *vifp, struct mbuf *m)
2107 {
2108 int s = splsoftnet();
2109
2110 /* insert at tail */
2111 *vifp->tbf_t = m;
2112 vifp->tbf_t = &m->m_nextpkt;
2113 vifp->tbf_q_len++;
2114
2115 splx(s);
2116 }
2117
2118
2119 /*
2120 * processes the queue at the interface
2121 */
2122 static void
2123 tbf_process_q(struct vif *vifp)
2124 {
2125 struct mbuf *m;
2126 int len;
2127 int s = splsoftnet();
2128
2129 /*
2130 * Loop through the queue at the interface and send as many packets
2131 * as possible.
2132 */
2133 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2134 len = ntohs(mtod(m, struct ip *)->ip_len);
2135
2136 /* determine if the packet can be sent */
2137 if (len <= vifp->tbf_n_tok) {
2138 /* if so,
2139 * reduce no of tokens, dequeue the packet,
2140 * send the packet.
2141 */
2142 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2143 vifp->tbf_t = &vifp->tbf_q;
2144 --vifp->tbf_q_len;
2145
2146 m->m_nextpkt = NULL;
2147 vifp->tbf_n_tok -= len;
2148 tbf_send_packet(vifp, m);
2149 } else
2150 break;
2151 }
2152 splx(s);
2153 }
2154
2155 static void
2156 tbf_reprocess_q(void *arg)
2157 {
2158 struct vif *vifp = arg;
2159
2160 if (ip_mrouter == NULL)
2161 return;
2162
2163 tbf_update_tokens(vifp);
2164 tbf_process_q(vifp);
2165
2166 if (vifp->tbf_q_len != 0)
2167 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2168 tbf_reprocess_q, vifp);
2169 }
2170
2171 /* function that will selectively discard a member of the queue
2172 * based on the precedence value and the priority
2173 */
2174 static int
2175 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2176 {
2177 u_int p;
2178 struct mbuf **mp, *m;
2179 int s = splsoftnet();
2180
2181 p = priority(vifp, ip);
2182
2183 for (mp = &vifp->tbf_q, m = *mp;
2184 m != NULL;
2185 mp = &m->m_nextpkt, m = *mp) {
2186 if (p > priority(vifp, mtod(m, struct ip *))) {
2187 if ((*mp = m->m_nextpkt) == NULL)
2188 vifp->tbf_t = mp;
2189 --vifp->tbf_q_len;
2190
2191 m_freem(m);
2192 mrtstat.mrts_drop_sel++;
2193 splx(s);
2194 return (1);
2195 }
2196 }
2197 splx(s);
2198 return (0);
2199 }
2200
2201 static void
2202 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2203 {
2204 int error;
2205 int s = splsoftnet();
2206
2207 if (vifp->v_flags & VIFF_TUNNEL) {
2208 /* If tunnel options */
2209 ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
2210 IP_FORWARDING, (struct ip_moptions *)NULL,
2211 (struct socket *)NULL);
2212 } else {
2213 /* if physical interface option, extract the options and then send */
2214 struct ip_moptions imo;
2215
2216 imo.imo_multicast_ifp = vifp->v_ifp;
2217 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2218 imo.imo_multicast_loop = 1;
2219 #ifdef RSVP_ISI
2220 imo.imo_multicast_vif = -1;
2221 #endif
2222
2223 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
2224 &imo, NULL);
2225
2226 if (mrtdebug & DEBUG_XMIT)
2227 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2228 (long)(vifp - viftable), error);
2229 }
2230 splx(s);
2231 }
2232
2233 /* determine the current time and then
2234 * the elapsed time (between the last time and time now)
2235 * in milliseconds & update the no. of tokens in the bucket
2236 */
2237 static void
2238 tbf_update_tokens(struct vif *vifp)
2239 {
2240 struct timeval tp;
2241 u_int32_t tm;
2242 int s = splsoftnet();
2243
2244 microtime(&tp);
2245
2246 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2247
2248 /*
2249 * This formula is actually
2250 * "time in seconds" * "bytes/second".
2251 *
2252 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2253 *
2254 * The (1000/1024) was introduced in add_vif to optimize
2255 * this divide into a shift.
2256 */
2257 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2258 vifp->tbf_last_pkt_t = tp;
2259
2260 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2261 vifp->tbf_n_tok = MAX_BKT_SIZE;
2262
2263 splx(s);
2264 }
2265
2266 static int
2267 priority(struct vif *vifp, struct ip *ip)
2268 {
2269 int prio = 50; /* the lowest priority -- default case */
2270
2271 /* temporary hack; may add general packet classifier some day */
2272
2273 /*
2274 * The UDP port space is divided up into four priority ranges:
2275 * [0, 16384) : unclassified - lowest priority
2276 * [16384, 32768) : audio - highest priority
2277 * [32768, 49152) : whiteboard - medium priority
2278 * [49152, 65536) : video - low priority
2279 */
2280 if (ip->ip_p == IPPROTO_UDP) {
2281 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2282
2283 switch (ntohs(udp->uh_dport) & 0xc000) {
2284 case 0x4000:
2285 prio = 70;
2286 break;
2287 case 0x8000:
2288 prio = 60;
2289 break;
2290 case 0xc000:
2291 prio = 55;
2292 break;
2293 }
2294
2295 if (tbfdebug > 1)
2296 log(LOG_DEBUG, "port %x prio %d\n",
2297 ntohs(udp->uh_dport), prio);
2298 }
2299
2300 return (prio);
2301 }
2302
2303 /*
2304 * End of token bucket filter modifications
2305 */
2306 #ifdef RSVP_ISI
2307 int
2308 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
2309 {
2310 int vifi, s;
2311
2312 if (rsvpdebug)
2313 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2314 so->so_type, so->so_proto->pr_protocol);
2315
2316 if (so->so_type != SOCK_RAW ||
2317 so->so_proto->pr_protocol != IPPROTO_RSVP)
2318 return (EOPNOTSUPP);
2319
2320 /* Check mbuf. */
2321 if (m == NULL || m->m_len != sizeof(int)) {
2322 return (EINVAL);
2323 }
2324 vifi = *(mtod(m, int *));
2325
2326 if (rsvpdebug)
2327 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
2328 vifi, rsvp_on);
2329
2330 s = splsoftnet();
2331
2332 /* Check vif. */
2333 if (!legal_vif_num(vifi)) {
2334 splx(s);
2335 return (EADDRNOTAVAIL);
2336 }
2337
2338 /* Check if socket is available. */
2339 if (viftable[vifi].v_rsvpd != NULL) {
2340 splx(s);
2341 return (EADDRINUSE);
2342 }
2343
2344 viftable[vifi].v_rsvpd = so;
2345 /*
2346 * This may seem silly, but we need to be sure we don't over-increment
2347 * the RSVP counter, in case something slips up.
2348 */
2349 if (!viftable[vifi].v_rsvp_on) {
2350 viftable[vifi].v_rsvp_on = 1;
2351 rsvp_on++;
2352 }
2353
2354 splx(s);
2355 return (0);
2356 }
2357
2358 int
2359 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
2360 {
2361 int vifi, s;
2362
2363 if (rsvpdebug)
2364 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2365 so->so_type, so->so_proto->pr_protocol);
2366
2367 if (so->so_type != SOCK_RAW ||
2368 so->so_proto->pr_protocol != IPPROTO_RSVP)
2369 return (EOPNOTSUPP);
2370
2371 /* Check mbuf. */
2372 if (m == NULL || m->m_len != sizeof(int)) {
2373 return (EINVAL);
2374 }
2375 vifi = *(mtod(m, int *));
2376
2377 s = splsoftnet();
2378
2379 /* Check vif. */
2380 if (!legal_vif_num(vifi)) {
2381 splx(s);
2382 return (EADDRNOTAVAIL);
2383 }
2384
2385 if (rsvpdebug)
2386 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2387 viftable[vifi].v_rsvpd, so);
2388
2389 viftable[vifi].v_rsvpd = NULL;
2390 /*
2391 * This may seem silly, but we need to be sure we don't over-decrement
2392 * the RSVP counter, in case something slips up.
2393 */
2394 if (viftable[vifi].v_rsvp_on) {
2395 viftable[vifi].v_rsvp_on = 0;
2396 rsvp_on--;
2397 }
2398
2399 splx(s);
2400 return (0);
2401 }
2402
2403 void
2404 ip_rsvp_force_done(struct socket *so)
2405 {
2406 int vifi, s;
2407
2408 /* Don't bother if it is not the right type of socket. */
2409 if (so->so_type != SOCK_RAW ||
2410 so->so_proto->pr_protocol != IPPROTO_RSVP)
2411 return;
2412
2413 s = splsoftnet();
2414
2415 /*
2416 * The socket may be attached to more than one vif...this
2417 * is perfectly legal.
2418 */
2419 for (vifi = 0; vifi < numvifs; vifi++) {
2420 if (viftable[vifi].v_rsvpd == so) {
2421 viftable[vifi].v_rsvpd = NULL;
2422 /*
2423 * This may seem silly, but we need to be sure we don't
2424 * over-decrement the RSVP counter, in case something
2425 * slips up.
2426 */
2427 if (viftable[vifi].v_rsvp_on) {
2428 viftable[vifi].v_rsvp_on = 0;
2429 rsvp_on--;
2430 }
2431 }
2432 }
2433
2434 splx(s);
2435 return;
2436 }
2437
2438 void
2439 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2440 {
2441 int vifi, s;
2442 struct ip *ip = mtod(m, struct ip *);
2443 struct sockaddr_in rsvp_src;
2444
2445 if (rsvpdebug)
2446 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2447
2448 /*
2449 * Can still get packets with rsvp_on = 0 if there is a local member
2450 * of the group to which the RSVP packet is addressed. But in this
2451 * case we want to throw the packet away.
2452 */
2453 if (!rsvp_on) {
2454 m_freem(m);
2455 return;
2456 }
2457
2458 /*
2459 * If the old-style non-vif-associated socket is set, then use
2460 * it and ignore the new ones.
2461 */
2462 if (ip_rsvpd != NULL) {
2463 if (rsvpdebug)
2464 printf("rsvp_input: "
2465 "Sending packet up old-style socket\n");
2466 rip_input(m); /*XXX*/
2467 return;
2468 }
2469
2470 s = splsoftnet();
2471
2472 if (rsvpdebug)
2473 printf("rsvp_input: check vifs\n");
2474
2475 /* Find which vif the packet arrived on. */
2476 for (vifi = 0; vifi < numvifs; vifi++) {
2477 if (viftable[vifi].v_ifp == ifp)
2478 break;
2479 }
2480
2481 if (vifi == numvifs) {
2482 /* Can't find vif packet arrived on. Drop packet. */
2483 if (rsvpdebug)
2484 printf("rsvp_input: "
2485 "Can't find vif for packet...dropping it.\n");
2486 m_freem(m);
2487 splx(s);
2488 return;
2489 }
2490
2491 if (rsvpdebug)
2492 printf("rsvp_input: check socket\n");
2493
2494 if (viftable[vifi].v_rsvpd == NULL) {
2495 /*
2496 * drop packet, since there is no specific socket for this
2497 * interface
2498 */
2499 if (rsvpdebug)
2500 printf("rsvp_input: No socket defined for vif %d\n",
2501 vifi);
2502 m_freem(m);
2503 splx(s);
2504 return;
2505 }
2506
2507 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
2508
2509 if (rsvpdebug && m)
2510 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2511 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2512
2513 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2514 if (rsvpdebug)
2515 printf("rsvp_input: Failed to append to socket\n");
2516 else
2517 if (rsvpdebug)
2518 printf("rsvp_input: send packet up\n");
2519
2520 splx(s);
2521 }
2522 #endif /* RSVP_ISI */
2523
2524 /*
2525 * Code for bandwidth monitors
2526 */
2527
2528 /*
2529 * Define common interface for timeval-related methods
2530 */
2531 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2532 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2533 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2534
2535 static uint32_t
2536 compute_bw_meter_flags(struct bw_upcall *req)
2537 {
2538 uint32_t flags = 0;
2539
2540 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2541 flags |= BW_METER_UNIT_PACKETS;
2542 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2543 flags |= BW_METER_UNIT_BYTES;
2544 if (req->bu_flags & BW_UPCALL_GEQ)
2545 flags |= BW_METER_GEQ;
2546 if (req->bu_flags & BW_UPCALL_LEQ)
2547 flags |= BW_METER_LEQ;
2548
2549 return flags;
2550 }
2551
2552 /*
2553 * Add a bw_meter entry
2554 */
2555 static int
2556 add_bw_upcall(struct mbuf *m)
2557 {
2558 int s;
2559 struct mfc *mfc;
2560 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2561 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2562 struct timeval now;
2563 struct bw_meter *x;
2564 uint32_t flags;
2565 struct bw_upcall *req;
2566
2567 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2568 return EINVAL;
2569
2570 req = mtod(m, struct bw_upcall *);
2571
2572 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2573 return EOPNOTSUPP;
2574
2575 /* Test if the flags are valid */
2576 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2577 return EINVAL;
2578 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2579 return EINVAL;
2580 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2581 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2582 return EINVAL;
2583
2584 /* Test if the threshold time interval is valid */
2585 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2586 return EINVAL;
2587
2588 flags = compute_bw_meter_flags(req);
2589
2590 /*
2591 * Find if we have already same bw_meter entry
2592 */
2593 s = splsoftnet();
2594 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2595 if (mfc == NULL) {
2596 splx(s);
2597 return EADDRNOTAVAIL;
2598 }
2599 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2600 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2601 &req->bu_threshold.b_time, ==)) &&
2602 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2603 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2604 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2605 splx(s);
2606 return 0; /* XXX Already installed */
2607 }
2608 }
2609
2610 /* Allocate the new bw_meter entry */
2611 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2612 if (x == NULL) {
2613 splx(s);
2614 return ENOBUFS;
2615 }
2616
2617 /* Set the new bw_meter entry */
2618 x->bm_threshold.b_time = req->bu_threshold.b_time;
2619 microtime(&now);
2620 x->bm_start_time = now;
2621 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2622 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2623 x->bm_measured.b_packets = 0;
2624 x->bm_measured.b_bytes = 0;
2625 x->bm_flags = flags;
2626 x->bm_time_next = NULL;
2627 x->bm_time_hash = BW_METER_BUCKETS;
2628
2629 /* Add the new bw_meter entry to the front of entries for this MFC */
2630 x->bm_mfc = mfc;
2631 x->bm_mfc_next = mfc->mfc_bw_meter;
2632 mfc->mfc_bw_meter = x;
2633 schedule_bw_meter(x, &now);
2634 splx(s);
2635
2636 return 0;
2637 }
2638
2639 static void
2640 free_bw_list(struct bw_meter *list)
2641 {
2642 while (list != NULL) {
2643 struct bw_meter *x = list;
2644
2645 list = list->bm_mfc_next;
2646 unschedule_bw_meter(x);
2647 free(x, M_BWMETER);
2648 }
2649 }
2650
2651 /*
2652 * Delete one or multiple bw_meter entries
2653 */
2654 static int
2655 del_bw_upcall(struct mbuf *m)
2656 {
2657 int s;
2658 struct mfc *mfc;
2659 struct bw_meter *x;
2660 struct bw_upcall *req;
2661
2662 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2663 return EINVAL;
2664
2665 req = mtod(m, struct bw_upcall *);
2666
2667 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2668 return EOPNOTSUPP;
2669
2670 s = splsoftnet();
2671 /* Find the corresponding MFC entry */
2672 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2673 if (mfc == NULL) {
2674 splx(s);
2675 return EADDRNOTAVAIL;
2676 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2677 /*
2678 * Delete all bw_meter entries for this mfc
2679 */
2680 struct bw_meter *list;
2681
2682 list = mfc->mfc_bw_meter;
2683 mfc->mfc_bw_meter = NULL;
2684 free_bw_list(list);
2685 splx(s);
2686 return 0;
2687 } else { /* Delete a single bw_meter entry */
2688 struct bw_meter *prev;
2689 uint32_t flags = 0;
2690
2691 flags = compute_bw_meter_flags(req);
2692
2693 /* Find the bw_meter entry to delete */
2694 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2695 prev = x, x = x->bm_mfc_next) {
2696 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2697 &req->bu_threshold.b_time, ==)) &&
2698 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2699 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2700 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2701 break;
2702 }
2703 if (x != NULL) { /* Delete entry from the list for this MFC */
2704 if (prev != NULL)
2705 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2706 else
2707 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2708
2709 unschedule_bw_meter(x);
2710 splx(s);
2711 /* Free the bw_meter entry */
2712 free(x, M_BWMETER);
2713 return 0;
2714 } else {
2715 splx(s);
2716 return EINVAL;
2717 }
2718 }
2719 /* NOTREACHED */
2720 }
2721
2722 /*
2723 * Perform bandwidth measurement processing that may result in an upcall
2724 */
2725 static void
2726 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2727 {
2728 struct timeval delta;
2729
2730 delta = *nowp;
2731 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2732
2733 if (x->bm_flags & BW_METER_GEQ) {
2734 /*
2735 * Processing for ">=" type of bw_meter entry
2736 */
2737 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2738 /* Reset the bw_meter entry */
2739 x->bm_start_time = *nowp;
2740 x->bm_measured.b_packets = 0;
2741 x->bm_measured.b_bytes = 0;
2742 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2743 }
2744
2745 /* Record that a packet is received */
2746 x->bm_measured.b_packets++;
2747 x->bm_measured.b_bytes += plen;
2748
2749 /*
2750 * Test if we should deliver an upcall
2751 */
2752 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2753 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2754 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2755 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2756 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2757 /* Prepare an upcall for delivery */
2758 bw_meter_prepare_upcall(x, nowp);
2759 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2760 }
2761 }
2762 } else if (x->bm_flags & BW_METER_LEQ) {
2763 /*
2764 * Processing for "<=" type of bw_meter entry
2765 */
2766 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2767 /*
2768 * We are behind time with the multicast forwarding table
2769 * scanning for "<=" type of bw_meter entries, so test now
2770 * if we should deliver an upcall.
2771 */
2772 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2773 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2774 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2775 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2776 /* Prepare an upcall for delivery */
2777 bw_meter_prepare_upcall(x, nowp);
2778 }
2779 /* Reschedule the bw_meter entry */
2780 unschedule_bw_meter(x);
2781 schedule_bw_meter(x, nowp);
2782 }
2783
2784 /* Record that a packet is received */
2785 x->bm_measured.b_packets++;
2786 x->bm_measured.b_bytes += plen;
2787
2788 /*
2789 * Test if we should restart the measuring interval
2790 */
2791 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2792 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2793 (x->bm_flags & BW_METER_UNIT_BYTES &&
2794 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2795 /* Don't restart the measuring interval */
2796 } else {
2797 /* Do restart the measuring interval */
2798 /*
2799 * XXX: note that we don't unschedule and schedule, because this
2800 * might be too much overhead per packet. Instead, when we process
2801 * all entries for a given timer hash bin, we check whether it is
2802 * really a timeout. If not, we reschedule at that time.
2803 */
2804 x->bm_start_time = *nowp;
2805 x->bm_measured.b_packets = 0;
2806 x->bm_measured.b_bytes = 0;
2807 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2808 }
2809 }
2810 }
2811
2812 /*
2813 * Prepare a bandwidth-related upcall
2814 */
2815 static void
2816 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2817 {
2818 struct timeval delta;
2819 struct bw_upcall *u;
2820
2821 /*
2822 * Compute the measured time interval
2823 */
2824 delta = *nowp;
2825 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2826
2827 /*
2828 * If there are too many pending upcalls, deliver them now
2829 */
2830 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2831 bw_upcalls_send();
2832
2833 /*
2834 * Set the bw_upcall entry
2835 */
2836 u = &bw_upcalls[bw_upcalls_n++];
2837 u->bu_src = x->bm_mfc->mfc_origin;
2838 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2839 u->bu_threshold.b_time = x->bm_threshold.b_time;
2840 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2841 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2842 u->bu_measured.b_time = delta;
2843 u->bu_measured.b_packets = x->bm_measured.b_packets;
2844 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2845 u->bu_flags = 0;
2846 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2847 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2848 if (x->bm_flags & BW_METER_UNIT_BYTES)
2849 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2850 if (x->bm_flags & BW_METER_GEQ)
2851 u->bu_flags |= BW_UPCALL_GEQ;
2852 if (x->bm_flags & BW_METER_LEQ)
2853 u->bu_flags |= BW_UPCALL_LEQ;
2854 }
2855
2856 /*
2857 * Send the pending bandwidth-related upcalls
2858 */
2859 static void
2860 bw_upcalls_send(void)
2861 {
2862 struct mbuf *m;
2863 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2864 struct sockaddr_in k_igmpsrc = {
2865 .sin_len = sizeof(k_igmpsrc),
2866 .sin_family = AF_INET,
2867 };
2868 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2869 0, /* unused2 */
2870 IGMPMSG_BW_UPCALL,/* im_msgtype */
2871 0, /* im_mbz */
2872 0, /* im_vif */
2873 0, /* unused3 */
2874 { 0 }, /* im_src */
2875 { 0 } }; /* im_dst */
2876
2877 if (bw_upcalls_n == 0)
2878 return; /* No pending upcalls */
2879
2880 bw_upcalls_n = 0;
2881
2882 /*
2883 * Allocate a new mbuf, initialize it with the header and
2884 * the payload for the pending calls.
2885 */
2886 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2887 if (m == NULL) {
2888 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2889 return;
2890 }
2891
2892 m->m_len = m->m_pkthdr.len = 0;
2893 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
2894 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
2895
2896 /*
2897 * Send the upcalls
2898 * XXX do we need to set the address in k_igmpsrc ?
2899 */
2900 mrtstat.mrts_upcalls++;
2901 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2902 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2903 ++mrtstat.mrts_upq_sockfull;
2904 }
2905 }
2906
2907 /*
2908 * Compute the timeout hash value for the bw_meter entries
2909 */
2910 #define BW_METER_TIMEHASH(bw_meter, hash) \
2911 do { \
2912 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2913 \
2914 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2915 (hash) = next_timeval.tv_sec; \
2916 if (next_timeval.tv_usec) \
2917 (hash)++; /* XXX: make sure we don't timeout early */ \
2918 (hash) %= BW_METER_BUCKETS; \
2919 } while (/*CONSTCOND*/ 0)
2920
2921 /*
2922 * Schedule a timer to process periodically bw_meter entry of type "<="
2923 * by linking the entry in the proper hash bucket.
2924 */
2925 static void
2926 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2927 {
2928 int time_hash;
2929
2930 if (!(x->bm_flags & BW_METER_LEQ))
2931 return; /* XXX: we schedule timers only for "<=" entries */
2932
2933 /*
2934 * Reset the bw_meter entry
2935 */
2936 x->bm_start_time = *nowp;
2937 x->bm_measured.b_packets = 0;
2938 x->bm_measured.b_bytes = 0;
2939 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2940
2941 /*
2942 * Compute the timeout hash value and insert the entry
2943 */
2944 BW_METER_TIMEHASH(x, time_hash);
2945 x->bm_time_next = bw_meter_timers[time_hash];
2946 bw_meter_timers[time_hash] = x;
2947 x->bm_time_hash = time_hash;
2948 }
2949
2950 /*
2951 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2952 * by removing the entry from the proper hash bucket.
2953 */
2954 static void
2955 unschedule_bw_meter(struct bw_meter *x)
2956 {
2957 int time_hash;
2958 struct bw_meter *prev, *tmp;
2959
2960 if (!(x->bm_flags & BW_METER_LEQ))
2961 return; /* XXX: we schedule timers only for "<=" entries */
2962
2963 /*
2964 * Compute the timeout hash value and delete the entry
2965 */
2966 time_hash = x->bm_time_hash;
2967 if (time_hash >= BW_METER_BUCKETS)
2968 return; /* Entry was not scheduled */
2969
2970 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2971 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2972 if (tmp == x)
2973 break;
2974
2975 if (tmp == NULL)
2976 panic("unschedule_bw_meter: bw_meter entry not found");
2977
2978 if (prev != NULL)
2979 prev->bm_time_next = x->bm_time_next;
2980 else
2981 bw_meter_timers[time_hash] = x->bm_time_next;
2982
2983 x->bm_time_next = NULL;
2984 x->bm_time_hash = BW_METER_BUCKETS;
2985 }
2986
2987 /*
2988 * Process all "<=" type of bw_meter that should be processed now,
2989 * and for each entry prepare an upcall if necessary. Each processed
2990 * entry is rescheduled again for the (periodic) processing.
2991 *
2992 * This is run periodically (once per second normally). On each round,
2993 * all the potentially matching entries are in the hash slot that we are
2994 * looking at.
2995 */
2996 static void
2997 bw_meter_process(void)
2998 {
2999 int s;
3000 static uint32_t last_tv_sec; /* last time we processed this */
3001
3002 uint32_t loops;
3003 int i;
3004 struct timeval now, process_endtime;
3005
3006 microtime(&now);
3007 if (last_tv_sec == now.tv_sec)
3008 return; /* nothing to do */
3009
3010 loops = now.tv_sec - last_tv_sec;
3011 last_tv_sec = now.tv_sec;
3012 if (loops > BW_METER_BUCKETS)
3013 loops = BW_METER_BUCKETS;
3014
3015 s = splsoftnet();
3016 /*
3017 * Process all bins of bw_meter entries from the one after the last
3018 * processed to the current one. On entry, i points to the last bucket
3019 * visited, so we need to increment i at the beginning of the loop.
3020 */
3021 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
3022 struct bw_meter *x, *tmp_list;
3023
3024 if (++i >= BW_METER_BUCKETS)
3025 i = 0;
3026
3027 /* Disconnect the list of bw_meter entries from the bin */
3028 tmp_list = bw_meter_timers[i];
3029 bw_meter_timers[i] = NULL;
3030
3031 /* Process the list of bw_meter entries */
3032 while (tmp_list != NULL) {
3033 x = tmp_list;
3034 tmp_list = tmp_list->bm_time_next;
3035
3036 /* Test if the time interval is over */
3037 process_endtime = x->bm_start_time;
3038 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
3039 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
3040 /* Not yet: reschedule, but don't reset */
3041 int time_hash;
3042
3043 BW_METER_TIMEHASH(x, time_hash);
3044 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
3045 /*
3046 * XXX: somehow the bin processing is a bit ahead of time.
3047 * Put the entry in the next bin.
3048 */
3049 if (++time_hash >= BW_METER_BUCKETS)
3050 time_hash = 0;
3051 }
3052 x->bm_time_next = bw_meter_timers[time_hash];
3053 bw_meter_timers[time_hash] = x;
3054 x->bm_time_hash = time_hash;
3055
3056 continue;
3057 }
3058
3059 /*
3060 * Test if we should deliver an upcall
3061 */
3062 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
3063 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
3064 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
3065 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
3066 /* Prepare an upcall for delivery */
3067 bw_meter_prepare_upcall(x, &now);
3068 }
3069
3070 /*
3071 * Reschedule for next processing
3072 */
3073 schedule_bw_meter(x, &now);
3074 }
3075 }
3076
3077 /* Send all upcalls that are pending delivery */
3078 bw_upcalls_send();
3079
3080 splx(s);
3081 }
3082
3083 /*
3084 * A periodic function for sending all upcalls that are pending delivery
3085 */
3086 static void
3087 expire_bw_upcalls_send(void *unused)
3088 {
3089 int s;
3090
3091 s = splsoftnet();
3092 bw_upcalls_send();
3093 splx(s);
3094
3095 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3096 expire_bw_upcalls_send, NULL);
3097 }
3098
3099 /*
3100 * A periodic function for periodic scanning of the multicast forwarding
3101 * table for processing all "<=" bw_meter entries.
3102 */
3103 static void
3104 expire_bw_meter_process(void *unused)
3105 {
3106 if (mrt_api_config & MRT_MFC_BW_UPCALL)
3107 bw_meter_process();
3108
3109 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
3110 expire_bw_meter_process, NULL);
3111 }
3112
3113 /*
3114 * End of bandwidth monitoring code
3115 */
3116
3117 #ifdef PIM
3118 /*
3119 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3120 */
3121 static int
3122 pim_register_send(struct ip *ip, struct vif *vifp,
3123 struct mbuf *m, struct mfc *rt)
3124 {
3125 struct mbuf *mb_copy, *mm;
3126
3127 if (mrtdebug & DEBUG_PIM)
3128 log(LOG_DEBUG, "pim_register_send: ");
3129
3130 mb_copy = pim_register_prepare(ip, m);
3131 if (mb_copy == NULL)
3132 return ENOBUFS;
3133
3134 /*
3135 * Send all the fragments. Note that the mbuf for each fragment
3136 * is freed by the sending machinery.
3137 */
3138 for (mm = mb_copy; mm; mm = mb_copy) {
3139 mb_copy = mm->m_nextpkt;
3140 mm->m_nextpkt = NULL;
3141 mm = m_pullup(mm, sizeof(struct ip));
3142 if (mm != NULL) {
3143 ip = mtod(mm, struct ip *);
3144 if ((mrt_api_config & MRT_MFC_RP) &&
3145 !in_nullhost(rt->mfc_rp)) {
3146 pim_register_send_rp(ip, vifp, mm, rt);
3147 } else {
3148 pim_register_send_upcall(ip, vifp, mm, rt);
3149 }
3150 }
3151 }
3152
3153 return 0;
3154 }
3155
3156 /*
3157 * Return a copy of the data packet that is ready for PIM Register
3158 * encapsulation.
3159 * XXX: Note that in the returned copy the IP header is a valid one.
3160 */
3161 static struct mbuf *
3162 pim_register_prepare(struct ip *ip, struct mbuf *m)
3163 {
3164 struct mbuf *mb_copy = NULL;
3165 int mtu;
3166
3167 /* Take care of delayed checksums */
3168 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3169 in_delayed_cksum(m);
3170 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3171 }
3172
3173 /*
3174 * Copy the old packet & pullup its IP header into the
3175 * new mbuf so we can modify it.
3176 */
3177 mb_copy = m_copypacket(m, M_DONTWAIT);
3178 if (mb_copy == NULL)
3179 return NULL;
3180 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3181 if (mb_copy == NULL)
3182 return NULL;
3183
3184 /* take care of the TTL */
3185 ip = mtod(mb_copy, struct ip *);
3186 --ip->ip_ttl;
3187
3188 /* Compute the MTU after the PIM Register encapsulation */
3189 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3190
3191 if (ntohs(ip->ip_len) <= mtu) {
3192 /* Turn the IP header into a valid one */
3193 ip->ip_sum = 0;
3194 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3195 } else {
3196 /* Fragment the packet */
3197 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3198 /* XXX: mb_copy was freed by ip_fragment() */
3199 return NULL;
3200 }
3201 }
3202 return mb_copy;
3203 }
3204
3205 /*
3206 * Send an upcall with the data packet to the user-level process.
3207 */
3208 static int
3209 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3210 struct mbuf *mb_copy, struct mfc *rt)
3211 {
3212 struct mbuf *mb_first;
3213 int len = ntohs(ip->ip_len);
3214 struct igmpmsg *im;
3215 struct sockaddr_in k_igmpsrc = {
3216 .sin_len = sizeof(k_igmpsrc),
3217 .sin_family = AF_INET,
3218 };
3219
3220 /*
3221 * Add a new mbuf with an upcall header
3222 */
3223 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3224 if (mb_first == NULL) {
3225 m_freem(mb_copy);
3226 return ENOBUFS;
3227 }
3228 mb_first->m_data += max_linkhdr;
3229 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3230 mb_first->m_len = sizeof(struct igmpmsg);
3231 mb_first->m_next = mb_copy;
3232
3233 /* Send message to routing daemon */
3234 im = mtod(mb_first, struct igmpmsg *);
3235 im->im_msgtype = IGMPMSG_WHOLEPKT;
3236 im->im_mbz = 0;
3237 im->im_vif = vifp - viftable;
3238 im->im_src = ip->ip_src;
3239 im->im_dst = ip->ip_dst;
3240
3241 k_igmpsrc.sin_addr = ip->ip_src;
3242
3243 mrtstat.mrts_upcalls++;
3244
3245 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3246 if (mrtdebug & DEBUG_PIM)
3247 log(LOG_WARNING,
3248 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3249 ++mrtstat.mrts_upq_sockfull;
3250 return ENOBUFS;
3251 }
3252
3253 /* Keep statistics */
3254 pimstat.pims_snd_registers_msgs++;
3255 pimstat.pims_snd_registers_bytes += len;
3256
3257 return 0;
3258 }
3259
3260 /*
3261 * Encapsulate the data packet in PIM Register message and send it to the RP.
3262 */
3263 static int
3264 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3265 struct mbuf *mb_copy, struct mfc *rt)
3266 {
3267 struct mbuf *mb_first;
3268 struct ip *ip_outer;
3269 struct pim_encap_pimhdr *pimhdr;
3270 int len = ntohs(ip->ip_len);
3271 vifi_t vifi = rt->mfc_parent;
3272
3273 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3274 m_freem(mb_copy);
3275 return EADDRNOTAVAIL; /* The iif vif is invalid */
3276 }
3277
3278 /*
3279 * Add a new mbuf with the encapsulating header
3280 */
3281 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3282 if (mb_first == NULL) {
3283 m_freem(mb_copy);
3284 return ENOBUFS;
3285 }
3286 mb_first->m_data += max_linkhdr;
3287 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3288 mb_first->m_next = mb_copy;
3289
3290 mb_first->m_pkthdr.len = len + mb_first->m_len;
3291
3292 /*
3293 * Fill in the encapsulating IP and PIM header
3294 */
3295 ip_outer = mtod(mb_first, struct ip *);
3296 *ip_outer = pim_encap_iphdr;
3297 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
3298 ip_outer->ip_id = 0;
3299 else
3300 ip_outer->ip_id = ip_newid(NULL);
3301 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3302 sizeof(pim_encap_pimhdr));
3303 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3304 ip_outer->ip_dst = rt->mfc_rp;
3305 /*
3306 * Copy the inner header TOS to the outer header, and take care of the
3307 * IP_DF bit.
3308 */
3309 ip_outer->ip_tos = ip->ip_tos;
3310 if (ntohs(ip->ip_off) & IP_DF)
3311 ip_outer->ip_off |= htons(IP_DF);
3312 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
3313 + sizeof(pim_encap_iphdr));
3314 *pimhdr = pim_encap_pimhdr;
3315 /* If the iif crosses a border, set the Border-bit */
3316 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3317 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3318
3319 mb_first->m_data += sizeof(pim_encap_iphdr);
3320 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3321 mb_first->m_data -= sizeof(pim_encap_iphdr);
3322
3323 if (vifp->v_rate_limit == 0)
3324 tbf_send_packet(vifp, mb_first);
3325 else
3326 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3327
3328 /* Keep statistics */
3329 pimstat.pims_snd_registers_msgs++;
3330 pimstat.pims_snd_registers_bytes += len;
3331
3332 return 0;
3333 }
3334
3335 /*
3336 * PIM-SMv2 and PIM-DM messages processing.
3337 * Receives and verifies the PIM control messages, and passes them
3338 * up to the listening socket, using rip_input().
3339 * The only message with special processing is the PIM_REGISTER message
3340 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3341 * is passed to if_simloop().
3342 */
3343 void
3344 pim_input(struct mbuf *m, ...)
3345 {
3346 struct ip *ip = mtod(m, struct ip *);
3347 struct pim *pim;
3348 int minlen;
3349 int datalen;
3350 int ip_tos;
3351 int proto;
3352 int iphlen;
3353 va_list ap;
3354
3355 va_start(ap, m);
3356 iphlen = va_arg(ap, int);
3357 proto = va_arg(ap, int);
3358 va_end(ap);
3359
3360 datalen = ntohs(ip->ip_len) - iphlen;
3361
3362 /* Keep statistics */
3363 pimstat.pims_rcv_total_msgs++;
3364 pimstat.pims_rcv_total_bytes += datalen;
3365
3366 /*
3367 * Validate lengths
3368 */
3369 if (datalen < PIM_MINLEN) {
3370 pimstat.pims_rcv_tooshort++;
3371 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3372 datalen, (u_long)ip->ip_src.s_addr);
3373 m_freem(m);
3374 return;
3375 }
3376
3377 /*
3378 * If the packet is at least as big as a REGISTER, go agead
3379 * and grab the PIM REGISTER header size, to avoid another
3380 * possible m_pullup() later.
3381 *
3382 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3383 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3384 */
3385 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3386 /*
3387 * Get the IP and PIM headers in contiguous memory, and
3388 * possibly the PIM REGISTER header.
3389 */
3390 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3391 (m = m_pullup(m, minlen)) == NULL) {
3392 log(LOG_ERR, "pim_input: m_pullup failure\n");
3393 return;
3394 }
3395 /* m_pullup() may have given us a new mbuf so reset ip. */
3396 ip = mtod(m, struct ip *);
3397 ip_tos = ip->ip_tos;
3398
3399 /* adjust mbuf to point to the PIM header */
3400 m->m_data += iphlen;
3401 m->m_len -= iphlen;
3402 pim = mtod(m, struct pim *);
3403
3404 /*
3405 * Validate checksum. If PIM REGISTER, exclude the data packet.
3406 *
3407 * XXX: some older PIMv2 implementations don't make this distinction,
3408 * so for compatibility reason perform the checksum over part of the
3409 * message, and if error, then over the whole message.
3410 */
3411 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3412 /* do nothing, checksum okay */
3413 } else if (in_cksum(m, datalen)) {
3414 pimstat.pims_rcv_badsum++;
3415 if (mrtdebug & DEBUG_PIM)
3416 log(LOG_DEBUG, "pim_input: invalid checksum");
3417 m_freem(m);
3418 return;
3419 }
3420
3421 /* PIM version check */
3422 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3423 pimstat.pims_rcv_badversion++;
3424 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3425 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3426 m_freem(m);
3427 return;
3428 }
3429
3430 /* restore mbuf back to the outer IP */
3431 m->m_data -= iphlen;
3432 m->m_len += iphlen;
3433
3434 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3435 /*
3436 * Since this is a REGISTER, we'll make a copy of the register
3437 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3438 * routing daemon.
3439 */
3440 int s;
3441 struct sockaddr_in dst = {
3442 .sin_len = sizeof(dst),
3443 .sin_family = AF_INET,
3444 };
3445 struct mbuf *mcp;
3446 struct ip *encap_ip;
3447 u_int32_t *reghdr;
3448 struct ifnet *vifp;
3449
3450 s = splsoftnet();
3451 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3452 splx(s);
3453 if (mrtdebug & DEBUG_PIM)
3454 log(LOG_DEBUG,
3455 "pim_input: register vif not set: %d\n", reg_vif_num);
3456 m_freem(m);
3457 return;
3458 }
3459 /* XXX need refcnt? */
3460 vifp = viftable[reg_vif_num].v_ifp;
3461 splx(s);
3462
3463 /*
3464 * Validate length
3465 */
3466 if (datalen < PIM_REG_MINLEN) {
3467 pimstat.pims_rcv_tooshort++;
3468 pimstat.pims_rcv_badregisters++;
3469 log(LOG_ERR,
3470 "pim_input: register packet size too small %d from %lx\n",
3471 datalen, (u_long)ip->ip_src.s_addr);
3472 m_freem(m);
3473 return;
3474 }
3475
3476 reghdr = (u_int32_t *)(pim + 1);
3477 encap_ip = (struct ip *)(reghdr + 1);
3478
3479 if (mrtdebug & DEBUG_PIM) {
3480 log(LOG_DEBUG,
3481 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3482 (u_long)ntohl(encap_ip->ip_src.s_addr),
3483 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3484 ntohs(encap_ip->ip_len));
3485 }
3486
3487 /* verify the version number of the inner packet */
3488 if (encap_ip->ip_v != IPVERSION) {
3489 pimstat.pims_rcv_badregisters++;
3490 if (mrtdebug & DEBUG_PIM) {
3491 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3492 "of the inner packet\n", encap_ip->ip_v);
3493 }
3494 m_freem(m);
3495 return;
3496 }
3497
3498 /* verify the inner packet is destined to a mcast group */
3499 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3500 pimstat.pims_rcv_badregisters++;
3501 if (mrtdebug & DEBUG_PIM)
3502 log(LOG_DEBUG,
3503 "pim_input: inner packet of register is not "
3504 "multicast %lx\n",
3505 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3506 m_freem(m);
3507 return;
3508 }
3509
3510 /* If a NULL_REGISTER, pass it to the daemon */
3511 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3512 goto pim_input_to_daemon;
3513
3514 /*
3515 * Copy the TOS from the outer IP header to the inner IP header.
3516 */
3517 if (encap_ip->ip_tos != ip_tos) {
3518 /* Outer TOS -> inner TOS */
3519 encap_ip->ip_tos = ip_tos;
3520 /* Recompute the inner header checksum. Sigh... */
3521
3522 /* adjust mbuf to point to the inner IP header */
3523 m->m_data += (iphlen + PIM_MINLEN);
3524 m->m_len -= (iphlen + PIM_MINLEN);
3525
3526 encap_ip->ip_sum = 0;
3527 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3528
3529 /* restore mbuf to point back to the outer IP header */
3530 m->m_data -= (iphlen + PIM_MINLEN);
3531 m->m_len += (iphlen + PIM_MINLEN);
3532 }
3533
3534 /*
3535 * Decapsulate the inner IP packet and loopback to forward it
3536 * as a normal multicast packet. Also, make a copy of the
3537 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3538 * to pass to the daemon later, so it can take the appropriate
3539 * actions (e.g., send back PIM_REGISTER_STOP).
3540 * XXX: here m->m_data points to the outer IP header.
3541 */
3542 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
3543 if (mcp == NULL) {
3544 log(LOG_ERR,
3545 "pim_input: pim register: could not copy register head\n");
3546 m_freem(m);
3547 return;
3548 }
3549
3550 /* Keep statistics */
3551 /* XXX: registers_bytes include only the encap. mcast pkt */
3552 pimstat.pims_rcv_registers_msgs++;
3553 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3554
3555 /*
3556 * forward the inner ip packet; point m_data at the inner ip.
3557 */
3558 m_adj(m, iphlen + PIM_MINLEN);
3559
3560 if (mrtdebug & DEBUG_PIM) {
3561 log(LOG_DEBUG,
3562 "pim_input: forwarding decapsulated register: "
3563 "src %lx, dst %lx, vif %d\n",
3564 (u_long)ntohl(encap_ip->ip_src.s_addr),
3565 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3566 reg_vif_num);
3567 }
3568 /* NB: vifp was collected above; can it change on us? */
3569 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
3570
3571 /* prepare the register head to send to the mrouting daemon */
3572 m = mcp;
3573 }
3574
3575 pim_input_to_daemon:
3576 /*
3577 * Pass the PIM message up to the daemon; if it is a Register message,
3578 * pass the 'head' only up to the daemon. This includes the
3579 * outer IP header, PIM header, PIM-Register header and the
3580 * inner IP header.
3581 * XXX: the outer IP header pkt size of a Register is not adjust to
3582 * reflect the fact that the inner multicast data is truncated.
3583 */
3584 rip_input(m, iphlen, proto);
3585
3586 return;
3587 }
3588 #endif /* PIM */
3589