ip_mroute.c revision 1.120 1 /* $NetBSD: ip_mroute.c,v 1.120 2011/08/31 18:31:03 plunky Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35 */
36
37 /*
38 * Copyright (c) 1989 Stephen Deering
39 *
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72 */
73
74 /*
75 * IP multicast forwarding procedures
76 *
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
89 *
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
93 */
94
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.120 2011/08/31 18:31:03 plunky Exp $");
97
98 #include "opt_inet.h"
99 #include "opt_ipsec.h"
100 #include "opt_pim.h"
101
102 #ifdef PIM
103 #define _PIM_VT 1
104 #endif
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/ioctl.h>
117 #include <sys/syslog.h>
118
119 #include <net/if.h>
120 #include <net/route.h>
121 #include <net/raw_cb.h>
122
123 #include <netinet/in.h>
124 #include <netinet/in_var.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/udp.h>
130 #include <netinet/igmp.h>
131 #include <netinet/igmp_var.h>
132 #include <netinet/ip_mroute.h>
133 #ifdef PIM
134 #include <netinet/pim.h>
135 #include <netinet/pim_var.h>
136 #endif
137 #include <netinet/ip_encap.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #endif
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #endif
148
149 #define IP_MULTICASTOPTS 0
150 #define M_PULLUP(m, len) \
151 do { \
152 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
153 (m) = m_pullup((m), (len)); \
154 } while (/*CONSTCOND*/ 0)
155
156 /*
157 * Globals. All but ip_mrouter and ip_mrtproto could be static,
158 * except for netstat or debugging purposes.
159 */
160 struct socket *ip_mrouter = NULL;
161 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
162
163 #define NO_RTE_FOUND 0x1
164 #define RTE_FOUND 0x2
165
166 #define MFCHASH(a, g) \
167 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
168 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
169 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
170 u_long mfchash;
171
172 u_char nexpire[MFCTBLSIZ];
173 struct vif viftable[MAXVIFS];
174 struct mrtstat mrtstat;
175 u_int mrtdebug = 0; /* debug level */
176 #define DEBUG_MFC 0x02
177 #define DEBUG_FORWARD 0x04
178 #define DEBUG_EXPIRE 0x08
179 #define DEBUG_XMIT 0x10
180 #define DEBUG_PIM 0x20
181
182 #define VIFI_INVALID ((vifi_t) -1)
183
184 u_int tbfdebug = 0; /* tbf debug level */
185 #ifdef RSVP_ISI
186 u_int rsvpdebug = 0; /* rsvp debug level */
187 extern struct socket *ip_rsvpd;
188 extern int rsvp_on;
189 #endif /* RSVP_ISI */
190
191 /* vif attachment using sys/netinet/ip_encap.c */
192 static void vif_input(struct mbuf *, ...);
193 static int vif_encapcheck(struct mbuf *, int, int, void *);
194
195 static const struct protosw vif_protosw =
196 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
197 vif_input, rip_output, 0, rip_ctloutput,
198 rip_usrreq,
199 0, 0, 0, 0,
200 };
201
202 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
203 #define UPCALL_EXPIRE 6 /* number of timeouts */
204
205 /*
206 * Define the token bucket filter structures
207 */
208
209 #define TBF_REPROCESS (hz / 100) /* 100x / second */
210
211 static int get_sg_cnt(struct sioc_sg_req *);
212 static int get_vif_cnt(struct sioc_vif_req *);
213 static int ip_mrouter_init(struct socket *, int);
214 static int set_assert(int);
215 static int add_vif(struct vifctl *);
216 static int del_vif(vifi_t *);
217 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
218 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
219 static void expire_mfc(struct mfc *);
220 static int add_mfc(struct sockopt *);
221 #ifdef UPCALL_TIMING
222 static void collate(struct timeval *);
223 #endif
224 static int del_mfc(struct sockopt *);
225 static int set_api_config(struct sockopt *); /* chose API capabilities */
226 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
227 static void expire_upcalls(void *);
228 #ifdef RSVP_ISI
229 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
230 #else
231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
232 #endif
233 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
234 static void encap_send(struct ip *, struct vif *, struct mbuf *);
235 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
236 static void tbf_queue(struct vif *, struct mbuf *);
237 static void tbf_process_q(struct vif *);
238 static void tbf_reprocess_q(void *);
239 static int tbf_dq_sel(struct vif *, struct ip *);
240 static void tbf_send_packet(struct vif *, struct mbuf *);
241 static void tbf_update_tokens(struct vif *);
242 static int priority(struct vif *, struct ip *);
243
244 /*
245 * Bandwidth monitoring
246 */
247 static void free_bw_list(struct bw_meter *);
248 static int add_bw_upcall(struct bw_upcall *);
249 static int del_bw_upcall(struct bw_upcall *);
250 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
251 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
252 static void bw_upcalls_send(void);
253 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
254 static void unschedule_bw_meter(struct bw_meter *);
255 static void bw_meter_process(void);
256 static void expire_bw_upcalls_send(void *);
257 static void expire_bw_meter_process(void *);
258
259 #ifdef PIM
260 static int pim_register_send(struct ip *, struct vif *,
261 struct mbuf *, struct mfc *);
262 static int pim_register_send_rp(struct ip *, struct vif *,
263 struct mbuf *, struct mfc *);
264 static int pim_register_send_upcall(struct ip *, struct vif *,
265 struct mbuf *, struct mfc *);
266 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
267 #endif
268
269 /*
270 * 'Interfaces' associated with decapsulator (so we can tell
271 * packets that went through it from ones that get reflected
272 * by a broken gateway). These interfaces are never linked into
273 * the system ifnet list & no routes point to them. I.e., packets
274 * can't be sent this way. They only exist as a placeholder for
275 * multicast source verification.
276 */
277 #if 0
278 struct ifnet multicast_decap_if[MAXVIFS];
279 #endif
280
281 #define ENCAP_TTL 64
282 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
283
284 /* prototype IP hdr for encapsulated packets */
285 struct ip multicast_encap_iphdr = {
286 .ip_hl = sizeof(struct ip) >> 2,
287 .ip_v = IPVERSION,
288 .ip_len = sizeof(struct ip),
289 .ip_ttl = ENCAP_TTL,
290 .ip_p = ENCAP_PROTO,
291 };
292
293 /*
294 * Bandwidth meter variables and constants
295 */
296
297 /*
298 * Pending timeouts are stored in a hash table, the key being the
299 * expiration time. Periodically, the entries are analysed and processed.
300 */
301 #define BW_METER_BUCKETS 1024
302 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
303 struct callout bw_meter_ch;
304 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
305
306 /*
307 * Pending upcalls are stored in a vector which is flushed when
308 * full, or periodically
309 */
310 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
311 static u_int bw_upcalls_n; /* # of pending upcalls */
312 struct callout bw_upcalls_ch;
313 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
314
315 #ifdef PIM
316 struct pimstat pimstat;
317
318 /*
319 * Note: the PIM Register encapsulation adds the following in front of a
320 * data packet:
321 *
322 * struct pim_encap_hdr {
323 * struct ip ip;
324 * struct pim_encap_pimhdr pim;
325 * }
326 *
327 */
328
329 struct pim_encap_pimhdr {
330 struct pim pim;
331 uint32_t flags;
332 };
333
334 static struct ip pim_encap_iphdr = {
335 .ip_v = IPVERSION,
336 .ip_hl = sizeof(struct ip) >> 2,
337 .ip_len = sizeof(struct ip),
338 .ip_ttl = ENCAP_TTL,
339 .ip_p = IPPROTO_PIM,
340 };
341
342 static struct pim_encap_pimhdr pim_encap_pimhdr = {
343 {
344 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
345 0, /* reserved */
346 0, /* checksum */
347 },
348 0 /* flags */
349 };
350
351 static struct ifnet multicast_register_if;
352 static vifi_t reg_vif_num = VIFI_INVALID;
353 #endif /* PIM */
354
355
356 /*
357 * Private variables.
358 */
359 static vifi_t numvifs = 0;
360
361 static struct callout expire_upcalls_ch;
362
363 /*
364 * whether or not special PIM assert processing is enabled.
365 */
366 static int pim_assert;
367 /*
368 * Rate limit for assert notification messages, in usec
369 */
370 #define ASSERT_MSG_TIME 3000000
371
372 /*
373 * Kernel multicast routing API capabilities and setup.
374 * If more API capabilities are added to the kernel, they should be
375 * recorded in `mrt_api_support'.
376 */
377 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
378 MRT_MFC_FLAGS_BORDER_VIF |
379 MRT_MFC_RP |
380 MRT_MFC_BW_UPCALL);
381 static u_int32_t mrt_api_config = 0;
382
383 /*
384 * Find a route for a given origin IP address and Multicast group address
385 * Type of service parameter to be added in the future!!!
386 * Statistics are updated by the caller if needed
387 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
388 */
389 static struct mfc *
390 mfc_find(struct in_addr *o, struct in_addr *g)
391 {
392 struct mfc *rt;
393
394 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
395 if (in_hosteq(rt->mfc_origin, *o) &&
396 in_hosteq(rt->mfc_mcastgrp, *g) &&
397 (rt->mfc_stall == NULL))
398 break;
399 }
400
401 return (rt);
402 }
403
404 /*
405 * Macros to compute elapsed time efficiently
406 * Borrowed from Van Jacobson's scheduling code
407 */
408 #define TV_DELTA(a, b, delta) do { \
409 int xxs; \
410 delta = (a).tv_usec - (b).tv_usec; \
411 xxs = (a).tv_sec - (b).tv_sec; \
412 switch (xxs) { \
413 case 2: \
414 delta += 1000000; \
415 /* fall through */ \
416 case 1: \
417 delta += 1000000; \
418 /* fall through */ \
419 case 0: \
420 break; \
421 default: \
422 delta += (1000000 * xxs); \
423 break; \
424 } \
425 } while (/*CONSTCOND*/ 0)
426
427 #ifdef UPCALL_TIMING
428 u_int32_t upcall_data[51];
429 #endif /* UPCALL_TIMING */
430
431 /*
432 * Handle MRT setsockopt commands to modify the multicast routing tables.
433 */
434 int
435 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
436 {
437 int error;
438 int optval;
439 struct vifctl vifc;
440 vifi_t vifi;
441 struct bw_upcall bwuc;
442
443 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
444 error = ENOPROTOOPT;
445 else {
446 switch (sopt->sopt_name) {
447 case MRT_INIT:
448 error = sockopt_getint(sopt, &optval);
449 if (error)
450 break;
451
452 error = ip_mrouter_init(so, optval);
453 break;
454 case MRT_DONE:
455 error = ip_mrouter_done();
456 break;
457 case MRT_ADD_VIF:
458 error = sockopt_get(sopt, &vifc, sizeof(vifc));
459 if (error)
460 break;
461 error = add_vif(&vifc);
462 break;
463 case MRT_DEL_VIF:
464 error = sockopt_get(sopt, &vifi, sizeof(vifi));
465 if (error)
466 break;
467 error = del_vif(&vifi);
468 break;
469 case MRT_ADD_MFC:
470 error = add_mfc(sopt);
471 break;
472 case MRT_DEL_MFC:
473 error = del_mfc(sopt);
474 break;
475 case MRT_ASSERT:
476 error = sockopt_getint(sopt, &optval);
477 if (error)
478 break;
479 error = set_assert(optval);
480 break;
481 case MRT_API_CONFIG:
482 error = set_api_config(sopt);
483 break;
484 case MRT_ADD_BW_UPCALL:
485 error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
486 if (error)
487 break;
488 error = add_bw_upcall(&bwuc);
489 break;
490 case MRT_DEL_BW_UPCALL:
491 error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
492 if (error)
493 break;
494 error = del_bw_upcall(&bwuc);
495 break;
496 default:
497 error = ENOPROTOOPT;
498 break;
499 }
500 }
501 return (error);
502 }
503
504 /*
505 * Handle MRT getsockopt commands
506 */
507 int
508 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
509 {
510 int error;
511
512 if (so != ip_mrouter)
513 error = ENOPROTOOPT;
514 else {
515 switch (sopt->sopt_name) {
516 case MRT_VERSION:
517 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
518 break;
519 case MRT_ASSERT:
520 error = sockopt_setint(sopt, pim_assert);
521 break;
522 case MRT_API_SUPPORT:
523 error = sockopt_set(sopt, &mrt_api_support,
524 sizeof(mrt_api_support));
525 break;
526 case MRT_API_CONFIG:
527 error = sockopt_set(sopt, &mrt_api_config,
528 sizeof(mrt_api_config));
529 break;
530 default:
531 error = ENOPROTOOPT;
532 break;
533 }
534 }
535 return (error);
536 }
537
538 /*
539 * Handle ioctl commands to obtain information from the cache
540 */
541 int
542 mrt_ioctl(struct socket *so, u_long cmd, void *data)
543 {
544 int error;
545
546 if (so != ip_mrouter)
547 error = EINVAL;
548 else
549 switch (cmd) {
550 case SIOCGETVIFCNT:
551 error = get_vif_cnt((struct sioc_vif_req *)data);
552 break;
553 case SIOCGETSGCNT:
554 error = get_sg_cnt((struct sioc_sg_req *)data);
555 break;
556 default:
557 error = EINVAL;
558 break;
559 }
560
561 return (error);
562 }
563
564 /*
565 * returns the packet, byte, rpf-failure count for the source group provided
566 */
567 static int
568 get_sg_cnt(struct sioc_sg_req *req)
569 {
570 int s;
571 struct mfc *rt;
572
573 s = splsoftnet();
574 rt = mfc_find(&req->src, &req->grp);
575 if (rt == NULL) {
576 splx(s);
577 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
578 return (EADDRNOTAVAIL);
579 }
580 req->pktcnt = rt->mfc_pkt_cnt;
581 req->bytecnt = rt->mfc_byte_cnt;
582 req->wrong_if = rt->mfc_wrong_if;
583 splx(s);
584
585 return (0);
586 }
587
588 /*
589 * returns the input and output packet and byte counts on the vif provided
590 */
591 static int
592 get_vif_cnt(struct sioc_vif_req *req)
593 {
594 vifi_t vifi = req->vifi;
595
596 if (vifi >= numvifs)
597 return (EINVAL);
598
599 req->icount = viftable[vifi].v_pkt_in;
600 req->ocount = viftable[vifi].v_pkt_out;
601 req->ibytes = viftable[vifi].v_bytes_in;
602 req->obytes = viftable[vifi].v_bytes_out;
603
604 return (0);
605 }
606
607 /*
608 * Enable multicast routing
609 */
610 static int
611 ip_mrouter_init(struct socket *so, int v)
612 {
613 if (mrtdebug)
614 log(LOG_DEBUG,
615 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
616 so->so_type, so->so_proto->pr_protocol);
617
618 if (so->so_type != SOCK_RAW ||
619 so->so_proto->pr_protocol != IPPROTO_IGMP)
620 return (EOPNOTSUPP);
621
622 if (v != 1)
623 return (EINVAL);
624
625 if (ip_mrouter != NULL)
626 return (EADDRINUSE);
627
628 ip_mrouter = so;
629
630 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
631 memset((void *)nexpire, 0, sizeof(nexpire));
632
633 pim_assert = 0;
634
635 callout_init(&expire_upcalls_ch, 0);
636 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
637 expire_upcalls, NULL);
638
639 callout_init(&bw_upcalls_ch, 0);
640 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
641 expire_bw_upcalls_send, NULL);
642
643 callout_init(&bw_meter_ch, 0);
644 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
645 expire_bw_meter_process, NULL);
646
647 if (mrtdebug)
648 log(LOG_DEBUG, "ip_mrouter_init\n");
649
650 return (0);
651 }
652
653 /*
654 * Disable multicast routing
655 */
656 int
657 ip_mrouter_done(void)
658 {
659 vifi_t vifi;
660 struct vif *vifp;
661 int i;
662 int s;
663
664 s = splsoftnet();
665
666 /* Clear out all the vifs currently in use. */
667 for (vifi = 0; vifi < numvifs; vifi++) {
668 vifp = &viftable[vifi];
669 if (!in_nullhost(vifp->v_lcl_addr))
670 reset_vif(vifp);
671 }
672
673 numvifs = 0;
674 pim_assert = 0;
675 mrt_api_config = 0;
676
677 callout_stop(&expire_upcalls_ch);
678 callout_stop(&bw_upcalls_ch);
679 callout_stop(&bw_meter_ch);
680
681 /*
682 * Free all multicast forwarding cache entries.
683 */
684 for (i = 0; i < MFCTBLSIZ; i++) {
685 struct mfc *rt, *nrt;
686
687 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
688 nrt = LIST_NEXT(rt, mfc_hash);
689
690 expire_mfc(rt);
691 }
692 }
693
694 memset((void *)nexpire, 0, sizeof(nexpire));
695 hashdone(mfchashtbl, HASH_LIST, mfchash);
696 mfchashtbl = NULL;
697
698 bw_upcalls_n = 0;
699 memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
700
701 /* Reset de-encapsulation cache. */
702
703 ip_mrouter = NULL;
704
705 splx(s);
706
707 if (mrtdebug)
708 log(LOG_DEBUG, "ip_mrouter_done\n");
709
710 return (0);
711 }
712
713 void
714 ip_mrouter_detach(struct ifnet *ifp)
715 {
716 int vifi, i;
717 struct vif *vifp;
718 struct mfc *rt;
719 struct rtdetq *rte;
720
721 /* XXX not sure about side effect to userland routing daemon */
722 for (vifi = 0; vifi < numvifs; vifi++) {
723 vifp = &viftable[vifi];
724 if (vifp->v_ifp == ifp)
725 reset_vif(vifp);
726 }
727 for (i = 0; i < MFCTBLSIZ; i++) {
728 if (nexpire[i] == 0)
729 continue;
730 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
731 for (rte = rt->mfc_stall; rte; rte = rte->next) {
732 if (rte->ifp == ifp)
733 rte->ifp = NULL;
734 }
735 }
736 }
737 }
738
739 /*
740 * Set PIM assert processing global
741 */
742 static int
743 set_assert(int i)
744 {
745 pim_assert = !!i;
746 return (0);
747 }
748
749 /*
750 * Configure API capabilities
751 */
752 static int
753 set_api_config(struct sockopt *sopt)
754 {
755 u_int32_t apival;
756 int i, error;
757
758 /*
759 * We can set the API capabilities only if it is the first operation
760 * after MRT_INIT. I.e.:
761 * - there are no vifs installed
762 * - pim_assert is not enabled
763 * - the MFC table is empty
764 */
765 error = sockopt_get(sopt, &apival, sizeof(apival));
766 if (error)
767 return (error);
768 if (numvifs > 0)
769 return (EPERM);
770 if (pim_assert)
771 return (EPERM);
772 for (i = 0; i < MFCTBLSIZ; i++) {
773 if (LIST_FIRST(&mfchashtbl[i]) != NULL)
774 return (EPERM);
775 }
776
777 mrt_api_config = apival & mrt_api_support;
778 return (0);
779 }
780
781 /*
782 * Add a vif to the vif table
783 */
784 static int
785 add_vif(struct vifctl *vifcp)
786 {
787 struct vif *vifp;
788 struct ifaddr *ifa;
789 struct ifnet *ifp;
790 struct ifreq ifr;
791 int error, s;
792 struct sockaddr_in sin;
793
794 if (vifcp->vifc_vifi >= MAXVIFS)
795 return (EINVAL);
796 if (in_nullhost(vifcp->vifc_lcl_addr))
797 return (EADDRNOTAVAIL);
798
799 vifp = &viftable[vifcp->vifc_vifi];
800 if (!in_nullhost(vifp->v_lcl_addr))
801 return (EADDRINUSE);
802
803 /* Find the interface with an address in AF_INET family. */
804 #ifdef PIM
805 if (vifcp->vifc_flags & VIFF_REGISTER) {
806 /*
807 * XXX: Because VIFF_REGISTER does not really need a valid
808 * local interface (e.g. it could be 127.0.0.2), we don't
809 * check its address.
810 */
811 ifp = NULL;
812 } else
813 #endif
814 {
815 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
816 ifa = ifa_ifwithaddr(sintosa(&sin));
817 if (ifa == NULL)
818 return (EADDRNOTAVAIL);
819 ifp = ifa->ifa_ifp;
820 }
821
822 if (vifcp->vifc_flags & VIFF_TUNNEL) {
823 if (vifcp->vifc_flags & VIFF_SRCRT) {
824 log(LOG_ERR, "source routed tunnels not supported\n");
825 return (EOPNOTSUPP);
826 }
827
828 /* attach this vif to decapsulator dispatch table */
829 /*
830 * XXX Use addresses in registration so that matching
831 * can be done with radix tree in decapsulator. But,
832 * we need to check inner header for multicast, so
833 * this requires both radix tree lookup and then a
834 * function to check, and this is not supported yet.
835 */
836 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
837 vif_encapcheck, &vif_protosw, vifp);
838 if (!vifp->v_encap_cookie)
839 return (EINVAL);
840
841 /* Create a fake encapsulation interface. */
842 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
843 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
844 "mdecap%d", vifcp->vifc_vifi);
845
846 /* Prepare cached route entry. */
847 memset(&vifp->v_route, 0, sizeof(vifp->v_route));
848 #ifdef PIM
849 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
850 ifp = &multicast_register_if;
851 if (mrtdebug)
852 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
853 (void *)ifp);
854 if (reg_vif_num == VIFI_INVALID) {
855 memset(ifp, 0, sizeof(*ifp));
856 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
857 "register_vif");
858 ifp->if_flags = IFF_LOOPBACK;
859 memset(&vifp->v_route, 0, sizeof(vifp->v_route));
860 reg_vif_num = vifcp->vifc_vifi;
861 }
862 #endif
863 } else {
864 /* Make sure the interface supports multicast. */
865 if ((ifp->if_flags & IFF_MULTICAST) == 0)
866 return (EOPNOTSUPP);
867
868 /* Enable promiscuous reception of all IP multicasts. */
869 sockaddr_in_init(&sin, &zeroin_addr, 0);
870 ifreq_setaddr(SIOCADDMULTI, &ifr, sintosa(&sin));
871 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, &ifr);
872 if (error)
873 return (error);
874 }
875
876 s = splsoftnet();
877
878 /* Define parameters for the tbf structure. */
879 vifp->tbf_q = NULL;
880 vifp->tbf_t = &vifp->tbf_q;
881 microtime(&vifp->tbf_last_pkt_t);
882 vifp->tbf_n_tok = 0;
883 vifp->tbf_q_len = 0;
884 vifp->tbf_max_q_len = MAXQSIZE;
885
886 vifp->v_flags = vifcp->vifc_flags;
887 vifp->v_threshold = vifcp->vifc_threshold;
888 /* scaling up here allows division by 1024 in critical code */
889 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
890 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
891 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
892 vifp->v_ifp = ifp;
893 /* Initialize per vif pkt counters. */
894 vifp->v_pkt_in = 0;
895 vifp->v_pkt_out = 0;
896 vifp->v_bytes_in = 0;
897 vifp->v_bytes_out = 0;
898
899 callout_init(&vifp->v_repq_ch, 0);
900
901 #ifdef RSVP_ISI
902 vifp->v_rsvp_on = 0;
903 vifp->v_rsvpd = NULL;
904 #endif /* RSVP_ISI */
905
906 splx(s);
907
908 /* Adjust numvifs up if the vifi is higher than numvifs. */
909 if (numvifs <= vifcp->vifc_vifi)
910 numvifs = vifcp->vifc_vifi + 1;
911
912 if (mrtdebug)
913 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
914 vifcp->vifc_vifi,
915 ntohl(vifcp->vifc_lcl_addr.s_addr),
916 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
917 ntohl(vifcp->vifc_rmt_addr.s_addr),
918 vifcp->vifc_threshold,
919 vifcp->vifc_rate_limit);
920
921 return (0);
922 }
923
924 void
925 reset_vif(struct vif *vifp)
926 {
927 struct mbuf *m, *n;
928 struct ifnet *ifp;
929 struct ifreq ifr;
930 struct sockaddr_in sin;
931
932 callout_stop(&vifp->v_repq_ch);
933
934 /* detach this vif from decapsulator dispatch table */
935 encap_detach(vifp->v_encap_cookie);
936 vifp->v_encap_cookie = NULL;
937
938 /*
939 * Free packets queued at the interface
940 */
941 for (m = vifp->tbf_q; m != NULL; m = n) {
942 n = m->m_nextpkt;
943 m_freem(m);
944 }
945
946 if (vifp->v_flags & VIFF_TUNNEL)
947 free(vifp->v_ifp, M_MRTABLE);
948 else if (vifp->v_flags & VIFF_REGISTER) {
949 #ifdef PIM
950 reg_vif_num = VIFI_INVALID;
951 #endif
952 } else {
953 sockaddr_in_init(&sin, &zeroin_addr, 0);
954 ifreq_setaddr(SIOCDELMULTI, &ifr, sintosa(&sin));
955 ifp = vifp->v_ifp;
956 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, &ifr);
957 }
958 memset((void *)vifp, 0, sizeof(*vifp));
959 }
960
961 /*
962 * Delete a vif from the vif table
963 */
964 static int
965 del_vif(vifi_t *vifip)
966 {
967 struct vif *vifp;
968 vifi_t vifi;
969 int s;
970
971 if (*vifip >= numvifs)
972 return (EINVAL);
973
974 vifp = &viftable[*vifip];
975 if (in_nullhost(vifp->v_lcl_addr))
976 return (EADDRNOTAVAIL);
977
978 s = splsoftnet();
979
980 reset_vif(vifp);
981
982 /* Adjust numvifs down */
983 for (vifi = numvifs; vifi > 0; vifi--)
984 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
985 break;
986 numvifs = vifi;
987
988 splx(s);
989
990 if (mrtdebug)
991 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
992
993 return (0);
994 }
995
996 /*
997 * update an mfc entry without resetting counters and S,G addresses.
998 */
999 static void
1000 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1001 {
1002 int i;
1003
1004 rt->mfc_parent = mfccp->mfcc_parent;
1005 for (i = 0; i < numvifs; i++) {
1006 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1007 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1008 MRT_MFC_FLAGS_ALL;
1009 }
1010 /* set the RP address */
1011 if (mrt_api_config & MRT_MFC_RP)
1012 rt->mfc_rp = mfccp->mfcc_rp;
1013 else
1014 rt->mfc_rp = zeroin_addr;
1015 }
1016
1017 /*
1018 * fully initialize an mfc entry from the parameter.
1019 */
1020 static void
1021 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1022 {
1023 rt->mfc_origin = mfccp->mfcc_origin;
1024 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1025
1026 update_mfc_params(rt, mfccp);
1027
1028 /* initialize pkt counters per src-grp */
1029 rt->mfc_pkt_cnt = 0;
1030 rt->mfc_byte_cnt = 0;
1031 rt->mfc_wrong_if = 0;
1032 timerclear(&rt->mfc_last_assert);
1033 }
1034
1035 static void
1036 expire_mfc(struct mfc *rt)
1037 {
1038 struct rtdetq *rte, *nrte;
1039
1040 free_bw_list(rt->mfc_bw_meter);
1041
1042 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1043 nrte = rte->next;
1044 m_freem(rte->m);
1045 free(rte, M_MRTABLE);
1046 }
1047
1048 LIST_REMOVE(rt, mfc_hash);
1049 free(rt, M_MRTABLE);
1050 }
1051
1052 /*
1053 * Add an mfc entry
1054 */
1055 static int
1056 add_mfc(struct sockopt *sopt)
1057 {
1058 struct mfcctl2 mfcctl2;
1059 struct mfcctl2 *mfccp;
1060 struct mfc *rt;
1061 u_int32_t hash = 0;
1062 struct rtdetq *rte, *nrte;
1063 u_short nstl;
1064 int s;
1065 int mfcctl_size = sizeof(struct mfcctl);
1066 int error;
1067
1068 if (mrt_api_config & MRT_API_FLAGS_ALL)
1069 mfcctl_size = sizeof(struct mfcctl2);
1070
1071 /*
1072 * select data size depending on API version.
1073 */
1074 mfccp = &mfcctl2;
1075 memset(&mfcctl2, 0, sizeof(mfcctl2));
1076
1077 if (mrt_api_config & MRT_API_FLAGS_ALL)
1078 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1079 else
1080 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1081
1082 if (error)
1083 return (error);
1084
1085 s = splsoftnet();
1086 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1087
1088 /* If an entry already exists, just update the fields */
1089 if (rt) {
1090 if (mrtdebug & DEBUG_MFC)
1091 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1092 ntohl(mfccp->mfcc_origin.s_addr),
1093 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1094 mfccp->mfcc_parent);
1095
1096 update_mfc_params(rt, mfccp);
1097
1098 splx(s);
1099 return (0);
1100 }
1101
1102 /*
1103 * Find the entry for which the upcall was made and update
1104 */
1105 nstl = 0;
1106 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1107 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1108 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1109 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1110 rt->mfc_stall != NULL) {
1111 if (nstl++)
1112 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1113 "multiple kernel entries",
1114 ntohl(mfccp->mfcc_origin.s_addr),
1115 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1116 mfccp->mfcc_parent, rt->mfc_stall);
1117
1118 if (mrtdebug & DEBUG_MFC)
1119 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1120 ntohl(mfccp->mfcc_origin.s_addr),
1121 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1122 mfccp->mfcc_parent, rt->mfc_stall);
1123
1124 rte = rt->mfc_stall;
1125 init_mfc_params(rt, mfccp);
1126 rt->mfc_stall = NULL;
1127
1128 rt->mfc_expire = 0; /* Don't clean this guy up */
1129 nexpire[hash]--;
1130
1131 /* free packets Qed at the end of this entry */
1132 for (; rte != NULL; rte = nrte) {
1133 nrte = rte->next;
1134 if (rte->ifp) {
1135 #ifdef RSVP_ISI
1136 ip_mdq(rte->m, rte->ifp, rt, -1);
1137 #else
1138 ip_mdq(rte->m, rte->ifp, rt);
1139 #endif /* RSVP_ISI */
1140 }
1141 m_freem(rte->m);
1142 #ifdef UPCALL_TIMING
1143 collate(&rte->t);
1144 #endif /* UPCALL_TIMING */
1145 free(rte, M_MRTABLE);
1146 }
1147 }
1148 }
1149
1150 /*
1151 * It is possible that an entry is being inserted without an upcall
1152 */
1153 if (nstl == 0) {
1154 /*
1155 * No mfc; make a new one
1156 */
1157 if (mrtdebug & DEBUG_MFC)
1158 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1159 ntohl(mfccp->mfcc_origin.s_addr),
1160 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1161 mfccp->mfcc_parent);
1162
1163 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1164 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1165 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1166 init_mfc_params(rt, mfccp);
1167 if (rt->mfc_expire)
1168 nexpire[hash]--;
1169 rt->mfc_expire = 0;
1170 break; /* XXX */
1171 }
1172 }
1173 if (rt == NULL) { /* no upcall, so make a new entry */
1174 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1175 M_NOWAIT);
1176 if (rt == NULL) {
1177 splx(s);
1178 return (ENOBUFS);
1179 }
1180
1181 init_mfc_params(rt, mfccp);
1182 rt->mfc_expire = 0;
1183 rt->mfc_stall = NULL;
1184 rt->mfc_bw_meter = NULL;
1185
1186 /* insert new entry at head of hash chain */
1187 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1188 }
1189 }
1190
1191 splx(s);
1192 return (0);
1193 }
1194
1195 #ifdef UPCALL_TIMING
1196 /*
1197 * collect delay statistics on the upcalls
1198 */
1199 static void
1200 collate(struct timeval *t)
1201 {
1202 u_int32_t d;
1203 struct timeval tp;
1204 u_int32_t delta;
1205
1206 microtime(&tp);
1207
1208 if (timercmp(t, &tp, <)) {
1209 TV_DELTA(tp, *t, delta);
1210
1211 d = delta >> 10;
1212 if (d > 50)
1213 d = 50;
1214
1215 ++upcall_data[d];
1216 }
1217 }
1218 #endif /* UPCALL_TIMING */
1219
1220 /*
1221 * Delete an mfc entry
1222 */
1223 static int
1224 del_mfc(struct sockopt *sopt)
1225 {
1226 struct mfcctl2 mfcctl2;
1227 struct mfcctl2 *mfccp;
1228 struct mfc *rt;
1229 int s;
1230 int error;
1231
1232 /*
1233 * XXX: for deleting MFC entries the information in entries
1234 * of size "struct mfcctl" is sufficient.
1235 */
1236
1237 mfccp = &mfcctl2;
1238 memset(&mfcctl2, 0, sizeof(mfcctl2));
1239
1240 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1241 if (error) {
1242 /* Try with the size of mfcctl2. */
1243 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1244 if (error)
1245 return (error);
1246 }
1247
1248 if (mrtdebug & DEBUG_MFC)
1249 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1250 ntohl(mfccp->mfcc_origin.s_addr),
1251 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1252
1253 s = splsoftnet();
1254
1255 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1256 if (rt == NULL) {
1257 splx(s);
1258 return (EADDRNOTAVAIL);
1259 }
1260
1261 /*
1262 * free the bw_meter entries
1263 */
1264 free_bw_list(rt->mfc_bw_meter);
1265 rt->mfc_bw_meter = NULL;
1266
1267 LIST_REMOVE(rt, mfc_hash);
1268 free(rt, M_MRTABLE);
1269
1270 splx(s);
1271 return (0);
1272 }
1273
1274 static int
1275 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1276 {
1277 if (s) {
1278 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
1279 sorwakeup(s);
1280 return (0);
1281 }
1282 }
1283 m_freem(mm);
1284 return (-1);
1285 }
1286
1287 /*
1288 * IP multicast forwarding function. This function assumes that the packet
1289 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1290 * pointed to by "ifp", and the packet is to be relayed to other networks
1291 * that have members of the packet's destination IP multicast group.
1292 *
1293 * The packet is returned unscathed to the caller, unless it is
1294 * erroneous, in which case a non-zero return value tells the caller to
1295 * discard it.
1296 */
1297
1298 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1299 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1300
1301 int
1302 #ifdef RSVP_ISI
1303 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1304 #else
1305 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1306 #endif /* RSVP_ISI */
1307 {
1308 struct ip *ip = mtod(m, struct ip *);
1309 struct mfc *rt;
1310 static int srctun = 0;
1311 struct mbuf *mm;
1312 struct sockaddr_in sin;
1313 int s;
1314 vifi_t vifi;
1315
1316 if (mrtdebug & DEBUG_FORWARD)
1317 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1318 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1319
1320 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1321 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1322 /*
1323 * Packet arrived via a physical interface or
1324 * an encapsulated tunnel or a register_vif.
1325 */
1326 } else {
1327 /*
1328 * Packet arrived through a source-route tunnel.
1329 * Source-route tunnels are no longer supported.
1330 */
1331 if ((srctun++ % 1000) == 0)
1332 log(LOG_ERR,
1333 "ip_mforward: received source-routed packet from %x\n",
1334 ntohl(ip->ip_src.s_addr));
1335
1336 return (1);
1337 }
1338
1339 /*
1340 * Clear any in-bound checksum flags for this packet.
1341 */
1342 m->m_pkthdr.csum_flags = 0;
1343
1344 #ifdef RSVP_ISI
1345 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1346 if (ip->ip_ttl < MAXTTL)
1347 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1348 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1349 struct vif *vifp = viftable + vifi;
1350 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1351 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1352 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1353 vifp->v_ifp->if_xname);
1354 }
1355 return (ip_mdq(m, ifp, NULL, vifi));
1356 }
1357 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1358 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1359 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1360 }
1361 #endif /* RSVP_ISI */
1362
1363 /*
1364 * Don't forward a packet with time-to-live of zero or one,
1365 * or a packet destined to a local-only group.
1366 */
1367 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1368 return (0);
1369
1370 /*
1371 * Determine forwarding vifs from the forwarding cache table
1372 */
1373 s = splsoftnet();
1374 ++mrtstat.mrts_mfc_lookups;
1375 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1376
1377 /* Entry exists, so forward if necessary */
1378 if (rt != NULL) {
1379 splx(s);
1380 #ifdef RSVP_ISI
1381 return (ip_mdq(m, ifp, rt, -1));
1382 #else
1383 return (ip_mdq(m, ifp, rt));
1384 #endif /* RSVP_ISI */
1385 } else {
1386 /*
1387 * If we don't have a route for packet's origin,
1388 * Make a copy of the packet & send message to routing daemon
1389 */
1390
1391 struct mbuf *mb0;
1392 struct rtdetq *rte;
1393 u_int32_t hash;
1394 int hlen = ip->ip_hl << 2;
1395 #ifdef UPCALL_TIMING
1396 struct timeval tp;
1397
1398 microtime(&tp);
1399 #endif /* UPCALL_TIMING */
1400
1401 ++mrtstat.mrts_mfc_misses;
1402
1403 mrtstat.mrts_no_route++;
1404 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1405 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1406 ntohl(ip->ip_src.s_addr),
1407 ntohl(ip->ip_dst.s_addr));
1408
1409 /*
1410 * Allocate mbufs early so that we don't do extra work if we are
1411 * just going to fail anyway. Make sure to pullup the header so
1412 * that other people can't step on it.
1413 */
1414 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1415 M_NOWAIT);
1416 if (rte == NULL) {
1417 splx(s);
1418 return (ENOBUFS);
1419 }
1420 mb0 = m_copypacket(m, M_DONTWAIT);
1421 M_PULLUP(mb0, hlen);
1422 if (mb0 == NULL) {
1423 free(rte, M_MRTABLE);
1424 splx(s);
1425 return (ENOBUFS);
1426 }
1427
1428 /* is there an upcall waiting for this flow? */
1429 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1430 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1431 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1432 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1433 rt->mfc_stall != NULL)
1434 break;
1435 }
1436
1437 if (rt == NULL) {
1438 int i;
1439 struct igmpmsg *im;
1440
1441 /*
1442 * Locate the vifi for the incoming interface for
1443 * this packet.
1444 * If none found, drop packet.
1445 */
1446 for (vifi = 0; vifi < numvifs &&
1447 viftable[vifi].v_ifp != ifp; vifi++)
1448 ;
1449 if (vifi >= numvifs) /* vif not found, drop packet */
1450 goto non_fatal;
1451
1452 /* no upcall, so make a new entry */
1453 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1454 M_NOWAIT);
1455 if (rt == NULL)
1456 goto fail;
1457
1458 /*
1459 * Make a copy of the header to send to the user level
1460 * process
1461 */
1462 mm = m_copym(m, 0, hlen, M_DONTWAIT);
1463 M_PULLUP(mm, hlen);
1464 if (mm == NULL)
1465 goto fail1;
1466
1467 /*
1468 * Send message to routing daemon to install
1469 * a route into the kernel table
1470 */
1471
1472 im = mtod(mm, struct igmpmsg *);
1473 im->im_msgtype = IGMPMSG_NOCACHE;
1474 im->im_mbz = 0;
1475 im->im_vif = vifi;
1476
1477 mrtstat.mrts_upcalls++;
1478
1479 sockaddr_in_init(&sin, &ip->ip_src, 0);
1480 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1481 log(LOG_WARNING,
1482 "ip_mforward: ip_mrouter socket queue full\n");
1483 ++mrtstat.mrts_upq_sockfull;
1484 fail1:
1485 free(rt, M_MRTABLE);
1486 fail:
1487 free(rte, M_MRTABLE);
1488 m_freem(mb0);
1489 splx(s);
1490 return (ENOBUFS);
1491 }
1492
1493 /* insert new entry at head of hash chain */
1494 rt->mfc_origin = ip->ip_src;
1495 rt->mfc_mcastgrp = ip->ip_dst;
1496 rt->mfc_pkt_cnt = 0;
1497 rt->mfc_byte_cnt = 0;
1498 rt->mfc_wrong_if = 0;
1499 rt->mfc_expire = UPCALL_EXPIRE;
1500 nexpire[hash]++;
1501 for (i = 0; i < numvifs; i++) {
1502 rt->mfc_ttls[i] = 0;
1503 rt->mfc_flags[i] = 0;
1504 }
1505 rt->mfc_parent = -1;
1506
1507 /* clear the RP address */
1508 rt->mfc_rp = zeroin_addr;
1509
1510 rt->mfc_bw_meter = NULL;
1511
1512 /* link into table */
1513 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1514 /* Add this entry to the end of the queue */
1515 rt->mfc_stall = rte;
1516 } else {
1517 /* determine if q has overflowed */
1518 struct rtdetq **p;
1519 int npkts = 0;
1520
1521 /*
1522 * XXX ouch! we need to append to the list, but we
1523 * only have a pointer to the front, so we have to
1524 * scan the entire list every time.
1525 */
1526 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1527 if (++npkts > MAX_UPQ) {
1528 mrtstat.mrts_upq_ovflw++;
1529 non_fatal:
1530 free(rte, M_MRTABLE);
1531 m_freem(mb0);
1532 splx(s);
1533 return (0);
1534 }
1535
1536 /* Add this entry to the end of the queue */
1537 *p = rte;
1538 }
1539
1540 rte->next = NULL;
1541 rte->m = mb0;
1542 rte->ifp = ifp;
1543 #ifdef UPCALL_TIMING
1544 rte->t = tp;
1545 #endif /* UPCALL_TIMING */
1546
1547 splx(s);
1548
1549 return (0);
1550 }
1551 }
1552
1553
1554 /*ARGSUSED*/
1555 static void
1556 expire_upcalls(void *v)
1557 {
1558 int i;
1559 int s;
1560
1561 s = splsoftnet();
1562
1563 for (i = 0; i < MFCTBLSIZ; i++) {
1564 struct mfc *rt, *nrt;
1565
1566 if (nexpire[i] == 0)
1567 continue;
1568
1569 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1570 nrt = LIST_NEXT(rt, mfc_hash);
1571
1572 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1573 continue;
1574 nexpire[i]--;
1575
1576 /*
1577 * free the bw_meter entries
1578 */
1579 while (rt->mfc_bw_meter != NULL) {
1580 struct bw_meter *x = rt->mfc_bw_meter;
1581
1582 rt->mfc_bw_meter = x->bm_mfc_next;
1583 free(x, M_BWMETER);
1584 }
1585
1586 ++mrtstat.mrts_cache_cleanups;
1587 if (mrtdebug & DEBUG_EXPIRE)
1588 log(LOG_DEBUG,
1589 "expire_upcalls: expiring (%x %x)\n",
1590 ntohl(rt->mfc_origin.s_addr),
1591 ntohl(rt->mfc_mcastgrp.s_addr));
1592
1593 expire_mfc(rt);
1594 }
1595 }
1596
1597 splx(s);
1598 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1599 expire_upcalls, NULL);
1600 }
1601
1602 /*
1603 * Packet forwarding routine once entry in the cache is made
1604 */
1605 static int
1606 #ifdef RSVP_ISI
1607 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1608 #else
1609 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1610 #endif /* RSVP_ISI */
1611 {
1612 struct ip *ip = mtod(m, struct ip *);
1613 vifi_t vifi;
1614 struct vif *vifp;
1615 struct sockaddr_in sin;
1616 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1617
1618 /*
1619 * Macro to send packet on vif. Since RSVP packets don't get counted on
1620 * input, they shouldn't get counted on output, so statistics keeping is
1621 * separate.
1622 */
1623 #define MC_SEND(ip, vifp, m) do { \
1624 if ((vifp)->v_flags & VIFF_TUNNEL) \
1625 encap_send((ip), (vifp), (m)); \
1626 else \
1627 phyint_send((ip), (vifp), (m)); \
1628 } while (/*CONSTCOND*/ 0)
1629
1630 #ifdef RSVP_ISI
1631 /*
1632 * If xmt_vif is not -1, send on only the requested vif.
1633 *
1634 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1635 */
1636 if (xmt_vif < numvifs) {
1637 #ifdef PIM
1638 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1639 pim_register_send(ip, viftable + xmt_vif, m, rt);
1640 else
1641 #endif
1642 MC_SEND(ip, viftable + xmt_vif, m);
1643 return (1);
1644 }
1645 #endif /* RSVP_ISI */
1646
1647 /*
1648 * Don't forward if it didn't arrive from the parent vif for its origin.
1649 */
1650 vifi = rt->mfc_parent;
1651 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1652 /* came in the wrong interface */
1653 if (mrtdebug & DEBUG_FORWARD)
1654 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1655 ifp, vifi,
1656 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1657 ++mrtstat.mrts_wrong_if;
1658 ++rt->mfc_wrong_if;
1659 /*
1660 * If we are doing PIM assert processing, send a message
1661 * to the routing daemon.
1662 *
1663 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1664 * can complete the SPT switch, regardless of the type
1665 * of the iif (broadcast media, GRE tunnel, etc).
1666 */
1667 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1668 struct timeval now;
1669 u_int32_t delta;
1670
1671 #ifdef PIM
1672 if (ifp == &multicast_register_if)
1673 pimstat.pims_rcv_registers_wrongiif++;
1674 #endif
1675
1676 /* Get vifi for the incoming packet */
1677 for (vifi = 0;
1678 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1679 vifi++)
1680 ;
1681 if (vifi >= numvifs) {
1682 /* The iif is not found: ignore the packet. */
1683 return (0);
1684 }
1685
1686 if (rt->mfc_flags[vifi] &
1687 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1688 /* WRONGVIF disabled: ignore the packet */
1689 return (0);
1690 }
1691
1692 microtime(&now);
1693
1694 TV_DELTA(rt->mfc_last_assert, now, delta);
1695
1696 if (delta > ASSERT_MSG_TIME) {
1697 struct igmpmsg *im;
1698 int hlen = ip->ip_hl << 2;
1699 struct mbuf *mm =
1700 m_copym(m, 0, hlen, M_DONTWAIT);
1701
1702 M_PULLUP(mm, hlen);
1703 if (mm == NULL)
1704 return (ENOBUFS);
1705
1706 rt->mfc_last_assert = now;
1707
1708 im = mtod(mm, struct igmpmsg *);
1709 im->im_msgtype = IGMPMSG_WRONGVIF;
1710 im->im_mbz = 0;
1711 im->im_vif = vifi;
1712
1713 mrtstat.mrts_upcalls++;
1714
1715 sockaddr_in_init(&sin, &im->im_src, 0);
1716 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1717 log(LOG_WARNING,
1718 "ip_mforward: ip_mrouter socket queue full\n");
1719 ++mrtstat.mrts_upq_sockfull;
1720 return (ENOBUFS);
1721 }
1722 }
1723 }
1724 return (0);
1725 }
1726
1727 /* If I sourced this packet, it counts as output, else it was input. */
1728 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1729 viftable[vifi].v_pkt_out++;
1730 viftable[vifi].v_bytes_out += plen;
1731 } else {
1732 viftable[vifi].v_pkt_in++;
1733 viftable[vifi].v_bytes_in += plen;
1734 }
1735 rt->mfc_pkt_cnt++;
1736 rt->mfc_byte_cnt += plen;
1737
1738 /*
1739 * For each vif, decide if a copy of the packet should be forwarded.
1740 * Forward if:
1741 * - the ttl exceeds the vif's threshold
1742 * - there are group members downstream on interface
1743 */
1744 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1745 if ((rt->mfc_ttls[vifi] > 0) &&
1746 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1747 vifp->v_pkt_out++;
1748 vifp->v_bytes_out += plen;
1749 #ifdef PIM
1750 if (vifp->v_flags & VIFF_REGISTER)
1751 pim_register_send(ip, vifp, m, rt);
1752 else
1753 #endif
1754 MC_SEND(ip, vifp, m);
1755 }
1756
1757 /*
1758 * Perform upcall-related bw measuring.
1759 */
1760 if (rt->mfc_bw_meter != NULL) {
1761 struct bw_meter *x;
1762 struct timeval now;
1763
1764 microtime(&now);
1765 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1766 bw_meter_receive_packet(x, plen, &now);
1767 }
1768
1769 return (0);
1770 }
1771
1772 #ifdef RSVP_ISI
1773 /*
1774 * check if a vif number is legal/ok. This is used by ip_output.
1775 */
1776 int
1777 legal_vif_num(int vif)
1778 {
1779 if (vif >= 0 && vif < numvifs)
1780 return (1);
1781 else
1782 return (0);
1783 }
1784 #endif /* RSVP_ISI */
1785
1786 static void
1787 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1788 {
1789 struct mbuf *mb_copy;
1790 int hlen = ip->ip_hl << 2;
1791
1792 /*
1793 * Make a new reference to the packet; make sure that
1794 * the IP header is actually copied, not just referenced,
1795 * so that ip_output() only scribbles on the copy.
1796 */
1797 mb_copy = m_copypacket(m, M_DONTWAIT);
1798 M_PULLUP(mb_copy, hlen);
1799 if (mb_copy == NULL)
1800 return;
1801
1802 if (vifp->v_rate_limit <= 0)
1803 tbf_send_packet(vifp, mb_copy);
1804 else
1805 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1806 ntohs(ip->ip_len));
1807 }
1808
1809 static void
1810 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1811 {
1812 struct mbuf *mb_copy;
1813 struct ip *ip_copy;
1814 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1815
1816 /* Take care of delayed checksums */
1817 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1818 in_delayed_cksum(m);
1819 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1820 }
1821
1822 /*
1823 * copy the old packet & pullup it's IP header into the
1824 * new mbuf so we can modify it. Try to fill the new
1825 * mbuf since if we don't the ethernet driver will.
1826 */
1827 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1828 if (mb_copy == NULL)
1829 return;
1830 mb_copy->m_data += max_linkhdr;
1831 mb_copy->m_pkthdr.len = len;
1832 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1833
1834 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1835 m_freem(mb_copy);
1836 return;
1837 }
1838 i = MHLEN - max_linkhdr;
1839 if (i > len)
1840 i = len;
1841 mb_copy = m_pullup(mb_copy, i);
1842 if (mb_copy == NULL)
1843 return;
1844
1845 /*
1846 * fill in the encapsulating IP header.
1847 */
1848 ip_copy = mtod(mb_copy, struct ip *);
1849 *ip_copy = multicast_encap_iphdr;
1850 if (len < IP_MINFRAGSIZE)
1851 ip_copy->ip_id = 0;
1852 else
1853 ip_copy->ip_id = ip_newid(NULL);
1854 ip_copy->ip_len = htons(len);
1855 ip_copy->ip_src = vifp->v_lcl_addr;
1856 ip_copy->ip_dst = vifp->v_rmt_addr;
1857
1858 /*
1859 * turn the encapsulated IP header back into a valid one.
1860 */
1861 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
1862 --ip->ip_ttl;
1863 ip->ip_sum = 0;
1864 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1865 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1866 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1867
1868 if (vifp->v_rate_limit <= 0)
1869 tbf_send_packet(vifp, mb_copy);
1870 else
1871 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1872 }
1873
1874 /*
1875 * De-encapsulate a packet and feed it back through ip input.
1876 */
1877 static void
1878 vif_input(struct mbuf *m, ...)
1879 {
1880 int off, proto;
1881 va_list ap;
1882 struct vif *vifp;
1883 int s;
1884 struct ifqueue *ifq;
1885
1886 va_start(ap, m);
1887 off = va_arg(ap, int);
1888 proto = va_arg(ap, int);
1889 va_end(ap);
1890
1891 vifp = (struct vif *)encap_getarg(m);
1892 if (!vifp || proto != ENCAP_PROTO) {
1893 m_freem(m);
1894 mrtstat.mrts_bad_tunnel++;
1895 return;
1896 }
1897
1898 m_adj(m, off);
1899 m->m_pkthdr.rcvif = vifp->v_ifp;
1900 ifq = &ipintrq;
1901 s = splnet();
1902 if (IF_QFULL(ifq)) {
1903 IF_DROP(ifq);
1904 m_freem(m);
1905 } else {
1906 IF_ENQUEUE(ifq, m);
1907 /*
1908 * normally we would need a "schednetisr(NETISR_IP)"
1909 * here but we were called by ip_input and it is going
1910 * to loop back & try to dequeue the packet we just
1911 * queued as soon as we return so we avoid the
1912 * unnecessary software interrrupt.
1913 */
1914 }
1915 splx(s);
1916 }
1917
1918 /*
1919 * Check if the packet should be received on the vif denoted by arg.
1920 * (The encap selection code will call this once per vif since each is
1921 * registered separately.)
1922 */
1923 static int
1924 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
1925 {
1926 struct vif *vifp;
1927 struct ip ip;
1928
1929 #ifdef DIAGNOSTIC
1930 if (!arg || proto != IPPROTO_IPV4)
1931 panic("unexpected arg in vif_encapcheck");
1932 #endif
1933
1934 /*
1935 * Accept the packet only if the inner heaader is multicast
1936 * and the outer header matches a tunnel-mode vif. Order
1937 * checks in the hope that common non-matching packets will be
1938 * rejected quickly. Assume that unicast IPv4 traffic in a
1939 * parallel tunnel (e.g. gif(4)) is unlikely.
1940 */
1941
1942 /* Obtain the outer IP header and the vif pointer. */
1943 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
1944 vifp = (struct vif *)arg;
1945
1946 /*
1947 * The outer source must match the vif's remote peer address.
1948 * For a multicast router with several tunnels, this is the
1949 * only check that will fail on packets in other tunnels,
1950 * assuming the local address is the same.
1951 */
1952 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1953 return 0;
1954
1955 /* The outer destination must match the vif's local address. */
1956 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
1957 return 0;
1958
1959 /* The vif must be of tunnel type. */
1960 if ((vifp->v_flags & VIFF_TUNNEL) == 0)
1961 return 0;
1962
1963 /* Check that the inner destination is multicast. */
1964 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
1965 if (!IN_MULTICAST(ip.ip_dst.s_addr))
1966 return 0;
1967
1968 /*
1969 * We have checked that both the outer src and dst addresses
1970 * match the vif, and that the inner destination is multicast
1971 * (224/5). By claiming more than 64, we intend to
1972 * preferentially take packets that also match a parallel
1973 * gif(4).
1974 */
1975 return 32 + 32 + 5;
1976 }
1977
1978 /*
1979 * Token bucket filter module
1980 */
1981 static void
1982 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
1983 {
1984
1985 if (len > MAX_BKT_SIZE) {
1986 /* drop if packet is too large */
1987 mrtstat.mrts_pkt2large++;
1988 m_freem(m);
1989 return;
1990 }
1991
1992 tbf_update_tokens(vifp);
1993
1994 /*
1995 * If there are enough tokens, and the queue is empty, send this packet
1996 * out immediately. Otherwise, try to insert it on this vif's queue.
1997 */
1998 if (vifp->tbf_q_len == 0) {
1999 if (len <= vifp->tbf_n_tok) {
2000 vifp->tbf_n_tok -= len;
2001 tbf_send_packet(vifp, m);
2002 } else {
2003 /* queue packet and timeout till later */
2004 tbf_queue(vifp, m);
2005 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2006 tbf_reprocess_q, vifp);
2007 }
2008 } else {
2009 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
2010 !tbf_dq_sel(vifp, ip)) {
2011 /* queue full, and couldn't make room */
2012 mrtstat.mrts_q_overflow++;
2013 m_freem(m);
2014 } else {
2015 /* queue length low enough, or made room */
2016 tbf_queue(vifp, m);
2017 tbf_process_q(vifp);
2018 }
2019 }
2020 }
2021
2022 /*
2023 * adds a packet to the queue at the interface
2024 */
2025 static void
2026 tbf_queue(struct vif *vifp, struct mbuf *m)
2027 {
2028 int s = splsoftnet();
2029
2030 /* insert at tail */
2031 *vifp->tbf_t = m;
2032 vifp->tbf_t = &m->m_nextpkt;
2033 vifp->tbf_q_len++;
2034
2035 splx(s);
2036 }
2037
2038
2039 /*
2040 * processes the queue at the interface
2041 */
2042 static void
2043 tbf_process_q(struct vif *vifp)
2044 {
2045 struct mbuf *m;
2046 int len;
2047 int s = splsoftnet();
2048
2049 /*
2050 * Loop through the queue at the interface and send as many packets
2051 * as possible.
2052 */
2053 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2054 len = ntohs(mtod(m, struct ip *)->ip_len);
2055
2056 /* determine if the packet can be sent */
2057 if (len <= vifp->tbf_n_tok) {
2058 /* if so,
2059 * reduce no of tokens, dequeue the packet,
2060 * send the packet.
2061 */
2062 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2063 vifp->tbf_t = &vifp->tbf_q;
2064 --vifp->tbf_q_len;
2065
2066 m->m_nextpkt = NULL;
2067 vifp->tbf_n_tok -= len;
2068 tbf_send_packet(vifp, m);
2069 } else
2070 break;
2071 }
2072 splx(s);
2073 }
2074
2075 static void
2076 tbf_reprocess_q(void *arg)
2077 {
2078 struct vif *vifp = arg;
2079
2080 if (ip_mrouter == NULL)
2081 return;
2082
2083 tbf_update_tokens(vifp);
2084 tbf_process_q(vifp);
2085
2086 if (vifp->tbf_q_len != 0)
2087 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2088 tbf_reprocess_q, vifp);
2089 }
2090
2091 /* function that will selectively discard a member of the queue
2092 * based on the precedence value and the priority
2093 */
2094 static int
2095 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2096 {
2097 u_int p;
2098 struct mbuf **mp, *m;
2099 int s = splsoftnet();
2100
2101 p = priority(vifp, ip);
2102
2103 for (mp = &vifp->tbf_q, m = *mp;
2104 m != NULL;
2105 mp = &m->m_nextpkt, m = *mp) {
2106 if (p > priority(vifp, mtod(m, struct ip *))) {
2107 if ((*mp = m->m_nextpkt) == NULL)
2108 vifp->tbf_t = mp;
2109 --vifp->tbf_q_len;
2110
2111 m_freem(m);
2112 mrtstat.mrts_drop_sel++;
2113 splx(s);
2114 return (1);
2115 }
2116 }
2117 splx(s);
2118 return (0);
2119 }
2120
2121 static void
2122 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2123 {
2124 int error;
2125 int s = splsoftnet();
2126
2127 if (vifp->v_flags & VIFF_TUNNEL) {
2128 /* If tunnel options */
2129 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2130 } else {
2131 /* if physical interface option, extract the options and then send */
2132 struct ip_moptions imo;
2133
2134 imo.imo_multicast_ifp = vifp->v_ifp;
2135 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2136 imo.imo_multicast_loop = 1;
2137 #ifdef RSVP_ISI
2138 imo.imo_multicast_vif = -1;
2139 #endif
2140
2141 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
2142 &imo, NULL);
2143
2144 if (mrtdebug & DEBUG_XMIT)
2145 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2146 (long)(vifp - viftable), error);
2147 }
2148 splx(s);
2149 }
2150
2151 /* determine the current time and then
2152 * the elapsed time (between the last time and time now)
2153 * in milliseconds & update the no. of tokens in the bucket
2154 */
2155 static void
2156 tbf_update_tokens(struct vif *vifp)
2157 {
2158 struct timeval tp;
2159 u_int32_t tm;
2160 int s = splsoftnet();
2161
2162 microtime(&tp);
2163
2164 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2165
2166 /*
2167 * This formula is actually
2168 * "time in seconds" * "bytes/second".
2169 *
2170 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2171 *
2172 * The (1000/1024) was introduced in add_vif to optimize
2173 * this divide into a shift.
2174 */
2175 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2176 vifp->tbf_last_pkt_t = tp;
2177
2178 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2179 vifp->tbf_n_tok = MAX_BKT_SIZE;
2180
2181 splx(s);
2182 }
2183
2184 static int
2185 priority(struct vif *vifp, struct ip *ip)
2186 {
2187 int prio = 50; /* the lowest priority -- default case */
2188
2189 /* temporary hack; may add general packet classifier some day */
2190
2191 /*
2192 * The UDP port space is divided up into four priority ranges:
2193 * [0, 16384) : unclassified - lowest priority
2194 * [16384, 32768) : audio - highest priority
2195 * [32768, 49152) : whiteboard - medium priority
2196 * [49152, 65536) : video - low priority
2197 */
2198 if (ip->ip_p == IPPROTO_UDP) {
2199 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2200
2201 switch (ntohs(udp->uh_dport) & 0xc000) {
2202 case 0x4000:
2203 prio = 70;
2204 break;
2205 case 0x8000:
2206 prio = 60;
2207 break;
2208 case 0xc000:
2209 prio = 55;
2210 break;
2211 }
2212
2213 if (tbfdebug > 1)
2214 log(LOG_DEBUG, "port %x prio %d\n",
2215 ntohs(udp->uh_dport), prio);
2216 }
2217
2218 return (prio);
2219 }
2220
2221 /*
2222 * End of token bucket filter modifications
2223 */
2224 #ifdef RSVP_ISI
2225 int
2226 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
2227 {
2228 int vifi, s;
2229
2230 if (rsvpdebug)
2231 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2232 so->so_type, so->so_proto->pr_protocol);
2233
2234 if (so->so_type != SOCK_RAW ||
2235 so->so_proto->pr_protocol != IPPROTO_RSVP)
2236 return (EOPNOTSUPP);
2237
2238 /* Check mbuf. */
2239 if (m == NULL || m->m_len != sizeof(int)) {
2240 return (EINVAL);
2241 }
2242 vifi = *(mtod(m, int *));
2243
2244 if (rsvpdebug)
2245 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
2246 vifi, rsvp_on);
2247
2248 s = splsoftnet();
2249
2250 /* Check vif. */
2251 if (!legal_vif_num(vifi)) {
2252 splx(s);
2253 return (EADDRNOTAVAIL);
2254 }
2255
2256 /* Check if socket is available. */
2257 if (viftable[vifi].v_rsvpd != NULL) {
2258 splx(s);
2259 return (EADDRINUSE);
2260 }
2261
2262 viftable[vifi].v_rsvpd = so;
2263 /*
2264 * This may seem silly, but we need to be sure we don't over-increment
2265 * the RSVP counter, in case something slips up.
2266 */
2267 if (!viftable[vifi].v_rsvp_on) {
2268 viftable[vifi].v_rsvp_on = 1;
2269 rsvp_on++;
2270 }
2271
2272 splx(s);
2273 return (0);
2274 }
2275
2276 int
2277 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
2278 {
2279 int vifi, s;
2280
2281 if (rsvpdebug)
2282 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2283 so->so_type, so->so_proto->pr_protocol);
2284
2285 if (so->so_type != SOCK_RAW ||
2286 so->so_proto->pr_protocol != IPPROTO_RSVP)
2287 return (EOPNOTSUPP);
2288
2289 /* Check mbuf. */
2290 if (m == NULL || m->m_len != sizeof(int)) {
2291 return (EINVAL);
2292 }
2293 vifi = *(mtod(m, int *));
2294
2295 s = splsoftnet();
2296
2297 /* Check vif. */
2298 if (!legal_vif_num(vifi)) {
2299 splx(s);
2300 return (EADDRNOTAVAIL);
2301 }
2302
2303 if (rsvpdebug)
2304 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2305 viftable[vifi].v_rsvpd, so);
2306
2307 viftable[vifi].v_rsvpd = NULL;
2308 /*
2309 * This may seem silly, but we need to be sure we don't over-decrement
2310 * the RSVP counter, in case something slips up.
2311 */
2312 if (viftable[vifi].v_rsvp_on) {
2313 viftable[vifi].v_rsvp_on = 0;
2314 rsvp_on--;
2315 }
2316
2317 splx(s);
2318 return (0);
2319 }
2320
2321 void
2322 ip_rsvp_force_done(struct socket *so)
2323 {
2324 int vifi, s;
2325
2326 /* Don't bother if it is not the right type of socket. */
2327 if (so->so_type != SOCK_RAW ||
2328 so->so_proto->pr_protocol != IPPROTO_RSVP)
2329 return;
2330
2331 s = splsoftnet();
2332
2333 /*
2334 * The socket may be attached to more than one vif...this
2335 * is perfectly legal.
2336 */
2337 for (vifi = 0; vifi < numvifs; vifi++) {
2338 if (viftable[vifi].v_rsvpd == so) {
2339 viftable[vifi].v_rsvpd = NULL;
2340 /*
2341 * This may seem silly, but we need to be sure we don't
2342 * over-decrement the RSVP counter, in case something
2343 * slips up.
2344 */
2345 if (viftable[vifi].v_rsvp_on) {
2346 viftable[vifi].v_rsvp_on = 0;
2347 rsvp_on--;
2348 }
2349 }
2350 }
2351
2352 splx(s);
2353 return;
2354 }
2355
2356 void
2357 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2358 {
2359 int vifi, s;
2360 struct ip *ip = mtod(m, struct ip *);
2361 struct sockaddr_in rsvp_src;
2362
2363 if (rsvpdebug)
2364 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2365
2366 /*
2367 * Can still get packets with rsvp_on = 0 if there is a local member
2368 * of the group to which the RSVP packet is addressed. But in this
2369 * case we want to throw the packet away.
2370 */
2371 if (!rsvp_on) {
2372 m_freem(m);
2373 return;
2374 }
2375
2376 /*
2377 * If the old-style non-vif-associated socket is set, then use
2378 * it and ignore the new ones.
2379 */
2380 if (ip_rsvpd != NULL) {
2381 if (rsvpdebug)
2382 printf("rsvp_input: "
2383 "Sending packet up old-style socket\n");
2384 rip_input(m); /*XXX*/
2385 return;
2386 }
2387
2388 s = splsoftnet();
2389
2390 if (rsvpdebug)
2391 printf("rsvp_input: check vifs\n");
2392
2393 /* Find which vif the packet arrived on. */
2394 for (vifi = 0; vifi < numvifs; vifi++) {
2395 if (viftable[vifi].v_ifp == ifp)
2396 break;
2397 }
2398
2399 if (vifi == numvifs) {
2400 /* Can't find vif packet arrived on. Drop packet. */
2401 if (rsvpdebug)
2402 printf("rsvp_input: "
2403 "Can't find vif for packet...dropping it.\n");
2404 m_freem(m);
2405 splx(s);
2406 return;
2407 }
2408
2409 if (rsvpdebug)
2410 printf("rsvp_input: check socket\n");
2411
2412 if (viftable[vifi].v_rsvpd == NULL) {
2413 /*
2414 * drop packet, since there is no specific socket for this
2415 * interface
2416 */
2417 if (rsvpdebug)
2418 printf("rsvp_input: No socket defined for vif %d\n",
2419 vifi);
2420 m_freem(m);
2421 splx(s);
2422 return;
2423 }
2424
2425 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
2426
2427 if (rsvpdebug && m)
2428 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2429 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2430
2431 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2432 if (rsvpdebug)
2433 printf("rsvp_input: Failed to append to socket\n");
2434 else
2435 if (rsvpdebug)
2436 printf("rsvp_input: send packet up\n");
2437
2438 splx(s);
2439 }
2440 #endif /* RSVP_ISI */
2441
2442 /*
2443 * Code for bandwidth monitors
2444 */
2445
2446 /*
2447 * Define common interface for timeval-related methods
2448 */
2449 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2450 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2451 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2452
2453 static uint32_t
2454 compute_bw_meter_flags(struct bw_upcall *req)
2455 {
2456 uint32_t flags = 0;
2457
2458 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2459 flags |= BW_METER_UNIT_PACKETS;
2460 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2461 flags |= BW_METER_UNIT_BYTES;
2462 if (req->bu_flags & BW_UPCALL_GEQ)
2463 flags |= BW_METER_GEQ;
2464 if (req->bu_flags & BW_UPCALL_LEQ)
2465 flags |= BW_METER_LEQ;
2466
2467 return flags;
2468 }
2469
2470 /*
2471 * Add a bw_meter entry
2472 */
2473 static int
2474 add_bw_upcall(struct bw_upcall *req)
2475 {
2476 int s;
2477 struct mfc *mfc;
2478 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2479 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2480 struct timeval now;
2481 struct bw_meter *x;
2482 uint32_t flags;
2483
2484 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2485 return EOPNOTSUPP;
2486
2487 /* Test if the flags are valid */
2488 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2489 return EINVAL;
2490 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2491 return EINVAL;
2492 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2493 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2494 return EINVAL;
2495
2496 /* Test if the threshold time interval is valid */
2497 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2498 return EINVAL;
2499
2500 flags = compute_bw_meter_flags(req);
2501
2502 /*
2503 * Find if we have already same bw_meter entry
2504 */
2505 s = splsoftnet();
2506 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2507 if (mfc == NULL) {
2508 splx(s);
2509 return EADDRNOTAVAIL;
2510 }
2511 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2512 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2513 &req->bu_threshold.b_time, ==)) &&
2514 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2515 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2516 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2517 splx(s);
2518 return 0; /* XXX Already installed */
2519 }
2520 }
2521
2522 /* Allocate the new bw_meter entry */
2523 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2524 if (x == NULL) {
2525 splx(s);
2526 return ENOBUFS;
2527 }
2528
2529 /* Set the new bw_meter entry */
2530 x->bm_threshold.b_time = req->bu_threshold.b_time;
2531 microtime(&now);
2532 x->bm_start_time = now;
2533 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2534 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2535 x->bm_measured.b_packets = 0;
2536 x->bm_measured.b_bytes = 0;
2537 x->bm_flags = flags;
2538 x->bm_time_next = NULL;
2539 x->bm_time_hash = BW_METER_BUCKETS;
2540
2541 /* Add the new bw_meter entry to the front of entries for this MFC */
2542 x->bm_mfc = mfc;
2543 x->bm_mfc_next = mfc->mfc_bw_meter;
2544 mfc->mfc_bw_meter = x;
2545 schedule_bw_meter(x, &now);
2546 splx(s);
2547
2548 return 0;
2549 }
2550
2551 static void
2552 free_bw_list(struct bw_meter *list)
2553 {
2554 while (list != NULL) {
2555 struct bw_meter *x = list;
2556
2557 list = list->bm_mfc_next;
2558 unschedule_bw_meter(x);
2559 free(x, M_BWMETER);
2560 }
2561 }
2562
2563 /*
2564 * Delete one or multiple bw_meter entries
2565 */
2566 static int
2567 del_bw_upcall(struct bw_upcall *req)
2568 {
2569 int s;
2570 struct mfc *mfc;
2571 struct bw_meter *x;
2572
2573 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2574 return EOPNOTSUPP;
2575
2576 s = splsoftnet();
2577 /* Find the corresponding MFC entry */
2578 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2579 if (mfc == NULL) {
2580 splx(s);
2581 return EADDRNOTAVAIL;
2582 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2583 /*
2584 * Delete all bw_meter entries for this mfc
2585 */
2586 struct bw_meter *list;
2587
2588 list = mfc->mfc_bw_meter;
2589 mfc->mfc_bw_meter = NULL;
2590 free_bw_list(list);
2591 splx(s);
2592 return 0;
2593 } else { /* Delete a single bw_meter entry */
2594 struct bw_meter *prev;
2595 uint32_t flags = 0;
2596
2597 flags = compute_bw_meter_flags(req);
2598
2599 /* Find the bw_meter entry to delete */
2600 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2601 prev = x, x = x->bm_mfc_next) {
2602 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2603 &req->bu_threshold.b_time, ==)) &&
2604 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2605 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2606 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2607 break;
2608 }
2609 if (x != NULL) { /* Delete entry from the list for this MFC */
2610 if (prev != NULL)
2611 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2612 else
2613 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2614
2615 unschedule_bw_meter(x);
2616 splx(s);
2617 /* Free the bw_meter entry */
2618 free(x, M_BWMETER);
2619 return 0;
2620 } else {
2621 splx(s);
2622 return EINVAL;
2623 }
2624 }
2625 /* NOTREACHED */
2626 }
2627
2628 /*
2629 * Perform bandwidth measurement processing that may result in an upcall
2630 */
2631 static void
2632 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2633 {
2634 struct timeval delta;
2635
2636 delta = *nowp;
2637 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2638
2639 if (x->bm_flags & BW_METER_GEQ) {
2640 /*
2641 * Processing for ">=" type of bw_meter entry
2642 */
2643 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2644 /* Reset the bw_meter entry */
2645 x->bm_start_time = *nowp;
2646 x->bm_measured.b_packets = 0;
2647 x->bm_measured.b_bytes = 0;
2648 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2649 }
2650
2651 /* Record that a packet is received */
2652 x->bm_measured.b_packets++;
2653 x->bm_measured.b_bytes += plen;
2654
2655 /*
2656 * Test if we should deliver an upcall
2657 */
2658 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2659 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2660 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2661 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2662 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2663 /* Prepare an upcall for delivery */
2664 bw_meter_prepare_upcall(x, nowp);
2665 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2666 }
2667 }
2668 } else if (x->bm_flags & BW_METER_LEQ) {
2669 /*
2670 * Processing for "<=" type of bw_meter entry
2671 */
2672 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2673 /*
2674 * We are behind time with the multicast forwarding table
2675 * scanning for "<=" type of bw_meter entries, so test now
2676 * if we should deliver an upcall.
2677 */
2678 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2679 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2680 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2681 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2682 /* Prepare an upcall for delivery */
2683 bw_meter_prepare_upcall(x, nowp);
2684 }
2685 /* Reschedule the bw_meter entry */
2686 unschedule_bw_meter(x);
2687 schedule_bw_meter(x, nowp);
2688 }
2689
2690 /* Record that a packet is received */
2691 x->bm_measured.b_packets++;
2692 x->bm_measured.b_bytes += plen;
2693
2694 /*
2695 * Test if we should restart the measuring interval
2696 */
2697 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2698 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2699 (x->bm_flags & BW_METER_UNIT_BYTES &&
2700 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2701 /* Don't restart the measuring interval */
2702 } else {
2703 /* Do restart the measuring interval */
2704 /*
2705 * XXX: note that we don't unschedule and schedule, because this
2706 * might be too much overhead per packet. Instead, when we process
2707 * all entries for a given timer hash bin, we check whether it is
2708 * really a timeout. If not, we reschedule at that time.
2709 */
2710 x->bm_start_time = *nowp;
2711 x->bm_measured.b_packets = 0;
2712 x->bm_measured.b_bytes = 0;
2713 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2714 }
2715 }
2716 }
2717
2718 /*
2719 * Prepare a bandwidth-related upcall
2720 */
2721 static void
2722 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2723 {
2724 struct timeval delta;
2725 struct bw_upcall *u;
2726
2727 /*
2728 * Compute the measured time interval
2729 */
2730 delta = *nowp;
2731 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2732
2733 /*
2734 * If there are too many pending upcalls, deliver them now
2735 */
2736 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2737 bw_upcalls_send();
2738
2739 /*
2740 * Set the bw_upcall entry
2741 */
2742 u = &bw_upcalls[bw_upcalls_n++];
2743 u->bu_src = x->bm_mfc->mfc_origin;
2744 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2745 u->bu_threshold.b_time = x->bm_threshold.b_time;
2746 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2747 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2748 u->bu_measured.b_time = delta;
2749 u->bu_measured.b_packets = x->bm_measured.b_packets;
2750 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2751 u->bu_flags = 0;
2752 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2753 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2754 if (x->bm_flags & BW_METER_UNIT_BYTES)
2755 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2756 if (x->bm_flags & BW_METER_GEQ)
2757 u->bu_flags |= BW_UPCALL_GEQ;
2758 if (x->bm_flags & BW_METER_LEQ)
2759 u->bu_flags |= BW_UPCALL_LEQ;
2760 }
2761
2762 /*
2763 * Send the pending bandwidth-related upcalls
2764 */
2765 static void
2766 bw_upcalls_send(void)
2767 {
2768 struct mbuf *m;
2769 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2770 struct sockaddr_in k_igmpsrc = {
2771 .sin_len = sizeof(k_igmpsrc),
2772 .sin_family = AF_INET,
2773 };
2774 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2775 0, /* unused2 */
2776 IGMPMSG_BW_UPCALL,/* im_msgtype */
2777 0, /* im_mbz */
2778 0, /* im_vif */
2779 0, /* unused3 */
2780 { 0 }, /* im_src */
2781 { 0 } }; /* im_dst */
2782
2783 if (bw_upcalls_n == 0)
2784 return; /* No pending upcalls */
2785
2786 bw_upcalls_n = 0;
2787
2788 /*
2789 * Allocate a new mbuf, initialize it with the header and
2790 * the payload for the pending calls.
2791 */
2792 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2793 if (m == NULL) {
2794 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2795 return;
2796 }
2797
2798 m->m_len = m->m_pkthdr.len = 0;
2799 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
2800 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
2801
2802 /*
2803 * Send the upcalls
2804 * XXX do we need to set the address in k_igmpsrc ?
2805 */
2806 mrtstat.mrts_upcalls++;
2807 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2808 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2809 ++mrtstat.mrts_upq_sockfull;
2810 }
2811 }
2812
2813 /*
2814 * Compute the timeout hash value for the bw_meter entries
2815 */
2816 #define BW_METER_TIMEHASH(bw_meter, hash) \
2817 do { \
2818 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2819 \
2820 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2821 (hash) = next_timeval.tv_sec; \
2822 if (next_timeval.tv_usec) \
2823 (hash)++; /* XXX: make sure we don't timeout early */ \
2824 (hash) %= BW_METER_BUCKETS; \
2825 } while (/*CONSTCOND*/ 0)
2826
2827 /*
2828 * Schedule a timer to process periodically bw_meter entry of type "<="
2829 * by linking the entry in the proper hash bucket.
2830 */
2831 static void
2832 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2833 {
2834 int time_hash;
2835
2836 if (!(x->bm_flags & BW_METER_LEQ))
2837 return; /* XXX: we schedule timers only for "<=" entries */
2838
2839 /*
2840 * Reset the bw_meter entry
2841 */
2842 x->bm_start_time = *nowp;
2843 x->bm_measured.b_packets = 0;
2844 x->bm_measured.b_bytes = 0;
2845 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2846
2847 /*
2848 * Compute the timeout hash value and insert the entry
2849 */
2850 BW_METER_TIMEHASH(x, time_hash);
2851 x->bm_time_next = bw_meter_timers[time_hash];
2852 bw_meter_timers[time_hash] = x;
2853 x->bm_time_hash = time_hash;
2854 }
2855
2856 /*
2857 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2858 * by removing the entry from the proper hash bucket.
2859 */
2860 static void
2861 unschedule_bw_meter(struct bw_meter *x)
2862 {
2863 int time_hash;
2864 struct bw_meter *prev, *tmp;
2865
2866 if (!(x->bm_flags & BW_METER_LEQ))
2867 return; /* XXX: we schedule timers only for "<=" entries */
2868
2869 /*
2870 * Compute the timeout hash value and delete the entry
2871 */
2872 time_hash = x->bm_time_hash;
2873 if (time_hash >= BW_METER_BUCKETS)
2874 return; /* Entry was not scheduled */
2875
2876 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2877 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2878 if (tmp == x)
2879 break;
2880
2881 if (tmp == NULL)
2882 panic("unschedule_bw_meter: bw_meter entry not found");
2883
2884 if (prev != NULL)
2885 prev->bm_time_next = x->bm_time_next;
2886 else
2887 bw_meter_timers[time_hash] = x->bm_time_next;
2888
2889 x->bm_time_next = NULL;
2890 x->bm_time_hash = BW_METER_BUCKETS;
2891 }
2892
2893 /*
2894 * Process all "<=" type of bw_meter that should be processed now,
2895 * and for each entry prepare an upcall if necessary. Each processed
2896 * entry is rescheduled again for the (periodic) processing.
2897 *
2898 * This is run periodically (once per second normally). On each round,
2899 * all the potentially matching entries are in the hash slot that we are
2900 * looking at.
2901 */
2902 static void
2903 bw_meter_process(void)
2904 {
2905 int s;
2906 static uint32_t last_tv_sec; /* last time we processed this */
2907
2908 uint32_t loops;
2909 int i;
2910 struct timeval now, process_endtime;
2911
2912 microtime(&now);
2913 if (last_tv_sec == now.tv_sec)
2914 return; /* nothing to do */
2915
2916 loops = now.tv_sec - last_tv_sec;
2917 last_tv_sec = now.tv_sec;
2918 if (loops > BW_METER_BUCKETS)
2919 loops = BW_METER_BUCKETS;
2920
2921 s = splsoftnet();
2922 /*
2923 * Process all bins of bw_meter entries from the one after the last
2924 * processed to the current one. On entry, i points to the last bucket
2925 * visited, so we need to increment i at the beginning of the loop.
2926 */
2927 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2928 struct bw_meter *x, *tmp_list;
2929
2930 if (++i >= BW_METER_BUCKETS)
2931 i = 0;
2932
2933 /* Disconnect the list of bw_meter entries from the bin */
2934 tmp_list = bw_meter_timers[i];
2935 bw_meter_timers[i] = NULL;
2936
2937 /* Process the list of bw_meter entries */
2938 while (tmp_list != NULL) {
2939 x = tmp_list;
2940 tmp_list = tmp_list->bm_time_next;
2941
2942 /* Test if the time interval is over */
2943 process_endtime = x->bm_start_time;
2944 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2945 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2946 /* Not yet: reschedule, but don't reset */
2947 int time_hash;
2948
2949 BW_METER_TIMEHASH(x, time_hash);
2950 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2951 /*
2952 * XXX: somehow the bin processing is a bit ahead of time.
2953 * Put the entry in the next bin.
2954 */
2955 if (++time_hash >= BW_METER_BUCKETS)
2956 time_hash = 0;
2957 }
2958 x->bm_time_next = bw_meter_timers[time_hash];
2959 bw_meter_timers[time_hash] = x;
2960 x->bm_time_hash = time_hash;
2961
2962 continue;
2963 }
2964
2965 /*
2966 * Test if we should deliver an upcall
2967 */
2968 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2969 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2970 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2971 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2972 /* Prepare an upcall for delivery */
2973 bw_meter_prepare_upcall(x, &now);
2974 }
2975
2976 /*
2977 * Reschedule for next processing
2978 */
2979 schedule_bw_meter(x, &now);
2980 }
2981 }
2982
2983 /* Send all upcalls that are pending delivery */
2984 bw_upcalls_send();
2985
2986 splx(s);
2987 }
2988
2989 /*
2990 * A periodic function for sending all upcalls that are pending delivery
2991 */
2992 static void
2993 expire_bw_upcalls_send(void *unused)
2994 {
2995 int s;
2996
2997 s = splsoftnet();
2998 bw_upcalls_send();
2999 splx(s);
3000
3001 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3002 expire_bw_upcalls_send, NULL);
3003 }
3004
3005 /*
3006 * A periodic function for periodic scanning of the multicast forwarding
3007 * table for processing all "<=" bw_meter entries.
3008 */
3009 static void
3010 expire_bw_meter_process(void *unused)
3011 {
3012 if (mrt_api_config & MRT_MFC_BW_UPCALL)
3013 bw_meter_process();
3014
3015 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
3016 expire_bw_meter_process, NULL);
3017 }
3018
3019 /*
3020 * End of bandwidth monitoring code
3021 */
3022
3023 #ifdef PIM
3024 /*
3025 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3026 */
3027 static int
3028 pim_register_send(struct ip *ip, struct vif *vifp,
3029 struct mbuf *m, struct mfc *rt)
3030 {
3031 struct mbuf *mb_copy, *mm;
3032
3033 if (mrtdebug & DEBUG_PIM)
3034 log(LOG_DEBUG, "pim_register_send: ");
3035
3036 mb_copy = pim_register_prepare(ip, m);
3037 if (mb_copy == NULL)
3038 return ENOBUFS;
3039
3040 /*
3041 * Send all the fragments. Note that the mbuf for each fragment
3042 * is freed by the sending machinery.
3043 */
3044 for (mm = mb_copy; mm; mm = mb_copy) {
3045 mb_copy = mm->m_nextpkt;
3046 mm->m_nextpkt = NULL;
3047 mm = m_pullup(mm, sizeof(struct ip));
3048 if (mm != NULL) {
3049 ip = mtod(mm, struct ip *);
3050 if ((mrt_api_config & MRT_MFC_RP) &&
3051 !in_nullhost(rt->mfc_rp)) {
3052 pim_register_send_rp(ip, vifp, mm, rt);
3053 } else {
3054 pim_register_send_upcall(ip, vifp, mm, rt);
3055 }
3056 }
3057 }
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * Return a copy of the data packet that is ready for PIM Register
3064 * encapsulation.
3065 * XXX: Note that in the returned copy the IP header is a valid one.
3066 */
3067 static struct mbuf *
3068 pim_register_prepare(struct ip *ip, struct mbuf *m)
3069 {
3070 struct mbuf *mb_copy = NULL;
3071 int mtu;
3072
3073 /* Take care of delayed checksums */
3074 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3075 in_delayed_cksum(m);
3076 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3077 }
3078
3079 /*
3080 * Copy the old packet & pullup its IP header into the
3081 * new mbuf so we can modify it.
3082 */
3083 mb_copy = m_copypacket(m, M_DONTWAIT);
3084 if (mb_copy == NULL)
3085 return NULL;
3086 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3087 if (mb_copy == NULL)
3088 return NULL;
3089
3090 /* take care of the TTL */
3091 ip = mtod(mb_copy, struct ip *);
3092 --ip->ip_ttl;
3093
3094 /* Compute the MTU after the PIM Register encapsulation */
3095 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3096
3097 if (ntohs(ip->ip_len) <= mtu) {
3098 /* Turn the IP header into a valid one */
3099 ip->ip_sum = 0;
3100 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3101 } else {
3102 /* Fragment the packet */
3103 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3104 /* XXX: mb_copy was freed by ip_fragment() */
3105 return NULL;
3106 }
3107 }
3108 return mb_copy;
3109 }
3110
3111 /*
3112 * Send an upcall with the data packet to the user-level process.
3113 */
3114 static int
3115 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3116 struct mbuf *mb_copy, struct mfc *rt)
3117 {
3118 struct mbuf *mb_first;
3119 int len = ntohs(ip->ip_len);
3120 struct igmpmsg *im;
3121 struct sockaddr_in k_igmpsrc = {
3122 .sin_len = sizeof(k_igmpsrc),
3123 .sin_family = AF_INET,
3124 };
3125
3126 /*
3127 * Add a new mbuf with an upcall header
3128 */
3129 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3130 if (mb_first == NULL) {
3131 m_freem(mb_copy);
3132 return ENOBUFS;
3133 }
3134 mb_first->m_data += max_linkhdr;
3135 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3136 mb_first->m_len = sizeof(struct igmpmsg);
3137 mb_first->m_next = mb_copy;
3138
3139 /* Send message to routing daemon */
3140 im = mtod(mb_first, struct igmpmsg *);
3141 im->im_msgtype = IGMPMSG_WHOLEPKT;
3142 im->im_mbz = 0;
3143 im->im_vif = vifp - viftable;
3144 im->im_src = ip->ip_src;
3145 im->im_dst = ip->ip_dst;
3146
3147 k_igmpsrc.sin_addr = ip->ip_src;
3148
3149 mrtstat.mrts_upcalls++;
3150
3151 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3152 if (mrtdebug & DEBUG_PIM)
3153 log(LOG_WARNING,
3154 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3155 ++mrtstat.mrts_upq_sockfull;
3156 return ENOBUFS;
3157 }
3158
3159 /* Keep statistics */
3160 pimstat.pims_snd_registers_msgs++;
3161 pimstat.pims_snd_registers_bytes += len;
3162
3163 return 0;
3164 }
3165
3166 /*
3167 * Encapsulate the data packet in PIM Register message and send it to the RP.
3168 */
3169 static int
3170 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3171 struct mbuf *mb_copy, struct mfc *rt)
3172 {
3173 struct mbuf *mb_first;
3174 struct ip *ip_outer;
3175 struct pim_encap_pimhdr *pimhdr;
3176 int len = ntohs(ip->ip_len);
3177 vifi_t vifi = rt->mfc_parent;
3178
3179 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3180 m_freem(mb_copy);
3181 return EADDRNOTAVAIL; /* The iif vif is invalid */
3182 }
3183
3184 /*
3185 * Add a new mbuf with the encapsulating header
3186 */
3187 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3188 if (mb_first == NULL) {
3189 m_freem(mb_copy);
3190 return ENOBUFS;
3191 }
3192 mb_first->m_data += max_linkhdr;
3193 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3194 mb_first->m_next = mb_copy;
3195
3196 mb_first->m_pkthdr.len = len + mb_first->m_len;
3197
3198 /*
3199 * Fill in the encapsulating IP and PIM header
3200 */
3201 ip_outer = mtod(mb_first, struct ip *);
3202 *ip_outer = pim_encap_iphdr;
3203 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
3204 ip_outer->ip_id = 0;
3205 else
3206 ip_outer->ip_id = ip_newid(NULL);
3207 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3208 sizeof(pim_encap_pimhdr));
3209 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3210 ip_outer->ip_dst = rt->mfc_rp;
3211 /*
3212 * Copy the inner header TOS to the outer header, and take care of the
3213 * IP_DF bit.
3214 */
3215 ip_outer->ip_tos = ip->ip_tos;
3216 if (ntohs(ip->ip_off) & IP_DF)
3217 ip_outer->ip_off |= htons(IP_DF);
3218 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
3219 + sizeof(pim_encap_iphdr));
3220 *pimhdr = pim_encap_pimhdr;
3221 /* If the iif crosses a border, set the Border-bit */
3222 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3223 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3224
3225 mb_first->m_data += sizeof(pim_encap_iphdr);
3226 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3227 mb_first->m_data -= sizeof(pim_encap_iphdr);
3228
3229 if (vifp->v_rate_limit == 0)
3230 tbf_send_packet(vifp, mb_first);
3231 else
3232 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3233
3234 /* Keep statistics */
3235 pimstat.pims_snd_registers_msgs++;
3236 pimstat.pims_snd_registers_bytes += len;
3237
3238 return 0;
3239 }
3240
3241 /*
3242 * PIM-SMv2 and PIM-DM messages processing.
3243 * Receives and verifies the PIM control messages, and passes them
3244 * up to the listening socket, using rip_input().
3245 * The only message with special processing is the PIM_REGISTER message
3246 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3247 * is passed to if_simloop().
3248 */
3249 void
3250 pim_input(struct mbuf *m, ...)
3251 {
3252 struct ip *ip = mtod(m, struct ip *);
3253 struct pim *pim;
3254 int minlen;
3255 int datalen;
3256 int ip_tos;
3257 int proto;
3258 int iphlen;
3259 va_list ap;
3260
3261 va_start(ap, m);
3262 iphlen = va_arg(ap, int);
3263 proto = va_arg(ap, int);
3264 va_end(ap);
3265
3266 datalen = ntohs(ip->ip_len) - iphlen;
3267
3268 /* Keep statistics */
3269 pimstat.pims_rcv_total_msgs++;
3270 pimstat.pims_rcv_total_bytes += datalen;
3271
3272 /*
3273 * Validate lengths
3274 */
3275 if (datalen < PIM_MINLEN) {
3276 pimstat.pims_rcv_tooshort++;
3277 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3278 datalen, (u_long)ip->ip_src.s_addr);
3279 m_freem(m);
3280 return;
3281 }
3282
3283 /*
3284 * If the packet is at least as big as a REGISTER, go agead
3285 * and grab the PIM REGISTER header size, to avoid another
3286 * possible m_pullup() later.
3287 *
3288 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3289 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3290 */
3291 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3292 /*
3293 * Get the IP and PIM headers in contiguous memory, and
3294 * possibly the PIM REGISTER header.
3295 */
3296 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3297 (m = m_pullup(m, minlen)) == NULL) {
3298 log(LOG_ERR, "pim_input: m_pullup failure\n");
3299 return;
3300 }
3301 /* m_pullup() may have given us a new mbuf so reset ip. */
3302 ip = mtod(m, struct ip *);
3303 ip_tos = ip->ip_tos;
3304
3305 /* adjust mbuf to point to the PIM header */
3306 m->m_data += iphlen;
3307 m->m_len -= iphlen;
3308 pim = mtod(m, struct pim *);
3309
3310 /*
3311 * Validate checksum. If PIM REGISTER, exclude the data packet.
3312 *
3313 * XXX: some older PIMv2 implementations don't make this distinction,
3314 * so for compatibility reason perform the checksum over part of the
3315 * message, and if error, then over the whole message.
3316 */
3317 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3318 /* do nothing, checksum okay */
3319 } else if (in_cksum(m, datalen)) {
3320 pimstat.pims_rcv_badsum++;
3321 if (mrtdebug & DEBUG_PIM)
3322 log(LOG_DEBUG, "pim_input: invalid checksum");
3323 m_freem(m);
3324 return;
3325 }
3326
3327 /* PIM version check */
3328 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3329 pimstat.pims_rcv_badversion++;
3330 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3331 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3332 m_freem(m);
3333 return;
3334 }
3335
3336 /* restore mbuf back to the outer IP */
3337 m->m_data -= iphlen;
3338 m->m_len += iphlen;
3339
3340 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3341 /*
3342 * Since this is a REGISTER, we'll make a copy of the register
3343 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3344 * routing daemon.
3345 */
3346 int s;
3347 struct sockaddr_in dst = {
3348 .sin_len = sizeof(dst),
3349 .sin_family = AF_INET,
3350 };
3351 struct mbuf *mcp;
3352 struct ip *encap_ip;
3353 u_int32_t *reghdr;
3354 struct ifnet *vifp;
3355
3356 s = splsoftnet();
3357 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3358 splx(s);
3359 if (mrtdebug & DEBUG_PIM)
3360 log(LOG_DEBUG,
3361 "pim_input: register vif not set: %d\n", reg_vif_num);
3362 m_freem(m);
3363 return;
3364 }
3365 /* XXX need refcnt? */
3366 vifp = viftable[reg_vif_num].v_ifp;
3367 splx(s);
3368
3369 /*
3370 * Validate length
3371 */
3372 if (datalen < PIM_REG_MINLEN) {
3373 pimstat.pims_rcv_tooshort++;
3374 pimstat.pims_rcv_badregisters++;
3375 log(LOG_ERR,
3376 "pim_input: register packet size too small %d from %lx\n",
3377 datalen, (u_long)ip->ip_src.s_addr);
3378 m_freem(m);
3379 return;
3380 }
3381
3382 reghdr = (u_int32_t *)(pim + 1);
3383 encap_ip = (struct ip *)(reghdr + 1);
3384
3385 if (mrtdebug & DEBUG_PIM) {
3386 log(LOG_DEBUG,
3387 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3388 (u_long)ntohl(encap_ip->ip_src.s_addr),
3389 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3390 ntohs(encap_ip->ip_len));
3391 }
3392
3393 /* verify the version number of the inner packet */
3394 if (encap_ip->ip_v != IPVERSION) {
3395 pimstat.pims_rcv_badregisters++;
3396 if (mrtdebug & DEBUG_PIM) {
3397 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3398 "of the inner packet\n", encap_ip->ip_v);
3399 }
3400 m_freem(m);
3401 return;
3402 }
3403
3404 /* verify the inner packet is destined to a mcast group */
3405 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3406 pimstat.pims_rcv_badregisters++;
3407 if (mrtdebug & DEBUG_PIM)
3408 log(LOG_DEBUG,
3409 "pim_input: inner packet of register is not "
3410 "multicast %lx\n",
3411 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3412 m_freem(m);
3413 return;
3414 }
3415
3416 /* If a NULL_REGISTER, pass it to the daemon */
3417 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3418 goto pim_input_to_daemon;
3419
3420 /*
3421 * Copy the TOS from the outer IP header to the inner IP header.
3422 */
3423 if (encap_ip->ip_tos != ip_tos) {
3424 /* Outer TOS -> inner TOS */
3425 encap_ip->ip_tos = ip_tos;
3426 /* Recompute the inner header checksum. Sigh... */
3427
3428 /* adjust mbuf to point to the inner IP header */
3429 m->m_data += (iphlen + PIM_MINLEN);
3430 m->m_len -= (iphlen + PIM_MINLEN);
3431
3432 encap_ip->ip_sum = 0;
3433 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3434
3435 /* restore mbuf to point back to the outer IP header */
3436 m->m_data -= (iphlen + PIM_MINLEN);
3437 m->m_len += (iphlen + PIM_MINLEN);
3438 }
3439
3440 /*
3441 * Decapsulate the inner IP packet and loopback to forward it
3442 * as a normal multicast packet. Also, make a copy of the
3443 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3444 * to pass to the daemon later, so it can take the appropriate
3445 * actions (e.g., send back PIM_REGISTER_STOP).
3446 * XXX: here m->m_data points to the outer IP header.
3447 */
3448 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
3449 if (mcp == NULL) {
3450 log(LOG_ERR,
3451 "pim_input: pim register: could not copy register head\n");
3452 m_freem(m);
3453 return;
3454 }
3455
3456 /* Keep statistics */
3457 /* XXX: registers_bytes include only the encap. mcast pkt */
3458 pimstat.pims_rcv_registers_msgs++;
3459 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3460
3461 /*
3462 * forward the inner ip packet; point m_data at the inner ip.
3463 */
3464 m_adj(m, iphlen + PIM_MINLEN);
3465
3466 if (mrtdebug & DEBUG_PIM) {
3467 log(LOG_DEBUG,
3468 "pim_input: forwarding decapsulated register: "
3469 "src %lx, dst %lx, vif %d\n",
3470 (u_long)ntohl(encap_ip->ip_src.s_addr),
3471 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3472 reg_vif_num);
3473 }
3474 /* NB: vifp was collected above; can it change on us? */
3475 looutput(vifp, m, (struct sockaddr *)&dst, NULL);
3476
3477 /* prepare the register head to send to the mrouting daemon */
3478 m = mcp;
3479 }
3480
3481 pim_input_to_daemon:
3482 /*
3483 * Pass the PIM message up to the daemon; if it is a Register message,
3484 * pass the 'head' only up to the daemon. This includes the
3485 * outer IP header, PIM header, PIM-Register header and the
3486 * inner IP header.
3487 * XXX: the outer IP header pkt size of a Register is not adjust to
3488 * reflect the fact that the inner multicast data is truncated.
3489 */
3490 rip_input(m, iphlen, proto);
3491
3492 return;
3493 }
3494 #endif /* PIM */
3495