Home | History | Annotate | Line # | Download | only in netinet
ip_mroute.c revision 1.130
      1 /*	$NetBSD: ip_mroute.c,v 1.130 2014/06/05 23:48:16 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.130 2014/06/05 23:48:16 rmind Exp $");
     97 
     98 #include "opt_inet.h"
     99 #include "opt_ipsec.h"
    100 #include "opt_pim.h"
    101 
    102 #ifdef PIM
    103 #define _PIM_VT 1
    104 #endif
    105 
    106 #include <sys/param.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/mbuf.h>
    110 #include <sys/socket.h>
    111 #include <sys/socketvar.h>
    112 #include <sys/protosw.h>
    113 #include <sys/errno.h>
    114 #include <sys/time.h>
    115 #include <sys/kernel.h>
    116 #include <sys/kmem.h>
    117 #include <sys/ioctl.h>
    118 #include <sys/syslog.h>
    119 
    120 #include <net/if.h>
    121 #include <net/route.h>
    122 #include <net/raw_cb.h>
    123 
    124 #include <netinet/in.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/ip_var.h>
    129 #include <netinet/in_pcb.h>
    130 #include <netinet/udp.h>
    131 #include <netinet/igmp.h>
    132 #include <netinet/igmp_var.h>
    133 #include <netinet/ip_mroute.h>
    134 #ifdef PIM
    135 #include <netinet/pim.h>
    136 #include <netinet/pim_var.h>
    137 #endif
    138 #include <netinet/ip_encap.h>
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #define IP_MULTICASTOPTS 0
    146 #define	M_PULLUP(m, len)						 \
    147 	do {								 \
    148 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    149 			(m) = m_pullup((m), (len));			 \
    150 	} while (/*CONSTCOND*/ 0)
    151 
    152 /*
    153  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    154  * except for netstat or debugging purposes.
    155  */
    156 struct socket  *ip_mrouter  = NULL;
    157 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    158 
    159 #define NO_RTE_FOUND 	0x1
    160 #define RTE_FOUND	0x2
    161 
    162 #define	MFCHASH(a, g)							\
    163 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    164 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    165 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    166 u_long	mfchash;
    167 
    168 u_char		nexpire[MFCTBLSIZ];
    169 struct vif	viftable[MAXVIFS];
    170 struct mrtstat	mrtstat;
    171 u_int		mrtdebug = 0;	  /* debug level 	*/
    172 #define		DEBUG_MFC	0x02
    173 #define		DEBUG_FORWARD	0x04
    174 #define		DEBUG_EXPIRE	0x08
    175 #define		DEBUG_XMIT	0x10
    176 #define		DEBUG_PIM	0x20
    177 
    178 #define		VIFI_INVALID	((vifi_t) -1)
    179 
    180 u_int       	tbfdebug = 0;     /* tbf debug level 	*/
    181 #ifdef RSVP_ISI
    182 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
    183 extern struct socket *ip_rsvpd;
    184 extern int rsvp_on;
    185 #endif /* RSVP_ISI */
    186 
    187 /* vif attachment using sys/netinet/ip_encap.c */
    188 static void vif_input(struct mbuf *, ...);
    189 static int vif_encapcheck(struct mbuf *, int, int, void *);
    190 
    191 static const struct protosw vif_protosw = {
    192 	.pr_type	= SOCK_RAW,
    193 	.pr_domain	= &inetdomain,
    194 	.pr_protocol	= IPPROTO_IPV4,
    195 	.pr_flags	= PR_ATOMIC|PR_ADDR,
    196 	.pr_input	= vif_input,
    197 	.pr_output	= rip_output,
    198 	.pr_ctloutput	= rip_ctloutput,
    199 	.pr_usrreqs	= &rip_usrreqs,
    200 };
    201 
    202 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    203 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    204 
    205 /*
    206  * Define the token bucket filter structures
    207  */
    208 
    209 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    210 
    211 static int get_sg_cnt(struct sioc_sg_req *);
    212 static int get_vif_cnt(struct sioc_vif_req *);
    213 static int ip_mrouter_init(struct socket *, int);
    214 static int set_assert(int);
    215 static int add_vif(struct vifctl *);
    216 static int del_vif(vifi_t *);
    217 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
    218 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
    219 static void expire_mfc(struct mfc *);
    220 static int add_mfc(struct sockopt *);
    221 #ifdef UPCALL_TIMING
    222 static void collate(struct timeval *);
    223 #endif
    224 static int del_mfc(struct sockopt *);
    225 static int set_api_config(struct sockopt *); /* chose API capabilities */
    226 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
    227 static void expire_upcalls(void *);
    228 #ifdef RSVP_ISI
    229 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
    230 #else
    231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
    232 #endif
    233 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
    234 static void encap_send(struct ip *, struct vif *, struct mbuf *);
    235 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
    236 static void tbf_queue(struct vif *, struct mbuf *);
    237 static void tbf_process_q(struct vif *);
    238 static void tbf_reprocess_q(void *);
    239 static int tbf_dq_sel(struct vif *, struct ip *);
    240 static void tbf_send_packet(struct vif *, struct mbuf *);
    241 static void tbf_update_tokens(struct vif *);
    242 static int priority(struct vif *, struct ip *);
    243 
    244 /*
    245  * Bandwidth monitoring
    246  */
    247 static void free_bw_list(struct bw_meter *);
    248 static int add_bw_upcall(struct bw_upcall *);
    249 static int del_bw_upcall(struct bw_upcall *);
    250 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
    251 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
    252 static void bw_upcalls_send(void);
    253 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
    254 static void unschedule_bw_meter(struct bw_meter *);
    255 static void bw_meter_process(void);
    256 static void expire_bw_upcalls_send(void *);
    257 static void expire_bw_meter_process(void *);
    258 
    259 #ifdef PIM
    260 static int pim_register_send(struct ip *, struct vif *,
    261 		struct mbuf *, struct mfc *);
    262 static int pim_register_send_rp(struct ip *, struct vif *,
    263 		struct mbuf *, struct mfc *);
    264 static int pim_register_send_upcall(struct ip *, struct vif *,
    265 		struct mbuf *, struct mfc *);
    266 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
    267 #endif
    268 
    269 /*
    270  * 'Interfaces' associated with decapsulator (so we can tell
    271  * packets that went through it from ones that get reflected
    272  * by a broken gateway).  These interfaces are never linked into
    273  * the system ifnet list & no routes point to them.  I.e., packets
    274  * can't be sent this way.  They only exist as a placeholder for
    275  * multicast source verification.
    276  */
    277 #if 0
    278 struct ifnet multicast_decap_if[MAXVIFS];
    279 #endif
    280 
    281 #define	ENCAP_TTL	64
    282 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
    283 
    284 /* prototype IP hdr for encapsulated packets */
    285 struct ip multicast_encap_iphdr = {
    286 	.ip_hl = sizeof(struct ip) >> 2,
    287 	.ip_v = IPVERSION,
    288 	.ip_len = sizeof(struct ip),
    289 	.ip_ttl = ENCAP_TTL,
    290 	.ip_p = ENCAP_PROTO,
    291 };
    292 
    293 /*
    294  * Bandwidth meter variables and constants
    295  */
    296 
    297 /*
    298  * Pending timeouts are stored in a hash table, the key being the
    299  * expiration time. Periodically, the entries are analysed and processed.
    300  */
    301 #define BW_METER_BUCKETS	1024
    302 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    303 struct callout bw_meter_ch;
    304 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    305 
    306 /*
    307  * Pending upcalls are stored in a vector which is flushed when
    308  * full, or periodically
    309  */
    310 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    311 static u_int	bw_upcalls_n; /* # of pending upcalls */
    312 struct callout	bw_upcalls_ch;
    313 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    314 
    315 #ifdef PIM
    316 struct pimstat pimstat;
    317 
    318 /*
    319  * Note: the PIM Register encapsulation adds the following in front of a
    320  * data packet:
    321  *
    322  * struct pim_encap_hdr {
    323  *    struct ip ip;
    324  *    struct pim_encap_pimhdr  pim;
    325  * }
    326  *
    327  */
    328 
    329 struct pim_encap_pimhdr {
    330 	struct pim pim;
    331 	uint32_t   flags;
    332 };
    333 
    334 static struct ip pim_encap_iphdr = {
    335 	.ip_v = IPVERSION,
    336 	.ip_hl = sizeof(struct ip) >> 2,
    337 	.ip_len = sizeof(struct ip),
    338 	.ip_ttl = ENCAP_TTL,
    339 	.ip_p = IPPROTO_PIM,
    340 };
    341 
    342 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    343     {
    344 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    345 	0,			/* reserved */
    346 	0,			/* checksum */
    347     },
    348     0				/* flags */
    349 };
    350 
    351 static struct ifnet multicast_register_if;
    352 static vifi_t reg_vif_num = VIFI_INVALID;
    353 #endif /* PIM */
    354 
    355 
    356 /*
    357  * Private variables.
    358  */
    359 static vifi_t	   numvifs = 0;
    360 
    361 static struct callout expire_upcalls_ch;
    362 
    363 /*
    364  * whether or not special PIM assert processing is enabled.
    365  */
    366 static int pim_assert;
    367 /*
    368  * Rate limit for assert notification messages, in usec
    369  */
    370 #define ASSERT_MSG_TIME		3000000
    371 
    372 /*
    373  * Kernel multicast routing API capabilities and setup.
    374  * If more API capabilities are added to the kernel, they should be
    375  * recorded in `mrt_api_support'.
    376  */
    377 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    378 					  MRT_MFC_FLAGS_BORDER_VIF |
    379 					  MRT_MFC_RP |
    380 					  MRT_MFC_BW_UPCALL);
    381 static u_int32_t mrt_api_config = 0;
    382 
    383 /*
    384  * Find a route for a given origin IP address and Multicast group address
    385  * Type of service parameter to be added in the future!!!
    386  * Statistics are updated by the caller if needed
    387  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    388  */
    389 static struct mfc *
    390 mfc_find(struct in_addr *o, struct in_addr *g)
    391 {
    392 	struct mfc *rt;
    393 
    394 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    395 		if (in_hosteq(rt->mfc_origin, *o) &&
    396 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    397 		    (rt->mfc_stall == NULL))
    398 			break;
    399 	}
    400 
    401 	return (rt);
    402 }
    403 
    404 /*
    405  * Macros to compute elapsed time efficiently
    406  * Borrowed from Van Jacobson's scheduling code
    407  */
    408 #define TV_DELTA(a, b, delta) do {					\
    409 	int xxs;							\
    410 	delta = (a).tv_usec - (b).tv_usec;				\
    411 	xxs = (a).tv_sec - (b).tv_sec;					\
    412 	switch (xxs) {							\
    413 	case 2:								\
    414 		delta += 1000000;					\
    415 		/* fall through */					\
    416 	case 1:								\
    417 		delta += 1000000;					\
    418 		/* fall through */					\
    419 	case 0:								\
    420 		break;							\
    421 	default:							\
    422 		delta += (1000000 * xxs);				\
    423 		break;							\
    424 	}								\
    425 } while (/*CONSTCOND*/ 0)
    426 
    427 #ifdef UPCALL_TIMING
    428 u_int32_t upcall_data[51];
    429 #endif /* UPCALL_TIMING */
    430 
    431 /*
    432  * Handle MRT setsockopt commands to modify the multicast routing tables.
    433  */
    434 int
    435 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
    436 {
    437 	int error;
    438 	int optval;
    439 	struct vifctl vifc;
    440 	vifi_t vifi;
    441 	struct bw_upcall bwuc;
    442 
    443 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
    444 		error = ENOPROTOOPT;
    445 	else {
    446 		switch (sopt->sopt_name) {
    447 		case MRT_INIT:
    448 			error = sockopt_getint(sopt, &optval);
    449 			if (error)
    450 				break;
    451 
    452 			error = ip_mrouter_init(so, optval);
    453 			break;
    454 		case MRT_DONE:
    455 			error = ip_mrouter_done();
    456 			break;
    457 		case MRT_ADD_VIF:
    458 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
    459 			if (error)
    460 				break;
    461 			error = add_vif(&vifc);
    462 			break;
    463 		case MRT_DEL_VIF:
    464 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
    465 			if (error)
    466 				break;
    467 			error = del_vif(&vifi);
    468 			break;
    469 		case MRT_ADD_MFC:
    470 			error = add_mfc(sopt);
    471 			break;
    472 		case MRT_DEL_MFC:
    473 			error = del_mfc(sopt);
    474 			break;
    475 		case MRT_ASSERT:
    476 			error = sockopt_getint(sopt, &optval);
    477 			if (error)
    478 				break;
    479 			error = set_assert(optval);
    480 			break;
    481 		case MRT_API_CONFIG:
    482 			error = set_api_config(sopt);
    483 			break;
    484 		case MRT_ADD_BW_UPCALL:
    485 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    486 			if (error)
    487 				break;
    488 			error = add_bw_upcall(&bwuc);
    489 			break;
    490 		case MRT_DEL_BW_UPCALL:
    491 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    492 			if (error)
    493 				break;
    494 			error = del_bw_upcall(&bwuc);
    495 			break;
    496 		default:
    497 			error = ENOPROTOOPT;
    498 			break;
    499 		}
    500 	}
    501 	return (error);
    502 }
    503 
    504 /*
    505  * Handle MRT getsockopt commands
    506  */
    507 int
    508 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
    509 {
    510 	int error;
    511 
    512 	if (so != ip_mrouter)
    513 		error = ENOPROTOOPT;
    514 	else {
    515 		switch (sopt->sopt_name) {
    516 		case MRT_VERSION:
    517 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
    518 			break;
    519 		case MRT_ASSERT:
    520 			error = sockopt_setint(sopt, pim_assert);
    521 			break;
    522 		case MRT_API_SUPPORT:
    523 			error = sockopt_set(sopt, &mrt_api_support,
    524 			    sizeof(mrt_api_support));
    525 			break;
    526 		case MRT_API_CONFIG:
    527 			error = sockopt_set(sopt, &mrt_api_config,
    528 			    sizeof(mrt_api_config));
    529 			break;
    530 		default:
    531 			error = ENOPROTOOPT;
    532 			break;
    533 		}
    534 	}
    535 	return (error);
    536 }
    537 
    538 /*
    539  * Handle ioctl commands to obtain information from the cache
    540  */
    541 int
    542 mrt_ioctl(struct socket *so, u_long cmd, void *data)
    543 {
    544 	int error;
    545 
    546 	if (so != ip_mrouter)
    547 		error = EINVAL;
    548 	else
    549 		switch (cmd) {
    550 		case SIOCGETVIFCNT:
    551 			error = get_vif_cnt((struct sioc_vif_req *)data);
    552 			break;
    553 		case SIOCGETSGCNT:
    554 			error = get_sg_cnt((struct sioc_sg_req *)data);
    555 			break;
    556 		default:
    557 			error = EINVAL;
    558 			break;
    559 		}
    560 
    561 	return (error);
    562 }
    563 
    564 /*
    565  * returns the packet, byte, rpf-failure count for the source group provided
    566  */
    567 static int
    568 get_sg_cnt(struct sioc_sg_req *req)
    569 {
    570 	int s;
    571 	struct mfc *rt;
    572 
    573 	s = splsoftnet();
    574 	rt = mfc_find(&req->src, &req->grp);
    575 	if (rt == NULL) {
    576 		splx(s);
    577 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    578 		return (EADDRNOTAVAIL);
    579 	}
    580 	req->pktcnt = rt->mfc_pkt_cnt;
    581 	req->bytecnt = rt->mfc_byte_cnt;
    582 	req->wrong_if = rt->mfc_wrong_if;
    583 	splx(s);
    584 
    585 	return (0);
    586 }
    587 
    588 /*
    589  * returns the input and output packet and byte counts on the vif provided
    590  */
    591 static int
    592 get_vif_cnt(struct sioc_vif_req *req)
    593 {
    594 	vifi_t vifi = req->vifi;
    595 
    596 	if (vifi >= numvifs)
    597 		return (EINVAL);
    598 
    599 	req->icount = viftable[vifi].v_pkt_in;
    600 	req->ocount = viftable[vifi].v_pkt_out;
    601 	req->ibytes = viftable[vifi].v_bytes_in;
    602 	req->obytes = viftable[vifi].v_bytes_out;
    603 
    604 	return (0);
    605 }
    606 
    607 /*
    608  * Enable multicast routing
    609  */
    610 static int
    611 ip_mrouter_init(struct socket *so, int v)
    612 {
    613 	if (mrtdebug)
    614 		log(LOG_DEBUG,
    615 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    616 		    so->so_type, so->so_proto->pr_protocol);
    617 
    618 	if (so->so_type != SOCK_RAW ||
    619 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    620 		return (EOPNOTSUPP);
    621 
    622 	if (v != 1)
    623 		return (EINVAL);
    624 
    625 	if (ip_mrouter != NULL)
    626 		return (EADDRINUSE);
    627 
    628 	ip_mrouter = so;
    629 
    630 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
    631 	memset((void *)nexpire, 0, sizeof(nexpire));
    632 
    633 	pim_assert = 0;
    634 
    635 	callout_init(&expire_upcalls_ch, 0);
    636 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    637 		      expire_upcalls, NULL);
    638 
    639 	callout_init(&bw_upcalls_ch, 0);
    640 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    641 		      expire_bw_upcalls_send, NULL);
    642 
    643 	callout_init(&bw_meter_ch, 0);
    644 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    645 		      expire_bw_meter_process, NULL);
    646 
    647 	if (mrtdebug)
    648 		log(LOG_DEBUG, "ip_mrouter_init\n");
    649 
    650 	return (0);
    651 }
    652 
    653 /*
    654  * Disable multicast routing
    655  */
    656 int
    657 ip_mrouter_done(void)
    658 {
    659 	vifi_t vifi;
    660 	struct vif *vifp;
    661 	int i;
    662 	int s;
    663 
    664 	s = splsoftnet();
    665 
    666 	/* Clear out all the vifs currently in use. */
    667 	for (vifi = 0; vifi < numvifs; vifi++) {
    668 		vifp = &viftable[vifi];
    669 		if (!in_nullhost(vifp->v_lcl_addr))
    670 			reset_vif(vifp);
    671 	}
    672 
    673 	numvifs = 0;
    674 	pim_assert = 0;
    675 	mrt_api_config = 0;
    676 
    677 	callout_stop(&expire_upcalls_ch);
    678 	callout_stop(&bw_upcalls_ch);
    679 	callout_stop(&bw_meter_ch);
    680 
    681 	/*
    682 	 * Free all multicast forwarding cache entries.
    683 	 */
    684 	for (i = 0; i < MFCTBLSIZ; i++) {
    685 		struct mfc *rt, *nrt;
    686 
    687 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    688 			nrt = LIST_NEXT(rt, mfc_hash);
    689 
    690 			expire_mfc(rt);
    691 		}
    692 	}
    693 
    694 	memset((void *)nexpire, 0, sizeof(nexpire));
    695 	hashdone(mfchashtbl, HASH_LIST, mfchash);
    696 	mfchashtbl = NULL;
    697 
    698 	bw_upcalls_n = 0;
    699 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
    700 
    701 	/* Reset de-encapsulation cache. */
    702 
    703 	ip_mrouter = NULL;
    704 
    705 	splx(s);
    706 
    707 	if (mrtdebug)
    708 		log(LOG_DEBUG, "ip_mrouter_done\n");
    709 
    710 	return (0);
    711 }
    712 
    713 void
    714 ip_mrouter_detach(struct ifnet *ifp)
    715 {
    716 	int vifi, i;
    717 	struct vif *vifp;
    718 	struct mfc *rt;
    719 	struct rtdetq *rte;
    720 
    721 	/* XXX not sure about side effect to userland routing daemon */
    722 	for (vifi = 0; vifi < numvifs; vifi++) {
    723 		vifp = &viftable[vifi];
    724 		if (vifp->v_ifp == ifp)
    725 			reset_vif(vifp);
    726 	}
    727 	for (i = 0; i < MFCTBLSIZ; i++) {
    728 		if (nexpire[i] == 0)
    729 			continue;
    730 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    731 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    732 				if (rte->ifp == ifp)
    733 					rte->ifp = NULL;
    734 			}
    735 		}
    736 	}
    737 }
    738 
    739 /*
    740  * Set PIM assert processing global
    741  */
    742 static int
    743 set_assert(int i)
    744 {
    745 	pim_assert = !!i;
    746 	return (0);
    747 }
    748 
    749 /*
    750  * Configure API capabilities
    751  */
    752 static int
    753 set_api_config(struct sockopt *sopt)
    754 {
    755 	u_int32_t apival;
    756 	int i, error;
    757 
    758 	/*
    759 	 * We can set the API capabilities only if it is the first operation
    760 	 * after MRT_INIT. I.e.:
    761 	 *  - there are no vifs installed
    762 	 *  - pim_assert is not enabled
    763 	 *  - the MFC table is empty
    764 	 */
    765 	error = sockopt_get(sopt, &apival, sizeof(apival));
    766 	if (error)
    767 		return (error);
    768 	if (numvifs > 0)
    769 		return (EPERM);
    770 	if (pim_assert)
    771 		return (EPERM);
    772 	for (i = 0; i < MFCTBLSIZ; i++) {
    773 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
    774 			return (EPERM);
    775 	}
    776 
    777 	mrt_api_config = apival & mrt_api_support;
    778 	return (0);
    779 }
    780 
    781 /*
    782  * Add a vif to the vif table
    783  */
    784 static int
    785 add_vif(struct vifctl *vifcp)
    786 {
    787 	struct vif *vifp;
    788 	struct ifaddr *ifa;
    789 	struct ifnet *ifp;
    790 	int error, s;
    791 	struct sockaddr_in sin;
    792 
    793 	if (vifcp->vifc_vifi >= MAXVIFS)
    794 		return (EINVAL);
    795 	if (in_nullhost(vifcp->vifc_lcl_addr))
    796 		return (EADDRNOTAVAIL);
    797 
    798 	vifp = &viftable[vifcp->vifc_vifi];
    799 	if (!in_nullhost(vifp->v_lcl_addr))
    800 		return (EADDRINUSE);
    801 
    802 	/* Find the interface with an address in AF_INET family. */
    803 #ifdef PIM
    804 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    805 		/*
    806 		 * XXX: Because VIFF_REGISTER does not really need a valid
    807 		 * local interface (e.g. it could be 127.0.0.2), we don't
    808 		 * check its address.
    809 		 */
    810 	    ifp = NULL;
    811 	} else
    812 #endif
    813 	{
    814 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
    815 		ifa = ifa_ifwithaddr(sintosa(&sin));
    816 		if (ifa == NULL)
    817 			return (EADDRNOTAVAIL);
    818 		ifp = ifa->ifa_ifp;
    819 	}
    820 
    821 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    822 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    823 			log(LOG_ERR, "source routed tunnels not supported\n");
    824 			return (EOPNOTSUPP);
    825 		}
    826 
    827 		/* attach this vif to decapsulator dispatch table */
    828 		/*
    829 		 * XXX Use addresses in registration so that matching
    830 		 * can be done with radix tree in decapsulator.  But,
    831 		 * we need to check inner header for multicast, so
    832 		 * this requires both radix tree lookup and then a
    833 		 * function to check, and this is not supported yet.
    834 		 */
    835 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    836 		    vif_encapcheck, &vif_protosw, vifp);
    837 		if (!vifp->v_encap_cookie)
    838 			return (EINVAL);
    839 
    840 		/* Create a fake encapsulation interface. */
    841 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
    842 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    843 			 "mdecap%d", vifcp->vifc_vifi);
    844 
    845 		/* Prepare cached route entry. */
    846 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    847 #ifdef PIM
    848 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    849 		ifp = &multicast_register_if;
    850 		if (mrtdebug)
    851 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    852 			    (void *)ifp);
    853 		if (reg_vif_num == VIFI_INVALID) {
    854 			memset(ifp, 0, sizeof(*ifp));
    855 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    856 				 "register_vif");
    857 			ifp->if_flags = IFF_LOOPBACK;
    858 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    859 			reg_vif_num = vifcp->vifc_vifi;
    860 		}
    861 #endif
    862 	} else {
    863 		/* Make sure the interface supports multicast. */
    864 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    865 			return (EOPNOTSUPP);
    866 
    867 		/* Enable promiscuous reception of all IP multicasts. */
    868 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    869 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
    870 		if (error)
    871 			return (error);
    872 	}
    873 
    874 	s = splsoftnet();
    875 
    876 	/* Define parameters for the tbf structure. */
    877 	vifp->tbf_q = NULL;
    878 	vifp->tbf_t = &vifp->tbf_q;
    879 	microtime(&vifp->tbf_last_pkt_t);
    880 	vifp->tbf_n_tok = 0;
    881 	vifp->tbf_q_len = 0;
    882 	vifp->tbf_max_q_len = MAXQSIZE;
    883 
    884 	vifp->v_flags = vifcp->vifc_flags;
    885 	vifp->v_threshold = vifcp->vifc_threshold;
    886 	/* scaling up here allows division by 1024 in critical code */
    887 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
    888 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
    889 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
    890 	vifp->v_ifp = ifp;
    891 	/* Initialize per vif pkt counters. */
    892 	vifp->v_pkt_in = 0;
    893 	vifp->v_pkt_out = 0;
    894 	vifp->v_bytes_in = 0;
    895 	vifp->v_bytes_out = 0;
    896 
    897 	callout_init(&vifp->v_repq_ch, 0);
    898 
    899 #ifdef RSVP_ISI
    900 	vifp->v_rsvp_on = 0;
    901 	vifp->v_rsvpd = NULL;
    902 #endif /* RSVP_ISI */
    903 
    904 	splx(s);
    905 
    906 	/* Adjust numvifs up if the vifi is higher than numvifs. */
    907 	if (numvifs <= vifcp->vifc_vifi)
    908 		numvifs = vifcp->vifc_vifi + 1;
    909 
    910 	if (mrtdebug)
    911 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
    912 		    vifcp->vifc_vifi,
    913 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
    914 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
    915 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
    916 		    vifcp->vifc_threshold,
    917 		    vifcp->vifc_rate_limit);
    918 
    919 	return (0);
    920 }
    921 
    922 void
    923 reset_vif(struct vif *vifp)
    924 {
    925 	struct mbuf *m, *n;
    926 	struct ifnet *ifp;
    927 	struct sockaddr_in sin;
    928 
    929 	callout_stop(&vifp->v_repq_ch);
    930 
    931 	/* detach this vif from decapsulator dispatch table */
    932 	encap_detach(vifp->v_encap_cookie);
    933 	vifp->v_encap_cookie = NULL;
    934 
    935 	/*
    936 	 * Free packets queued at the interface
    937 	 */
    938 	for (m = vifp->tbf_q; m != NULL; m = n) {
    939 		n = m->m_nextpkt;
    940 		m_freem(m);
    941 	}
    942 
    943 	if (vifp->v_flags & VIFF_TUNNEL)
    944 		free(vifp->v_ifp, M_MRTABLE);
    945 	else if (vifp->v_flags & VIFF_REGISTER) {
    946 #ifdef PIM
    947 		reg_vif_num = VIFI_INVALID;
    948 #endif
    949 	} else {
    950 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    951 		ifp = vifp->v_ifp;
    952 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
    953 	}
    954 	memset((void *)vifp, 0, sizeof(*vifp));
    955 }
    956 
    957 /*
    958  * Delete a vif from the vif table
    959  */
    960 static int
    961 del_vif(vifi_t *vifip)
    962 {
    963 	struct vif *vifp;
    964 	vifi_t vifi;
    965 	int s;
    966 
    967 	if (*vifip >= numvifs)
    968 		return (EINVAL);
    969 
    970 	vifp = &viftable[*vifip];
    971 	if (in_nullhost(vifp->v_lcl_addr))
    972 		return (EADDRNOTAVAIL);
    973 
    974 	s = splsoftnet();
    975 
    976 	reset_vif(vifp);
    977 
    978 	/* Adjust numvifs down */
    979 	for (vifi = numvifs; vifi > 0; vifi--)
    980 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
    981 			break;
    982 	numvifs = vifi;
    983 
    984 	splx(s);
    985 
    986 	if (mrtdebug)
    987 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
    988 
    989 	return (0);
    990 }
    991 
    992 /*
    993  * update an mfc entry without resetting counters and S,G addresses.
    994  */
    995 static void
    996 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    997 {
    998 	int i;
    999 
   1000 	rt->mfc_parent = mfccp->mfcc_parent;
   1001 	for (i = 0; i < numvifs; i++) {
   1002 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
   1003 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
   1004 			MRT_MFC_FLAGS_ALL;
   1005 	}
   1006 	/* set the RP address */
   1007 	if (mrt_api_config & MRT_MFC_RP)
   1008 		rt->mfc_rp = mfccp->mfcc_rp;
   1009 	else
   1010 		rt->mfc_rp = zeroin_addr;
   1011 }
   1012 
   1013 /*
   1014  * fully initialize an mfc entry from the parameter.
   1015  */
   1016 static void
   1017 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
   1018 {
   1019 	rt->mfc_origin     = mfccp->mfcc_origin;
   1020 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
   1021 
   1022 	update_mfc_params(rt, mfccp);
   1023 
   1024 	/* initialize pkt counters per src-grp */
   1025 	rt->mfc_pkt_cnt    = 0;
   1026 	rt->mfc_byte_cnt   = 0;
   1027 	rt->mfc_wrong_if   = 0;
   1028 	timerclear(&rt->mfc_last_assert);
   1029 }
   1030 
   1031 static void
   1032 expire_mfc(struct mfc *rt)
   1033 {
   1034 	struct rtdetq *rte, *nrte;
   1035 
   1036 	free_bw_list(rt->mfc_bw_meter);
   1037 
   1038 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1039 		nrte = rte->next;
   1040 		m_freem(rte->m);
   1041 		free(rte, M_MRTABLE);
   1042 	}
   1043 
   1044 	LIST_REMOVE(rt, mfc_hash);
   1045 	free(rt, M_MRTABLE);
   1046 }
   1047 
   1048 /*
   1049  * Add an mfc entry
   1050  */
   1051 static int
   1052 add_mfc(struct sockopt *sopt)
   1053 {
   1054 	struct mfcctl2 mfcctl2;
   1055 	struct mfcctl2 *mfccp;
   1056 	struct mfc *rt;
   1057 	u_int32_t hash = 0;
   1058 	struct rtdetq *rte, *nrte;
   1059 	u_short nstl;
   1060 	int s;
   1061 	int error;
   1062 
   1063 	/*
   1064 	 * select data size depending on API version.
   1065 	 */
   1066 	mfccp = &mfcctl2;
   1067 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1068 
   1069 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1070 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1071 	else
   1072 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1073 
   1074 	if (error)
   1075 		return (error);
   1076 
   1077 	s = splsoftnet();
   1078 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1079 
   1080 	/* If an entry already exists, just update the fields */
   1081 	if (rt) {
   1082 		if (mrtdebug & DEBUG_MFC)
   1083 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1084 			    ntohl(mfccp->mfcc_origin.s_addr),
   1085 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1086 			    mfccp->mfcc_parent);
   1087 
   1088 		update_mfc_params(rt, mfccp);
   1089 
   1090 		splx(s);
   1091 		return (0);
   1092 	}
   1093 
   1094 	/*
   1095 	 * Find the entry for which the upcall was made and update
   1096 	 */
   1097 	nstl = 0;
   1098 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1099 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1100 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1101 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1102 		    rt->mfc_stall != NULL) {
   1103 			if (nstl++)
   1104 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1105 				    "multiple kernel entries",
   1106 				    ntohl(mfccp->mfcc_origin.s_addr),
   1107 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1108 				    mfccp->mfcc_parent, rt->mfc_stall);
   1109 
   1110 			if (mrtdebug & DEBUG_MFC)
   1111 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1112 				    ntohl(mfccp->mfcc_origin.s_addr),
   1113 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1114 				    mfccp->mfcc_parent, rt->mfc_stall);
   1115 
   1116 			rte = rt->mfc_stall;
   1117 			init_mfc_params(rt, mfccp);
   1118 			rt->mfc_stall = NULL;
   1119 
   1120 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1121 			nexpire[hash]--;
   1122 
   1123 			/* free packets Qed at the end of this entry */
   1124 			for (; rte != NULL; rte = nrte) {
   1125 				nrte = rte->next;
   1126 				if (rte->ifp) {
   1127 #ifdef RSVP_ISI
   1128 					ip_mdq(rte->m, rte->ifp, rt, -1);
   1129 #else
   1130 					ip_mdq(rte->m, rte->ifp, rt);
   1131 #endif /* RSVP_ISI */
   1132 				}
   1133 				m_freem(rte->m);
   1134 #ifdef UPCALL_TIMING
   1135 				collate(&rte->t);
   1136 #endif /* UPCALL_TIMING */
   1137 				free(rte, M_MRTABLE);
   1138 			}
   1139 		}
   1140 	}
   1141 
   1142 	/*
   1143 	 * It is possible that an entry is being inserted without an upcall
   1144 	 */
   1145 	if (nstl == 0) {
   1146 		/*
   1147 		 * No mfc; make a new one
   1148 		 */
   1149 		if (mrtdebug & DEBUG_MFC)
   1150 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1151 			    ntohl(mfccp->mfcc_origin.s_addr),
   1152 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1153 			    mfccp->mfcc_parent);
   1154 
   1155 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1156 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1157 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1158 				init_mfc_params(rt, mfccp);
   1159 				if (rt->mfc_expire)
   1160 					nexpire[hash]--;
   1161 				rt->mfc_expire = 0;
   1162 				break; /* XXX */
   1163 			}
   1164 		}
   1165 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1166 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1167 						  M_NOWAIT);
   1168 			if (rt == NULL) {
   1169 				splx(s);
   1170 				return (ENOBUFS);
   1171 			}
   1172 
   1173 			init_mfc_params(rt, mfccp);
   1174 			rt->mfc_expire	= 0;
   1175 			rt->mfc_stall	= NULL;
   1176 			rt->mfc_bw_meter = NULL;
   1177 
   1178 			/* insert new entry at head of hash chain */
   1179 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1180 		}
   1181 	}
   1182 
   1183 	splx(s);
   1184 	return (0);
   1185 }
   1186 
   1187 #ifdef UPCALL_TIMING
   1188 /*
   1189  * collect delay statistics on the upcalls
   1190  */
   1191 static void
   1192 collate(struct timeval *t)
   1193 {
   1194 	u_int32_t d;
   1195 	struct timeval tp;
   1196 	u_int32_t delta;
   1197 
   1198 	microtime(&tp);
   1199 
   1200 	if (timercmp(t, &tp, <)) {
   1201 		TV_DELTA(tp, *t, delta);
   1202 
   1203 		d = delta >> 10;
   1204 		if (d > 50)
   1205 			d = 50;
   1206 
   1207 		++upcall_data[d];
   1208 	}
   1209 }
   1210 #endif /* UPCALL_TIMING */
   1211 
   1212 /*
   1213  * Delete an mfc entry
   1214  */
   1215 static int
   1216 del_mfc(struct sockopt *sopt)
   1217 {
   1218 	struct mfcctl2 mfcctl2;
   1219 	struct mfcctl2 *mfccp;
   1220 	struct mfc *rt;
   1221 	int s;
   1222 	int error;
   1223 
   1224 	/*
   1225 	 * XXX: for deleting MFC entries the information in entries
   1226 	 * of size "struct mfcctl" is sufficient.
   1227 	 */
   1228 
   1229 	mfccp = &mfcctl2;
   1230 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1231 
   1232 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1233 	if (error) {
   1234 		/* Try with the size of mfcctl2. */
   1235 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1236 		if (error)
   1237 			return (error);
   1238 	}
   1239 
   1240 	if (mrtdebug & DEBUG_MFC)
   1241 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1242 		    ntohl(mfccp->mfcc_origin.s_addr),
   1243 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1244 
   1245 	s = splsoftnet();
   1246 
   1247 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1248 	if (rt == NULL) {
   1249 		splx(s);
   1250 		return (EADDRNOTAVAIL);
   1251 	}
   1252 
   1253 	/*
   1254 	 * free the bw_meter entries
   1255 	 */
   1256 	free_bw_list(rt->mfc_bw_meter);
   1257 	rt->mfc_bw_meter = NULL;
   1258 
   1259 	LIST_REMOVE(rt, mfc_hash);
   1260 	free(rt, M_MRTABLE);
   1261 
   1262 	splx(s);
   1263 	return (0);
   1264 }
   1265 
   1266 static int
   1267 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
   1268 {
   1269 	if (s) {
   1270 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
   1271 			sorwakeup(s);
   1272 			return (0);
   1273 		}
   1274 	}
   1275 	m_freem(mm);
   1276 	return (-1);
   1277 }
   1278 
   1279 /*
   1280  * IP multicast forwarding function. This function assumes that the packet
   1281  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1282  * pointed to by "ifp", and the packet is to be relayed to other networks
   1283  * that have members of the packet's destination IP multicast group.
   1284  *
   1285  * The packet is returned unscathed to the caller, unless it is
   1286  * erroneous, in which case a non-zero return value tells the caller to
   1287  * discard it.
   1288  */
   1289 
   1290 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1291 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1292 
   1293 int
   1294 #ifdef RSVP_ISI
   1295 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
   1296 #else
   1297 ip_mforward(struct mbuf *m, struct ifnet *ifp)
   1298 #endif /* RSVP_ISI */
   1299 {
   1300 	struct ip *ip = mtod(m, struct ip *);
   1301 	struct mfc *rt;
   1302 	static int srctun = 0;
   1303 	struct mbuf *mm;
   1304 	struct sockaddr_in sin;
   1305 	int s;
   1306 	vifi_t vifi;
   1307 
   1308 	if (mrtdebug & DEBUG_FORWARD)
   1309 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1310 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1311 
   1312 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1313 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1314 		/*
   1315 		 * Packet arrived via a physical interface or
   1316 		 * an encapsulated tunnel or a register_vif.
   1317 		 */
   1318 	} else {
   1319 		/*
   1320 		 * Packet arrived through a source-route tunnel.
   1321 		 * Source-route tunnels are no longer supported.
   1322 		 */
   1323 		if ((srctun++ % 1000) == 0)
   1324 			log(LOG_ERR,
   1325 			    "ip_mforward: received source-routed packet from %x\n",
   1326 			    ntohl(ip->ip_src.s_addr));
   1327 
   1328 		return (1);
   1329 	}
   1330 
   1331 	/*
   1332 	 * Clear any in-bound checksum flags for this packet.
   1333 	 */
   1334 	m->m_pkthdr.csum_flags = 0;
   1335 
   1336 #ifdef RSVP_ISI
   1337 	if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
   1338 		if (ip->ip_ttl < MAXTTL)
   1339 			ip->ip_ttl++;	/* compensate for -1 in *_send routines */
   1340 		if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
   1341 			struct vif *vifp = viftable + vifi;
   1342 			printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
   1343 			    ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
   1344 			    (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
   1345 			    vifp->v_ifp->if_xname);
   1346 		}
   1347 		return (ip_mdq(m, ifp, NULL, vifi));
   1348 	}
   1349 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
   1350 		printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
   1351 		    ntohl(ip->ip_src), ntohl(ip->ip_dst));
   1352 	}
   1353 #endif /* RSVP_ISI */
   1354 
   1355 	/*
   1356 	 * Don't forward a packet with time-to-live of zero or one,
   1357 	 * or a packet destined to a local-only group.
   1358 	 */
   1359 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1360 		return (0);
   1361 
   1362 	/*
   1363 	 * Determine forwarding vifs from the forwarding cache table
   1364 	 */
   1365 	s = splsoftnet();
   1366 	++mrtstat.mrts_mfc_lookups;
   1367 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1368 
   1369 	/* Entry exists, so forward if necessary */
   1370 	if (rt != NULL) {
   1371 		splx(s);
   1372 #ifdef RSVP_ISI
   1373 		return (ip_mdq(m, ifp, rt, -1));
   1374 #else
   1375 		return (ip_mdq(m, ifp, rt));
   1376 #endif /* RSVP_ISI */
   1377 	} else {
   1378 		/*
   1379 		 * If we don't have a route for packet's origin,
   1380 		 * Make a copy of the packet & send message to routing daemon
   1381 		 */
   1382 
   1383 		struct mbuf *mb0;
   1384 		struct rtdetq *rte;
   1385 		u_int32_t hash;
   1386 		int hlen = ip->ip_hl << 2;
   1387 #ifdef UPCALL_TIMING
   1388 		struct timeval tp;
   1389 
   1390 		microtime(&tp);
   1391 #endif /* UPCALL_TIMING */
   1392 
   1393 		++mrtstat.mrts_mfc_misses;
   1394 
   1395 		mrtstat.mrts_no_route++;
   1396 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1397 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1398 			    ntohl(ip->ip_src.s_addr),
   1399 			    ntohl(ip->ip_dst.s_addr));
   1400 
   1401 		/*
   1402 		 * Allocate mbufs early so that we don't do extra work if we are
   1403 		 * just going to fail anyway.  Make sure to pullup the header so
   1404 		 * that other people can't step on it.
   1405 		 */
   1406 		rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
   1407 					      M_NOWAIT);
   1408 		if (rte == NULL) {
   1409 			splx(s);
   1410 			return (ENOBUFS);
   1411 		}
   1412 		mb0 = m_copypacket(m, M_DONTWAIT);
   1413 		M_PULLUP(mb0, hlen);
   1414 		if (mb0 == NULL) {
   1415 			free(rte, M_MRTABLE);
   1416 			splx(s);
   1417 			return (ENOBUFS);
   1418 		}
   1419 
   1420 		/* is there an upcall waiting for this flow? */
   1421 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1422 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1423 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1424 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1425 			    rt->mfc_stall != NULL)
   1426 				break;
   1427 		}
   1428 
   1429 		if (rt == NULL) {
   1430 			int i;
   1431 			struct igmpmsg *im;
   1432 
   1433 			/*
   1434 			 * Locate the vifi for the incoming interface for
   1435 			 * this packet.
   1436 			 * If none found, drop packet.
   1437 			 */
   1438 			for (vifi = 0; vifi < numvifs &&
   1439 				 viftable[vifi].v_ifp != ifp; vifi++)
   1440 				;
   1441 			if (vifi >= numvifs) /* vif not found, drop packet */
   1442 				goto non_fatal;
   1443 
   1444 			/* no upcall, so make a new entry */
   1445 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1446 						  M_NOWAIT);
   1447 			if (rt == NULL)
   1448 				goto fail;
   1449 
   1450 			/*
   1451 			 * Make a copy of the header to send to the user level
   1452 			 * process
   1453 			 */
   1454 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
   1455 			M_PULLUP(mm, hlen);
   1456 			if (mm == NULL)
   1457 				goto fail1;
   1458 
   1459 			/*
   1460 			 * Send message to routing daemon to install
   1461 			 * a route into the kernel table
   1462 			 */
   1463 
   1464 			im = mtod(mm, struct igmpmsg *);
   1465 			im->im_msgtype = IGMPMSG_NOCACHE;
   1466 			im->im_mbz = 0;
   1467 			im->im_vif = vifi;
   1468 
   1469 			mrtstat.mrts_upcalls++;
   1470 
   1471 			sockaddr_in_init(&sin, &ip->ip_src, 0);
   1472 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1473 				log(LOG_WARNING,
   1474 				    "ip_mforward: ip_mrouter socket queue full\n");
   1475 				++mrtstat.mrts_upq_sockfull;
   1476 			fail1:
   1477 				free(rt, M_MRTABLE);
   1478 			fail:
   1479 				free(rte, M_MRTABLE);
   1480 				m_freem(mb0);
   1481 				splx(s);
   1482 				return (ENOBUFS);
   1483 			}
   1484 
   1485 			/* insert new entry at head of hash chain */
   1486 			rt->mfc_origin = ip->ip_src;
   1487 			rt->mfc_mcastgrp = ip->ip_dst;
   1488 			rt->mfc_pkt_cnt = 0;
   1489 			rt->mfc_byte_cnt = 0;
   1490 			rt->mfc_wrong_if = 0;
   1491 			rt->mfc_expire = UPCALL_EXPIRE;
   1492 			nexpire[hash]++;
   1493 			for (i = 0; i < numvifs; i++) {
   1494 				rt->mfc_ttls[i] = 0;
   1495 				rt->mfc_flags[i] = 0;
   1496 			}
   1497 			rt->mfc_parent = -1;
   1498 
   1499 			/* clear the RP address */
   1500 			rt->mfc_rp = zeroin_addr;
   1501 
   1502 			rt->mfc_bw_meter = NULL;
   1503 
   1504 			/* link into table */
   1505 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1506 			/* Add this entry to the end of the queue */
   1507 			rt->mfc_stall = rte;
   1508 		} else {
   1509 			/* determine if q has overflowed */
   1510 			struct rtdetq **p;
   1511 			int npkts = 0;
   1512 
   1513 			/*
   1514 			 * XXX ouch! we need to append to the list, but we
   1515 			 * only have a pointer to the front, so we have to
   1516 			 * scan the entire list every time.
   1517 			 */
   1518 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1519 				if (++npkts > MAX_UPQ) {
   1520 					mrtstat.mrts_upq_ovflw++;
   1521 				non_fatal:
   1522 					free(rte, M_MRTABLE);
   1523 					m_freem(mb0);
   1524 					splx(s);
   1525 					return (0);
   1526 				}
   1527 
   1528 			/* Add this entry to the end of the queue */
   1529 			*p = rte;
   1530 		}
   1531 
   1532 		rte->next = NULL;
   1533 		rte->m = mb0;
   1534 		rte->ifp = ifp;
   1535 #ifdef UPCALL_TIMING
   1536 		rte->t = tp;
   1537 #endif /* UPCALL_TIMING */
   1538 
   1539 		splx(s);
   1540 
   1541 		return (0);
   1542 	}
   1543 }
   1544 
   1545 
   1546 /*ARGSUSED*/
   1547 static void
   1548 expire_upcalls(void *v)
   1549 {
   1550 	int i;
   1551 	int s;
   1552 
   1553 	s = splsoftnet();
   1554 
   1555 	for (i = 0; i < MFCTBLSIZ; i++) {
   1556 		struct mfc *rt, *nrt;
   1557 
   1558 		if (nexpire[i] == 0)
   1559 			continue;
   1560 
   1561 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1562 			nrt = LIST_NEXT(rt, mfc_hash);
   1563 
   1564 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1565 				continue;
   1566 			nexpire[i]--;
   1567 
   1568 			/*
   1569 			 * free the bw_meter entries
   1570 			 */
   1571 			while (rt->mfc_bw_meter != NULL) {
   1572 				struct bw_meter *x = rt->mfc_bw_meter;
   1573 
   1574 				rt->mfc_bw_meter = x->bm_mfc_next;
   1575 				kmem_free(x, sizeof(*x));
   1576 			}
   1577 
   1578 			++mrtstat.mrts_cache_cleanups;
   1579 			if (mrtdebug & DEBUG_EXPIRE)
   1580 				log(LOG_DEBUG,
   1581 				    "expire_upcalls: expiring (%x %x)\n",
   1582 				    ntohl(rt->mfc_origin.s_addr),
   1583 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1584 
   1585 			expire_mfc(rt);
   1586 		}
   1587 	}
   1588 
   1589 	splx(s);
   1590 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1591 	    expire_upcalls, NULL);
   1592 }
   1593 
   1594 /*
   1595  * Packet forwarding routine once entry in the cache is made
   1596  */
   1597 static int
   1598 #ifdef RSVP_ISI
   1599 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
   1600 #else
   1601 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
   1602 #endif /* RSVP_ISI */
   1603 {
   1604 	struct ip  *ip = mtod(m, struct ip *);
   1605 	vifi_t vifi;
   1606 	struct vif *vifp;
   1607 	struct sockaddr_in sin;
   1608 	int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1609 
   1610 /*
   1611  * Macro to send packet on vif.  Since RSVP packets don't get counted on
   1612  * input, they shouldn't get counted on output, so statistics keeping is
   1613  * separate.
   1614  */
   1615 #define MC_SEND(ip, vifp, m) do {					\
   1616 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1617 		encap_send((ip), (vifp), (m));				\
   1618 	else								\
   1619 		phyint_send((ip), (vifp), (m));				\
   1620 } while (/*CONSTCOND*/ 0)
   1621 
   1622 #ifdef RSVP_ISI
   1623 	/*
   1624 	 * If xmt_vif is not -1, send on only the requested vif.
   1625 	 *
   1626 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
   1627 	 */
   1628 	if (xmt_vif < numvifs) {
   1629 #ifdef PIM
   1630 		if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
   1631 			pim_register_send(ip, viftable + xmt_vif, m, rt);
   1632 		else
   1633 #endif
   1634 		MC_SEND(ip, viftable + xmt_vif, m);
   1635 		return (1);
   1636 	}
   1637 #endif /* RSVP_ISI */
   1638 
   1639 	/*
   1640 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1641 	 */
   1642 	vifi = rt->mfc_parent;
   1643 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1644 		/* came in the wrong interface */
   1645 		if (mrtdebug & DEBUG_FORWARD)
   1646 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1647 			    ifp, vifi,
   1648 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1649 		++mrtstat.mrts_wrong_if;
   1650 		++rt->mfc_wrong_if;
   1651 		/*
   1652 		 * If we are doing PIM assert processing, send a message
   1653 		 * to the routing daemon.
   1654 		 *
   1655 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1656 		 * can complete the SPT switch, regardless of the type
   1657 		 * of the iif (broadcast media, GRE tunnel, etc).
   1658 		 */
   1659 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1660 			struct timeval now;
   1661 			u_int32_t delta;
   1662 
   1663 #ifdef PIM
   1664 			if (ifp == &multicast_register_if)
   1665 				pimstat.pims_rcv_registers_wrongiif++;
   1666 #endif
   1667 
   1668 			/* Get vifi for the incoming packet */
   1669 			for (vifi = 0;
   1670 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1671 			     vifi++)
   1672 			    ;
   1673 			if (vifi >= numvifs) {
   1674 				/* The iif is not found: ignore the packet. */
   1675 				return (0);
   1676 			}
   1677 
   1678 			if (rt->mfc_flags[vifi] &
   1679 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1680 				/* WRONGVIF disabled: ignore the packet */
   1681 				return (0);
   1682 			}
   1683 
   1684 			microtime(&now);
   1685 
   1686 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1687 
   1688 			if (delta > ASSERT_MSG_TIME) {
   1689 				struct igmpmsg *im;
   1690 				int hlen = ip->ip_hl << 2;
   1691 				struct mbuf *mm =
   1692 				    m_copym(m, 0, hlen, M_DONTWAIT);
   1693 
   1694 				M_PULLUP(mm, hlen);
   1695 				if (mm == NULL)
   1696 					return (ENOBUFS);
   1697 
   1698 				rt->mfc_last_assert = now;
   1699 
   1700 				im = mtod(mm, struct igmpmsg *);
   1701 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1702 				im->im_mbz	= 0;
   1703 				im->im_vif	= vifi;
   1704 
   1705 				mrtstat.mrts_upcalls++;
   1706 
   1707 				sockaddr_in_init(&sin, &im->im_src, 0);
   1708 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1709 					log(LOG_WARNING,
   1710 					    "ip_mforward: ip_mrouter socket queue full\n");
   1711 					++mrtstat.mrts_upq_sockfull;
   1712 					return (ENOBUFS);
   1713 				}
   1714 			}
   1715 		}
   1716 		return (0);
   1717 	}
   1718 
   1719 	/* If I sourced this packet, it counts as output, else it was input. */
   1720 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1721 		viftable[vifi].v_pkt_out++;
   1722 		viftable[vifi].v_bytes_out += plen;
   1723 	} else {
   1724 		viftable[vifi].v_pkt_in++;
   1725 		viftable[vifi].v_bytes_in += plen;
   1726 	}
   1727 	rt->mfc_pkt_cnt++;
   1728 	rt->mfc_byte_cnt += plen;
   1729 
   1730 	/*
   1731 	 * For each vif, decide if a copy of the packet should be forwarded.
   1732 	 * Forward if:
   1733 	 *		- the ttl exceeds the vif's threshold
   1734 	 *		- there are group members downstream on interface
   1735 	 */
   1736 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
   1737 		if ((rt->mfc_ttls[vifi] > 0) &&
   1738 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1739 			vifp->v_pkt_out++;
   1740 			vifp->v_bytes_out += plen;
   1741 #ifdef PIM
   1742 			if (vifp->v_flags & VIFF_REGISTER)
   1743 				pim_register_send(ip, vifp, m, rt);
   1744 			else
   1745 #endif
   1746 			MC_SEND(ip, vifp, m);
   1747 		}
   1748 
   1749 	/*
   1750 	 * Perform upcall-related bw measuring.
   1751 	 */
   1752 	if (rt->mfc_bw_meter != NULL) {
   1753 		struct bw_meter *x;
   1754 		struct timeval now;
   1755 
   1756 		microtime(&now);
   1757 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1758 			bw_meter_receive_packet(x, plen, &now);
   1759 	}
   1760 
   1761 	return (0);
   1762 }
   1763 
   1764 #ifdef RSVP_ISI
   1765 /*
   1766  * check if a vif number is legal/ok. This is used by ip_output.
   1767  */
   1768 int
   1769 legal_vif_num(int vif)
   1770 {
   1771 	if (vif >= 0 && vif < numvifs)
   1772 		return (1);
   1773 	else
   1774 		return (0);
   1775 }
   1776 #endif /* RSVP_ISI */
   1777 
   1778 static void
   1779 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1780 {
   1781 	struct mbuf *mb_copy;
   1782 	int hlen = ip->ip_hl << 2;
   1783 
   1784 	/*
   1785 	 * Make a new reference to the packet; make sure that
   1786 	 * the IP header is actually copied, not just referenced,
   1787 	 * so that ip_output() only scribbles on the copy.
   1788 	 */
   1789 	mb_copy = m_copypacket(m, M_DONTWAIT);
   1790 	M_PULLUP(mb_copy, hlen);
   1791 	if (mb_copy == NULL)
   1792 		return;
   1793 
   1794 	if (vifp->v_rate_limit <= 0)
   1795 		tbf_send_packet(vifp, mb_copy);
   1796 	else
   1797 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1798 		    ntohs(ip->ip_len));
   1799 }
   1800 
   1801 static void
   1802 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1803 {
   1804 	struct mbuf *mb_copy;
   1805 	struct ip *ip_copy;
   1806 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1807 
   1808 	/* Take care of delayed checksums */
   1809 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1810 		in_delayed_cksum(m);
   1811 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1812 	}
   1813 
   1814 	/*
   1815 	 * copy the old packet & pullup it's IP header into the
   1816 	 * new mbuf so we can modify it.  Try to fill the new
   1817 	 * mbuf since if we don't the ethernet driver will.
   1818 	 */
   1819 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1820 	if (mb_copy == NULL)
   1821 		return;
   1822 	mb_copy->m_data += max_linkhdr;
   1823 	mb_copy->m_pkthdr.len = len;
   1824 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1825 
   1826 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
   1827 		m_freem(mb_copy);
   1828 		return;
   1829 	}
   1830 	i = MHLEN - max_linkhdr;
   1831 	if (i > len)
   1832 		i = len;
   1833 	mb_copy = m_pullup(mb_copy, i);
   1834 	if (mb_copy == NULL)
   1835 		return;
   1836 
   1837 	/*
   1838 	 * fill in the encapsulating IP header.
   1839 	 */
   1840 	ip_copy = mtod(mb_copy, struct ip *);
   1841 	*ip_copy = multicast_encap_iphdr;
   1842 	if (len < IP_MINFRAGSIZE)
   1843 		ip_copy->ip_id = 0;
   1844 	else
   1845 		ip_copy->ip_id = ip_newid(NULL);
   1846 	ip_copy->ip_len = htons(len);
   1847 	ip_copy->ip_src = vifp->v_lcl_addr;
   1848 	ip_copy->ip_dst = vifp->v_rmt_addr;
   1849 
   1850 	/*
   1851 	 * turn the encapsulated IP header back into a valid one.
   1852 	 */
   1853 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
   1854 	--ip->ip_ttl;
   1855 	ip->ip_sum = 0;
   1856 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   1857 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   1858 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   1859 
   1860 	if (vifp->v_rate_limit <= 0)
   1861 		tbf_send_packet(vifp, mb_copy);
   1862 	else
   1863 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   1864 }
   1865 
   1866 /*
   1867  * De-encapsulate a packet and feed it back through ip input.
   1868  */
   1869 static void
   1870 vif_input(struct mbuf *m, ...)
   1871 {
   1872 	int off, proto;
   1873 	va_list ap;
   1874 	struct vif *vifp;
   1875 
   1876 	va_start(ap, m);
   1877 	off = va_arg(ap, int);
   1878 	proto = va_arg(ap, int);
   1879 	va_end(ap);
   1880 
   1881 	vifp = (struct vif *)encap_getarg(m);
   1882 	if (!vifp || proto != ENCAP_PROTO) {
   1883 		m_freem(m);
   1884 		mrtstat.mrts_bad_tunnel++;
   1885 		return;
   1886 	}
   1887 
   1888 	m_adj(m, off);
   1889 	m->m_pkthdr.rcvif = vifp->v_ifp;
   1890 
   1891 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
   1892 		m_freem(m);
   1893 	}
   1894 }
   1895 
   1896 /*
   1897  * Check if the packet should be received on the vif denoted by arg.
   1898  * (The encap selection code will call this once per vif since each is
   1899  * registered separately.)
   1900  */
   1901 static int
   1902 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
   1903 {
   1904 	struct vif *vifp;
   1905 	struct ip ip;
   1906 
   1907 #ifdef DIAGNOSTIC
   1908 	if (!arg || proto != IPPROTO_IPV4)
   1909 		panic("unexpected arg in vif_encapcheck");
   1910 #endif
   1911 
   1912 	/*
   1913 	 * Accept the packet only if the inner heaader is multicast
   1914 	 * and the outer header matches a tunnel-mode vif.  Order
   1915 	 * checks in the hope that common non-matching packets will be
   1916 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
   1917 	 * parallel tunnel (e.g. gif(4)) is unlikely.
   1918 	 */
   1919 
   1920 	/* Obtain the outer IP header and the vif pointer. */
   1921 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
   1922 	vifp = (struct vif *)arg;
   1923 
   1924 	/*
   1925 	 * The outer source must match the vif's remote peer address.
   1926 	 * For a multicast router with several tunnels, this is the
   1927 	 * only check that will fail on packets in other tunnels,
   1928 	 * assuming the local address is the same.
   1929 	 */
   1930 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   1931 		return 0;
   1932 
   1933 	/* The outer destination must match the vif's local address. */
   1934 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
   1935 		return 0;
   1936 
   1937 	/* The vif must be of tunnel type. */
   1938 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
   1939 		return 0;
   1940 
   1941 	/* Check that the inner destination is multicast. */
   1942 	m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
   1943 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   1944 		return 0;
   1945 
   1946 	/*
   1947 	 * We have checked that both the outer src and dst addresses
   1948 	 * match the vif, and that the inner destination is multicast
   1949 	 * (224/5).  By claiming more than 64, we intend to
   1950 	 * preferentially take packets that also match a parallel
   1951 	 * gif(4).
   1952 	 */
   1953 	return 32 + 32 + 5;
   1954 }
   1955 
   1956 /*
   1957  * Token bucket filter module
   1958  */
   1959 static void
   1960 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
   1961 {
   1962 
   1963 	if (len > MAX_BKT_SIZE) {
   1964 		/* drop if packet is too large */
   1965 		mrtstat.mrts_pkt2large++;
   1966 		m_freem(m);
   1967 		return;
   1968 	}
   1969 
   1970 	tbf_update_tokens(vifp);
   1971 
   1972 	/*
   1973 	 * If there are enough tokens, and the queue is empty, send this packet
   1974 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   1975 	 */
   1976 	if (vifp->tbf_q_len == 0) {
   1977 		if (len <= vifp->tbf_n_tok) {
   1978 			vifp->tbf_n_tok -= len;
   1979 			tbf_send_packet(vifp, m);
   1980 		} else {
   1981 			/* queue packet and timeout till later */
   1982 			tbf_queue(vifp, m);
   1983 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1984 			    tbf_reprocess_q, vifp);
   1985 		}
   1986 	} else {
   1987 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   1988 		    !tbf_dq_sel(vifp, ip)) {
   1989 			/* queue full, and couldn't make room */
   1990 			mrtstat.mrts_q_overflow++;
   1991 			m_freem(m);
   1992 		} else {
   1993 			/* queue length low enough, or made room */
   1994 			tbf_queue(vifp, m);
   1995 			tbf_process_q(vifp);
   1996 		}
   1997 	}
   1998 }
   1999 
   2000 /*
   2001  * adds a packet to the queue at the interface
   2002  */
   2003 static void
   2004 tbf_queue(struct vif *vifp, struct mbuf *m)
   2005 {
   2006 	int s = splsoftnet();
   2007 
   2008 	/* insert at tail */
   2009 	*vifp->tbf_t = m;
   2010 	vifp->tbf_t = &m->m_nextpkt;
   2011 	vifp->tbf_q_len++;
   2012 
   2013 	splx(s);
   2014 }
   2015 
   2016 
   2017 /*
   2018  * processes the queue at the interface
   2019  */
   2020 static void
   2021 tbf_process_q(struct vif *vifp)
   2022 {
   2023 	struct mbuf *m;
   2024 	int len;
   2025 	int s = splsoftnet();
   2026 
   2027 	/*
   2028 	 * Loop through the queue at the interface and send as many packets
   2029 	 * as possible.
   2030 	 */
   2031 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   2032 		len = ntohs(mtod(m, struct ip *)->ip_len);
   2033 
   2034 		/* determine if the packet can be sent */
   2035 		if (len <= vifp->tbf_n_tok) {
   2036 			/* if so,
   2037 			 * reduce no of tokens, dequeue the packet,
   2038 			 * send the packet.
   2039 			 */
   2040 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   2041 				vifp->tbf_t = &vifp->tbf_q;
   2042 			--vifp->tbf_q_len;
   2043 
   2044 			m->m_nextpkt = NULL;
   2045 			vifp->tbf_n_tok -= len;
   2046 			tbf_send_packet(vifp, m);
   2047 		} else
   2048 			break;
   2049 	}
   2050 	splx(s);
   2051 }
   2052 
   2053 static void
   2054 tbf_reprocess_q(void *arg)
   2055 {
   2056 	struct vif *vifp = arg;
   2057 
   2058 	if (ip_mrouter == NULL)
   2059 		return;
   2060 
   2061 	tbf_update_tokens(vifp);
   2062 	tbf_process_q(vifp);
   2063 
   2064 	if (vifp->tbf_q_len != 0)
   2065 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   2066 		    tbf_reprocess_q, vifp);
   2067 }
   2068 
   2069 /* function that will selectively discard a member of the queue
   2070  * based on the precedence value and the priority
   2071  */
   2072 static int
   2073 tbf_dq_sel(struct vif *vifp, struct ip *ip)
   2074 {
   2075 	u_int p;
   2076 	struct mbuf **mp, *m;
   2077 	int s = splsoftnet();
   2078 
   2079 	p = priority(vifp, ip);
   2080 
   2081 	for (mp = &vifp->tbf_q, m = *mp;
   2082 	    m != NULL;
   2083 	    mp = &m->m_nextpkt, m = *mp) {
   2084 		if (p > priority(vifp, mtod(m, struct ip *))) {
   2085 			if ((*mp = m->m_nextpkt) == NULL)
   2086 				vifp->tbf_t = mp;
   2087 			--vifp->tbf_q_len;
   2088 
   2089 			m_freem(m);
   2090 			mrtstat.mrts_drop_sel++;
   2091 			splx(s);
   2092 			return (1);
   2093 		}
   2094 	}
   2095 	splx(s);
   2096 	return (0);
   2097 }
   2098 
   2099 static void
   2100 tbf_send_packet(struct vif *vifp, struct mbuf *m)
   2101 {
   2102 	int error;
   2103 	int s = splsoftnet();
   2104 
   2105 	if (vifp->v_flags & VIFF_TUNNEL) {
   2106 		/* If tunnel options */
   2107 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
   2108 	} else {
   2109 		/* if physical interface option, extract the options and then send */
   2110 		struct ip_moptions imo;
   2111 
   2112 		imo.imo_multicast_ifp = vifp->v_ifp;
   2113 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2114 		imo.imo_multicast_loop = 1;
   2115 #ifdef RSVP_ISI
   2116 		imo.imo_multicast_vif = -1;
   2117 #endif
   2118 
   2119 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
   2120 		    &imo, NULL);
   2121 
   2122 		if (mrtdebug & DEBUG_XMIT)
   2123 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2124 			    (long)(vifp - viftable), error);
   2125 	}
   2126 	splx(s);
   2127 }
   2128 
   2129 /* determine the current time and then
   2130  * the elapsed time (between the last time and time now)
   2131  * in milliseconds & update the no. of tokens in the bucket
   2132  */
   2133 static void
   2134 tbf_update_tokens(struct vif *vifp)
   2135 {
   2136 	struct timeval tp;
   2137 	u_int32_t tm;
   2138 	int s = splsoftnet();
   2139 
   2140 	microtime(&tp);
   2141 
   2142 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2143 
   2144 	/*
   2145 	 * This formula is actually
   2146 	 * "time in seconds" * "bytes/second".
   2147 	 *
   2148 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2149 	 *
   2150 	 * The (1000/1024) was introduced in add_vif to optimize
   2151 	 * this divide into a shift.
   2152 	 */
   2153 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2154 	vifp->tbf_last_pkt_t = tp;
   2155 
   2156 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2157 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2158 
   2159 	splx(s);
   2160 }
   2161 
   2162 static int
   2163 priority(struct vif *vifp, struct ip *ip)
   2164 {
   2165 	int prio = 50;	/* the lowest priority -- default case */
   2166 
   2167 	/* temporary hack; may add general packet classifier some day */
   2168 
   2169 	/*
   2170 	 * The UDP port space is divided up into four priority ranges:
   2171 	 * [0, 16384)     : unclassified - lowest priority
   2172 	 * [16384, 32768) : audio - highest priority
   2173 	 * [32768, 49152) : whiteboard - medium priority
   2174 	 * [49152, 65536) : video - low priority
   2175 	 */
   2176 	if (ip->ip_p == IPPROTO_UDP) {
   2177 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2178 
   2179 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2180 		case 0x4000:
   2181 			prio = 70;
   2182 			break;
   2183 		case 0x8000:
   2184 			prio = 60;
   2185 			break;
   2186 		case 0xc000:
   2187 			prio = 55;
   2188 			break;
   2189 		}
   2190 
   2191 		if (tbfdebug > 1)
   2192 			log(LOG_DEBUG, "port %x prio %d\n",
   2193 			    ntohs(udp->uh_dport), prio);
   2194 	}
   2195 
   2196 	return (prio);
   2197 }
   2198 
   2199 /*
   2200  * End of token bucket filter modifications
   2201  */
   2202 #ifdef RSVP_ISI
   2203 int
   2204 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
   2205 {
   2206 	int vifi, s;
   2207 
   2208 	if (rsvpdebug)
   2209 		printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
   2210 		    so->so_type, so->so_proto->pr_protocol);
   2211 
   2212 	if (so->so_type != SOCK_RAW ||
   2213 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2214 		return (EOPNOTSUPP);
   2215 
   2216 	/* Check mbuf. */
   2217 	if (m == NULL || m->m_len != sizeof(int)) {
   2218 		return (EINVAL);
   2219 	}
   2220 	vifi = *(mtod(m, int *));
   2221 
   2222 	if (rsvpdebug)
   2223 		printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
   2224 		       vifi, rsvp_on);
   2225 
   2226 	s = splsoftnet();
   2227 
   2228 	/* Check vif. */
   2229 	if (!legal_vif_num(vifi)) {
   2230 		splx(s);
   2231 		return (EADDRNOTAVAIL);
   2232 	}
   2233 
   2234 	/* Check if socket is available. */
   2235 	if (viftable[vifi].v_rsvpd != NULL) {
   2236 		splx(s);
   2237 		return (EADDRINUSE);
   2238 	}
   2239 
   2240 	viftable[vifi].v_rsvpd = so;
   2241 	/*
   2242 	 * This may seem silly, but we need to be sure we don't over-increment
   2243 	 * the RSVP counter, in case something slips up.
   2244 	 */
   2245 	if (!viftable[vifi].v_rsvp_on) {
   2246 		viftable[vifi].v_rsvp_on = 1;
   2247 		rsvp_on++;
   2248 	}
   2249 
   2250 	splx(s);
   2251 	return (0);
   2252 }
   2253 
   2254 int
   2255 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
   2256 {
   2257 	int vifi, s;
   2258 
   2259 	if (rsvpdebug)
   2260 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
   2261 		    so->so_type, so->so_proto->pr_protocol);
   2262 
   2263 	if (so->so_type != SOCK_RAW ||
   2264 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2265 		return (EOPNOTSUPP);
   2266 
   2267 	/* Check mbuf. */
   2268 	if (m == NULL || m->m_len != sizeof(int)) {
   2269 		return (EINVAL);
   2270 	}
   2271 	vifi = *(mtod(m, int *));
   2272 
   2273 	s = splsoftnet();
   2274 
   2275 	/* Check vif. */
   2276 	if (!legal_vif_num(vifi)) {
   2277 		splx(s);
   2278 		return (EADDRNOTAVAIL);
   2279 	}
   2280 
   2281 	if (rsvpdebug)
   2282 		printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
   2283 		    viftable[vifi].v_rsvpd, so);
   2284 
   2285 	viftable[vifi].v_rsvpd = NULL;
   2286 	/*
   2287 	 * This may seem silly, but we need to be sure we don't over-decrement
   2288 	 * the RSVP counter, in case something slips up.
   2289 	 */
   2290 	if (viftable[vifi].v_rsvp_on) {
   2291 		viftable[vifi].v_rsvp_on = 0;
   2292 		rsvp_on--;
   2293 	}
   2294 
   2295 	splx(s);
   2296 	return (0);
   2297 }
   2298 
   2299 void
   2300 ip_rsvp_force_done(struct socket *so)
   2301 {
   2302 	int vifi, s;
   2303 
   2304 	/* Don't bother if it is not the right type of socket. */
   2305 	if (so->so_type != SOCK_RAW ||
   2306 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2307 		return;
   2308 
   2309 	s = splsoftnet();
   2310 
   2311 	/*
   2312 	 * The socket may be attached to more than one vif...this
   2313 	 * is perfectly legal.
   2314 	 */
   2315 	for (vifi = 0; vifi < numvifs; vifi++) {
   2316 		if (viftable[vifi].v_rsvpd == so) {
   2317 			viftable[vifi].v_rsvpd = NULL;
   2318 			/*
   2319 			 * This may seem silly, but we need to be sure we don't
   2320 			 * over-decrement the RSVP counter, in case something
   2321 			 * slips up.
   2322 			 */
   2323 			if (viftable[vifi].v_rsvp_on) {
   2324 				viftable[vifi].v_rsvp_on = 0;
   2325 				rsvp_on--;
   2326 			}
   2327 		}
   2328 	}
   2329 
   2330 	splx(s);
   2331 	return;
   2332 }
   2333 
   2334 void
   2335 rsvp_input(struct mbuf *m, struct ifnet *ifp)
   2336 {
   2337 	int vifi, s;
   2338 	struct ip *ip = mtod(m, struct ip *);
   2339 	struct sockaddr_in rsvp_src;
   2340 
   2341 	if (rsvpdebug)
   2342 		printf("rsvp_input: rsvp_on %d\n", rsvp_on);
   2343 
   2344 	/*
   2345 	 * Can still get packets with rsvp_on = 0 if there is a local member
   2346 	 * of the group to which the RSVP packet is addressed.  But in this
   2347 	 * case we want to throw the packet away.
   2348 	 */
   2349 	if (!rsvp_on) {
   2350 		m_freem(m);
   2351 		return;
   2352 	}
   2353 
   2354 	/*
   2355 	 * If the old-style non-vif-associated socket is set, then use
   2356 	 * it and ignore the new ones.
   2357 	 */
   2358 	if (ip_rsvpd != NULL) {
   2359 		if (rsvpdebug)
   2360 			printf("rsvp_input: "
   2361 			    "Sending packet up old-style socket\n");
   2362 		rip_input(m);	/*XXX*/
   2363 		return;
   2364 	}
   2365 
   2366 	s = splsoftnet();
   2367 
   2368 	if (rsvpdebug)
   2369 		printf("rsvp_input: check vifs\n");
   2370 
   2371 	/* Find which vif the packet arrived on. */
   2372 	for (vifi = 0; vifi < numvifs; vifi++) {
   2373 		if (viftable[vifi].v_ifp == ifp)
   2374 			break;
   2375 	}
   2376 
   2377 	if (vifi == numvifs) {
   2378 		/* Can't find vif packet arrived on. Drop packet. */
   2379 		if (rsvpdebug)
   2380 			printf("rsvp_input: "
   2381 			    "Can't find vif for packet...dropping it.\n");
   2382 		m_freem(m);
   2383 		splx(s);
   2384 		return;
   2385 	}
   2386 
   2387 	if (rsvpdebug)
   2388 		printf("rsvp_input: check socket\n");
   2389 
   2390 	if (viftable[vifi].v_rsvpd == NULL) {
   2391 		/*
   2392 		 * drop packet, since there is no specific socket for this
   2393 		 * interface
   2394 		 */
   2395 		if (rsvpdebug)
   2396 			printf("rsvp_input: No socket defined for vif %d\n",
   2397 			    vifi);
   2398 		m_freem(m);
   2399 		splx(s);
   2400 		return;
   2401 	}
   2402 
   2403 	sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
   2404 
   2405 	if (rsvpdebug && m)
   2406 		printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
   2407 		    m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
   2408 
   2409 	if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
   2410 		if (rsvpdebug)
   2411 			printf("rsvp_input: Failed to append to socket\n");
   2412 	else
   2413 		if (rsvpdebug)
   2414 			printf("rsvp_input: send packet up\n");
   2415 
   2416 	splx(s);
   2417 }
   2418 #endif /* RSVP_ISI */
   2419 
   2420 /*
   2421  * Code for bandwidth monitors
   2422  */
   2423 
   2424 /*
   2425  * Define common interface for timeval-related methods
   2426  */
   2427 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2428 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2429 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2430 
   2431 static uint32_t
   2432 compute_bw_meter_flags(struct bw_upcall *req)
   2433 {
   2434     uint32_t flags = 0;
   2435 
   2436     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2437 	flags |= BW_METER_UNIT_PACKETS;
   2438     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2439 	flags |= BW_METER_UNIT_BYTES;
   2440     if (req->bu_flags & BW_UPCALL_GEQ)
   2441 	flags |= BW_METER_GEQ;
   2442     if (req->bu_flags & BW_UPCALL_LEQ)
   2443 	flags |= BW_METER_LEQ;
   2444 
   2445     return flags;
   2446 }
   2447 
   2448 /*
   2449  * Add a bw_meter entry
   2450  */
   2451 static int
   2452 add_bw_upcall(struct bw_upcall *req)
   2453 {
   2454     int s;
   2455     struct mfc *mfc;
   2456     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2457 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2458     struct timeval now;
   2459     struct bw_meter *x;
   2460     uint32_t flags;
   2461 
   2462     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2463 	return EOPNOTSUPP;
   2464 
   2465     /* Test if the flags are valid */
   2466     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2467 	return EINVAL;
   2468     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2469 	return EINVAL;
   2470     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2471 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2472 	return EINVAL;
   2473 
   2474     /* Test if the threshold time interval is valid */
   2475     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2476 	return EINVAL;
   2477 
   2478     flags = compute_bw_meter_flags(req);
   2479 
   2480     /*
   2481      * Find if we have already same bw_meter entry
   2482      */
   2483     s = splsoftnet();
   2484     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2485     if (mfc == NULL) {
   2486 	splx(s);
   2487 	return EADDRNOTAVAIL;
   2488     }
   2489     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2490 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2491 			   &req->bu_threshold.b_time, ==)) &&
   2492 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2493 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2494 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2495 	    splx(s);
   2496 	    return 0;		/* XXX Already installed */
   2497 	}
   2498     }
   2499 
   2500     /* Allocate the new bw_meter entry */
   2501     x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
   2502     if (x == NULL) {
   2503 	splx(s);
   2504 	return ENOBUFS;
   2505     }
   2506 
   2507     /* Set the new bw_meter entry */
   2508     x->bm_threshold.b_time = req->bu_threshold.b_time;
   2509     microtime(&now);
   2510     x->bm_start_time = now;
   2511     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2512     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2513     x->bm_measured.b_packets = 0;
   2514     x->bm_measured.b_bytes = 0;
   2515     x->bm_flags = flags;
   2516     x->bm_time_next = NULL;
   2517     x->bm_time_hash = BW_METER_BUCKETS;
   2518 
   2519     /* Add the new bw_meter entry to the front of entries for this MFC */
   2520     x->bm_mfc = mfc;
   2521     x->bm_mfc_next = mfc->mfc_bw_meter;
   2522     mfc->mfc_bw_meter = x;
   2523     schedule_bw_meter(x, &now);
   2524     splx(s);
   2525 
   2526     return 0;
   2527 }
   2528 
   2529 static void
   2530 free_bw_list(struct bw_meter *list)
   2531 {
   2532     while (list != NULL) {
   2533 	struct bw_meter *x = list;
   2534 
   2535 	list = list->bm_mfc_next;
   2536 	unschedule_bw_meter(x);
   2537 	kmem_free(x, sizeof(*x));
   2538     }
   2539 }
   2540 
   2541 /*
   2542  * Delete one or multiple bw_meter entries
   2543  */
   2544 static int
   2545 del_bw_upcall(struct bw_upcall *req)
   2546 {
   2547     int s;
   2548     struct mfc *mfc;
   2549     struct bw_meter *x;
   2550 
   2551     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2552 	return EOPNOTSUPP;
   2553 
   2554     s = splsoftnet();
   2555     /* Find the corresponding MFC entry */
   2556     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2557     if (mfc == NULL) {
   2558 	splx(s);
   2559 	return EADDRNOTAVAIL;
   2560     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2561 	/*
   2562 	 * Delete all bw_meter entries for this mfc
   2563 	 */
   2564 	struct bw_meter *list;
   2565 
   2566 	list = mfc->mfc_bw_meter;
   2567 	mfc->mfc_bw_meter = NULL;
   2568 	free_bw_list(list);
   2569 	splx(s);
   2570 	return 0;
   2571     } else {			/* Delete a single bw_meter entry */
   2572 	struct bw_meter *prev;
   2573 	uint32_t flags = 0;
   2574 
   2575 	flags = compute_bw_meter_flags(req);
   2576 
   2577 	/* Find the bw_meter entry to delete */
   2578 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2579 	     prev = x, x = x->bm_mfc_next) {
   2580 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2581 			       &req->bu_threshold.b_time, ==)) &&
   2582 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2583 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2584 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2585 		break;
   2586 	}
   2587 	if (x != NULL) { /* Delete entry from the list for this MFC */
   2588 	    if (prev != NULL)
   2589 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2590 	    else
   2591 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2592 
   2593 	    unschedule_bw_meter(x);
   2594 	    splx(s);
   2595 	    /* Free the bw_meter entry */
   2596 	    kmem_free(x, sizeof(*x));
   2597 	    return 0;
   2598 	} else {
   2599 	    splx(s);
   2600 	    return EINVAL;
   2601 	}
   2602     }
   2603     /* NOTREACHED */
   2604 }
   2605 
   2606 /*
   2607  * Perform bandwidth measurement processing that may result in an upcall
   2608  */
   2609 static void
   2610 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2611 {
   2612     struct timeval delta;
   2613 
   2614     delta = *nowp;
   2615     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2616 
   2617     if (x->bm_flags & BW_METER_GEQ) {
   2618 	/*
   2619 	 * Processing for ">=" type of bw_meter entry
   2620 	 */
   2621 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2622 	    /* Reset the bw_meter entry */
   2623 	    x->bm_start_time = *nowp;
   2624 	    x->bm_measured.b_packets = 0;
   2625 	    x->bm_measured.b_bytes = 0;
   2626 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2627 	}
   2628 
   2629 	/* Record that a packet is received */
   2630 	x->bm_measured.b_packets++;
   2631 	x->bm_measured.b_bytes += plen;
   2632 
   2633 	/*
   2634 	 * Test if we should deliver an upcall
   2635 	 */
   2636 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2637 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2638 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2639 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2640 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2641 		/* Prepare an upcall for delivery */
   2642 		bw_meter_prepare_upcall(x, nowp);
   2643 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2644 	    }
   2645 	}
   2646     } else if (x->bm_flags & BW_METER_LEQ) {
   2647 	/*
   2648 	 * Processing for "<=" type of bw_meter entry
   2649 	 */
   2650 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2651 	    /*
   2652 	     * We are behind time with the multicast forwarding table
   2653 	     * scanning for "<=" type of bw_meter entries, so test now
   2654 	     * if we should deliver an upcall.
   2655 	     */
   2656 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2657 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2658 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2659 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2660 		/* Prepare an upcall for delivery */
   2661 		bw_meter_prepare_upcall(x, nowp);
   2662 	    }
   2663 	    /* Reschedule the bw_meter entry */
   2664 	    unschedule_bw_meter(x);
   2665 	    schedule_bw_meter(x, nowp);
   2666 	}
   2667 
   2668 	/* Record that a packet is received */
   2669 	x->bm_measured.b_packets++;
   2670 	x->bm_measured.b_bytes += plen;
   2671 
   2672 	/*
   2673 	 * Test if we should restart the measuring interval
   2674 	 */
   2675 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2676 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2677 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2678 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2679 	    /* Don't restart the measuring interval */
   2680 	} else {
   2681 	    /* Do restart the measuring interval */
   2682 	    /*
   2683 	     * XXX: note that we don't unschedule and schedule, because this
   2684 	     * might be too much overhead per packet. Instead, when we process
   2685 	     * all entries for a given timer hash bin, we check whether it is
   2686 	     * really a timeout. If not, we reschedule at that time.
   2687 	     */
   2688 	    x->bm_start_time = *nowp;
   2689 	    x->bm_measured.b_packets = 0;
   2690 	    x->bm_measured.b_bytes = 0;
   2691 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2692 	}
   2693     }
   2694 }
   2695 
   2696 /*
   2697  * Prepare a bandwidth-related upcall
   2698  */
   2699 static void
   2700 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2701 {
   2702     struct timeval delta;
   2703     struct bw_upcall *u;
   2704 
   2705     /*
   2706      * Compute the measured time interval
   2707      */
   2708     delta = *nowp;
   2709     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2710 
   2711     /*
   2712      * If there are too many pending upcalls, deliver them now
   2713      */
   2714     if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2715 	bw_upcalls_send();
   2716 
   2717     /*
   2718      * Set the bw_upcall entry
   2719      */
   2720     u = &bw_upcalls[bw_upcalls_n++];
   2721     u->bu_src = x->bm_mfc->mfc_origin;
   2722     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2723     u->bu_threshold.b_time = x->bm_threshold.b_time;
   2724     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2725     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2726     u->bu_measured.b_time = delta;
   2727     u->bu_measured.b_packets = x->bm_measured.b_packets;
   2728     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2729     u->bu_flags = 0;
   2730     if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2731 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2732     if (x->bm_flags & BW_METER_UNIT_BYTES)
   2733 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2734     if (x->bm_flags & BW_METER_GEQ)
   2735 	u->bu_flags |= BW_UPCALL_GEQ;
   2736     if (x->bm_flags & BW_METER_LEQ)
   2737 	u->bu_flags |= BW_UPCALL_LEQ;
   2738 }
   2739 
   2740 /*
   2741  * Send the pending bandwidth-related upcalls
   2742  */
   2743 static void
   2744 bw_upcalls_send(void)
   2745 {
   2746     struct mbuf *m;
   2747     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2748     struct sockaddr_in k_igmpsrc = {
   2749 	    .sin_len = sizeof(k_igmpsrc),
   2750 	    .sin_family = AF_INET,
   2751     };
   2752     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
   2753 				      0,		/* unused2 */
   2754 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
   2755 				      0,		/* im_mbz  */
   2756 				      0,		/* im_vif  */
   2757 				      0,		/* unused3 */
   2758 				      { 0 },		/* im_src  */
   2759 				      { 0 } };		/* im_dst  */
   2760 
   2761     if (bw_upcalls_n == 0)
   2762 	return;			/* No pending upcalls */
   2763 
   2764     bw_upcalls_n = 0;
   2765 
   2766     /*
   2767      * Allocate a new mbuf, initialize it with the header and
   2768      * the payload for the pending calls.
   2769      */
   2770     MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2771     if (m == NULL) {
   2772 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2773 	return;
   2774     }
   2775 
   2776     m->m_len = m->m_pkthdr.len = 0;
   2777     m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
   2778     m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
   2779 
   2780     /*
   2781      * Send the upcalls
   2782      * XXX do we need to set the address in k_igmpsrc ?
   2783      */
   2784     mrtstat.mrts_upcalls++;
   2785     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2786 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2787 	++mrtstat.mrts_upq_sockfull;
   2788     }
   2789 }
   2790 
   2791 /*
   2792  * Compute the timeout hash value for the bw_meter entries
   2793  */
   2794 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2795     do {								\
   2796 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2797 									\
   2798 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
   2799 	(hash) = next_timeval.tv_sec;					\
   2800 	if (next_timeval.tv_usec)					\
   2801 	    (hash)++; /* XXX: make sure we don't timeout early */	\
   2802 	(hash) %= BW_METER_BUCKETS;					\
   2803     } while (/*CONSTCOND*/ 0)
   2804 
   2805 /*
   2806  * Schedule a timer to process periodically bw_meter entry of type "<="
   2807  * by linking the entry in the proper hash bucket.
   2808  */
   2809 static void
   2810 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   2811 {
   2812     int time_hash;
   2813 
   2814     if (!(x->bm_flags & BW_METER_LEQ))
   2815 	return;		/* XXX: we schedule timers only for "<=" entries */
   2816 
   2817     /*
   2818      * Reset the bw_meter entry
   2819      */
   2820     x->bm_start_time = *nowp;
   2821     x->bm_measured.b_packets = 0;
   2822     x->bm_measured.b_bytes = 0;
   2823     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2824 
   2825     /*
   2826      * Compute the timeout hash value and insert the entry
   2827      */
   2828     BW_METER_TIMEHASH(x, time_hash);
   2829     x->bm_time_next = bw_meter_timers[time_hash];
   2830     bw_meter_timers[time_hash] = x;
   2831     x->bm_time_hash = time_hash;
   2832 }
   2833 
   2834 /*
   2835  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   2836  * by removing the entry from the proper hash bucket.
   2837  */
   2838 static void
   2839 unschedule_bw_meter(struct bw_meter *x)
   2840 {
   2841     int time_hash;
   2842     struct bw_meter *prev, *tmp;
   2843 
   2844     if (!(x->bm_flags & BW_METER_LEQ))
   2845 	return;		/* XXX: we schedule timers only for "<=" entries */
   2846 
   2847     /*
   2848      * Compute the timeout hash value and delete the entry
   2849      */
   2850     time_hash = x->bm_time_hash;
   2851     if (time_hash >= BW_METER_BUCKETS)
   2852 	return;		/* Entry was not scheduled */
   2853 
   2854     for (prev = NULL, tmp = bw_meter_timers[time_hash];
   2855 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   2856 	if (tmp == x)
   2857 	    break;
   2858 
   2859     if (tmp == NULL)
   2860 	panic("unschedule_bw_meter: bw_meter entry not found");
   2861 
   2862     if (prev != NULL)
   2863 	prev->bm_time_next = x->bm_time_next;
   2864     else
   2865 	bw_meter_timers[time_hash] = x->bm_time_next;
   2866 
   2867     x->bm_time_next = NULL;
   2868     x->bm_time_hash = BW_METER_BUCKETS;
   2869 }
   2870 
   2871 /*
   2872  * Process all "<=" type of bw_meter that should be processed now,
   2873  * and for each entry prepare an upcall if necessary. Each processed
   2874  * entry is rescheduled again for the (periodic) processing.
   2875  *
   2876  * This is run periodically (once per second normally). On each round,
   2877  * all the potentially matching entries are in the hash slot that we are
   2878  * looking at.
   2879  */
   2880 static void
   2881 bw_meter_process(void)
   2882 {
   2883     int s;
   2884     static uint32_t last_tv_sec;	/* last time we processed this */
   2885 
   2886     uint32_t loops;
   2887     int i;
   2888     struct timeval now, process_endtime;
   2889 
   2890     microtime(&now);
   2891     if (last_tv_sec == now.tv_sec)
   2892 	return;		/* nothing to do */
   2893 
   2894     loops = now.tv_sec - last_tv_sec;
   2895     last_tv_sec = now.tv_sec;
   2896     if (loops > BW_METER_BUCKETS)
   2897 	loops = BW_METER_BUCKETS;
   2898 
   2899     s = splsoftnet();
   2900     /*
   2901      * Process all bins of bw_meter entries from the one after the last
   2902      * processed to the current one. On entry, i points to the last bucket
   2903      * visited, so we need to increment i at the beginning of the loop.
   2904      */
   2905     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   2906 	struct bw_meter *x, *tmp_list;
   2907 
   2908 	if (++i >= BW_METER_BUCKETS)
   2909 	    i = 0;
   2910 
   2911 	/* Disconnect the list of bw_meter entries from the bin */
   2912 	tmp_list = bw_meter_timers[i];
   2913 	bw_meter_timers[i] = NULL;
   2914 
   2915 	/* Process the list of bw_meter entries */
   2916 	while (tmp_list != NULL) {
   2917 	    x = tmp_list;
   2918 	    tmp_list = tmp_list->bm_time_next;
   2919 
   2920 	    /* Test if the time interval is over */
   2921 	    process_endtime = x->bm_start_time;
   2922 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   2923 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   2924 		/* Not yet: reschedule, but don't reset */
   2925 		int time_hash;
   2926 
   2927 		BW_METER_TIMEHASH(x, time_hash);
   2928 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   2929 		    /*
   2930 		     * XXX: somehow the bin processing is a bit ahead of time.
   2931 		     * Put the entry in the next bin.
   2932 		     */
   2933 		    if (++time_hash >= BW_METER_BUCKETS)
   2934 			time_hash = 0;
   2935 		}
   2936 		x->bm_time_next = bw_meter_timers[time_hash];
   2937 		bw_meter_timers[time_hash] = x;
   2938 		x->bm_time_hash = time_hash;
   2939 
   2940 		continue;
   2941 	    }
   2942 
   2943 	    /*
   2944 	     * Test if we should deliver an upcall
   2945 	     */
   2946 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2947 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2948 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2949 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2950 		/* Prepare an upcall for delivery */
   2951 		bw_meter_prepare_upcall(x, &now);
   2952 	    }
   2953 
   2954 	    /*
   2955 	     * Reschedule for next processing
   2956 	     */
   2957 	    schedule_bw_meter(x, &now);
   2958 	}
   2959     }
   2960 
   2961     /* Send all upcalls that are pending delivery */
   2962     bw_upcalls_send();
   2963 
   2964     splx(s);
   2965 }
   2966 
   2967 /*
   2968  * A periodic function for sending all upcalls that are pending delivery
   2969  */
   2970 static void
   2971 expire_bw_upcalls_send(void *unused)
   2972 {
   2973     int s;
   2974 
   2975     s = splsoftnet();
   2976     bw_upcalls_send();
   2977     splx(s);
   2978 
   2979     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   2980 		  expire_bw_upcalls_send, NULL);
   2981 }
   2982 
   2983 /*
   2984  * A periodic function for periodic scanning of the multicast forwarding
   2985  * table for processing all "<=" bw_meter entries.
   2986  */
   2987 static void
   2988 expire_bw_meter_process(void *unused)
   2989 {
   2990     if (mrt_api_config & MRT_MFC_BW_UPCALL)
   2991 	bw_meter_process();
   2992 
   2993     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   2994 		  expire_bw_meter_process, NULL);
   2995 }
   2996 
   2997 /*
   2998  * End of bandwidth monitoring code
   2999  */
   3000 
   3001 #ifdef PIM
   3002 /*
   3003  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   3004  */
   3005 static int
   3006 pim_register_send(struct ip *ip, struct vif *vifp,
   3007 	struct mbuf *m, struct mfc *rt)
   3008 {
   3009     struct mbuf *mb_copy, *mm;
   3010 
   3011     if (mrtdebug & DEBUG_PIM)
   3012         log(LOG_DEBUG, "pim_register_send: \n");
   3013 
   3014     mb_copy = pim_register_prepare(ip, m);
   3015     if (mb_copy == NULL)
   3016 	return ENOBUFS;
   3017 
   3018     /*
   3019      * Send all the fragments. Note that the mbuf for each fragment
   3020      * is freed by the sending machinery.
   3021      */
   3022     for (mm = mb_copy; mm; mm = mb_copy) {
   3023 	mb_copy = mm->m_nextpkt;
   3024 	mm->m_nextpkt = NULL;
   3025 	mm = m_pullup(mm, sizeof(struct ip));
   3026 	if (mm != NULL) {
   3027 	    ip = mtod(mm, struct ip *);
   3028 	    if ((mrt_api_config & MRT_MFC_RP) &&
   3029 		!in_nullhost(rt->mfc_rp)) {
   3030 		pim_register_send_rp(ip, vifp, mm, rt);
   3031 	    } else {
   3032 		pim_register_send_upcall(ip, vifp, mm, rt);
   3033 	    }
   3034 	}
   3035     }
   3036 
   3037     return 0;
   3038 }
   3039 
   3040 /*
   3041  * Return a copy of the data packet that is ready for PIM Register
   3042  * encapsulation.
   3043  * XXX: Note that in the returned copy the IP header is a valid one.
   3044  */
   3045 static struct mbuf *
   3046 pim_register_prepare(struct ip *ip, struct mbuf *m)
   3047 {
   3048     struct mbuf *mb_copy = NULL;
   3049     int mtu;
   3050 
   3051     /* Take care of delayed checksums */
   3052     if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   3053 	in_delayed_cksum(m);
   3054 	m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   3055     }
   3056 
   3057     /*
   3058      * Copy the old packet & pullup its IP header into the
   3059      * new mbuf so we can modify it.
   3060      */
   3061     mb_copy = m_copypacket(m, M_DONTWAIT);
   3062     if (mb_copy == NULL)
   3063 	return NULL;
   3064     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   3065     if (mb_copy == NULL)
   3066 	return NULL;
   3067 
   3068     /* take care of the TTL */
   3069     ip = mtod(mb_copy, struct ip *);
   3070     --ip->ip_ttl;
   3071 
   3072     /* Compute the MTU after the PIM Register encapsulation */
   3073     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   3074 
   3075     if (ntohs(ip->ip_len) <= mtu) {
   3076 	/* Turn the IP header into a valid one */
   3077 	ip->ip_sum = 0;
   3078 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   3079     } else {
   3080 	/* Fragment the packet */
   3081 	if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   3082 	    /* XXX: mb_copy was freed by ip_fragment() */
   3083 	    return NULL;
   3084 	}
   3085     }
   3086     return mb_copy;
   3087 }
   3088 
   3089 /*
   3090  * Send an upcall with the data packet to the user-level process.
   3091  */
   3092 static int
   3093 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   3094     struct mbuf *mb_copy, struct mfc *rt)
   3095 {
   3096     struct mbuf *mb_first;
   3097     int len = ntohs(ip->ip_len);
   3098     struct igmpmsg *im;
   3099     struct sockaddr_in k_igmpsrc = {
   3100 	    .sin_len = sizeof(k_igmpsrc),
   3101 	    .sin_family = AF_INET,
   3102     };
   3103 
   3104     /*
   3105      * Add a new mbuf with an upcall header
   3106      */
   3107     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3108     if (mb_first == NULL) {
   3109 	m_freem(mb_copy);
   3110 	return ENOBUFS;
   3111     }
   3112     mb_first->m_data += max_linkhdr;
   3113     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   3114     mb_first->m_len = sizeof(struct igmpmsg);
   3115     mb_first->m_next = mb_copy;
   3116 
   3117     /* Send message to routing daemon */
   3118     im = mtod(mb_first, struct igmpmsg *);
   3119     im->im_msgtype	= IGMPMSG_WHOLEPKT;
   3120     im->im_mbz		= 0;
   3121     im->im_vif		= vifp - viftable;
   3122     im->im_src		= ip->ip_src;
   3123     im->im_dst		= ip->ip_dst;
   3124 
   3125     k_igmpsrc.sin_addr	= ip->ip_src;
   3126 
   3127     mrtstat.mrts_upcalls++;
   3128 
   3129     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   3130 	if (mrtdebug & DEBUG_PIM)
   3131 	    log(LOG_WARNING,
   3132 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
   3133 	++mrtstat.mrts_upq_sockfull;
   3134 	return ENOBUFS;
   3135     }
   3136 
   3137     /* Keep statistics */
   3138     pimstat.pims_snd_registers_msgs++;
   3139     pimstat.pims_snd_registers_bytes += len;
   3140 
   3141     return 0;
   3142 }
   3143 
   3144 /*
   3145  * Encapsulate the data packet in PIM Register message and send it to the RP.
   3146  */
   3147 static int
   3148 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   3149 	struct mbuf *mb_copy, struct mfc *rt)
   3150 {
   3151     struct mbuf *mb_first;
   3152     struct ip *ip_outer;
   3153     struct pim_encap_pimhdr *pimhdr;
   3154     int len = ntohs(ip->ip_len);
   3155     vifi_t vifi = rt->mfc_parent;
   3156 
   3157     if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   3158 	m_freem(mb_copy);
   3159 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
   3160     }
   3161 
   3162     /*
   3163      * Add a new mbuf with the encapsulating header
   3164      */
   3165     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3166     if (mb_first == NULL) {
   3167 	m_freem(mb_copy);
   3168 	return ENOBUFS;
   3169     }
   3170     mb_first->m_data += max_linkhdr;
   3171     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   3172     mb_first->m_next = mb_copy;
   3173 
   3174     mb_first->m_pkthdr.len = len + mb_first->m_len;
   3175 
   3176     /*
   3177      * Fill in the encapsulating IP and PIM header
   3178      */
   3179     ip_outer = mtod(mb_first, struct ip *);
   3180     *ip_outer = pim_encap_iphdr;
   3181      if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
   3182 	ip_outer->ip_id = 0;
   3183     else
   3184 	ip_outer->ip_id = ip_newid(NULL);
   3185     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   3186 			     sizeof(pim_encap_pimhdr));
   3187     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   3188     ip_outer->ip_dst = rt->mfc_rp;
   3189     /*
   3190      * Copy the inner header TOS to the outer header, and take care of the
   3191      * IP_DF bit.
   3192      */
   3193     ip_outer->ip_tos = ip->ip_tos;
   3194     if (ntohs(ip->ip_off) & IP_DF)
   3195 	ip_outer->ip_off |= htons(IP_DF);
   3196     pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
   3197 					 + sizeof(pim_encap_iphdr));
   3198     *pimhdr = pim_encap_pimhdr;
   3199     /* If the iif crosses a border, set the Border-bit */
   3200     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   3201 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   3202 
   3203     mb_first->m_data += sizeof(pim_encap_iphdr);
   3204     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   3205     mb_first->m_data -= sizeof(pim_encap_iphdr);
   3206 
   3207     if (vifp->v_rate_limit == 0)
   3208 	tbf_send_packet(vifp, mb_first);
   3209     else
   3210 	tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   3211 
   3212     /* Keep statistics */
   3213     pimstat.pims_snd_registers_msgs++;
   3214     pimstat.pims_snd_registers_bytes += len;
   3215 
   3216     return 0;
   3217 }
   3218 
   3219 /*
   3220  * PIM-SMv2 and PIM-DM messages processing.
   3221  * Receives and verifies the PIM control messages, and passes them
   3222  * up to the listening socket, using rip_input().
   3223  * The only message with special processing is the PIM_REGISTER message
   3224  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   3225  * is passed to if_simloop().
   3226  */
   3227 void
   3228 pim_input(struct mbuf *m, ...)
   3229 {
   3230     struct ip *ip = mtod(m, struct ip *);
   3231     struct pim *pim;
   3232     int minlen;
   3233     int datalen;
   3234     int ip_tos;
   3235     int proto;
   3236     int iphlen;
   3237     va_list ap;
   3238 
   3239     va_start(ap, m);
   3240     iphlen = va_arg(ap, int);
   3241     proto = va_arg(ap, int);
   3242     va_end(ap);
   3243 
   3244     datalen = ntohs(ip->ip_len) - iphlen;
   3245 
   3246     /* Keep statistics */
   3247     pimstat.pims_rcv_total_msgs++;
   3248     pimstat.pims_rcv_total_bytes += datalen;
   3249 
   3250     /*
   3251      * Validate lengths
   3252      */
   3253     if (datalen < PIM_MINLEN) {
   3254 	pimstat.pims_rcv_tooshort++;
   3255 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   3256 	    datalen, (u_long)ip->ip_src.s_addr);
   3257 	m_freem(m);
   3258 	return;
   3259     }
   3260 
   3261     /*
   3262      * If the packet is at least as big as a REGISTER, go agead
   3263      * and grab the PIM REGISTER header size, to avoid another
   3264      * possible m_pullup() later.
   3265      *
   3266      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   3267      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   3268      */
   3269     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   3270     /*
   3271      * Get the IP and PIM headers in contiguous memory, and
   3272      * possibly the PIM REGISTER header.
   3273      */
   3274     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   3275 	(m = m_pullup(m, minlen)) == NULL) {
   3276 	log(LOG_ERR, "pim_input: m_pullup failure\n");
   3277 	return;
   3278     }
   3279     /* m_pullup() may have given us a new mbuf so reset ip. */
   3280     ip = mtod(m, struct ip *);
   3281     ip_tos = ip->ip_tos;
   3282 
   3283     /* adjust mbuf to point to the PIM header */
   3284     m->m_data += iphlen;
   3285     m->m_len  -= iphlen;
   3286     pim = mtod(m, struct pim *);
   3287 
   3288     /*
   3289      * Validate checksum. If PIM REGISTER, exclude the data packet.
   3290      *
   3291      * XXX: some older PIMv2 implementations don't make this distinction,
   3292      * so for compatibility reason perform the checksum over part of the
   3293      * message, and if error, then over the whole message.
   3294      */
   3295     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   3296 	/* do nothing, checksum okay */
   3297     } else if (in_cksum(m, datalen)) {
   3298 	pimstat.pims_rcv_badsum++;
   3299 	if (mrtdebug & DEBUG_PIM)
   3300 	    log(LOG_DEBUG, "pim_input: invalid checksum\n");
   3301 	m_freem(m);
   3302 	return;
   3303     }
   3304 
   3305     /* PIM version check */
   3306     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   3307 	pimstat.pims_rcv_badversion++;
   3308 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3309 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3310 	m_freem(m);
   3311 	return;
   3312     }
   3313 
   3314     /* restore mbuf back to the outer IP */
   3315     m->m_data -= iphlen;
   3316     m->m_len  += iphlen;
   3317 
   3318     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3319 	/*
   3320 	 * Since this is a REGISTER, we'll make a copy of the register
   3321 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3322 	 * routing daemon.
   3323 	 */
   3324 	int s;
   3325 	struct sockaddr_in dst = {
   3326 		.sin_len = sizeof(dst),
   3327 		.sin_family = AF_INET,
   3328 	};
   3329 	struct mbuf *mcp;
   3330 	struct ip *encap_ip;
   3331 	u_int32_t *reghdr;
   3332 	struct ifnet *vifp;
   3333 
   3334 	s = splsoftnet();
   3335 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3336 	    splx(s);
   3337 	    if (mrtdebug & DEBUG_PIM)
   3338 		log(LOG_DEBUG,
   3339 		    "pim_input: register vif not set: %d\n", reg_vif_num);
   3340 	    m_freem(m);
   3341 	    return;
   3342 	}
   3343 	/* XXX need refcnt? */
   3344 	vifp = viftable[reg_vif_num].v_ifp;
   3345 	splx(s);
   3346 
   3347 	/*
   3348 	 * Validate length
   3349 	 */
   3350 	if (datalen < PIM_REG_MINLEN) {
   3351 	    pimstat.pims_rcv_tooshort++;
   3352 	    pimstat.pims_rcv_badregisters++;
   3353 	    log(LOG_ERR,
   3354 		"pim_input: register packet size too small %d from %lx\n",
   3355 		datalen, (u_long)ip->ip_src.s_addr);
   3356 	    m_freem(m);
   3357 	    return;
   3358 	}
   3359 
   3360 	reghdr = (u_int32_t *)(pim + 1);
   3361 	encap_ip = (struct ip *)(reghdr + 1);
   3362 
   3363 	if (mrtdebug & DEBUG_PIM) {
   3364 	    log(LOG_DEBUG,
   3365 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3366 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3367 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3368 		ntohs(encap_ip->ip_len));
   3369 	}
   3370 
   3371 	/* verify the version number of the inner packet */
   3372 	if (encap_ip->ip_v != IPVERSION) {
   3373 	    pimstat.pims_rcv_badregisters++;
   3374 	    if (mrtdebug & DEBUG_PIM) {
   3375 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3376 		    "of the inner packet\n", encap_ip->ip_v);
   3377 	    }
   3378 	    m_freem(m);
   3379 	    return;
   3380 	}
   3381 
   3382 	/* verify the inner packet is destined to a mcast group */
   3383 	if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3384 	    pimstat.pims_rcv_badregisters++;
   3385 	    if (mrtdebug & DEBUG_PIM)
   3386 		log(LOG_DEBUG,
   3387 		    "pim_input: inner packet of register is not "
   3388 		    "multicast %lx\n",
   3389 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3390 	    m_freem(m);
   3391 	    return;
   3392 	}
   3393 
   3394 	/* If a NULL_REGISTER, pass it to the daemon */
   3395 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3396 	    goto pim_input_to_daemon;
   3397 
   3398 	/*
   3399 	 * Copy the TOS from the outer IP header to the inner IP header.
   3400 	 */
   3401 	if (encap_ip->ip_tos != ip_tos) {
   3402 	    /* Outer TOS -> inner TOS */
   3403 	    encap_ip->ip_tos = ip_tos;
   3404 	    /* Recompute the inner header checksum. Sigh... */
   3405 
   3406 	    /* adjust mbuf to point to the inner IP header */
   3407 	    m->m_data += (iphlen + PIM_MINLEN);
   3408 	    m->m_len  -= (iphlen + PIM_MINLEN);
   3409 
   3410 	    encap_ip->ip_sum = 0;
   3411 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3412 
   3413 	    /* restore mbuf to point back to the outer IP header */
   3414 	    m->m_data -= (iphlen + PIM_MINLEN);
   3415 	    m->m_len  += (iphlen + PIM_MINLEN);
   3416 	}
   3417 
   3418 	/*
   3419 	 * Decapsulate the inner IP packet and loopback to forward it
   3420 	 * as a normal multicast packet. Also, make a copy of the
   3421 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3422 	 * to pass to the daemon later, so it can take the appropriate
   3423 	 * actions (e.g., send back PIM_REGISTER_STOP).
   3424 	 * XXX: here m->m_data points to the outer IP header.
   3425 	 */
   3426 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
   3427 	if (mcp == NULL) {
   3428 	    log(LOG_ERR,
   3429 		"pim_input: pim register: could not copy register head\n");
   3430 	    m_freem(m);
   3431 	    return;
   3432 	}
   3433 
   3434 	/* Keep statistics */
   3435 	/* XXX: registers_bytes include only the encap. mcast pkt */
   3436 	pimstat.pims_rcv_registers_msgs++;
   3437 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3438 
   3439 	/*
   3440 	 * forward the inner ip packet; point m_data at the inner ip.
   3441 	 */
   3442 	m_adj(m, iphlen + PIM_MINLEN);
   3443 
   3444 	if (mrtdebug & DEBUG_PIM) {
   3445 	    log(LOG_DEBUG,
   3446 		"pim_input: forwarding decapsulated register: "
   3447 		"src %lx, dst %lx, vif %d\n",
   3448 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3449 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3450 		reg_vif_num);
   3451 	}
   3452 	/* NB: vifp was collected above; can it change on us? */
   3453 	looutput(vifp, m, (struct sockaddr *)&dst, NULL);
   3454 
   3455 	/* prepare the register head to send to the mrouting daemon */
   3456 	m = mcp;
   3457     }
   3458 
   3459 pim_input_to_daemon:
   3460     /*
   3461      * Pass the PIM message up to the daemon; if it is a Register message,
   3462      * pass the 'head' only up to the daemon. This includes the
   3463      * outer IP header, PIM header, PIM-Register header and the
   3464      * inner IP header.
   3465      * XXX: the outer IP header pkt size of a Register is not adjust to
   3466      * reflect the fact that the inner multicast data is truncated.
   3467      */
   3468     rip_input(m, iphlen, proto);
   3469 
   3470     return;
   3471 }
   3472 #endif /* PIM */
   3473