ip_mroute.c revision 1.114 1 /* $NetBSD: ip_mroute.c,v 1.114 2008/05/22 01:08:03 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35 */
36
37 /*
38 * Copyright (c) 1989 Stephen Deering
39 *
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72 */
73
74 /*
75 * IP multicast forwarding procedures
76 *
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
89 *
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
93 */
94
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.114 2008/05/22 01:08:03 dyoung Exp $");
97
98 #include "opt_inet.h"
99 #include "opt_ipsec.h"
100 #include "opt_pim.h"
101
102 #ifdef PIM
103 #define _PIM_VT 1
104 #endif
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/ioctl.h>
117 #include <sys/syslog.h>
118
119 #include <net/if.h>
120 #include <net/route.h>
121 #include <net/raw_cb.h>
122
123 #include <netinet/in.h>
124 #include <netinet/in_var.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/udp.h>
130 #include <netinet/igmp.h>
131 #include <netinet/igmp_var.h>
132 #include <netinet/ip_mroute.h>
133 #ifdef PIM
134 #include <netinet/pim.h>
135 #include <netinet/pim_var.h>
136 #endif
137 #include <netinet/ip_encap.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #endif
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #endif
148
149 #include <machine/stdarg.h>
150
151 #define IP_MULTICASTOPTS 0
152 #define M_PULLUP(m, len) \
153 do { \
154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
155 (m) = m_pullup((m), (len)); \
156 } while (/*CONSTCOND*/ 0)
157
158 /*
159 * Globals. All but ip_mrouter and ip_mrtproto could be static,
160 * except for netstat or debugging purposes.
161 */
162 struct socket *ip_mrouter = NULL;
163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
164
165 #define NO_RTE_FOUND 0x1
166 #define RTE_FOUND 0x2
167
168 #define MFCHASH(a, g) \
169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
172 u_long mfchash;
173
174 u_char nexpire[MFCTBLSIZ];
175 struct vif viftable[MAXVIFS];
176 struct mrtstat mrtstat;
177 u_int mrtdebug = 0; /* debug level */
178 #define DEBUG_MFC 0x02
179 #define DEBUG_FORWARD 0x04
180 #define DEBUG_EXPIRE 0x08
181 #define DEBUG_XMIT 0x10
182 #define DEBUG_PIM 0x20
183
184 #define VIFI_INVALID ((vifi_t) -1)
185
186 u_int tbfdebug = 0; /* tbf debug level */
187 #ifdef RSVP_ISI
188 u_int rsvpdebug = 0; /* rsvp debug level */
189 extern struct socket *ip_rsvpd;
190 extern int rsvp_on;
191 #endif /* RSVP_ISI */
192
193 /* vif attachment using sys/netinet/ip_encap.c */
194 static void vif_input(struct mbuf *, ...);
195 static int vif_encapcheck(struct mbuf *, int, int, void *);
196
197 static const struct protosw vif_protosw =
198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
199 vif_input, rip_output, 0, rip_ctloutput,
200 rip_usrreq,
201 0, 0, 0, 0,
202 };
203
204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
205 #define UPCALL_EXPIRE 6 /* number of timeouts */
206
207 /*
208 * Define the token bucket filter structures
209 */
210
211 #define TBF_REPROCESS (hz / 100) /* 100x / second */
212
213 static int get_sg_cnt(struct sioc_sg_req *);
214 static int get_vif_cnt(struct sioc_vif_req *);
215 static int ip_mrouter_init(struct socket *, struct mbuf *);
216 static int get_version(struct mbuf *);
217 static int set_assert(struct mbuf *);
218 static int get_assert(struct mbuf *);
219 static int add_vif(struct mbuf *);
220 static int del_vif(struct mbuf *);
221 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
222 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
223 static void expire_mfc(struct mfc *);
224 static int add_mfc(struct mbuf *);
225 #ifdef UPCALL_TIMING
226 static void collate(struct timeval *);
227 #endif
228 static int del_mfc(struct mbuf *);
229 static int set_api_config(struct mbuf *); /* chose API capabilities */
230 static int get_api_support(struct mbuf *);
231 static int get_api_config(struct mbuf *);
232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
233 static void expire_upcalls(void *);
234 #ifdef RSVP_ISI
235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
236 #else
237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
238 #endif
239 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
240 static void encap_send(struct ip *, struct vif *, struct mbuf *);
241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
242 static void tbf_queue(struct vif *, struct mbuf *);
243 static void tbf_process_q(struct vif *);
244 static void tbf_reprocess_q(void *);
245 static int tbf_dq_sel(struct vif *, struct ip *);
246 static void tbf_send_packet(struct vif *, struct mbuf *);
247 static void tbf_update_tokens(struct vif *);
248 static int priority(struct vif *, struct ip *);
249
250 /*
251 * Bandwidth monitoring
252 */
253 static void free_bw_list(struct bw_meter *);
254 static int add_bw_upcall(struct mbuf *);
255 static int del_bw_upcall(struct mbuf *);
256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
258 static void bw_upcalls_send(void);
259 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
260 static void unschedule_bw_meter(struct bw_meter *);
261 static void bw_meter_process(void);
262 static void expire_bw_upcalls_send(void *);
263 static void expire_bw_meter_process(void *);
264
265 #ifdef PIM
266 static int pim_register_send(struct ip *, struct vif *,
267 struct mbuf *, struct mfc *);
268 static int pim_register_send_rp(struct ip *, struct vif *,
269 struct mbuf *, struct mfc *);
270 static int pim_register_send_upcall(struct ip *, struct vif *,
271 struct mbuf *, struct mfc *);
272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
273 #endif
274
275 /*
276 * 'Interfaces' associated with decapsulator (so we can tell
277 * packets that went through it from ones that get reflected
278 * by a broken gateway). These interfaces are never linked into
279 * the system ifnet list & no routes point to them. I.e., packets
280 * can't be sent this way. They only exist as a placeholder for
281 * multicast source verification.
282 */
283 #if 0
284 struct ifnet multicast_decap_if[MAXVIFS];
285 #endif
286
287 #define ENCAP_TTL 64
288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
289
290 /* prototype IP hdr for encapsulated packets */
291 struct ip multicast_encap_iphdr = {
292 .ip_hl = sizeof(struct ip) >> 2,
293 .ip_v = IPVERSION,
294 .ip_len = sizeof(struct ip),
295 .ip_ttl = ENCAP_TTL,
296 .ip_p = ENCAP_PROTO,
297 };
298
299 /*
300 * Bandwidth meter variables and constants
301 */
302
303 /*
304 * Pending timeouts are stored in a hash table, the key being the
305 * expiration time. Periodically, the entries are analysed and processed.
306 */
307 #define BW_METER_BUCKETS 1024
308 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
309 struct callout bw_meter_ch;
310 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
311
312 /*
313 * Pending upcalls are stored in a vector which is flushed when
314 * full, or periodically
315 */
316 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
317 static u_int bw_upcalls_n; /* # of pending upcalls */
318 struct callout bw_upcalls_ch;
319 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
320
321 #ifdef PIM
322 struct pimstat pimstat;
323
324 /*
325 * Note: the PIM Register encapsulation adds the following in front of a
326 * data packet:
327 *
328 * struct pim_encap_hdr {
329 * struct ip ip;
330 * struct pim_encap_pimhdr pim;
331 * }
332 *
333 */
334
335 struct pim_encap_pimhdr {
336 struct pim pim;
337 uint32_t flags;
338 };
339
340 static struct ip pim_encap_iphdr = {
341 .ip_v = IPVERSION,
342 .ip_hl = sizeof(struct ip) >> 2,
343 .ip_len = sizeof(struct ip),
344 .ip_ttl = ENCAP_TTL,
345 .ip_p = IPPROTO_PIM,
346 };
347
348 static struct pim_encap_pimhdr pim_encap_pimhdr = {
349 {
350 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
351 0, /* reserved */
352 0, /* checksum */
353 },
354 0 /* flags */
355 };
356
357 static struct ifnet multicast_register_if;
358 static vifi_t reg_vif_num = VIFI_INVALID;
359 #endif /* PIM */
360
361
362 /*
363 * Private variables.
364 */
365 static vifi_t numvifs = 0;
366
367 static struct callout expire_upcalls_ch;
368
369 /*
370 * whether or not special PIM assert processing is enabled.
371 */
372 static int pim_assert;
373 /*
374 * Rate limit for assert notification messages, in usec
375 */
376 #define ASSERT_MSG_TIME 3000000
377
378 /*
379 * Kernel multicast routing API capabilities and setup.
380 * If more API capabilities are added to the kernel, they should be
381 * recorded in `mrt_api_support'.
382 */
383 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
384 MRT_MFC_FLAGS_BORDER_VIF |
385 MRT_MFC_RP |
386 MRT_MFC_BW_UPCALL);
387 static u_int32_t mrt_api_config = 0;
388
389 /*
390 * Find a route for a given origin IP address and Multicast group address
391 * Type of service parameter to be added in the future!!!
392 * Statistics are updated by the caller if needed
393 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
394 */
395 static struct mfc *
396 mfc_find(struct in_addr *o, struct in_addr *g)
397 {
398 struct mfc *rt;
399
400 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
401 if (in_hosteq(rt->mfc_origin, *o) &&
402 in_hosteq(rt->mfc_mcastgrp, *g) &&
403 (rt->mfc_stall == NULL))
404 break;
405 }
406
407 return (rt);
408 }
409
410 /*
411 * Macros to compute elapsed time efficiently
412 * Borrowed from Van Jacobson's scheduling code
413 */
414 #define TV_DELTA(a, b, delta) do { \
415 int xxs; \
416 delta = (a).tv_usec - (b).tv_usec; \
417 xxs = (a).tv_sec - (b).tv_sec; \
418 switch (xxs) { \
419 case 2: \
420 delta += 1000000; \
421 /* fall through */ \
422 case 1: \
423 delta += 1000000; \
424 /* fall through */ \
425 case 0: \
426 break; \
427 default: \
428 delta += (1000000 * xxs); \
429 break; \
430 } \
431 } while (/*CONSTCOND*/ 0)
432
433 #ifdef UPCALL_TIMING
434 u_int32_t upcall_data[51];
435 #endif /* UPCALL_TIMING */
436
437 /*
438 * Handle MRT setsockopt commands to modify the multicast routing tables.
439 */
440 int
441 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
442 {
443 int error;
444
445 if (optname != MRT_INIT && so != ip_mrouter)
446 error = ENOPROTOOPT;
447 else
448 switch (optname) {
449 case MRT_INIT:
450 error = ip_mrouter_init(so, *m);
451 break;
452 case MRT_DONE:
453 error = ip_mrouter_done();
454 break;
455 case MRT_ADD_VIF:
456 error = add_vif(*m);
457 break;
458 case MRT_DEL_VIF:
459 error = del_vif(*m);
460 break;
461 case MRT_ADD_MFC:
462 error = add_mfc(*m);
463 break;
464 case MRT_DEL_MFC:
465 error = del_mfc(*m);
466 break;
467 case MRT_ASSERT:
468 error = set_assert(*m);
469 break;
470 case MRT_API_CONFIG:
471 error = set_api_config(*m);
472 break;
473 case MRT_ADD_BW_UPCALL:
474 error = add_bw_upcall(*m);
475 break;
476 case MRT_DEL_BW_UPCALL:
477 error = del_bw_upcall(*m);
478 break;
479 default:
480 error = ENOPROTOOPT;
481 break;
482 }
483
484 if (*m)
485 m_free(*m);
486 return (error);
487 }
488
489 /*
490 * Handle MRT getsockopt commands
491 */
492 int
493 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
494 {
495 int error;
496
497 if (so != ip_mrouter)
498 error = ENOPROTOOPT;
499 else {
500 *m = m_get(M_WAIT, MT_SOOPTS);
501 MCLAIM(*m, so->so_mowner);
502
503 switch (optname) {
504 case MRT_VERSION:
505 error = get_version(*m);
506 break;
507 case MRT_ASSERT:
508 error = get_assert(*m);
509 break;
510 case MRT_API_SUPPORT:
511 error = get_api_support(*m);
512 break;
513 case MRT_API_CONFIG:
514 error = get_api_config(*m);
515 break;
516 default:
517 error = ENOPROTOOPT;
518 break;
519 }
520
521 if (error)
522 m_free(*m);
523 }
524
525 return (error);
526 }
527
528 /*
529 * Handle ioctl commands to obtain information from the cache
530 */
531 int
532 mrt_ioctl(struct socket *so, u_long cmd, void *data)
533 {
534 int error;
535
536 if (so != ip_mrouter)
537 error = EINVAL;
538 else
539 switch (cmd) {
540 case SIOCGETVIFCNT:
541 error = get_vif_cnt((struct sioc_vif_req *)data);
542 break;
543 case SIOCGETSGCNT:
544 error = get_sg_cnt((struct sioc_sg_req *)data);
545 break;
546 default:
547 error = EINVAL;
548 break;
549 }
550
551 return (error);
552 }
553
554 /*
555 * returns the packet, byte, rpf-failure count for the source group provided
556 */
557 static int
558 get_sg_cnt(struct sioc_sg_req *req)
559 {
560 int s;
561 struct mfc *rt;
562
563 s = splsoftnet();
564 rt = mfc_find(&req->src, &req->grp);
565 if (rt == NULL) {
566 splx(s);
567 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
568 return (EADDRNOTAVAIL);
569 }
570 req->pktcnt = rt->mfc_pkt_cnt;
571 req->bytecnt = rt->mfc_byte_cnt;
572 req->wrong_if = rt->mfc_wrong_if;
573 splx(s);
574
575 return (0);
576 }
577
578 /*
579 * returns the input and output packet and byte counts on the vif provided
580 */
581 static int
582 get_vif_cnt(struct sioc_vif_req *req)
583 {
584 vifi_t vifi = req->vifi;
585
586 if (vifi >= numvifs)
587 return (EINVAL);
588
589 req->icount = viftable[vifi].v_pkt_in;
590 req->ocount = viftable[vifi].v_pkt_out;
591 req->ibytes = viftable[vifi].v_bytes_in;
592 req->obytes = viftable[vifi].v_bytes_out;
593
594 return (0);
595 }
596
597 /*
598 * Enable multicast routing
599 */
600 static int
601 ip_mrouter_init(struct socket *so, struct mbuf *m)
602 {
603 int *v;
604
605 if (mrtdebug)
606 log(LOG_DEBUG,
607 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
608 so->so_type, so->so_proto->pr_protocol);
609
610 if (so->so_type != SOCK_RAW ||
611 so->so_proto->pr_protocol != IPPROTO_IGMP)
612 return (EOPNOTSUPP);
613
614 if (m == NULL || m->m_len != sizeof(int))
615 return (EINVAL);
616
617 v = mtod(m, int *);
618 if (*v != 1)
619 return (EINVAL);
620
621 if (ip_mrouter != NULL)
622 return (EADDRINUSE);
623
624 ip_mrouter = so;
625
626 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
627 bzero((void *)nexpire, sizeof(nexpire));
628
629 pim_assert = 0;
630
631 callout_init(&expire_upcalls_ch, 0);
632 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
633 expire_upcalls, NULL);
634
635 callout_init(&bw_upcalls_ch, 0);
636 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
637 expire_bw_upcalls_send, NULL);
638
639 callout_init(&bw_meter_ch, 0);
640 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
641 expire_bw_meter_process, NULL);
642
643 if (mrtdebug)
644 log(LOG_DEBUG, "ip_mrouter_init\n");
645
646 return (0);
647 }
648
649 /*
650 * Disable multicast routing
651 */
652 int
653 ip_mrouter_done(void)
654 {
655 vifi_t vifi;
656 struct vif *vifp;
657 int i;
658 int s;
659
660 s = splsoftnet();
661
662 /* Clear out all the vifs currently in use. */
663 for (vifi = 0; vifi < numvifs; vifi++) {
664 vifp = &viftable[vifi];
665 if (!in_nullhost(vifp->v_lcl_addr))
666 reset_vif(vifp);
667 }
668
669 numvifs = 0;
670 pim_assert = 0;
671 mrt_api_config = 0;
672
673 callout_stop(&expire_upcalls_ch);
674 callout_stop(&bw_upcalls_ch);
675 callout_stop(&bw_meter_ch);
676
677 /*
678 * Free all multicast forwarding cache entries.
679 */
680 for (i = 0; i < MFCTBLSIZ; i++) {
681 struct mfc *rt, *nrt;
682
683 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
684 nrt = LIST_NEXT(rt, mfc_hash);
685
686 expire_mfc(rt);
687 }
688 }
689
690 bzero((void *)nexpire, sizeof(nexpire));
691 free(mfchashtbl, M_MRTABLE);
692 mfchashtbl = NULL;
693
694 bw_upcalls_n = 0;
695 bzero(bw_meter_timers, sizeof(bw_meter_timers));
696
697 /* Reset de-encapsulation cache. */
698
699 ip_mrouter = NULL;
700
701 splx(s);
702
703 if (mrtdebug)
704 log(LOG_DEBUG, "ip_mrouter_done\n");
705
706 return (0);
707 }
708
709 void
710 ip_mrouter_detach(struct ifnet *ifp)
711 {
712 int vifi, i;
713 struct vif *vifp;
714 struct mfc *rt;
715 struct rtdetq *rte;
716
717 /* XXX not sure about side effect to userland routing daemon */
718 for (vifi = 0; vifi < numvifs; vifi++) {
719 vifp = &viftable[vifi];
720 if (vifp->v_ifp == ifp)
721 reset_vif(vifp);
722 }
723 for (i = 0; i < MFCTBLSIZ; i++) {
724 if (nexpire[i] == 0)
725 continue;
726 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
727 for (rte = rt->mfc_stall; rte; rte = rte->next) {
728 if (rte->ifp == ifp)
729 rte->ifp = NULL;
730 }
731 }
732 }
733 }
734
735 static int
736 get_version(struct mbuf *m)
737 {
738 int *v = mtod(m, int *);
739
740 *v = 0x0305; /* XXX !!!! */
741 m->m_len = sizeof(int);
742 return (0);
743 }
744
745 /*
746 * Set PIM assert processing global
747 */
748 static int
749 set_assert(struct mbuf *m)
750 {
751 int *i;
752
753 if (m == NULL || m->m_len != sizeof(int))
754 return (EINVAL);
755
756 i = mtod(m, int *);
757 pim_assert = !!*i;
758 return (0);
759 }
760
761 /*
762 * Get PIM assert processing global
763 */
764 static int
765 get_assert(struct mbuf *m)
766 {
767 int *i = mtod(m, int *);
768
769 *i = pim_assert;
770 m->m_len = sizeof(int);
771 return (0);
772 }
773
774 /*
775 * Configure API capabilities
776 */
777 static int
778 set_api_config(struct mbuf *m)
779 {
780 int i;
781 u_int32_t *apival;
782
783 if (m == NULL || m->m_len < sizeof(u_int32_t))
784 return (EINVAL);
785
786 apival = mtod(m, u_int32_t *);
787
788 /*
789 * We can set the API capabilities only if it is the first operation
790 * after MRT_INIT. I.e.:
791 * - there are no vifs installed
792 * - pim_assert is not enabled
793 * - the MFC table is empty
794 */
795 if (numvifs > 0) {
796 *apival = 0;
797 return (EPERM);
798 }
799 if (pim_assert) {
800 *apival = 0;
801 return (EPERM);
802 }
803 for (i = 0; i < MFCTBLSIZ; i++) {
804 if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
805 *apival = 0;
806 return (EPERM);
807 }
808 }
809
810 mrt_api_config = *apival & mrt_api_support;
811 *apival = mrt_api_config;
812
813 return (0);
814 }
815
816 /*
817 * Get API capabilities
818 */
819 static int
820 get_api_support(struct mbuf *m)
821 {
822 u_int32_t *apival;
823
824 if (m == NULL || m->m_len < sizeof(u_int32_t))
825 return (EINVAL);
826
827 apival = mtod(m, u_int32_t *);
828
829 *apival = mrt_api_support;
830
831 return (0);
832 }
833
834 /*
835 * Get API configured capabilities
836 */
837 static int
838 get_api_config(struct mbuf *m)
839 {
840 u_int32_t *apival;
841
842 if (m == NULL || m->m_len < sizeof(u_int32_t))
843 return (EINVAL);
844
845 apival = mtod(m, u_int32_t *);
846
847 *apival = mrt_api_config;
848
849 return (0);
850 }
851
852 /*
853 * Add a vif to the vif table
854 */
855 static int
856 add_vif(struct mbuf *m)
857 {
858 struct vifctl *vifcp;
859 struct vif *vifp;
860 struct ifaddr *ifa;
861 struct ifnet *ifp;
862 struct ifreq ifr;
863 int error, s;
864 struct sockaddr_in sin;
865
866 if (m == NULL || m->m_len < sizeof(struct vifctl))
867 return (EINVAL);
868
869 vifcp = mtod(m, struct vifctl *);
870 if (vifcp->vifc_vifi >= MAXVIFS)
871 return (EINVAL);
872 if (in_nullhost(vifcp->vifc_lcl_addr))
873 return (EADDRNOTAVAIL);
874
875 vifp = &viftable[vifcp->vifc_vifi];
876 if (!in_nullhost(vifp->v_lcl_addr))
877 return (EADDRINUSE);
878
879 /* Find the interface with an address in AF_INET family. */
880 #ifdef PIM
881 if (vifcp->vifc_flags & VIFF_REGISTER) {
882 /*
883 * XXX: Because VIFF_REGISTER does not really need a valid
884 * local interface (e.g. it could be 127.0.0.2), we don't
885 * check its address.
886 */
887 ifp = NULL;
888 } else
889 #endif
890 {
891 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
892 ifa = ifa_ifwithaddr(sintosa(&sin));
893 if (ifa == NULL)
894 return (EADDRNOTAVAIL);
895 ifp = ifa->ifa_ifp;
896 }
897
898 if (vifcp->vifc_flags & VIFF_TUNNEL) {
899 if (vifcp->vifc_flags & VIFF_SRCRT) {
900 log(LOG_ERR, "source routed tunnels not supported\n");
901 return (EOPNOTSUPP);
902 }
903
904 /* attach this vif to decapsulator dispatch table */
905 /*
906 * XXX Use addresses in registration so that matching
907 * can be done with radix tree in decapsulator. But,
908 * we need to check inner header for multicast, so
909 * this requires both radix tree lookup and then a
910 * function to check, and this is not supported yet.
911 */
912 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
913 vif_encapcheck, &vif_protosw, vifp);
914 if (!vifp->v_encap_cookie)
915 return (EINVAL);
916
917 /* Create a fake encapsulation interface. */
918 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
919 bzero(ifp, sizeof(*ifp));
920 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
921 "mdecap%d", vifcp->vifc_vifi);
922
923 /* Prepare cached route entry. */
924 bzero(&vifp->v_route, sizeof(vifp->v_route));
925 #ifdef PIM
926 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
927 ifp = &multicast_register_if;
928 if (mrtdebug)
929 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
930 (void *)ifp);
931 if (reg_vif_num == VIFI_INVALID) {
932 bzero(ifp, sizeof(*ifp));
933 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
934 "register_vif");
935 ifp->if_flags = IFF_LOOPBACK;
936 bzero(&vifp->v_route, sizeof(vifp->v_route));
937 reg_vif_num = vifcp->vifc_vifi;
938 }
939 #endif
940 } else {
941 /* Make sure the interface supports multicast. */
942 if ((ifp->if_flags & IFF_MULTICAST) == 0)
943 return (EOPNOTSUPP);
944
945 /* Enable promiscuous reception of all IP multicasts. */
946 sockaddr_in_init(&sin, &zeroin_addr, 0);
947 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin));
948 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, &ifr);
949 if (error)
950 return (error);
951 }
952
953 s = splsoftnet();
954
955 /* Define parameters for the tbf structure. */
956 vifp->tbf_q = NULL;
957 vifp->tbf_t = &vifp->tbf_q;
958 microtime(&vifp->tbf_last_pkt_t);
959 vifp->tbf_n_tok = 0;
960 vifp->tbf_q_len = 0;
961 vifp->tbf_max_q_len = MAXQSIZE;
962
963 vifp->v_flags = vifcp->vifc_flags;
964 vifp->v_threshold = vifcp->vifc_threshold;
965 /* scaling up here allows division by 1024 in critical code */
966 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
967 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
968 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
969 vifp->v_ifp = ifp;
970 /* Initialize per vif pkt counters. */
971 vifp->v_pkt_in = 0;
972 vifp->v_pkt_out = 0;
973 vifp->v_bytes_in = 0;
974 vifp->v_bytes_out = 0;
975
976 callout_init(&vifp->v_repq_ch, 0);
977
978 #ifdef RSVP_ISI
979 vifp->v_rsvp_on = 0;
980 vifp->v_rsvpd = NULL;
981 #endif /* RSVP_ISI */
982
983 splx(s);
984
985 /* Adjust numvifs up if the vifi is higher than numvifs. */
986 if (numvifs <= vifcp->vifc_vifi)
987 numvifs = vifcp->vifc_vifi + 1;
988
989 if (mrtdebug)
990 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
991 vifcp->vifc_vifi,
992 ntohl(vifcp->vifc_lcl_addr.s_addr),
993 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
994 ntohl(vifcp->vifc_rmt_addr.s_addr),
995 vifcp->vifc_threshold,
996 vifcp->vifc_rate_limit);
997
998 return (0);
999 }
1000
1001 void
1002 reset_vif(struct vif *vifp)
1003 {
1004 struct mbuf *m, *n;
1005 struct ifnet *ifp;
1006 struct ifreq ifr;
1007 struct sockaddr_in sin;
1008
1009 callout_stop(&vifp->v_repq_ch);
1010
1011 /* detach this vif from decapsulator dispatch table */
1012 encap_detach(vifp->v_encap_cookie);
1013 vifp->v_encap_cookie = NULL;
1014
1015 /*
1016 * Free packets queued at the interface
1017 */
1018 for (m = vifp->tbf_q; m != NULL; m = n) {
1019 n = m->m_nextpkt;
1020 m_freem(m);
1021 }
1022
1023 if (vifp->v_flags & VIFF_TUNNEL)
1024 free(vifp->v_ifp, M_MRTABLE);
1025 else if (vifp->v_flags & VIFF_REGISTER) {
1026 #ifdef PIM
1027 reg_vif_num = VIFI_INVALID;
1028 #endif
1029 } else {
1030 sockaddr_in_init(&sin, &zeroin_addr, 0);
1031 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin));
1032 ifp = vifp->v_ifp;
1033 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, &ifr);
1034 }
1035 bzero((void *)vifp, sizeof(*vifp));
1036 }
1037
1038 /*
1039 * Delete a vif from the vif table
1040 */
1041 static int
1042 del_vif(struct mbuf *m)
1043 {
1044 vifi_t *vifip;
1045 struct vif *vifp;
1046 vifi_t vifi;
1047 int s;
1048
1049 if (m == NULL || m->m_len < sizeof(vifi_t))
1050 return (EINVAL);
1051
1052 vifip = mtod(m, vifi_t *);
1053 if (*vifip >= numvifs)
1054 return (EINVAL);
1055
1056 vifp = &viftable[*vifip];
1057 if (in_nullhost(vifp->v_lcl_addr))
1058 return (EADDRNOTAVAIL);
1059
1060 s = splsoftnet();
1061
1062 reset_vif(vifp);
1063
1064 /* Adjust numvifs down */
1065 for (vifi = numvifs; vifi > 0; vifi--)
1066 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
1067 break;
1068 numvifs = vifi;
1069
1070 splx(s);
1071
1072 if (mrtdebug)
1073 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
1074
1075 return (0);
1076 }
1077
1078 /*
1079 * update an mfc entry without resetting counters and S,G addresses.
1080 */
1081 static void
1082 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1083 {
1084 int i;
1085
1086 rt->mfc_parent = mfccp->mfcc_parent;
1087 for (i = 0; i < numvifs; i++) {
1088 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1089 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1090 MRT_MFC_FLAGS_ALL;
1091 }
1092 /* set the RP address */
1093 if (mrt_api_config & MRT_MFC_RP)
1094 rt->mfc_rp = mfccp->mfcc_rp;
1095 else
1096 rt->mfc_rp = zeroin_addr;
1097 }
1098
1099 /*
1100 * fully initialize an mfc entry from the parameter.
1101 */
1102 static void
1103 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1104 {
1105 rt->mfc_origin = mfccp->mfcc_origin;
1106 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1107
1108 update_mfc_params(rt, mfccp);
1109
1110 /* initialize pkt counters per src-grp */
1111 rt->mfc_pkt_cnt = 0;
1112 rt->mfc_byte_cnt = 0;
1113 rt->mfc_wrong_if = 0;
1114 timerclear(&rt->mfc_last_assert);
1115 }
1116
1117 static void
1118 expire_mfc(struct mfc *rt)
1119 {
1120 struct rtdetq *rte, *nrte;
1121
1122 free_bw_list(rt->mfc_bw_meter);
1123
1124 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1125 nrte = rte->next;
1126 m_freem(rte->m);
1127 free(rte, M_MRTABLE);
1128 }
1129
1130 LIST_REMOVE(rt, mfc_hash);
1131 free(rt, M_MRTABLE);
1132 }
1133
1134 /*
1135 * Add an mfc entry
1136 */
1137 static int
1138 add_mfc(struct mbuf *m)
1139 {
1140 struct mfcctl2 mfcctl2;
1141 struct mfcctl2 *mfccp;
1142 struct mfc *rt;
1143 u_int32_t hash = 0;
1144 struct rtdetq *rte, *nrte;
1145 u_short nstl;
1146 int s;
1147 int mfcctl_size = sizeof(struct mfcctl);
1148
1149 if (mrt_api_config & MRT_API_FLAGS_ALL)
1150 mfcctl_size = sizeof(struct mfcctl2);
1151
1152 if (m == NULL || m->m_len < mfcctl_size)
1153 return (EINVAL);
1154
1155 /*
1156 * select data size depending on API version.
1157 */
1158 if (mrt_api_config & MRT_API_FLAGS_ALL) {
1159 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
1160 bcopy(mp2, (void *)&mfcctl2, sizeof(*mp2));
1161 } else {
1162 struct mfcctl *mp = mtod(m, struct mfcctl *);
1163 memcpy(&mfcctl2, mp, sizeof(*mp));
1164 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0,
1165 sizeof(mfcctl2) - sizeof(struct mfcctl));
1166 }
1167 mfccp = &mfcctl2;
1168
1169 s = splsoftnet();
1170 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1171
1172 /* If an entry already exists, just update the fields */
1173 if (rt) {
1174 if (mrtdebug & DEBUG_MFC)
1175 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1176 ntohl(mfccp->mfcc_origin.s_addr),
1177 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1178 mfccp->mfcc_parent);
1179
1180 update_mfc_params(rt, mfccp);
1181
1182 splx(s);
1183 return (0);
1184 }
1185
1186 /*
1187 * Find the entry for which the upcall was made and update
1188 */
1189 nstl = 0;
1190 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1191 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1192 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1193 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1194 rt->mfc_stall != NULL) {
1195 if (nstl++)
1196 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1197 "multiple kernel entries",
1198 ntohl(mfccp->mfcc_origin.s_addr),
1199 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1200 mfccp->mfcc_parent, rt->mfc_stall);
1201
1202 if (mrtdebug & DEBUG_MFC)
1203 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1204 ntohl(mfccp->mfcc_origin.s_addr),
1205 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1206 mfccp->mfcc_parent, rt->mfc_stall);
1207
1208 rte = rt->mfc_stall;
1209 init_mfc_params(rt, mfccp);
1210 rt->mfc_stall = NULL;
1211
1212 rt->mfc_expire = 0; /* Don't clean this guy up */
1213 nexpire[hash]--;
1214
1215 /* free packets Qed at the end of this entry */
1216 for (; rte != NULL; rte = nrte) {
1217 nrte = rte->next;
1218 if (rte->ifp) {
1219 #ifdef RSVP_ISI
1220 ip_mdq(rte->m, rte->ifp, rt, -1);
1221 #else
1222 ip_mdq(rte->m, rte->ifp, rt);
1223 #endif /* RSVP_ISI */
1224 }
1225 m_freem(rte->m);
1226 #ifdef UPCALL_TIMING
1227 collate(&rte->t);
1228 #endif /* UPCALL_TIMING */
1229 free(rte, M_MRTABLE);
1230 }
1231 }
1232 }
1233
1234 /*
1235 * It is possible that an entry is being inserted without an upcall
1236 */
1237 if (nstl == 0) {
1238 /*
1239 * No mfc; make a new one
1240 */
1241 if (mrtdebug & DEBUG_MFC)
1242 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1243 ntohl(mfccp->mfcc_origin.s_addr),
1244 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1245 mfccp->mfcc_parent);
1246
1247 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1248 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1249 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1250 init_mfc_params(rt, mfccp);
1251 if (rt->mfc_expire)
1252 nexpire[hash]--;
1253 rt->mfc_expire = 0;
1254 break; /* XXX */
1255 }
1256 }
1257 if (rt == NULL) { /* no upcall, so make a new entry */
1258 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1259 M_NOWAIT);
1260 if (rt == NULL) {
1261 splx(s);
1262 return (ENOBUFS);
1263 }
1264
1265 init_mfc_params(rt, mfccp);
1266 rt->mfc_expire = 0;
1267 rt->mfc_stall = NULL;
1268 rt->mfc_bw_meter = NULL;
1269
1270 /* insert new entry at head of hash chain */
1271 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1272 }
1273 }
1274
1275 splx(s);
1276 return (0);
1277 }
1278
1279 #ifdef UPCALL_TIMING
1280 /*
1281 * collect delay statistics on the upcalls
1282 */
1283 static void
1284 collate(struct timeval *t)
1285 {
1286 u_int32_t d;
1287 struct timeval tp;
1288 u_int32_t delta;
1289
1290 microtime(&tp);
1291
1292 if (timercmp(t, &tp, <)) {
1293 TV_DELTA(tp, *t, delta);
1294
1295 d = delta >> 10;
1296 if (d > 50)
1297 d = 50;
1298
1299 ++upcall_data[d];
1300 }
1301 }
1302 #endif /* UPCALL_TIMING */
1303
1304 /*
1305 * Delete an mfc entry
1306 */
1307 static int
1308 del_mfc(struct mbuf *m)
1309 {
1310 struct mfcctl2 mfcctl2;
1311 struct mfcctl2 *mfccp;
1312 struct mfc *rt;
1313 int s;
1314 int mfcctl_size = sizeof(struct mfcctl);
1315 struct mfcctl *mp = mtod(m, struct mfcctl *);
1316
1317 /*
1318 * XXX: for deleting MFC entries the information in entries
1319 * of size "struct mfcctl" is sufficient.
1320 */
1321
1322 if (m == NULL || m->m_len < mfcctl_size)
1323 return (EINVAL);
1324
1325 memcpy(&mfcctl2, mp, sizeof(*mp));
1326 memset((char *)&mfcctl2 + sizeof(struct mfcctl), 0,
1327 sizeof(mfcctl2) - sizeof(struct mfcctl));
1328
1329 mfccp = &mfcctl2;
1330
1331 if (mrtdebug & DEBUG_MFC)
1332 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1333 ntohl(mfccp->mfcc_origin.s_addr),
1334 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1335
1336 s = splsoftnet();
1337
1338 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1339 if (rt == NULL) {
1340 splx(s);
1341 return (EADDRNOTAVAIL);
1342 }
1343
1344 /*
1345 * free the bw_meter entries
1346 */
1347 free_bw_list(rt->mfc_bw_meter);
1348 rt->mfc_bw_meter = NULL;
1349
1350 LIST_REMOVE(rt, mfc_hash);
1351 free(rt, M_MRTABLE);
1352
1353 splx(s);
1354 return (0);
1355 }
1356
1357 static int
1358 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1359 {
1360 if (s) {
1361 if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1362 (struct mbuf *)NULL) != 0) {
1363 sorwakeup(s);
1364 return (0);
1365 }
1366 }
1367 m_freem(mm);
1368 return (-1);
1369 }
1370
1371 /*
1372 * IP multicast forwarding function. This function assumes that the packet
1373 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1374 * pointed to by "ifp", and the packet is to be relayed to other networks
1375 * that have members of the packet's destination IP multicast group.
1376 *
1377 * The packet is returned unscathed to the caller, unless it is
1378 * erroneous, in which case a non-zero return value tells the caller to
1379 * discard it.
1380 */
1381
1382 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1383 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1384
1385 int
1386 #ifdef RSVP_ISI
1387 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1388 #else
1389 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1390 #endif /* RSVP_ISI */
1391 {
1392 struct ip *ip = mtod(m, struct ip *);
1393 struct mfc *rt;
1394 static int srctun = 0;
1395 struct mbuf *mm;
1396 struct sockaddr_in sin;
1397 int s;
1398 vifi_t vifi;
1399
1400 if (mrtdebug & DEBUG_FORWARD)
1401 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1402 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1403
1404 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1405 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1406 /*
1407 * Packet arrived via a physical interface or
1408 * an encapsulated tunnel or a register_vif.
1409 */
1410 } else {
1411 /*
1412 * Packet arrived through a source-route tunnel.
1413 * Source-route tunnels are no longer supported.
1414 */
1415 if ((srctun++ % 1000) == 0)
1416 log(LOG_ERR,
1417 "ip_mforward: received source-routed packet from %x\n",
1418 ntohl(ip->ip_src.s_addr));
1419
1420 return (1);
1421 }
1422
1423 /*
1424 * Clear any in-bound checksum flags for this packet.
1425 */
1426 m->m_pkthdr.csum_flags = 0;
1427
1428 #ifdef RSVP_ISI
1429 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1430 if (ip->ip_ttl < MAXTTL)
1431 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1432 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1433 struct vif *vifp = viftable + vifi;
1434 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1435 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1436 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1437 vifp->v_ifp->if_xname);
1438 }
1439 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1440 }
1441 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1442 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1443 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1444 }
1445 #endif /* RSVP_ISI */
1446
1447 /*
1448 * Don't forward a packet with time-to-live of zero or one,
1449 * or a packet destined to a local-only group.
1450 */
1451 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1452 return (0);
1453
1454 /*
1455 * Determine forwarding vifs from the forwarding cache table
1456 */
1457 s = splsoftnet();
1458 ++mrtstat.mrts_mfc_lookups;
1459 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1460
1461 /* Entry exists, so forward if necessary */
1462 if (rt != NULL) {
1463 splx(s);
1464 #ifdef RSVP_ISI
1465 return (ip_mdq(m, ifp, rt, -1));
1466 #else
1467 return (ip_mdq(m, ifp, rt));
1468 #endif /* RSVP_ISI */
1469 } else {
1470 /*
1471 * If we don't have a route for packet's origin,
1472 * Make a copy of the packet & send message to routing daemon
1473 */
1474
1475 struct mbuf *mb0;
1476 struct rtdetq *rte;
1477 u_int32_t hash;
1478 int hlen = ip->ip_hl << 2;
1479 #ifdef UPCALL_TIMING
1480 struct timeval tp;
1481
1482 microtime(&tp);
1483 #endif /* UPCALL_TIMING */
1484
1485 ++mrtstat.mrts_mfc_misses;
1486
1487 mrtstat.mrts_no_route++;
1488 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1489 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1490 ntohl(ip->ip_src.s_addr),
1491 ntohl(ip->ip_dst.s_addr));
1492
1493 /*
1494 * Allocate mbufs early so that we don't do extra work if we are
1495 * just going to fail anyway. Make sure to pullup the header so
1496 * that other people can't step on it.
1497 */
1498 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1499 M_NOWAIT);
1500 if (rte == NULL) {
1501 splx(s);
1502 return (ENOBUFS);
1503 }
1504 mb0 = m_copypacket(m, M_DONTWAIT);
1505 M_PULLUP(mb0, hlen);
1506 if (mb0 == NULL) {
1507 free(rte, M_MRTABLE);
1508 splx(s);
1509 return (ENOBUFS);
1510 }
1511
1512 /* is there an upcall waiting for this flow? */
1513 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1514 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1515 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1516 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1517 rt->mfc_stall != NULL)
1518 break;
1519 }
1520
1521 if (rt == NULL) {
1522 int i;
1523 struct igmpmsg *im;
1524
1525 /*
1526 * Locate the vifi for the incoming interface for
1527 * this packet.
1528 * If none found, drop packet.
1529 */
1530 for (vifi = 0; vifi < numvifs &&
1531 viftable[vifi].v_ifp != ifp; vifi++)
1532 ;
1533 if (vifi >= numvifs) /* vif not found, drop packet */
1534 goto non_fatal;
1535
1536 /* no upcall, so make a new entry */
1537 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1538 M_NOWAIT);
1539 if (rt == NULL)
1540 goto fail;
1541
1542 /*
1543 * Make a copy of the header to send to the user level
1544 * process
1545 */
1546 mm = m_copym(m, 0, hlen, M_DONTWAIT);
1547 M_PULLUP(mm, hlen);
1548 if (mm == NULL)
1549 goto fail1;
1550
1551 /*
1552 * Send message to routing daemon to install
1553 * a route into the kernel table
1554 */
1555
1556 im = mtod(mm, struct igmpmsg *);
1557 im->im_msgtype = IGMPMSG_NOCACHE;
1558 im->im_mbz = 0;
1559 im->im_vif = vifi;
1560
1561 mrtstat.mrts_upcalls++;
1562
1563 sockaddr_in_init(&sin, &ip->ip_src, 0);
1564 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1565 log(LOG_WARNING,
1566 "ip_mforward: ip_mrouter socket queue full\n");
1567 ++mrtstat.mrts_upq_sockfull;
1568 fail1:
1569 free(rt, M_MRTABLE);
1570 fail:
1571 free(rte, M_MRTABLE);
1572 m_freem(mb0);
1573 splx(s);
1574 return (ENOBUFS);
1575 }
1576
1577 /* insert new entry at head of hash chain */
1578 rt->mfc_origin = ip->ip_src;
1579 rt->mfc_mcastgrp = ip->ip_dst;
1580 rt->mfc_pkt_cnt = 0;
1581 rt->mfc_byte_cnt = 0;
1582 rt->mfc_wrong_if = 0;
1583 rt->mfc_expire = UPCALL_EXPIRE;
1584 nexpire[hash]++;
1585 for (i = 0; i < numvifs; i++) {
1586 rt->mfc_ttls[i] = 0;
1587 rt->mfc_flags[i] = 0;
1588 }
1589 rt->mfc_parent = -1;
1590
1591 /* clear the RP address */
1592 rt->mfc_rp = zeroin_addr;
1593
1594 rt->mfc_bw_meter = NULL;
1595
1596 /* link into table */
1597 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1598 /* Add this entry to the end of the queue */
1599 rt->mfc_stall = rte;
1600 } else {
1601 /* determine if q has overflowed */
1602 struct rtdetq **p;
1603 int npkts = 0;
1604
1605 /*
1606 * XXX ouch! we need to append to the list, but we
1607 * only have a pointer to the front, so we have to
1608 * scan the entire list every time.
1609 */
1610 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1611 if (++npkts > MAX_UPQ) {
1612 mrtstat.mrts_upq_ovflw++;
1613 non_fatal:
1614 free(rte, M_MRTABLE);
1615 m_freem(mb0);
1616 splx(s);
1617 return (0);
1618 }
1619
1620 /* Add this entry to the end of the queue */
1621 *p = rte;
1622 }
1623
1624 rte->next = NULL;
1625 rte->m = mb0;
1626 rte->ifp = ifp;
1627 #ifdef UPCALL_TIMING
1628 rte->t = tp;
1629 #endif /* UPCALL_TIMING */
1630
1631 splx(s);
1632
1633 return (0);
1634 }
1635 }
1636
1637
1638 /*ARGSUSED*/
1639 static void
1640 expire_upcalls(void *v)
1641 {
1642 int i;
1643 int s;
1644
1645 s = splsoftnet();
1646
1647 for (i = 0; i < MFCTBLSIZ; i++) {
1648 struct mfc *rt, *nrt;
1649
1650 if (nexpire[i] == 0)
1651 continue;
1652
1653 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1654 nrt = LIST_NEXT(rt, mfc_hash);
1655
1656 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1657 continue;
1658 nexpire[i]--;
1659
1660 /*
1661 * free the bw_meter entries
1662 */
1663 while (rt->mfc_bw_meter != NULL) {
1664 struct bw_meter *x = rt->mfc_bw_meter;
1665
1666 rt->mfc_bw_meter = x->bm_mfc_next;
1667 free(x, M_BWMETER);
1668 }
1669
1670 ++mrtstat.mrts_cache_cleanups;
1671 if (mrtdebug & DEBUG_EXPIRE)
1672 log(LOG_DEBUG,
1673 "expire_upcalls: expiring (%x %x)\n",
1674 ntohl(rt->mfc_origin.s_addr),
1675 ntohl(rt->mfc_mcastgrp.s_addr));
1676
1677 expire_mfc(rt);
1678 }
1679 }
1680
1681 splx(s);
1682 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1683 expire_upcalls, NULL);
1684 }
1685
1686 /*
1687 * Packet forwarding routine once entry in the cache is made
1688 */
1689 static int
1690 #ifdef RSVP_ISI
1691 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1692 #else
1693 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1694 #endif /* RSVP_ISI */
1695 {
1696 struct ip *ip = mtod(m, struct ip *);
1697 vifi_t vifi;
1698 struct vif *vifp;
1699 struct sockaddr_in sin;
1700 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1701
1702 /*
1703 * Macro to send packet on vif. Since RSVP packets don't get counted on
1704 * input, they shouldn't get counted on output, so statistics keeping is
1705 * separate.
1706 */
1707 #define MC_SEND(ip, vifp, m) do { \
1708 if ((vifp)->v_flags & VIFF_TUNNEL) \
1709 encap_send((ip), (vifp), (m)); \
1710 else \
1711 phyint_send((ip), (vifp), (m)); \
1712 } while (/*CONSTCOND*/ 0)
1713
1714 #ifdef RSVP_ISI
1715 /*
1716 * If xmt_vif is not -1, send on only the requested vif.
1717 *
1718 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1719 */
1720 if (xmt_vif < numvifs) {
1721 #ifdef PIM
1722 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1723 pim_register_send(ip, viftable + xmt_vif, m, rt);
1724 else
1725 #endif
1726 MC_SEND(ip, viftable + xmt_vif, m);
1727 return (1);
1728 }
1729 #endif /* RSVP_ISI */
1730
1731 /*
1732 * Don't forward if it didn't arrive from the parent vif for its origin.
1733 */
1734 vifi = rt->mfc_parent;
1735 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1736 /* came in the wrong interface */
1737 if (mrtdebug & DEBUG_FORWARD)
1738 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1739 ifp, vifi,
1740 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1741 ++mrtstat.mrts_wrong_if;
1742 ++rt->mfc_wrong_if;
1743 /*
1744 * If we are doing PIM assert processing, send a message
1745 * to the routing daemon.
1746 *
1747 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1748 * can complete the SPT switch, regardless of the type
1749 * of the iif (broadcast media, GRE tunnel, etc).
1750 */
1751 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1752 struct timeval now;
1753 u_int32_t delta;
1754
1755 #ifdef PIM
1756 if (ifp == &multicast_register_if)
1757 pimstat.pims_rcv_registers_wrongiif++;
1758 #endif
1759
1760 /* Get vifi for the incoming packet */
1761 for (vifi = 0;
1762 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1763 vifi++)
1764 ;
1765 if (vifi >= numvifs) {
1766 /* The iif is not found: ignore the packet. */
1767 return (0);
1768 }
1769
1770 if (rt->mfc_flags[vifi] &
1771 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1772 /* WRONGVIF disabled: ignore the packet */
1773 return (0);
1774 }
1775
1776 microtime(&now);
1777
1778 TV_DELTA(rt->mfc_last_assert, now, delta);
1779
1780 if (delta > ASSERT_MSG_TIME) {
1781 struct igmpmsg *im;
1782 int hlen = ip->ip_hl << 2;
1783 struct mbuf *mm =
1784 m_copym(m, 0, hlen, M_DONTWAIT);
1785
1786 M_PULLUP(mm, hlen);
1787 if (mm == NULL)
1788 return (ENOBUFS);
1789
1790 rt->mfc_last_assert = now;
1791
1792 im = mtod(mm, struct igmpmsg *);
1793 im->im_msgtype = IGMPMSG_WRONGVIF;
1794 im->im_mbz = 0;
1795 im->im_vif = vifi;
1796
1797 mrtstat.mrts_upcalls++;
1798
1799 sockaddr_in_init(&sin, &im->im_src, 0);
1800 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1801 log(LOG_WARNING,
1802 "ip_mforward: ip_mrouter socket queue full\n");
1803 ++mrtstat.mrts_upq_sockfull;
1804 return (ENOBUFS);
1805 }
1806 }
1807 }
1808 return (0);
1809 }
1810
1811 /* If I sourced this packet, it counts as output, else it was input. */
1812 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1813 viftable[vifi].v_pkt_out++;
1814 viftable[vifi].v_bytes_out += plen;
1815 } else {
1816 viftable[vifi].v_pkt_in++;
1817 viftable[vifi].v_bytes_in += plen;
1818 }
1819 rt->mfc_pkt_cnt++;
1820 rt->mfc_byte_cnt += plen;
1821
1822 /*
1823 * For each vif, decide if a copy of the packet should be forwarded.
1824 * Forward if:
1825 * - the ttl exceeds the vif's threshold
1826 * - there are group members downstream on interface
1827 */
1828 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1829 if ((rt->mfc_ttls[vifi] > 0) &&
1830 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1831 vifp->v_pkt_out++;
1832 vifp->v_bytes_out += plen;
1833 #ifdef PIM
1834 if (vifp->v_flags & VIFF_REGISTER)
1835 pim_register_send(ip, vifp, m, rt);
1836 else
1837 #endif
1838 MC_SEND(ip, vifp, m);
1839 }
1840
1841 /*
1842 * Perform upcall-related bw measuring.
1843 */
1844 if (rt->mfc_bw_meter != NULL) {
1845 struct bw_meter *x;
1846 struct timeval now;
1847
1848 microtime(&now);
1849 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1850 bw_meter_receive_packet(x, plen, &now);
1851 }
1852
1853 return (0);
1854 }
1855
1856 #ifdef RSVP_ISI
1857 /*
1858 * check if a vif number is legal/ok. This is used by ip_output.
1859 */
1860 int
1861 legal_vif_num(int vif)
1862 {
1863 if (vif >= 0 && vif < numvifs)
1864 return (1);
1865 else
1866 return (0);
1867 }
1868 #endif /* RSVP_ISI */
1869
1870 static void
1871 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1872 {
1873 struct mbuf *mb_copy;
1874 int hlen = ip->ip_hl << 2;
1875
1876 /*
1877 * Make a new reference to the packet; make sure that
1878 * the IP header is actually copied, not just referenced,
1879 * so that ip_output() only scribbles on the copy.
1880 */
1881 mb_copy = m_copypacket(m, M_DONTWAIT);
1882 M_PULLUP(mb_copy, hlen);
1883 if (mb_copy == NULL)
1884 return;
1885
1886 if (vifp->v_rate_limit <= 0)
1887 tbf_send_packet(vifp, mb_copy);
1888 else
1889 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1890 ntohs(ip->ip_len));
1891 }
1892
1893 static void
1894 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1895 {
1896 struct mbuf *mb_copy;
1897 struct ip *ip_copy;
1898 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1899
1900 /* Take care of delayed checksums */
1901 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1902 in_delayed_cksum(m);
1903 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1904 }
1905
1906 /*
1907 * copy the old packet & pullup it's IP header into the
1908 * new mbuf so we can modify it. Try to fill the new
1909 * mbuf since if we don't the ethernet driver will.
1910 */
1911 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1912 if (mb_copy == NULL)
1913 return;
1914 mb_copy->m_data += max_linkhdr;
1915 mb_copy->m_pkthdr.len = len;
1916 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1917
1918 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1919 m_freem(mb_copy);
1920 return;
1921 }
1922 i = MHLEN - max_linkhdr;
1923 if (i > len)
1924 i = len;
1925 mb_copy = m_pullup(mb_copy, i);
1926 if (mb_copy == NULL)
1927 return;
1928
1929 /*
1930 * fill in the encapsulating IP header.
1931 */
1932 ip_copy = mtod(mb_copy, struct ip *);
1933 *ip_copy = multicast_encap_iphdr;
1934 if (len < IP_MINFRAGSIZE)
1935 ip_copy->ip_id = 0;
1936 else
1937 ip_copy->ip_id = ip_newid(NULL);
1938 ip_copy->ip_len = htons(len);
1939 ip_copy->ip_src = vifp->v_lcl_addr;
1940 ip_copy->ip_dst = vifp->v_rmt_addr;
1941
1942 /*
1943 * turn the encapsulated IP header back into a valid one.
1944 */
1945 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
1946 --ip->ip_ttl;
1947 ip->ip_sum = 0;
1948 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1949 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1950 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1951
1952 if (vifp->v_rate_limit <= 0)
1953 tbf_send_packet(vifp, mb_copy);
1954 else
1955 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1956 }
1957
1958 /*
1959 * De-encapsulate a packet and feed it back through ip input.
1960 */
1961 static void
1962 vif_input(struct mbuf *m, ...)
1963 {
1964 int off, proto;
1965 va_list ap;
1966 struct vif *vifp;
1967 int s;
1968 struct ifqueue *ifq;
1969
1970 va_start(ap, m);
1971 off = va_arg(ap, int);
1972 proto = va_arg(ap, int);
1973 va_end(ap);
1974
1975 vifp = (struct vif *)encap_getarg(m);
1976 if (!vifp || proto != ENCAP_PROTO) {
1977 m_freem(m);
1978 mrtstat.mrts_bad_tunnel++;
1979 return;
1980 }
1981
1982 m_adj(m, off);
1983 m->m_pkthdr.rcvif = vifp->v_ifp;
1984 ifq = &ipintrq;
1985 s = splnet();
1986 if (IF_QFULL(ifq)) {
1987 IF_DROP(ifq);
1988 m_freem(m);
1989 } else {
1990 IF_ENQUEUE(ifq, m);
1991 /*
1992 * normally we would need a "schednetisr(NETISR_IP)"
1993 * here but we were called by ip_input and it is going
1994 * to loop back & try to dequeue the packet we just
1995 * queued as soon as we return so we avoid the
1996 * unnecessary software interrrupt.
1997 */
1998 }
1999 splx(s);
2000 }
2001
2002 /*
2003 * Check if the packet should be received on the vif denoted by arg.
2004 * (The encap selection code will call this once per vif since each is
2005 * registered separately.)
2006 */
2007 static int
2008 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
2009 {
2010 struct vif *vifp;
2011 struct ip ip;
2012
2013 #ifdef DIAGNOSTIC
2014 if (!arg || proto != IPPROTO_IPV4)
2015 panic("unexpected arg in vif_encapcheck");
2016 #endif
2017
2018 /*
2019 * Accept the packet only if the inner heaader is multicast
2020 * and the outer header matches a tunnel-mode vif. Order
2021 * checks in the hope that common non-matching packets will be
2022 * rejected quickly. Assume that unicast IPv4 traffic in a
2023 * parallel tunnel (e.g. gif(4)) is unlikely.
2024 */
2025
2026 /* Obtain the outer IP header and the vif pointer. */
2027 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
2028 vifp = (struct vif *)arg;
2029
2030 /*
2031 * The outer source must match the vif's remote peer address.
2032 * For a multicast router with several tunnels, this is the
2033 * only check that will fail on packets in other tunnels,
2034 * assuming the local address is the same.
2035 */
2036 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
2037 return 0;
2038
2039 /* The outer destination must match the vif's local address. */
2040 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
2041 return 0;
2042
2043 /* The vif must be of tunnel type. */
2044 if ((vifp->v_flags & VIFF_TUNNEL) == 0)
2045 return 0;
2046
2047 /* Check that the inner destination is multicast. */
2048 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
2049 if (!IN_MULTICAST(ip.ip_dst.s_addr))
2050 return 0;
2051
2052 /*
2053 * We have checked that both the outer src and dst addresses
2054 * match the vif, and that the inner destination is multicast
2055 * (224/5). By claiming more than 64, we intend to
2056 * preferentially take packets that also match a parallel
2057 * gif(4).
2058 */
2059 return 32 + 32 + 5;
2060 }
2061
2062 /*
2063 * Token bucket filter module
2064 */
2065 static void
2066 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
2067 {
2068
2069 if (len > MAX_BKT_SIZE) {
2070 /* drop if packet is too large */
2071 mrtstat.mrts_pkt2large++;
2072 m_freem(m);
2073 return;
2074 }
2075
2076 tbf_update_tokens(vifp);
2077
2078 /*
2079 * If there are enough tokens, and the queue is empty, send this packet
2080 * out immediately. Otherwise, try to insert it on this vif's queue.
2081 */
2082 if (vifp->tbf_q_len == 0) {
2083 if (len <= vifp->tbf_n_tok) {
2084 vifp->tbf_n_tok -= len;
2085 tbf_send_packet(vifp, m);
2086 } else {
2087 /* queue packet and timeout till later */
2088 tbf_queue(vifp, m);
2089 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2090 tbf_reprocess_q, vifp);
2091 }
2092 } else {
2093 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
2094 !tbf_dq_sel(vifp, ip)) {
2095 /* queue full, and couldn't make room */
2096 mrtstat.mrts_q_overflow++;
2097 m_freem(m);
2098 } else {
2099 /* queue length low enough, or made room */
2100 tbf_queue(vifp, m);
2101 tbf_process_q(vifp);
2102 }
2103 }
2104 }
2105
2106 /*
2107 * adds a packet to the queue at the interface
2108 */
2109 static void
2110 tbf_queue(struct vif *vifp, struct mbuf *m)
2111 {
2112 int s = splsoftnet();
2113
2114 /* insert at tail */
2115 *vifp->tbf_t = m;
2116 vifp->tbf_t = &m->m_nextpkt;
2117 vifp->tbf_q_len++;
2118
2119 splx(s);
2120 }
2121
2122
2123 /*
2124 * processes the queue at the interface
2125 */
2126 static void
2127 tbf_process_q(struct vif *vifp)
2128 {
2129 struct mbuf *m;
2130 int len;
2131 int s = splsoftnet();
2132
2133 /*
2134 * Loop through the queue at the interface and send as many packets
2135 * as possible.
2136 */
2137 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2138 len = ntohs(mtod(m, struct ip *)->ip_len);
2139
2140 /* determine if the packet can be sent */
2141 if (len <= vifp->tbf_n_tok) {
2142 /* if so,
2143 * reduce no of tokens, dequeue the packet,
2144 * send the packet.
2145 */
2146 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2147 vifp->tbf_t = &vifp->tbf_q;
2148 --vifp->tbf_q_len;
2149
2150 m->m_nextpkt = NULL;
2151 vifp->tbf_n_tok -= len;
2152 tbf_send_packet(vifp, m);
2153 } else
2154 break;
2155 }
2156 splx(s);
2157 }
2158
2159 static void
2160 tbf_reprocess_q(void *arg)
2161 {
2162 struct vif *vifp = arg;
2163
2164 if (ip_mrouter == NULL)
2165 return;
2166
2167 tbf_update_tokens(vifp);
2168 tbf_process_q(vifp);
2169
2170 if (vifp->tbf_q_len != 0)
2171 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2172 tbf_reprocess_q, vifp);
2173 }
2174
2175 /* function that will selectively discard a member of the queue
2176 * based on the precedence value and the priority
2177 */
2178 static int
2179 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2180 {
2181 u_int p;
2182 struct mbuf **mp, *m;
2183 int s = splsoftnet();
2184
2185 p = priority(vifp, ip);
2186
2187 for (mp = &vifp->tbf_q, m = *mp;
2188 m != NULL;
2189 mp = &m->m_nextpkt, m = *mp) {
2190 if (p > priority(vifp, mtod(m, struct ip *))) {
2191 if ((*mp = m->m_nextpkt) == NULL)
2192 vifp->tbf_t = mp;
2193 --vifp->tbf_q_len;
2194
2195 m_freem(m);
2196 mrtstat.mrts_drop_sel++;
2197 splx(s);
2198 return (1);
2199 }
2200 }
2201 splx(s);
2202 return (0);
2203 }
2204
2205 static void
2206 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2207 {
2208 int error;
2209 int s = splsoftnet();
2210
2211 if (vifp->v_flags & VIFF_TUNNEL) {
2212 /* If tunnel options */
2213 ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
2214 IP_FORWARDING, (struct ip_moptions *)NULL,
2215 (struct socket *)NULL);
2216 } else {
2217 /* if physical interface option, extract the options and then send */
2218 struct ip_moptions imo;
2219
2220 imo.imo_multicast_ifp = vifp->v_ifp;
2221 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2222 imo.imo_multicast_loop = 1;
2223 #ifdef RSVP_ISI
2224 imo.imo_multicast_vif = -1;
2225 #endif
2226
2227 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
2228 &imo, NULL);
2229
2230 if (mrtdebug & DEBUG_XMIT)
2231 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2232 (long)(vifp - viftable), error);
2233 }
2234 splx(s);
2235 }
2236
2237 /* determine the current time and then
2238 * the elapsed time (between the last time and time now)
2239 * in milliseconds & update the no. of tokens in the bucket
2240 */
2241 static void
2242 tbf_update_tokens(struct vif *vifp)
2243 {
2244 struct timeval tp;
2245 u_int32_t tm;
2246 int s = splsoftnet();
2247
2248 microtime(&tp);
2249
2250 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2251
2252 /*
2253 * This formula is actually
2254 * "time in seconds" * "bytes/second".
2255 *
2256 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2257 *
2258 * The (1000/1024) was introduced in add_vif to optimize
2259 * this divide into a shift.
2260 */
2261 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2262 vifp->tbf_last_pkt_t = tp;
2263
2264 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2265 vifp->tbf_n_tok = MAX_BKT_SIZE;
2266
2267 splx(s);
2268 }
2269
2270 static int
2271 priority(struct vif *vifp, struct ip *ip)
2272 {
2273 int prio = 50; /* the lowest priority -- default case */
2274
2275 /* temporary hack; may add general packet classifier some day */
2276
2277 /*
2278 * The UDP port space is divided up into four priority ranges:
2279 * [0, 16384) : unclassified - lowest priority
2280 * [16384, 32768) : audio - highest priority
2281 * [32768, 49152) : whiteboard - medium priority
2282 * [49152, 65536) : video - low priority
2283 */
2284 if (ip->ip_p == IPPROTO_UDP) {
2285 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2286
2287 switch (ntohs(udp->uh_dport) & 0xc000) {
2288 case 0x4000:
2289 prio = 70;
2290 break;
2291 case 0x8000:
2292 prio = 60;
2293 break;
2294 case 0xc000:
2295 prio = 55;
2296 break;
2297 }
2298
2299 if (tbfdebug > 1)
2300 log(LOG_DEBUG, "port %x prio %d\n",
2301 ntohs(udp->uh_dport), prio);
2302 }
2303
2304 return (prio);
2305 }
2306
2307 /*
2308 * End of token bucket filter modifications
2309 */
2310 #ifdef RSVP_ISI
2311 int
2312 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
2313 {
2314 int vifi, s;
2315
2316 if (rsvpdebug)
2317 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2318 so->so_type, so->so_proto->pr_protocol);
2319
2320 if (so->so_type != SOCK_RAW ||
2321 so->so_proto->pr_protocol != IPPROTO_RSVP)
2322 return (EOPNOTSUPP);
2323
2324 /* Check mbuf. */
2325 if (m == NULL || m->m_len != sizeof(int)) {
2326 return (EINVAL);
2327 }
2328 vifi = *(mtod(m, int *));
2329
2330 if (rsvpdebug)
2331 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
2332 vifi, rsvp_on);
2333
2334 s = splsoftnet();
2335
2336 /* Check vif. */
2337 if (!legal_vif_num(vifi)) {
2338 splx(s);
2339 return (EADDRNOTAVAIL);
2340 }
2341
2342 /* Check if socket is available. */
2343 if (viftable[vifi].v_rsvpd != NULL) {
2344 splx(s);
2345 return (EADDRINUSE);
2346 }
2347
2348 viftable[vifi].v_rsvpd = so;
2349 /*
2350 * This may seem silly, but we need to be sure we don't over-increment
2351 * the RSVP counter, in case something slips up.
2352 */
2353 if (!viftable[vifi].v_rsvp_on) {
2354 viftable[vifi].v_rsvp_on = 1;
2355 rsvp_on++;
2356 }
2357
2358 splx(s);
2359 return (0);
2360 }
2361
2362 int
2363 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
2364 {
2365 int vifi, s;
2366
2367 if (rsvpdebug)
2368 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2369 so->so_type, so->so_proto->pr_protocol);
2370
2371 if (so->so_type != SOCK_RAW ||
2372 so->so_proto->pr_protocol != IPPROTO_RSVP)
2373 return (EOPNOTSUPP);
2374
2375 /* Check mbuf. */
2376 if (m == NULL || m->m_len != sizeof(int)) {
2377 return (EINVAL);
2378 }
2379 vifi = *(mtod(m, int *));
2380
2381 s = splsoftnet();
2382
2383 /* Check vif. */
2384 if (!legal_vif_num(vifi)) {
2385 splx(s);
2386 return (EADDRNOTAVAIL);
2387 }
2388
2389 if (rsvpdebug)
2390 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2391 viftable[vifi].v_rsvpd, so);
2392
2393 viftable[vifi].v_rsvpd = NULL;
2394 /*
2395 * This may seem silly, but we need to be sure we don't over-decrement
2396 * the RSVP counter, in case something slips up.
2397 */
2398 if (viftable[vifi].v_rsvp_on) {
2399 viftable[vifi].v_rsvp_on = 0;
2400 rsvp_on--;
2401 }
2402
2403 splx(s);
2404 return (0);
2405 }
2406
2407 void
2408 ip_rsvp_force_done(struct socket *so)
2409 {
2410 int vifi, s;
2411
2412 /* Don't bother if it is not the right type of socket. */
2413 if (so->so_type != SOCK_RAW ||
2414 so->so_proto->pr_protocol != IPPROTO_RSVP)
2415 return;
2416
2417 s = splsoftnet();
2418
2419 /*
2420 * The socket may be attached to more than one vif...this
2421 * is perfectly legal.
2422 */
2423 for (vifi = 0; vifi < numvifs; vifi++) {
2424 if (viftable[vifi].v_rsvpd == so) {
2425 viftable[vifi].v_rsvpd = NULL;
2426 /*
2427 * This may seem silly, but we need to be sure we don't
2428 * over-decrement the RSVP counter, in case something
2429 * slips up.
2430 */
2431 if (viftable[vifi].v_rsvp_on) {
2432 viftable[vifi].v_rsvp_on = 0;
2433 rsvp_on--;
2434 }
2435 }
2436 }
2437
2438 splx(s);
2439 return;
2440 }
2441
2442 void
2443 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2444 {
2445 int vifi, s;
2446 struct ip *ip = mtod(m, struct ip *);
2447 struct sockaddr_in rsvp_src;
2448
2449 if (rsvpdebug)
2450 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2451
2452 /*
2453 * Can still get packets with rsvp_on = 0 if there is a local member
2454 * of the group to which the RSVP packet is addressed. But in this
2455 * case we want to throw the packet away.
2456 */
2457 if (!rsvp_on) {
2458 m_freem(m);
2459 return;
2460 }
2461
2462 /*
2463 * If the old-style non-vif-associated socket is set, then use
2464 * it and ignore the new ones.
2465 */
2466 if (ip_rsvpd != NULL) {
2467 if (rsvpdebug)
2468 printf("rsvp_input: "
2469 "Sending packet up old-style socket\n");
2470 rip_input(m); /*XXX*/
2471 return;
2472 }
2473
2474 s = splsoftnet();
2475
2476 if (rsvpdebug)
2477 printf("rsvp_input: check vifs\n");
2478
2479 /* Find which vif the packet arrived on. */
2480 for (vifi = 0; vifi < numvifs; vifi++) {
2481 if (viftable[vifi].v_ifp == ifp)
2482 break;
2483 }
2484
2485 if (vifi == numvifs) {
2486 /* Can't find vif packet arrived on. Drop packet. */
2487 if (rsvpdebug)
2488 printf("rsvp_input: "
2489 "Can't find vif for packet...dropping it.\n");
2490 m_freem(m);
2491 splx(s);
2492 return;
2493 }
2494
2495 if (rsvpdebug)
2496 printf("rsvp_input: check socket\n");
2497
2498 if (viftable[vifi].v_rsvpd == NULL) {
2499 /*
2500 * drop packet, since there is no specific socket for this
2501 * interface
2502 */
2503 if (rsvpdebug)
2504 printf("rsvp_input: No socket defined for vif %d\n",
2505 vifi);
2506 m_freem(m);
2507 splx(s);
2508 return;
2509 }
2510
2511 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
2512
2513 if (rsvpdebug && m)
2514 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2515 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2516
2517 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2518 if (rsvpdebug)
2519 printf("rsvp_input: Failed to append to socket\n");
2520 else
2521 if (rsvpdebug)
2522 printf("rsvp_input: send packet up\n");
2523
2524 splx(s);
2525 }
2526 #endif /* RSVP_ISI */
2527
2528 /*
2529 * Code for bandwidth monitors
2530 */
2531
2532 /*
2533 * Define common interface for timeval-related methods
2534 */
2535 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2536 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2537 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2538
2539 static uint32_t
2540 compute_bw_meter_flags(struct bw_upcall *req)
2541 {
2542 uint32_t flags = 0;
2543
2544 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2545 flags |= BW_METER_UNIT_PACKETS;
2546 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2547 flags |= BW_METER_UNIT_BYTES;
2548 if (req->bu_flags & BW_UPCALL_GEQ)
2549 flags |= BW_METER_GEQ;
2550 if (req->bu_flags & BW_UPCALL_LEQ)
2551 flags |= BW_METER_LEQ;
2552
2553 return flags;
2554 }
2555
2556 /*
2557 * Add a bw_meter entry
2558 */
2559 static int
2560 add_bw_upcall(struct mbuf *m)
2561 {
2562 int s;
2563 struct mfc *mfc;
2564 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2565 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2566 struct timeval now;
2567 struct bw_meter *x;
2568 uint32_t flags;
2569 struct bw_upcall *req;
2570
2571 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2572 return EINVAL;
2573
2574 req = mtod(m, struct bw_upcall *);
2575
2576 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2577 return EOPNOTSUPP;
2578
2579 /* Test if the flags are valid */
2580 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2581 return EINVAL;
2582 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2583 return EINVAL;
2584 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2585 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2586 return EINVAL;
2587
2588 /* Test if the threshold time interval is valid */
2589 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2590 return EINVAL;
2591
2592 flags = compute_bw_meter_flags(req);
2593
2594 /*
2595 * Find if we have already same bw_meter entry
2596 */
2597 s = splsoftnet();
2598 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2599 if (mfc == NULL) {
2600 splx(s);
2601 return EADDRNOTAVAIL;
2602 }
2603 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2604 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2605 &req->bu_threshold.b_time, ==)) &&
2606 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2607 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2608 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2609 splx(s);
2610 return 0; /* XXX Already installed */
2611 }
2612 }
2613
2614 /* Allocate the new bw_meter entry */
2615 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2616 if (x == NULL) {
2617 splx(s);
2618 return ENOBUFS;
2619 }
2620
2621 /* Set the new bw_meter entry */
2622 x->bm_threshold.b_time = req->bu_threshold.b_time;
2623 microtime(&now);
2624 x->bm_start_time = now;
2625 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2626 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2627 x->bm_measured.b_packets = 0;
2628 x->bm_measured.b_bytes = 0;
2629 x->bm_flags = flags;
2630 x->bm_time_next = NULL;
2631 x->bm_time_hash = BW_METER_BUCKETS;
2632
2633 /* Add the new bw_meter entry to the front of entries for this MFC */
2634 x->bm_mfc = mfc;
2635 x->bm_mfc_next = mfc->mfc_bw_meter;
2636 mfc->mfc_bw_meter = x;
2637 schedule_bw_meter(x, &now);
2638 splx(s);
2639
2640 return 0;
2641 }
2642
2643 static void
2644 free_bw_list(struct bw_meter *list)
2645 {
2646 while (list != NULL) {
2647 struct bw_meter *x = list;
2648
2649 list = list->bm_mfc_next;
2650 unschedule_bw_meter(x);
2651 free(x, M_BWMETER);
2652 }
2653 }
2654
2655 /*
2656 * Delete one or multiple bw_meter entries
2657 */
2658 static int
2659 del_bw_upcall(struct mbuf *m)
2660 {
2661 int s;
2662 struct mfc *mfc;
2663 struct bw_meter *x;
2664 struct bw_upcall *req;
2665
2666 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2667 return EINVAL;
2668
2669 req = mtod(m, struct bw_upcall *);
2670
2671 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2672 return EOPNOTSUPP;
2673
2674 s = splsoftnet();
2675 /* Find the corresponding MFC entry */
2676 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2677 if (mfc == NULL) {
2678 splx(s);
2679 return EADDRNOTAVAIL;
2680 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2681 /*
2682 * Delete all bw_meter entries for this mfc
2683 */
2684 struct bw_meter *list;
2685
2686 list = mfc->mfc_bw_meter;
2687 mfc->mfc_bw_meter = NULL;
2688 free_bw_list(list);
2689 splx(s);
2690 return 0;
2691 } else { /* Delete a single bw_meter entry */
2692 struct bw_meter *prev;
2693 uint32_t flags = 0;
2694
2695 flags = compute_bw_meter_flags(req);
2696
2697 /* Find the bw_meter entry to delete */
2698 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2699 prev = x, x = x->bm_mfc_next) {
2700 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2701 &req->bu_threshold.b_time, ==)) &&
2702 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2703 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2704 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2705 break;
2706 }
2707 if (x != NULL) { /* Delete entry from the list for this MFC */
2708 if (prev != NULL)
2709 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2710 else
2711 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2712
2713 unschedule_bw_meter(x);
2714 splx(s);
2715 /* Free the bw_meter entry */
2716 free(x, M_BWMETER);
2717 return 0;
2718 } else {
2719 splx(s);
2720 return EINVAL;
2721 }
2722 }
2723 /* NOTREACHED */
2724 }
2725
2726 /*
2727 * Perform bandwidth measurement processing that may result in an upcall
2728 */
2729 static void
2730 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2731 {
2732 struct timeval delta;
2733
2734 delta = *nowp;
2735 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2736
2737 if (x->bm_flags & BW_METER_GEQ) {
2738 /*
2739 * Processing for ">=" type of bw_meter entry
2740 */
2741 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2742 /* Reset the bw_meter entry */
2743 x->bm_start_time = *nowp;
2744 x->bm_measured.b_packets = 0;
2745 x->bm_measured.b_bytes = 0;
2746 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2747 }
2748
2749 /* Record that a packet is received */
2750 x->bm_measured.b_packets++;
2751 x->bm_measured.b_bytes += plen;
2752
2753 /*
2754 * Test if we should deliver an upcall
2755 */
2756 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2757 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2758 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2759 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2760 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2761 /* Prepare an upcall for delivery */
2762 bw_meter_prepare_upcall(x, nowp);
2763 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2764 }
2765 }
2766 } else if (x->bm_flags & BW_METER_LEQ) {
2767 /*
2768 * Processing for "<=" type of bw_meter entry
2769 */
2770 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2771 /*
2772 * We are behind time with the multicast forwarding table
2773 * scanning for "<=" type of bw_meter entries, so test now
2774 * if we should deliver an upcall.
2775 */
2776 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2777 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2778 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2779 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2780 /* Prepare an upcall for delivery */
2781 bw_meter_prepare_upcall(x, nowp);
2782 }
2783 /* Reschedule the bw_meter entry */
2784 unschedule_bw_meter(x);
2785 schedule_bw_meter(x, nowp);
2786 }
2787
2788 /* Record that a packet is received */
2789 x->bm_measured.b_packets++;
2790 x->bm_measured.b_bytes += plen;
2791
2792 /*
2793 * Test if we should restart the measuring interval
2794 */
2795 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2796 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2797 (x->bm_flags & BW_METER_UNIT_BYTES &&
2798 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2799 /* Don't restart the measuring interval */
2800 } else {
2801 /* Do restart the measuring interval */
2802 /*
2803 * XXX: note that we don't unschedule and schedule, because this
2804 * might be too much overhead per packet. Instead, when we process
2805 * all entries for a given timer hash bin, we check whether it is
2806 * really a timeout. If not, we reschedule at that time.
2807 */
2808 x->bm_start_time = *nowp;
2809 x->bm_measured.b_packets = 0;
2810 x->bm_measured.b_bytes = 0;
2811 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2812 }
2813 }
2814 }
2815
2816 /*
2817 * Prepare a bandwidth-related upcall
2818 */
2819 static void
2820 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2821 {
2822 struct timeval delta;
2823 struct bw_upcall *u;
2824
2825 /*
2826 * Compute the measured time interval
2827 */
2828 delta = *nowp;
2829 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2830
2831 /*
2832 * If there are too many pending upcalls, deliver them now
2833 */
2834 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2835 bw_upcalls_send();
2836
2837 /*
2838 * Set the bw_upcall entry
2839 */
2840 u = &bw_upcalls[bw_upcalls_n++];
2841 u->bu_src = x->bm_mfc->mfc_origin;
2842 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2843 u->bu_threshold.b_time = x->bm_threshold.b_time;
2844 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2845 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2846 u->bu_measured.b_time = delta;
2847 u->bu_measured.b_packets = x->bm_measured.b_packets;
2848 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2849 u->bu_flags = 0;
2850 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2851 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2852 if (x->bm_flags & BW_METER_UNIT_BYTES)
2853 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2854 if (x->bm_flags & BW_METER_GEQ)
2855 u->bu_flags |= BW_UPCALL_GEQ;
2856 if (x->bm_flags & BW_METER_LEQ)
2857 u->bu_flags |= BW_UPCALL_LEQ;
2858 }
2859
2860 /*
2861 * Send the pending bandwidth-related upcalls
2862 */
2863 static void
2864 bw_upcalls_send(void)
2865 {
2866 struct mbuf *m;
2867 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2868 struct sockaddr_in k_igmpsrc = {
2869 .sin_len = sizeof(k_igmpsrc),
2870 .sin_family = AF_INET,
2871 };
2872 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2873 0, /* unused2 */
2874 IGMPMSG_BW_UPCALL,/* im_msgtype */
2875 0, /* im_mbz */
2876 0, /* im_vif */
2877 0, /* unused3 */
2878 { 0 }, /* im_src */
2879 { 0 } }; /* im_dst */
2880
2881 if (bw_upcalls_n == 0)
2882 return; /* No pending upcalls */
2883
2884 bw_upcalls_n = 0;
2885
2886 /*
2887 * Allocate a new mbuf, initialize it with the header and
2888 * the payload for the pending calls.
2889 */
2890 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2891 if (m == NULL) {
2892 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2893 return;
2894 }
2895
2896 m->m_len = m->m_pkthdr.len = 0;
2897 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
2898 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
2899
2900 /*
2901 * Send the upcalls
2902 * XXX do we need to set the address in k_igmpsrc ?
2903 */
2904 mrtstat.mrts_upcalls++;
2905 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2906 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2907 ++mrtstat.mrts_upq_sockfull;
2908 }
2909 }
2910
2911 /*
2912 * Compute the timeout hash value for the bw_meter entries
2913 */
2914 #define BW_METER_TIMEHASH(bw_meter, hash) \
2915 do { \
2916 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2917 \
2918 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2919 (hash) = next_timeval.tv_sec; \
2920 if (next_timeval.tv_usec) \
2921 (hash)++; /* XXX: make sure we don't timeout early */ \
2922 (hash) %= BW_METER_BUCKETS; \
2923 } while (/*CONSTCOND*/ 0)
2924
2925 /*
2926 * Schedule a timer to process periodically bw_meter entry of type "<="
2927 * by linking the entry in the proper hash bucket.
2928 */
2929 static void
2930 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2931 {
2932 int time_hash;
2933
2934 if (!(x->bm_flags & BW_METER_LEQ))
2935 return; /* XXX: we schedule timers only for "<=" entries */
2936
2937 /*
2938 * Reset the bw_meter entry
2939 */
2940 x->bm_start_time = *nowp;
2941 x->bm_measured.b_packets = 0;
2942 x->bm_measured.b_bytes = 0;
2943 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2944
2945 /*
2946 * Compute the timeout hash value and insert the entry
2947 */
2948 BW_METER_TIMEHASH(x, time_hash);
2949 x->bm_time_next = bw_meter_timers[time_hash];
2950 bw_meter_timers[time_hash] = x;
2951 x->bm_time_hash = time_hash;
2952 }
2953
2954 /*
2955 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2956 * by removing the entry from the proper hash bucket.
2957 */
2958 static void
2959 unschedule_bw_meter(struct bw_meter *x)
2960 {
2961 int time_hash;
2962 struct bw_meter *prev, *tmp;
2963
2964 if (!(x->bm_flags & BW_METER_LEQ))
2965 return; /* XXX: we schedule timers only for "<=" entries */
2966
2967 /*
2968 * Compute the timeout hash value and delete the entry
2969 */
2970 time_hash = x->bm_time_hash;
2971 if (time_hash >= BW_METER_BUCKETS)
2972 return; /* Entry was not scheduled */
2973
2974 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2975 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2976 if (tmp == x)
2977 break;
2978
2979 if (tmp == NULL)
2980 panic("unschedule_bw_meter: bw_meter entry not found");
2981
2982 if (prev != NULL)
2983 prev->bm_time_next = x->bm_time_next;
2984 else
2985 bw_meter_timers[time_hash] = x->bm_time_next;
2986
2987 x->bm_time_next = NULL;
2988 x->bm_time_hash = BW_METER_BUCKETS;
2989 }
2990
2991 /*
2992 * Process all "<=" type of bw_meter that should be processed now,
2993 * and for each entry prepare an upcall if necessary. Each processed
2994 * entry is rescheduled again for the (periodic) processing.
2995 *
2996 * This is run periodically (once per second normally). On each round,
2997 * all the potentially matching entries are in the hash slot that we are
2998 * looking at.
2999 */
3000 static void
3001 bw_meter_process(void)
3002 {
3003 int s;
3004 static uint32_t last_tv_sec; /* last time we processed this */
3005
3006 uint32_t loops;
3007 int i;
3008 struct timeval now, process_endtime;
3009
3010 microtime(&now);
3011 if (last_tv_sec == now.tv_sec)
3012 return; /* nothing to do */
3013
3014 loops = now.tv_sec - last_tv_sec;
3015 last_tv_sec = now.tv_sec;
3016 if (loops > BW_METER_BUCKETS)
3017 loops = BW_METER_BUCKETS;
3018
3019 s = splsoftnet();
3020 /*
3021 * Process all bins of bw_meter entries from the one after the last
3022 * processed to the current one. On entry, i points to the last bucket
3023 * visited, so we need to increment i at the beginning of the loop.
3024 */
3025 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
3026 struct bw_meter *x, *tmp_list;
3027
3028 if (++i >= BW_METER_BUCKETS)
3029 i = 0;
3030
3031 /* Disconnect the list of bw_meter entries from the bin */
3032 tmp_list = bw_meter_timers[i];
3033 bw_meter_timers[i] = NULL;
3034
3035 /* Process the list of bw_meter entries */
3036 while (tmp_list != NULL) {
3037 x = tmp_list;
3038 tmp_list = tmp_list->bm_time_next;
3039
3040 /* Test if the time interval is over */
3041 process_endtime = x->bm_start_time;
3042 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
3043 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
3044 /* Not yet: reschedule, but don't reset */
3045 int time_hash;
3046
3047 BW_METER_TIMEHASH(x, time_hash);
3048 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
3049 /*
3050 * XXX: somehow the bin processing is a bit ahead of time.
3051 * Put the entry in the next bin.
3052 */
3053 if (++time_hash >= BW_METER_BUCKETS)
3054 time_hash = 0;
3055 }
3056 x->bm_time_next = bw_meter_timers[time_hash];
3057 bw_meter_timers[time_hash] = x;
3058 x->bm_time_hash = time_hash;
3059
3060 continue;
3061 }
3062
3063 /*
3064 * Test if we should deliver an upcall
3065 */
3066 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
3067 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
3068 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
3069 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
3070 /* Prepare an upcall for delivery */
3071 bw_meter_prepare_upcall(x, &now);
3072 }
3073
3074 /*
3075 * Reschedule for next processing
3076 */
3077 schedule_bw_meter(x, &now);
3078 }
3079 }
3080
3081 /* Send all upcalls that are pending delivery */
3082 bw_upcalls_send();
3083
3084 splx(s);
3085 }
3086
3087 /*
3088 * A periodic function for sending all upcalls that are pending delivery
3089 */
3090 static void
3091 expire_bw_upcalls_send(void *unused)
3092 {
3093 int s;
3094
3095 s = splsoftnet();
3096 bw_upcalls_send();
3097 splx(s);
3098
3099 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3100 expire_bw_upcalls_send, NULL);
3101 }
3102
3103 /*
3104 * A periodic function for periodic scanning of the multicast forwarding
3105 * table for processing all "<=" bw_meter entries.
3106 */
3107 static void
3108 expire_bw_meter_process(void *unused)
3109 {
3110 if (mrt_api_config & MRT_MFC_BW_UPCALL)
3111 bw_meter_process();
3112
3113 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
3114 expire_bw_meter_process, NULL);
3115 }
3116
3117 /*
3118 * End of bandwidth monitoring code
3119 */
3120
3121 #ifdef PIM
3122 /*
3123 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3124 */
3125 static int
3126 pim_register_send(struct ip *ip, struct vif *vifp,
3127 struct mbuf *m, struct mfc *rt)
3128 {
3129 struct mbuf *mb_copy, *mm;
3130
3131 if (mrtdebug & DEBUG_PIM)
3132 log(LOG_DEBUG, "pim_register_send: ");
3133
3134 mb_copy = pim_register_prepare(ip, m);
3135 if (mb_copy == NULL)
3136 return ENOBUFS;
3137
3138 /*
3139 * Send all the fragments. Note that the mbuf for each fragment
3140 * is freed by the sending machinery.
3141 */
3142 for (mm = mb_copy; mm; mm = mb_copy) {
3143 mb_copy = mm->m_nextpkt;
3144 mm->m_nextpkt = NULL;
3145 mm = m_pullup(mm, sizeof(struct ip));
3146 if (mm != NULL) {
3147 ip = mtod(mm, struct ip *);
3148 if ((mrt_api_config & MRT_MFC_RP) &&
3149 !in_nullhost(rt->mfc_rp)) {
3150 pim_register_send_rp(ip, vifp, mm, rt);
3151 } else {
3152 pim_register_send_upcall(ip, vifp, mm, rt);
3153 }
3154 }
3155 }
3156
3157 return 0;
3158 }
3159
3160 /*
3161 * Return a copy of the data packet that is ready for PIM Register
3162 * encapsulation.
3163 * XXX: Note that in the returned copy the IP header is a valid one.
3164 */
3165 static struct mbuf *
3166 pim_register_prepare(struct ip *ip, struct mbuf *m)
3167 {
3168 struct mbuf *mb_copy = NULL;
3169 int mtu;
3170
3171 /* Take care of delayed checksums */
3172 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3173 in_delayed_cksum(m);
3174 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3175 }
3176
3177 /*
3178 * Copy the old packet & pullup its IP header into the
3179 * new mbuf so we can modify it.
3180 */
3181 mb_copy = m_copypacket(m, M_DONTWAIT);
3182 if (mb_copy == NULL)
3183 return NULL;
3184 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3185 if (mb_copy == NULL)
3186 return NULL;
3187
3188 /* take care of the TTL */
3189 ip = mtod(mb_copy, struct ip *);
3190 --ip->ip_ttl;
3191
3192 /* Compute the MTU after the PIM Register encapsulation */
3193 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3194
3195 if (ntohs(ip->ip_len) <= mtu) {
3196 /* Turn the IP header into a valid one */
3197 ip->ip_sum = 0;
3198 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3199 } else {
3200 /* Fragment the packet */
3201 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3202 /* XXX: mb_copy was freed by ip_fragment() */
3203 return NULL;
3204 }
3205 }
3206 return mb_copy;
3207 }
3208
3209 /*
3210 * Send an upcall with the data packet to the user-level process.
3211 */
3212 static int
3213 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3214 struct mbuf *mb_copy, struct mfc *rt)
3215 {
3216 struct mbuf *mb_first;
3217 int len = ntohs(ip->ip_len);
3218 struct igmpmsg *im;
3219 struct sockaddr_in k_igmpsrc = {
3220 .sin_len = sizeof(k_igmpsrc),
3221 .sin_family = AF_INET,
3222 };
3223
3224 /*
3225 * Add a new mbuf with an upcall header
3226 */
3227 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3228 if (mb_first == NULL) {
3229 m_freem(mb_copy);
3230 return ENOBUFS;
3231 }
3232 mb_first->m_data += max_linkhdr;
3233 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3234 mb_first->m_len = sizeof(struct igmpmsg);
3235 mb_first->m_next = mb_copy;
3236
3237 /* Send message to routing daemon */
3238 im = mtod(mb_first, struct igmpmsg *);
3239 im->im_msgtype = IGMPMSG_WHOLEPKT;
3240 im->im_mbz = 0;
3241 im->im_vif = vifp - viftable;
3242 im->im_src = ip->ip_src;
3243 im->im_dst = ip->ip_dst;
3244
3245 k_igmpsrc.sin_addr = ip->ip_src;
3246
3247 mrtstat.mrts_upcalls++;
3248
3249 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3250 if (mrtdebug & DEBUG_PIM)
3251 log(LOG_WARNING,
3252 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3253 ++mrtstat.mrts_upq_sockfull;
3254 return ENOBUFS;
3255 }
3256
3257 /* Keep statistics */
3258 pimstat.pims_snd_registers_msgs++;
3259 pimstat.pims_snd_registers_bytes += len;
3260
3261 return 0;
3262 }
3263
3264 /*
3265 * Encapsulate the data packet in PIM Register message and send it to the RP.
3266 */
3267 static int
3268 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3269 struct mbuf *mb_copy, struct mfc *rt)
3270 {
3271 struct mbuf *mb_first;
3272 struct ip *ip_outer;
3273 struct pim_encap_pimhdr *pimhdr;
3274 int len = ntohs(ip->ip_len);
3275 vifi_t vifi = rt->mfc_parent;
3276
3277 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3278 m_freem(mb_copy);
3279 return EADDRNOTAVAIL; /* The iif vif is invalid */
3280 }
3281
3282 /*
3283 * Add a new mbuf with the encapsulating header
3284 */
3285 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3286 if (mb_first == NULL) {
3287 m_freem(mb_copy);
3288 return ENOBUFS;
3289 }
3290 mb_first->m_data += max_linkhdr;
3291 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3292 mb_first->m_next = mb_copy;
3293
3294 mb_first->m_pkthdr.len = len + mb_first->m_len;
3295
3296 /*
3297 * Fill in the encapsulating IP and PIM header
3298 */
3299 ip_outer = mtod(mb_first, struct ip *);
3300 *ip_outer = pim_encap_iphdr;
3301 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
3302 ip_outer->ip_id = 0;
3303 else
3304 ip_outer->ip_id = ip_newid(NULL);
3305 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3306 sizeof(pim_encap_pimhdr));
3307 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3308 ip_outer->ip_dst = rt->mfc_rp;
3309 /*
3310 * Copy the inner header TOS to the outer header, and take care of the
3311 * IP_DF bit.
3312 */
3313 ip_outer->ip_tos = ip->ip_tos;
3314 if (ntohs(ip->ip_off) & IP_DF)
3315 ip_outer->ip_off |= htons(IP_DF);
3316 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
3317 + sizeof(pim_encap_iphdr));
3318 *pimhdr = pim_encap_pimhdr;
3319 /* If the iif crosses a border, set the Border-bit */
3320 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3321 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3322
3323 mb_first->m_data += sizeof(pim_encap_iphdr);
3324 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3325 mb_first->m_data -= sizeof(pim_encap_iphdr);
3326
3327 if (vifp->v_rate_limit == 0)
3328 tbf_send_packet(vifp, mb_first);
3329 else
3330 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3331
3332 /* Keep statistics */
3333 pimstat.pims_snd_registers_msgs++;
3334 pimstat.pims_snd_registers_bytes += len;
3335
3336 return 0;
3337 }
3338
3339 /*
3340 * PIM-SMv2 and PIM-DM messages processing.
3341 * Receives and verifies the PIM control messages, and passes them
3342 * up to the listening socket, using rip_input().
3343 * The only message with special processing is the PIM_REGISTER message
3344 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3345 * is passed to if_simloop().
3346 */
3347 void
3348 pim_input(struct mbuf *m, ...)
3349 {
3350 struct ip *ip = mtod(m, struct ip *);
3351 struct pim *pim;
3352 int minlen;
3353 int datalen;
3354 int ip_tos;
3355 int proto;
3356 int iphlen;
3357 va_list ap;
3358
3359 va_start(ap, m);
3360 iphlen = va_arg(ap, int);
3361 proto = va_arg(ap, int);
3362 va_end(ap);
3363
3364 datalen = ntohs(ip->ip_len) - iphlen;
3365
3366 /* Keep statistics */
3367 pimstat.pims_rcv_total_msgs++;
3368 pimstat.pims_rcv_total_bytes += datalen;
3369
3370 /*
3371 * Validate lengths
3372 */
3373 if (datalen < PIM_MINLEN) {
3374 pimstat.pims_rcv_tooshort++;
3375 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3376 datalen, (u_long)ip->ip_src.s_addr);
3377 m_freem(m);
3378 return;
3379 }
3380
3381 /*
3382 * If the packet is at least as big as a REGISTER, go agead
3383 * and grab the PIM REGISTER header size, to avoid another
3384 * possible m_pullup() later.
3385 *
3386 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3387 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3388 */
3389 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3390 /*
3391 * Get the IP and PIM headers in contiguous memory, and
3392 * possibly the PIM REGISTER header.
3393 */
3394 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3395 (m = m_pullup(m, minlen)) == NULL) {
3396 log(LOG_ERR, "pim_input: m_pullup failure\n");
3397 return;
3398 }
3399 /* m_pullup() may have given us a new mbuf so reset ip. */
3400 ip = mtod(m, struct ip *);
3401 ip_tos = ip->ip_tos;
3402
3403 /* adjust mbuf to point to the PIM header */
3404 m->m_data += iphlen;
3405 m->m_len -= iphlen;
3406 pim = mtod(m, struct pim *);
3407
3408 /*
3409 * Validate checksum. If PIM REGISTER, exclude the data packet.
3410 *
3411 * XXX: some older PIMv2 implementations don't make this distinction,
3412 * so for compatibility reason perform the checksum over part of the
3413 * message, and if error, then over the whole message.
3414 */
3415 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3416 /* do nothing, checksum okay */
3417 } else if (in_cksum(m, datalen)) {
3418 pimstat.pims_rcv_badsum++;
3419 if (mrtdebug & DEBUG_PIM)
3420 log(LOG_DEBUG, "pim_input: invalid checksum");
3421 m_freem(m);
3422 return;
3423 }
3424
3425 /* PIM version check */
3426 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3427 pimstat.pims_rcv_badversion++;
3428 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3429 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3430 m_freem(m);
3431 return;
3432 }
3433
3434 /* restore mbuf back to the outer IP */
3435 m->m_data -= iphlen;
3436 m->m_len += iphlen;
3437
3438 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3439 /*
3440 * Since this is a REGISTER, we'll make a copy of the register
3441 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3442 * routing daemon.
3443 */
3444 int s;
3445 struct sockaddr_in dst = {
3446 .sin_len = sizeof(dst),
3447 .sin_family = AF_INET,
3448 };
3449 struct mbuf *mcp;
3450 struct ip *encap_ip;
3451 u_int32_t *reghdr;
3452 struct ifnet *vifp;
3453
3454 s = splsoftnet();
3455 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3456 splx(s);
3457 if (mrtdebug & DEBUG_PIM)
3458 log(LOG_DEBUG,
3459 "pim_input: register vif not set: %d\n", reg_vif_num);
3460 m_freem(m);
3461 return;
3462 }
3463 /* XXX need refcnt? */
3464 vifp = viftable[reg_vif_num].v_ifp;
3465 splx(s);
3466
3467 /*
3468 * Validate length
3469 */
3470 if (datalen < PIM_REG_MINLEN) {
3471 pimstat.pims_rcv_tooshort++;
3472 pimstat.pims_rcv_badregisters++;
3473 log(LOG_ERR,
3474 "pim_input: register packet size too small %d from %lx\n",
3475 datalen, (u_long)ip->ip_src.s_addr);
3476 m_freem(m);
3477 return;
3478 }
3479
3480 reghdr = (u_int32_t *)(pim + 1);
3481 encap_ip = (struct ip *)(reghdr + 1);
3482
3483 if (mrtdebug & DEBUG_PIM) {
3484 log(LOG_DEBUG,
3485 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3486 (u_long)ntohl(encap_ip->ip_src.s_addr),
3487 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3488 ntohs(encap_ip->ip_len));
3489 }
3490
3491 /* verify the version number of the inner packet */
3492 if (encap_ip->ip_v != IPVERSION) {
3493 pimstat.pims_rcv_badregisters++;
3494 if (mrtdebug & DEBUG_PIM) {
3495 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3496 "of the inner packet\n", encap_ip->ip_v);
3497 }
3498 m_freem(m);
3499 return;
3500 }
3501
3502 /* verify the inner packet is destined to a mcast group */
3503 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3504 pimstat.pims_rcv_badregisters++;
3505 if (mrtdebug & DEBUG_PIM)
3506 log(LOG_DEBUG,
3507 "pim_input: inner packet of register is not "
3508 "multicast %lx\n",
3509 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3510 m_freem(m);
3511 return;
3512 }
3513
3514 /* If a NULL_REGISTER, pass it to the daemon */
3515 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3516 goto pim_input_to_daemon;
3517
3518 /*
3519 * Copy the TOS from the outer IP header to the inner IP header.
3520 */
3521 if (encap_ip->ip_tos != ip_tos) {
3522 /* Outer TOS -> inner TOS */
3523 encap_ip->ip_tos = ip_tos;
3524 /* Recompute the inner header checksum. Sigh... */
3525
3526 /* adjust mbuf to point to the inner IP header */
3527 m->m_data += (iphlen + PIM_MINLEN);
3528 m->m_len -= (iphlen + PIM_MINLEN);
3529
3530 encap_ip->ip_sum = 0;
3531 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3532
3533 /* restore mbuf to point back to the outer IP header */
3534 m->m_data -= (iphlen + PIM_MINLEN);
3535 m->m_len += (iphlen + PIM_MINLEN);
3536 }
3537
3538 /*
3539 * Decapsulate the inner IP packet and loopback to forward it
3540 * as a normal multicast packet. Also, make a copy of the
3541 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3542 * to pass to the daemon later, so it can take the appropriate
3543 * actions (e.g., send back PIM_REGISTER_STOP).
3544 * XXX: here m->m_data points to the outer IP header.
3545 */
3546 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
3547 if (mcp == NULL) {
3548 log(LOG_ERR,
3549 "pim_input: pim register: could not copy register head\n");
3550 m_freem(m);
3551 return;
3552 }
3553
3554 /* Keep statistics */
3555 /* XXX: registers_bytes include only the encap. mcast pkt */
3556 pimstat.pims_rcv_registers_msgs++;
3557 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3558
3559 /*
3560 * forward the inner ip packet; point m_data at the inner ip.
3561 */
3562 m_adj(m, iphlen + PIM_MINLEN);
3563
3564 if (mrtdebug & DEBUG_PIM) {
3565 log(LOG_DEBUG,
3566 "pim_input: forwarding decapsulated register: "
3567 "src %lx, dst %lx, vif %d\n",
3568 (u_long)ntohl(encap_ip->ip_src.s_addr),
3569 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3570 reg_vif_num);
3571 }
3572 /* NB: vifp was collected above; can it change on us? */
3573 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
3574
3575 /* prepare the register head to send to the mrouting daemon */
3576 m = mcp;
3577 }
3578
3579 pim_input_to_daemon:
3580 /*
3581 * Pass the PIM message up to the daemon; if it is a Register message,
3582 * pass the 'head' only up to the daemon. This includes the
3583 * outer IP header, PIM header, PIM-Register header and the
3584 * inner IP header.
3585 * XXX: the outer IP header pkt size of a Register is not adjust to
3586 * reflect the fact that the inner multicast data is truncated.
3587 */
3588 rip_input(m, iphlen, proto);
3589
3590 return;
3591 }
3592 #endif /* PIM */
3593