Home | History | Annotate | Line # | Download | only in netinet
ip_mroute.c revision 1.132
      1 /*	$NetBSD: ip_mroute.c,v 1.132 2015/08/24 22:21:26 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.132 2015/08/24 22:21:26 pooka Exp $");
     97 
     98 #ifdef _KERNEL_OPT
     99 #include "opt_inet.h"
    100 #include "opt_ipsec.h"
    101 #include "opt_pim.h"
    102 #endif
    103 
    104 #ifdef PIM
    105 #define _PIM_VT 1
    106 #endif
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/socket.h>
    113 #include <sys/socketvar.h>
    114 #include <sys/protosw.h>
    115 #include <sys/errno.h>
    116 #include <sys/time.h>
    117 #include <sys/kernel.h>
    118 #include <sys/kmem.h>
    119 #include <sys/ioctl.h>
    120 #include <sys/syslog.h>
    121 
    122 #include <net/if.h>
    123 #include <net/route.h>
    124 #include <net/raw_cb.h>
    125 
    126 #include <netinet/in.h>
    127 #include <netinet/in_var.h>
    128 #include <netinet/in_systm.h>
    129 #include <netinet/ip.h>
    130 #include <netinet/ip_var.h>
    131 #include <netinet/in_pcb.h>
    132 #include <netinet/udp.h>
    133 #include <netinet/igmp.h>
    134 #include <netinet/igmp_var.h>
    135 #include <netinet/ip_mroute.h>
    136 #ifdef PIM
    137 #include <netinet/pim.h>
    138 #include <netinet/pim_var.h>
    139 #endif
    140 #include <netinet/ip_encap.h>
    141 
    142 #ifdef IPSEC
    143 #include <netipsec/ipsec.h>
    144 #include <netipsec/key.h>
    145 #endif
    146 
    147 #define IP_MULTICASTOPTS 0
    148 #define	M_PULLUP(m, len)						 \
    149 	do {								 \
    150 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    151 			(m) = m_pullup((m), (len));			 \
    152 	} while (/*CONSTCOND*/ 0)
    153 
    154 /*
    155  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    156  * except for netstat or debugging purposes.
    157  */
    158 struct socket  *ip_mrouter  = NULL;
    159 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    160 
    161 #define NO_RTE_FOUND 	0x1
    162 #define RTE_FOUND	0x2
    163 
    164 #define	MFCHASH(a, g)							\
    165 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    166 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    167 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    168 u_long	mfchash;
    169 
    170 u_char		nexpire[MFCTBLSIZ];
    171 struct vif	viftable[MAXVIFS];
    172 struct mrtstat	mrtstat;
    173 u_int		mrtdebug = 0;	  /* debug level 	*/
    174 #define		DEBUG_MFC	0x02
    175 #define		DEBUG_FORWARD	0x04
    176 #define		DEBUG_EXPIRE	0x08
    177 #define		DEBUG_XMIT	0x10
    178 #define		DEBUG_PIM	0x20
    179 
    180 #define		VIFI_INVALID	((vifi_t) -1)
    181 
    182 u_int       	tbfdebug = 0;     /* tbf debug level 	*/
    183 #ifdef RSVP_ISI
    184 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
    185 extern struct socket *ip_rsvpd;
    186 extern int rsvp_on;
    187 #endif /* RSVP_ISI */
    188 
    189 /* vif attachment using sys/netinet/ip_encap.c */
    190 static void vif_input(struct mbuf *, ...);
    191 static int vif_encapcheck(struct mbuf *, int, int, void *);
    192 
    193 static const struct protosw vif_protosw = {
    194 	.pr_type	= SOCK_RAW,
    195 	.pr_domain	= &inetdomain,
    196 	.pr_protocol	= IPPROTO_IPV4,
    197 	.pr_flags	= PR_ATOMIC|PR_ADDR,
    198 	.pr_input	= vif_input,
    199 	.pr_output	= rip_output,
    200 	.pr_ctloutput	= rip_ctloutput,
    201 	.pr_usrreqs	= &rip_usrreqs,
    202 };
    203 
    204 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    205 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    206 
    207 /*
    208  * Define the token bucket filter structures
    209  */
    210 
    211 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    212 
    213 static int get_sg_cnt(struct sioc_sg_req *);
    214 static int get_vif_cnt(struct sioc_vif_req *);
    215 static int ip_mrouter_init(struct socket *, int);
    216 static int set_assert(int);
    217 static int add_vif(struct vifctl *);
    218 static int del_vif(vifi_t *);
    219 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
    220 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
    221 static void expire_mfc(struct mfc *);
    222 static int add_mfc(struct sockopt *);
    223 #ifdef UPCALL_TIMING
    224 static void collate(struct timeval *);
    225 #endif
    226 static int del_mfc(struct sockopt *);
    227 static int set_api_config(struct sockopt *); /* chose API capabilities */
    228 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
    229 static void expire_upcalls(void *);
    230 #ifdef RSVP_ISI
    231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
    232 #else
    233 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
    234 #endif
    235 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
    236 static void encap_send(struct ip *, struct vif *, struct mbuf *);
    237 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
    238 static void tbf_queue(struct vif *, struct mbuf *);
    239 static void tbf_process_q(struct vif *);
    240 static void tbf_reprocess_q(void *);
    241 static int tbf_dq_sel(struct vif *, struct ip *);
    242 static void tbf_send_packet(struct vif *, struct mbuf *);
    243 static void tbf_update_tokens(struct vif *);
    244 static int priority(struct vif *, struct ip *);
    245 
    246 /*
    247  * Bandwidth monitoring
    248  */
    249 static void free_bw_list(struct bw_meter *);
    250 static int add_bw_upcall(struct bw_upcall *);
    251 static int del_bw_upcall(struct bw_upcall *);
    252 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
    253 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
    254 static void bw_upcalls_send(void);
    255 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
    256 static void unschedule_bw_meter(struct bw_meter *);
    257 static void bw_meter_process(void);
    258 static void expire_bw_upcalls_send(void *);
    259 static void expire_bw_meter_process(void *);
    260 
    261 #ifdef PIM
    262 static int pim_register_send(struct ip *, struct vif *,
    263 		struct mbuf *, struct mfc *);
    264 static int pim_register_send_rp(struct ip *, struct vif *,
    265 		struct mbuf *, struct mfc *);
    266 static int pim_register_send_upcall(struct ip *, struct vif *,
    267 		struct mbuf *, struct mfc *);
    268 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
    269 #endif
    270 
    271 /*
    272  * 'Interfaces' associated with decapsulator (so we can tell
    273  * packets that went through it from ones that get reflected
    274  * by a broken gateway).  These interfaces are never linked into
    275  * the system ifnet list & no routes point to them.  I.e., packets
    276  * can't be sent this way.  They only exist as a placeholder for
    277  * multicast source verification.
    278  */
    279 #if 0
    280 struct ifnet multicast_decap_if[MAXVIFS];
    281 #endif
    282 
    283 #define	ENCAP_TTL	64
    284 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
    285 
    286 /* prototype IP hdr for encapsulated packets */
    287 struct ip multicast_encap_iphdr = {
    288 	.ip_hl = sizeof(struct ip) >> 2,
    289 	.ip_v = IPVERSION,
    290 	.ip_len = sizeof(struct ip),
    291 	.ip_ttl = ENCAP_TTL,
    292 	.ip_p = ENCAP_PROTO,
    293 };
    294 
    295 /*
    296  * Bandwidth meter variables and constants
    297  */
    298 
    299 /*
    300  * Pending timeouts are stored in a hash table, the key being the
    301  * expiration time. Periodically, the entries are analysed and processed.
    302  */
    303 #define BW_METER_BUCKETS	1024
    304 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    305 struct callout bw_meter_ch;
    306 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    307 
    308 /*
    309  * Pending upcalls are stored in a vector which is flushed when
    310  * full, or periodically
    311  */
    312 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    313 static u_int	bw_upcalls_n; /* # of pending upcalls */
    314 struct callout	bw_upcalls_ch;
    315 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    316 
    317 #ifdef PIM
    318 struct pimstat pimstat;
    319 
    320 /*
    321  * Note: the PIM Register encapsulation adds the following in front of a
    322  * data packet:
    323  *
    324  * struct pim_encap_hdr {
    325  *    struct ip ip;
    326  *    struct pim_encap_pimhdr  pim;
    327  * }
    328  *
    329  */
    330 
    331 struct pim_encap_pimhdr {
    332 	struct pim pim;
    333 	uint32_t   flags;
    334 };
    335 
    336 static struct ip pim_encap_iphdr = {
    337 	.ip_v = IPVERSION,
    338 	.ip_hl = sizeof(struct ip) >> 2,
    339 	.ip_len = sizeof(struct ip),
    340 	.ip_ttl = ENCAP_TTL,
    341 	.ip_p = IPPROTO_PIM,
    342 };
    343 
    344 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    345     {
    346 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    347 	0,			/* reserved */
    348 	0,			/* checksum */
    349     },
    350     0				/* flags */
    351 };
    352 
    353 static struct ifnet multicast_register_if;
    354 static vifi_t reg_vif_num = VIFI_INVALID;
    355 #endif /* PIM */
    356 
    357 
    358 /*
    359  * Private variables.
    360  */
    361 static vifi_t	   numvifs = 0;
    362 
    363 static struct callout expire_upcalls_ch;
    364 
    365 /*
    366  * whether or not special PIM assert processing is enabled.
    367  */
    368 static int pim_assert;
    369 /*
    370  * Rate limit for assert notification messages, in usec
    371  */
    372 #define ASSERT_MSG_TIME		3000000
    373 
    374 /*
    375  * Kernel multicast routing API capabilities and setup.
    376  * If more API capabilities are added to the kernel, they should be
    377  * recorded in `mrt_api_support'.
    378  */
    379 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    380 					  MRT_MFC_FLAGS_BORDER_VIF |
    381 					  MRT_MFC_RP |
    382 					  MRT_MFC_BW_UPCALL);
    383 static u_int32_t mrt_api_config = 0;
    384 
    385 /*
    386  * Find a route for a given origin IP address and Multicast group address
    387  * Type of service parameter to be added in the future!!!
    388  * Statistics are updated by the caller if needed
    389  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    390  */
    391 static struct mfc *
    392 mfc_find(struct in_addr *o, struct in_addr *g)
    393 {
    394 	struct mfc *rt;
    395 
    396 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    397 		if (in_hosteq(rt->mfc_origin, *o) &&
    398 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    399 		    (rt->mfc_stall == NULL))
    400 			break;
    401 	}
    402 
    403 	return (rt);
    404 }
    405 
    406 /*
    407  * Macros to compute elapsed time efficiently
    408  * Borrowed from Van Jacobson's scheduling code
    409  */
    410 #define TV_DELTA(a, b, delta) do {					\
    411 	int xxs;							\
    412 	delta = (a).tv_usec - (b).tv_usec;				\
    413 	xxs = (a).tv_sec - (b).tv_sec;					\
    414 	switch (xxs) {							\
    415 	case 2:								\
    416 		delta += 1000000;					\
    417 		/* fall through */					\
    418 	case 1:								\
    419 		delta += 1000000;					\
    420 		/* fall through */					\
    421 	case 0:								\
    422 		break;							\
    423 	default:							\
    424 		delta += (1000000 * xxs);				\
    425 		break;							\
    426 	}								\
    427 } while (/*CONSTCOND*/ 0)
    428 
    429 #ifdef UPCALL_TIMING
    430 u_int32_t upcall_data[51];
    431 #endif /* UPCALL_TIMING */
    432 
    433 /*
    434  * Handle MRT setsockopt commands to modify the multicast routing tables.
    435  */
    436 int
    437 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
    438 {
    439 	int error;
    440 	int optval;
    441 	struct vifctl vifc;
    442 	vifi_t vifi;
    443 	struct bw_upcall bwuc;
    444 
    445 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
    446 		error = ENOPROTOOPT;
    447 	else {
    448 		switch (sopt->sopt_name) {
    449 		case MRT_INIT:
    450 			error = sockopt_getint(sopt, &optval);
    451 			if (error)
    452 				break;
    453 
    454 			error = ip_mrouter_init(so, optval);
    455 			break;
    456 		case MRT_DONE:
    457 			error = ip_mrouter_done();
    458 			break;
    459 		case MRT_ADD_VIF:
    460 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
    461 			if (error)
    462 				break;
    463 			error = add_vif(&vifc);
    464 			break;
    465 		case MRT_DEL_VIF:
    466 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
    467 			if (error)
    468 				break;
    469 			error = del_vif(&vifi);
    470 			break;
    471 		case MRT_ADD_MFC:
    472 			error = add_mfc(sopt);
    473 			break;
    474 		case MRT_DEL_MFC:
    475 			error = del_mfc(sopt);
    476 			break;
    477 		case MRT_ASSERT:
    478 			error = sockopt_getint(sopt, &optval);
    479 			if (error)
    480 				break;
    481 			error = set_assert(optval);
    482 			break;
    483 		case MRT_API_CONFIG:
    484 			error = set_api_config(sopt);
    485 			break;
    486 		case MRT_ADD_BW_UPCALL:
    487 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    488 			if (error)
    489 				break;
    490 			error = add_bw_upcall(&bwuc);
    491 			break;
    492 		case MRT_DEL_BW_UPCALL:
    493 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    494 			if (error)
    495 				break;
    496 			error = del_bw_upcall(&bwuc);
    497 			break;
    498 		default:
    499 			error = ENOPROTOOPT;
    500 			break;
    501 		}
    502 	}
    503 	return (error);
    504 }
    505 
    506 /*
    507  * Handle MRT getsockopt commands
    508  */
    509 int
    510 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
    511 {
    512 	int error;
    513 
    514 	if (so != ip_mrouter)
    515 		error = ENOPROTOOPT;
    516 	else {
    517 		switch (sopt->sopt_name) {
    518 		case MRT_VERSION:
    519 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
    520 			break;
    521 		case MRT_ASSERT:
    522 			error = sockopt_setint(sopt, pim_assert);
    523 			break;
    524 		case MRT_API_SUPPORT:
    525 			error = sockopt_set(sopt, &mrt_api_support,
    526 			    sizeof(mrt_api_support));
    527 			break;
    528 		case MRT_API_CONFIG:
    529 			error = sockopt_set(sopt, &mrt_api_config,
    530 			    sizeof(mrt_api_config));
    531 			break;
    532 		default:
    533 			error = ENOPROTOOPT;
    534 			break;
    535 		}
    536 	}
    537 	return (error);
    538 }
    539 
    540 /*
    541  * Handle ioctl commands to obtain information from the cache
    542  */
    543 int
    544 mrt_ioctl(struct socket *so, u_long cmd, void *data)
    545 {
    546 	int error;
    547 
    548 	if (so != ip_mrouter)
    549 		error = EINVAL;
    550 	else
    551 		switch (cmd) {
    552 		case SIOCGETVIFCNT:
    553 			error = get_vif_cnt((struct sioc_vif_req *)data);
    554 			break;
    555 		case SIOCGETSGCNT:
    556 			error = get_sg_cnt((struct sioc_sg_req *)data);
    557 			break;
    558 		default:
    559 			error = EINVAL;
    560 			break;
    561 		}
    562 
    563 	return (error);
    564 }
    565 
    566 /*
    567  * returns the packet, byte, rpf-failure count for the source group provided
    568  */
    569 static int
    570 get_sg_cnt(struct sioc_sg_req *req)
    571 {
    572 	int s;
    573 	struct mfc *rt;
    574 
    575 	s = splsoftnet();
    576 	rt = mfc_find(&req->src, &req->grp);
    577 	if (rt == NULL) {
    578 		splx(s);
    579 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    580 		return (EADDRNOTAVAIL);
    581 	}
    582 	req->pktcnt = rt->mfc_pkt_cnt;
    583 	req->bytecnt = rt->mfc_byte_cnt;
    584 	req->wrong_if = rt->mfc_wrong_if;
    585 	splx(s);
    586 
    587 	return (0);
    588 }
    589 
    590 /*
    591  * returns the input and output packet and byte counts on the vif provided
    592  */
    593 static int
    594 get_vif_cnt(struct sioc_vif_req *req)
    595 {
    596 	vifi_t vifi = req->vifi;
    597 
    598 	if (vifi >= numvifs)
    599 		return (EINVAL);
    600 
    601 	req->icount = viftable[vifi].v_pkt_in;
    602 	req->ocount = viftable[vifi].v_pkt_out;
    603 	req->ibytes = viftable[vifi].v_bytes_in;
    604 	req->obytes = viftable[vifi].v_bytes_out;
    605 
    606 	return (0);
    607 }
    608 
    609 /*
    610  * Enable multicast routing
    611  */
    612 static int
    613 ip_mrouter_init(struct socket *so, int v)
    614 {
    615 	if (mrtdebug)
    616 		log(LOG_DEBUG,
    617 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    618 		    so->so_type, so->so_proto->pr_protocol);
    619 
    620 	if (so->so_type != SOCK_RAW ||
    621 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    622 		return (EOPNOTSUPP);
    623 
    624 	if (v != 1)
    625 		return (EINVAL);
    626 
    627 	if (ip_mrouter != NULL)
    628 		return (EADDRINUSE);
    629 
    630 	ip_mrouter = so;
    631 
    632 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
    633 	memset((void *)nexpire, 0, sizeof(nexpire));
    634 
    635 	pim_assert = 0;
    636 
    637 	callout_init(&expire_upcalls_ch, 0);
    638 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    639 		      expire_upcalls, NULL);
    640 
    641 	callout_init(&bw_upcalls_ch, 0);
    642 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    643 		      expire_bw_upcalls_send, NULL);
    644 
    645 	callout_init(&bw_meter_ch, 0);
    646 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    647 		      expire_bw_meter_process, NULL);
    648 
    649 	if (mrtdebug)
    650 		log(LOG_DEBUG, "ip_mrouter_init\n");
    651 
    652 	return (0);
    653 }
    654 
    655 /*
    656  * Disable multicast routing
    657  */
    658 int
    659 ip_mrouter_done(void)
    660 {
    661 	vifi_t vifi;
    662 	struct vif *vifp;
    663 	int i;
    664 	int s;
    665 
    666 	s = splsoftnet();
    667 
    668 	/* Clear out all the vifs currently in use. */
    669 	for (vifi = 0; vifi < numvifs; vifi++) {
    670 		vifp = &viftable[vifi];
    671 		if (!in_nullhost(vifp->v_lcl_addr))
    672 			reset_vif(vifp);
    673 	}
    674 
    675 	numvifs = 0;
    676 	pim_assert = 0;
    677 	mrt_api_config = 0;
    678 
    679 	callout_stop(&expire_upcalls_ch);
    680 	callout_stop(&bw_upcalls_ch);
    681 	callout_stop(&bw_meter_ch);
    682 
    683 	/*
    684 	 * Free all multicast forwarding cache entries.
    685 	 */
    686 	for (i = 0; i < MFCTBLSIZ; i++) {
    687 		struct mfc *rt, *nrt;
    688 
    689 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    690 			nrt = LIST_NEXT(rt, mfc_hash);
    691 
    692 			expire_mfc(rt);
    693 		}
    694 	}
    695 
    696 	memset((void *)nexpire, 0, sizeof(nexpire));
    697 	hashdone(mfchashtbl, HASH_LIST, mfchash);
    698 	mfchashtbl = NULL;
    699 
    700 	bw_upcalls_n = 0;
    701 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
    702 
    703 	/* Reset de-encapsulation cache. */
    704 
    705 	ip_mrouter = NULL;
    706 
    707 	splx(s);
    708 
    709 	if (mrtdebug)
    710 		log(LOG_DEBUG, "ip_mrouter_done\n");
    711 
    712 	return (0);
    713 }
    714 
    715 void
    716 ip_mrouter_detach(struct ifnet *ifp)
    717 {
    718 	int vifi, i;
    719 	struct vif *vifp;
    720 	struct mfc *rt;
    721 	struct rtdetq *rte;
    722 
    723 	/* XXX not sure about side effect to userland routing daemon */
    724 	for (vifi = 0; vifi < numvifs; vifi++) {
    725 		vifp = &viftable[vifi];
    726 		if (vifp->v_ifp == ifp)
    727 			reset_vif(vifp);
    728 	}
    729 	for (i = 0; i < MFCTBLSIZ; i++) {
    730 		if (nexpire[i] == 0)
    731 			continue;
    732 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    733 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    734 				if (rte->ifp == ifp)
    735 					rte->ifp = NULL;
    736 			}
    737 		}
    738 	}
    739 }
    740 
    741 /*
    742  * Set PIM assert processing global
    743  */
    744 static int
    745 set_assert(int i)
    746 {
    747 	pim_assert = !!i;
    748 	return (0);
    749 }
    750 
    751 /*
    752  * Configure API capabilities
    753  */
    754 static int
    755 set_api_config(struct sockopt *sopt)
    756 {
    757 	u_int32_t apival;
    758 	int i, error;
    759 
    760 	/*
    761 	 * We can set the API capabilities only if it is the first operation
    762 	 * after MRT_INIT. I.e.:
    763 	 *  - there are no vifs installed
    764 	 *  - pim_assert is not enabled
    765 	 *  - the MFC table is empty
    766 	 */
    767 	error = sockopt_get(sopt, &apival, sizeof(apival));
    768 	if (error)
    769 		return (error);
    770 	if (numvifs > 0)
    771 		return (EPERM);
    772 	if (pim_assert)
    773 		return (EPERM);
    774 	for (i = 0; i < MFCTBLSIZ; i++) {
    775 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
    776 			return (EPERM);
    777 	}
    778 
    779 	mrt_api_config = apival & mrt_api_support;
    780 	return (0);
    781 }
    782 
    783 /*
    784  * Add a vif to the vif table
    785  */
    786 static int
    787 add_vif(struct vifctl *vifcp)
    788 {
    789 	struct vif *vifp;
    790 	struct ifaddr *ifa;
    791 	struct ifnet *ifp;
    792 	int error, s;
    793 	struct sockaddr_in sin;
    794 
    795 	if (vifcp->vifc_vifi >= MAXVIFS)
    796 		return (EINVAL);
    797 	if (in_nullhost(vifcp->vifc_lcl_addr))
    798 		return (EADDRNOTAVAIL);
    799 
    800 	vifp = &viftable[vifcp->vifc_vifi];
    801 	if (!in_nullhost(vifp->v_lcl_addr))
    802 		return (EADDRINUSE);
    803 
    804 	/* Find the interface with an address in AF_INET family. */
    805 #ifdef PIM
    806 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    807 		/*
    808 		 * XXX: Because VIFF_REGISTER does not really need a valid
    809 		 * local interface (e.g. it could be 127.0.0.2), we don't
    810 		 * check its address.
    811 		 */
    812 	    ifp = NULL;
    813 	} else
    814 #endif
    815 	{
    816 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
    817 		ifa = ifa_ifwithaddr(sintosa(&sin));
    818 		if (ifa == NULL)
    819 			return (EADDRNOTAVAIL);
    820 		ifp = ifa->ifa_ifp;
    821 	}
    822 
    823 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    824 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    825 			log(LOG_ERR, "source routed tunnels not supported\n");
    826 			return (EOPNOTSUPP);
    827 		}
    828 
    829 		/* attach this vif to decapsulator dispatch table */
    830 		/*
    831 		 * XXX Use addresses in registration so that matching
    832 		 * can be done with radix tree in decapsulator.  But,
    833 		 * we need to check inner header for multicast, so
    834 		 * this requires both radix tree lookup and then a
    835 		 * function to check, and this is not supported yet.
    836 		 */
    837 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    838 		    vif_encapcheck, &vif_protosw, vifp);
    839 		if (!vifp->v_encap_cookie)
    840 			return (EINVAL);
    841 
    842 		/* Create a fake encapsulation interface. */
    843 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
    844 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    845 			 "mdecap%d", vifcp->vifc_vifi);
    846 
    847 		/* Prepare cached route entry. */
    848 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    849 #ifdef PIM
    850 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    851 		ifp = &multicast_register_if;
    852 		if (mrtdebug)
    853 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    854 			    (void *)ifp);
    855 		if (reg_vif_num == VIFI_INVALID) {
    856 			memset(ifp, 0, sizeof(*ifp));
    857 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    858 				 "register_vif");
    859 			ifp->if_flags = IFF_LOOPBACK;
    860 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    861 			reg_vif_num = vifcp->vifc_vifi;
    862 		}
    863 #endif
    864 	} else {
    865 		/* Make sure the interface supports multicast. */
    866 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    867 			return (EOPNOTSUPP);
    868 
    869 		/* Enable promiscuous reception of all IP multicasts. */
    870 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    871 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
    872 		if (error)
    873 			return (error);
    874 	}
    875 
    876 	s = splsoftnet();
    877 
    878 	/* Define parameters for the tbf structure. */
    879 	vifp->tbf_q = NULL;
    880 	vifp->tbf_t = &vifp->tbf_q;
    881 	microtime(&vifp->tbf_last_pkt_t);
    882 	vifp->tbf_n_tok = 0;
    883 	vifp->tbf_q_len = 0;
    884 	vifp->tbf_max_q_len = MAXQSIZE;
    885 
    886 	vifp->v_flags = vifcp->vifc_flags;
    887 	vifp->v_threshold = vifcp->vifc_threshold;
    888 	/* scaling up here allows division by 1024 in critical code */
    889 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
    890 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
    891 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
    892 	vifp->v_ifp = ifp;
    893 	/* Initialize per vif pkt counters. */
    894 	vifp->v_pkt_in = 0;
    895 	vifp->v_pkt_out = 0;
    896 	vifp->v_bytes_in = 0;
    897 	vifp->v_bytes_out = 0;
    898 
    899 	callout_init(&vifp->v_repq_ch, 0);
    900 
    901 #ifdef RSVP_ISI
    902 	vifp->v_rsvp_on = 0;
    903 	vifp->v_rsvpd = NULL;
    904 #endif /* RSVP_ISI */
    905 
    906 	splx(s);
    907 
    908 	/* Adjust numvifs up if the vifi is higher than numvifs. */
    909 	if (numvifs <= vifcp->vifc_vifi)
    910 		numvifs = vifcp->vifc_vifi + 1;
    911 
    912 	if (mrtdebug)
    913 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
    914 		    vifcp->vifc_vifi,
    915 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
    916 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
    917 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
    918 		    vifcp->vifc_threshold,
    919 		    vifcp->vifc_rate_limit);
    920 
    921 	return (0);
    922 }
    923 
    924 void
    925 reset_vif(struct vif *vifp)
    926 {
    927 	struct mbuf *m, *n;
    928 	struct ifnet *ifp;
    929 	struct sockaddr_in sin;
    930 
    931 	callout_stop(&vifp->v_repq_ch);
    932 
    933 	/* detach this vif from decapsulator dispatch table */
    934 	encap_detach(vifp->v_encap_cookie);
    935 	vifp->v_encap_cookie = NULL;
    936 
    937 	/*
    938 	 * Free packets queued at the interface
    939 	 */
    940 	for (m = vifp->tbf_q; m != NULL; m = n) {
    941 		n = m->m_nextpkt;
    942 		m_freem(m);
    943 	}
    944 
    945 	if (vifp->v_flags & VIFF_TUNNEL)
    946 		free(vifp->v_ifp, M_MRTABLE);
    947 	else if (vifp->v_flags & VIFF_REGISTER) {
    948 #ifdef PIM
    949 		reg_vif_num = VIFI_INVALID;
    950 #endif
    951 	} else {
    952 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    953 		ifp = vifp->v_ifp;
    954 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
    955 	}
    956 	memset((void *)vifp, 0, sizeof(*vifp));
    957 }
    958 
    959 /*
    960  * Delete a vif from the vif table
    961  */
    962 static int
    963 del_vif(vifi_t *vifip)
    964 {
    965 	struct vif *vifp;
    966 	vifi_t vifi;
    967 	int s;
    968 
    969 	if (*vifip >= numvifs)
    970 		return (EINVAL);
    971 
    972 	vifp = &viftable[*vifip];
    973 	if (in_nullhost(vifp->v_lcl_addr))
    974 		return (EADDRNOTAVAIL);
    975 
    976 	s = splsoftnet();
    977 
    978 	reset_vif(vifp);
    979 
    980 	/* Adjust numvifs down */
    981 	for (vifi = numvifs; vifi > 0; vifi--)
    982 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
    983 			break;
    984 	numvifs = vifi;
    985 
    986 	splx(s);
    987 
    988 	if (mrtdebug)
    989 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
    990 
    991 	return (0);
    992 }
    993 
    994 /*
    995  * update an mfc entry without resetting counters and S,G addresses.
    996  */
    997 static void
    998 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    999 {
   1000 	int i;
   1001 
   1002 	rt->mfc_parent = mfccp->mfcc_parent;
   1003 	for (i = 0; i < numvifs; i++) {
   1004 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
   1005 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
   1006 			MRT_MFC_FLAGS_ALL;
   1007 	}
   1008 	/* set the RP address */
   1009 	if (mrt_api_config & MRT_MFC_RP)
   1010 		rt->mfc_rp = mfccp->mfcc_rp;
   1011 	else
   1012 		rt->mfc_rp = zeroin_addr;
   1013 }
   1014 
   1015 /*
   1016  * fully initialize an mfc entry from the parameter.
   1017  */
   1018 static void
   1019 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
   1020 {
   1021 	rt->mfc_origin     = mfccp->mfcc_origin;
   1022 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
   1023 
   1024 	update_mfc_params(rt, mfccp);
   1025 
   1026 	/* initialize pkt counters per src-grp */
   1027 	rt->mfc_pkt_cnt    = 0;
   1028 	rt->mfc_byte_cnt   = 0;
   1029 	rt->mfc_wrong_if   = 0;
   1030 	timerclear(&rt->mfc_last_assert);
   1031 }
   1032 
   1033 static void
   1034 expire_mfc(struct mfc *rt)
   1035 {
   1036 	struct rtdetq *rte, *nrte;
   1037 
   1038 	free_bw_list(rt->mfc_bw_meter);
   1039 
   1040 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1041 		nrte = rte->next;
   1042 		m_freem(rte->m);
   1043 		free(rte, M_MRTABLE);
   1044 	}
   1045 
   1046 	LIST_REMOVE(rt, mfc_hash);
   1047 	free(rt, M_MRTABLE);
   1048 }
   1049 
   1050 /*
   1051  * Add an mfc entry
   1052  */
   1053 static int
   1054 add_mfc(struct sockopt *sopt)
   1055 {
   1056 	struct mfcctl2 mfcctl2;
   1057 	struct mfcctl2 *mfccp;
   1058 	struct mfc *rt;
   1059 	u_int32_t hash = 0;
   1060 	struct rtdetq *rte, *nrte;
   1061 	u_short nstl;
   1062 	int s;
   1063 	int error;
   1064 
   1065 	/*
   1066 	 * select data size depending on API version.
   1067 	 */
   1068 	mfccp = &mfcctl2;
   1069 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1070 
   1071 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1072 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1073 	else
   1074 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1075 
   1076 	if (error)
   1077 		return (error);
   1078 
   1079 	s = splsoftnet();
   1080 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1081 
   1082 	/* If an entry already exists, just update the fields */
   1083 	if (rt) {
   1084 		if (mrtdebug & DEBUG_MFC)
   1085 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1086 			    ntohl(mfccp->mfcc_origin.s_addr),
   1087 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1088 			    mfccp->mfcc_parent);
   1089 
   1090 		update_mfc_params(rt, mfccp);
   1091 
   1092 		splx(s);
   1093 		return (0);
   1094 	}
   1095 
   1096 	/*
   1097 	 * Find the entry for which the upcall was made and update
   1098 	 */
   1099 	nstl = 0;
   1100 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1101 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1102 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1103 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1104 		    rt->mfc_stall != NULL) {
   1105 			if (nstl++)
   1106 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1107 				    "multiple kernel entries",
   1108 				    ntohl(mfccp->mfcc_origin.s_addr),
   1109 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1110 				    mfccp->mfcc_parent, rt->mfc_stall);
   1111 
   1112 			if (mrtdebug & DEBUG_MFC)
   1113 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1114 				    ntohl(mfccp->mfcc_origin.s_addr),
   1115 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1116 				    mfccp->mfcc_parent, rt->mfc_stall);
   1117 
   1118 			rte = rt->mfc_stall;
   1119 			init_mfc_params(rt, mfccp);
   1120 			rt->mfc_stall = NULL;
   1121 
   1122 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1123 			nexpire[hash]--;
   1124 
   1125 			/* free packets Qed at the end of this entry */
   1126 			for (; rte != NULL; rte = nrte) {
   1127 				nrte = rte->next;
   1128 				if (rte->ifp) {
   1129 #ifdef RSVP_ISI
   1130 					ip_mdq(rte->m, rte->ifp, rt, -1);
   1131 #else
   1132 					ip_mdq(rte->m, rte->ifp, rt);
   1133 #endif /* RSVP_ISI */
   1134 				}
   1135 				m_freem(rte->m);
   1136 #ifdef UPCALL_TIMING
   1137 				collate(&rte->t);
   1138 #endif /* UPCALL_TIMING */
   1139 				free(rte, M_MRTABLE);
   1140 			}
   1141 		}
   1142 	}
   1143 
   1144 	/*
   1145 	 * It is possible that an entry is being inserted without an upcall
   1146 	 */
   1147 	if (nstl == 0) {
   1148 		/*
   1149 		 * No mfc; make a new one
   1150 		 */
   1151 		if (mrtdebug & DEBUG_MFC)
   1152 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1153 			    ntohl(mfccp->mfcc_origin.s_addr),
   1154 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1155 			    mfccp->mfcc_parent);
   1156 
   1157 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1158 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1159 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1160 				init_mfc_params(rt, mfccp);
   1161 				if (rt->mfc_expire)
   1162 					nexpire[hash]--;
   1163 				rt->mfc_expire = 0;
   1164 				break; /* XXX */
   1165 			}
   1166 		}
   1167 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1168 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1169 						  M_NOWAIT);
   1170 			if (rt == NULL) {
   1171 				splx(s);
   1172 				return (ENOBUFS);
   1173 			}
   1174 
   1175 			init_mfc_params(rt, mfccp);
   1176 			rt->mfc_expire	= 0;
   1177 			rt->mfc_stall	= NULL;
   1178 			rt->mfc_bw_meter = NULL;
   1179 
   1180 			/* insert new entry at head of hash chain */
   1181 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1182 		}
   1183 	}
   1184 
   1185 	splx(s);
   1186 	return (0);
   1187 }
   1188 
   1189 #ifdef UPCALL_TIMING
   1190 /*
   1191  * collect delay statistics on the upcalls
   1192  */
   1193 static void
   1194 collate(struct timeval *t)
   1195 {
   1196 	u_int32_t d;
   1197 	struct timeval tp;
   1198 	u_int32_t delta;
   1199 
   1200 	microtime(&tp);
   1201 
   1202 	if (timercmp(t, &tp, <)) {
   1203 		TV_DELTA(tp, *t, delta);
   1204 
   1205 		d = delta >> 10;
   1206 		if (d > 50)
   1207 			d = 50;
   1208 
   1209 		++upcall_data[d];
   1210 	}
   1211 }
   1212 #endif /* UPCALL_TIMING */
   1213 
   1214 /*
   1215  * Delete an mfc entry
   1216  */
   1217 static int
   1218 del_mfc(struct sockopt *sopt)
   1219 {
   1220 	struct mfcctl2 mfcctl2;
   1221 	struct mfcctl2 *mfccp;
   1222 	struct mfc *rt;
   1223 	int s;
   1224 	int error;
   1225 
   1226 	/*
   1227 	 * XXX: for deleting MFC entries the information in entries
   1228 	 * of size "struct mfcctl" is sufficient.
   1229 	 */
   1230 
   1231 	mfccp = &mfcctl2;
   1232 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1233 
   1234 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1235 	if (error) {
   1236 		/* Try with the size of mfcctl2. */
   1237 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1238 		if (error)
   1239 			return (error);
   1240 	}
   1241 
   1242 	if (mrtdebug & DEBUG_MFC)
   1243 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1244 		    ntohl(mfccp->mfcc_origin.s_addr),
   1245 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1246 
   1247 	s = splsoftnet();
   1248 
   1249 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1250 	if (rt == NULL) {
   1251 		splx(s);
   1252 		return (EADDRNOTAVAIL);
   1253 	}
   1254 
   1255 	/*
   1256 	 * free the bw_meter entries
   1257 	 */
   1258 	free_bw_list(rt->mfc_bw_meter);
   1259 	rt->mfc_bw_meter = NULL;
   1260 
   1261 	LIST_REMOVE(rt, mfc_hash);
   1262 	free(rt, M_MRTABLE);
   1263 
   1264 	splx(s);
   1265 	return (0);
   1266 }
   1267 
   1268 static int
   1269 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
   1270 {
   1271 	if (s) {
   1272 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
   1273 			sorwakeup(s);
   1274 			return (0);
   1275 		}
   1276 	}
   1277 	m_freem(mm);
   1278 	return (-1);
   1279 }
   1280 
   1281 /*
   1282  * IP multicast forwarding function. This function assumes that the packet
   1283  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1284  * pointed to by "ifp", and the packet is to be relayed to other networks
   1285  * that have members of the packet's destination IP multicast group.
   1286  *
   1287  * The packet is returned unscathed to the caller, unless it is
   1288  * erroneous, in which case a non-zero return value tells the caller to
   1289  * discard it.
   1290  */
   1291 
   1292 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1293 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1294 
   1295 int
   1296 #ifdef RSVP_ISI
   1297 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
   1298 #else
   1299 ip_mforward(struct mbuf *m, struct ifnet *ifp)
   1300 #endif /* RSVP_ISI */
   1301 {
   1302 	struct ip *ip = mtod(m, struct ip *);
   1303 	struct mfc *rt;
   1304 	static int srctun = 0;
   1305 	struct mbuf *mm;
   1306 	struct sockaddr_in sin;
   1307 	int s;
   1308 	vifi_t vifi;
   1309 
   1310 	if (mrtdebug & DEBUG_FORWARD)
   1311 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1312 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1313 
   1314 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1315 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1316 		/*
   1317 		 * Packet arrived via a physical interface or
   1318 		 * an encapsulated tunnel or a register_vif.
   1319 		 */
   1320 	} else {
   1321 		/*
   1322 		 * Packet arrived through a source-route tunnel.
   1323 		 * Source-route tunnels are no longer supported.
   1324 		 */
   1325 		if ((srctun++ % 1000) == 0)
   1326 			log(LOG_ERR,
   1327 			    "ip_mforward: received source-routed packet from %x\n",
   1328 			    ntohl(ip->ip_src.s_addr));
   1329 
   1330 		return (1);
   1331 	}
   1332 
   1333 	/*
   1334 	 * Clear any in-bound checksum flags for this packet.
   1335 	 */
   1336 	m->m_pkthdr.csum_flags = 0;
   1337 
   1338 #ifdef RSVP_ISI
   1339 	if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
   1340 		if (ip->ip_ttl < MAXTTL)
   1341 			ip->ip_ttl++;	/* compensate for -1 in *_send routines */
   1342 		if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
   1343 			struct vif *vifp = viftable + vifi;
   1344 			printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
   1345 			    ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
   1346 			    (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
   1347 			    vifp->v_ifp->if_xname);
   1348 		}
   1349 		return (ip_mdq(m, ifp, NULL, vifi));
   1350 	}
   1351 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
   1352 		printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
   1353 		    ntohl(ip->ip_src), ntohl(ip->ip_dst));
   1354 	}
   1355 #endif /* RSVP_ISI */
   1356 
   1357 	/*
   1358 	 * Don't forward a packet with time-to-live of zero or one,
   1359 	 * or a packet destined to a local-only group.
   1360 	 */
   1361 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1362 		return (0);
   1363 
   1364 	/*
   1365 	 * Determine forwarding vifs from the forwarding cache table
   1366 	 */
   1367 	s = splsoftnet();
   1368 	++mrtstat.mrts_mfc_lookups;
   1369 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1370 
   1371 	/* Entry exists, so forward if necessary */
   1372 	if (rt != NULL) {
   1373 		splx(s);
   1374 #ifdef RSVP_ISI
   1375 		return (ip_mdq(m, ifp, rt, -1));
   1376 #else
   1377 		return (ip_mdq(m, ifp, rt));
   1378 #endif /* RSVP_ISI */
   1379 	} else {
   1380 		/*
   1381 		 * If we don't have a route for packet's origin,
   1382 		 * Make a copy of the packet & send message to routing daemon
   1383 		 */
   1384 
   1385 		struct mbuf *mb0;
   1386 		struct rtdetq *rte;
   1387 		u_int32_t hash;
   1388 		int hlen = ip->ip_hl << 2;
   1389 #ifdef UPCALL_TIMING
   1390 		struct timeval tp;
   1391 
   1392 		microtime(&tp);
   1393 #endif /* UPCALL_TIMING */
   1394 
   1395 		++mrtstat.mrts_mfc_misses;
   1396 
   1397 		mrtstat.mrts_no_route++;
   1398 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1399 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1400 			    ntohl(ip->ip_src.s_addr),
   1401 			    ntohl(ip->ip_dst.s_addr));
   1402 
   1403 		/*
   1404 		 * Allocate mbufs early so that we don't do extra work if we are
   1405 		 * just going to fail anyway.  Make sure to pullup the header so
   1406 		 * that other people can't step on it.
   1407 		 */
   1408 		rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
   1409 					      M_NOWAIT);
   1410 		if (rte == NULL) {
   1411 			splx(s);
   1412 			return (ENOBUFS);
   1413 		}
   1414 		mb0 = m_copypacket(m, M_DONTWAIT);
   1415 		M_PULLUP(mb0, hlen);
   1416 		if (mb0 == NULL) {
   1417 			free(rte, M_MRTABLE);
   1418 			splx(s);
   1419 			return (ENOBUFS);
   1420 		}
   1421 
   1422 		/* is there an upcall waiting for this flow? */
   1423 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1424 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1425 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1426 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1427 			    rt->mfc_stall != NULL)
   1428 				break;
   1429 		}
   1430 
   1431 		if (rt == NULL) {
   1432 			int i;
   1433 			struct igmpmsg *im;
   1434 
   1435 			/*
   1436 			 * Locate the vifi for the incoming interface for
   1437 			 * this packet.
   1438 			 * If none found, drop packet.
   1439 			 */
   1440 			for (vifi = 0; vifi < numvifs &&
   1441 				 viftable[vifi].v_ifp != ifp; vifi++)
   1442 				;
   1443 			if (vifi >= numvifs) /* vif not found, drop packet */
   1444 				goto non_fatal;
   1445 
   1446 			/* no upcall, so make a new entry */
   1447 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1448 						  M_NOWAIT);
   1449 			if (rt == NULL)
   1450 				goto fail;
   1451 
   1452 			/*
   1453 			 * Make a copy of the header to send to the user level
   1454 			 * process
   1455 			 */
   1456 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
   1457 			M_PULLUP(mm, hlen);
   1458 			if (mm == NULL)
   1459 				goto fail1;
   1460 
   1461 			/*
   1462 			 * Send message to routing daemon to install
   1463 			 * a route into the kernel table
   1464 			 */
   1465 
   1466 			im = mtod(mm, struct igmpmsg *);
   1467 			im->im_msgtype = IGMPMSG_NOCACHE;
   1468 			im->im_mbz = 0;
   1469 			im->im_vif = vifi;
   1470 
   1471 			mrtstat.mrts_upcalls++;
   1472 
   1473 			sockaddr_in_init(&sin, &ip->ip_src, 0);
   1474 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1475 				log(LOG_WARNING,
   1476 				    "ip_mforward: ip_mrouter socket queue full\n");
   1477 				++mrtstat.mrts_upq_sockfull;
   1478 			fail1:
   1479 				free(rt, M_MRTABLE);
   1480 			fail:
   1481 				free(rte, M_MRTABLE);
   1482 				m_freem(mb0);
   1483 				splx(s);
   1484 				return (ENOBUFS);
   1485 			}
   1486 
   1487 			/* insert new entry at head of hash chain */
   1488 			rt->mfc_origin = ip->ip_src;
   1489 			rt->mfc_mcastgrp = ip->ip_dst;
   1490 			rt->mfc_pkt_cnt = 0;
   1491 			rt->mfc_byte_cnt = 0;
   1492 			rt->mfc_wrong_if = 0;
   1493 			rt->mfc_expire = UPCALL_EXPIRE;
   1494 			nexpire[hash]++;
   1495 			for (i = 0; i < numvifs; i++) {
   1496 				rt->mfc_ttls[i] = 0;
   1497 				rt->mfc_flags[i] = 0;
   1498 			}
   1499 			rt->mfc_parent = -1;
   1500 
   1501 			/* clear the RP address */
   1502 			rt->mfc_rp = zeroin_addr;
   1503 
   1504 			rt->mfc_bw_meter = NULL;
   1505 
   1506 			/* link into table */
   1507 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1508 			/* Add this entry to the end of the queue */
   1509 			rt->mfc_stall = rte;
   1510 		} else {
   1511 			/* determine if q has overflowed */
   1512 			struct rtdetq **p;
   1513 			int npkts = 0;
   1514 
   1515 			/*
   1516 			 * XXX ouch! we need to append to the list, but we
   1517 			 * only have a pointer to the front, so we have to
   1518 			 * scan the entire list every time.
   1519 			 */
   1520 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1521 				if (++npkts > MAX_UPQ) {
   1522 					mrtstat.mrts_upq_ovflw++;
   1523 				non_fatal:
   1524 					free(rte, M_MRTABLE);
   1525 					m_freem(mb0);
   1526 					splx(s);
   1527 					return (0);
   1528 				}
   1529 
   1530 			/* Add this entry to the end of the queue */
   1531 			*p = rte;
   1532 		}
   1533 
   1534 		rte->next = NULL;
   1535 		rte->m = mb0;
   1536 		rte->ifp = ifp;
   1537 #ifdef UPCALL_TIMING
   1538 		rte->t = tp;
   1539 #endif /* UPCALL_TIMING */
   1540 
   1541 		splx(s);
   1542 
   1543 		return (0);
   1544 	}
   1545 }
   1546 
   1547 
   1548 /*ARGSUSED*/
   1549 static void
   1550 expire_upcalls(void *v)
   1551 {
   1552 	int i;
   1553 	int s;
   1554 
   1555 	s = splsoftnet();
   1556 
   1557 	for (i = 0; i < MFCTBLSIZ; i++) {
   1558 		struct mfc *rt, *nrt;
   1559 
   1560 		if (nexpire[i] == 0)
   1561 			continue;
   1562 
   1563 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1564 			nrt = LIST_NEXT(rt, mfc_hash);
   1565 
   1566 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1567 				continue;
   1568 			nexpire[i]--;
   1569 
   1570 			/*
   1571 			 * free the bw_meter entries
   1572 			 */
   1573 			while (rt->mfc_bw_meter != NULL) {
   1574 				struct bw_meter *x = rt->mfc_bw_meter;
   1575 
   1576 				rt->mfc_bw_meter = x->bm_mfc_next;
   1577 				kmem_free(x, sizeof(*x));
   1578 			}
   1579 
   1580 			++mrtstat.mrts_cache_cleanups;
   1581 			if (mrtdebug & DEBUG_EXPIRE)
   1582 				log(LOG_DEBUG,
   1583 				    "expire_upcalls: expiring (%x %x)\n",
   1584 				    ntohl(rt->mfc_origin.s_addr),
   1585 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1586 
   1587 			expire_mfc(rt);
   1588 		}
   1589 	}
   1590 
   1591 	splx(s);
   1592 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1593 	    expire_upcalls, NULL);
   1594 }
   1595 
   1596 /*
   1597  * Packet forwarding routine once entry in the cache is made
   1598  */
   1599 static int
   1600 #ifdef RSVP_ISI
   1601 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
   1602 #else
   1603 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
   1604 #endif /* RSVP_ISI */
   1605 {
   1606 	struct ip  *ip = mtod(m, struct ip *);
   1607 	vifi_t vifi;
   1608 	struct vif *vifp;
   1609 	struct sockaddr_in sin;
   1610 	int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1611 
   1612 /*
   1613  * Macro to send packet on vif.  Since RSVP packets don't get counted on
   1614  * input, they shouldn't get counted on output, so statistics keeping is
   1615  * separate.
   1616  */
   1617 #define MC_SEND(ip, vifp, m) do {					\
   1618 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1619 		encap_send((ip), (vifp), (m));				\
   1620 	else								\
   1621 		phyint_send((ip), (vifp), (m));				\
   1622 } while (/*CONSTCOND*/ 0)
   1623 
   1624 #ifdef RSVP_ISI
   1625 	/*
   1626 	 * If xmt_vif is not -1, send on only the requested vif.
   1627 	 *
   1628 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
   1629 	 */
   1630 	if (xmt_vif < numvifs) {
   1631 #ifdef PIM
   1632 		if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
   1633 			pim_register_send(ip, viftable + xmt_vif, m, rt);
   1634 		else
   1635 #endif
   1636 		MC_SEND(ip, viftable + xmt_vif, m);
   1637 		return (1);
   1638 	}
   1639 #endif /* RSVP_ISI */
   1640 
   1641 	/*
   1642 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1643 	 */
   1644 	vifi = rt->mfc_parent;
   1645 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1646 		/* came in the wrong interface */
   1647 		if (mrtdebug & DEBUG_FORWARD)
   1648 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1649 			    ifp, vifi,
   1650 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1651 		++mrtstat.mrts_wrong_if;
   1652 		++rt->mfc_wrong_if;
   1653 		/*
   1654 		 * If we are doing PIM assert processing, send a message
   1655 		 * to the routing daemon.
   1656 		 *
   1657 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1658 		 * can complete the SPT switch, regardless of the type
   1659 		 * of the iif (broadcast media, GRE tunnel, etc).
   1660 		 */
   1661 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1662 			struct timeval now;
   1663 			u_int32_t delta;
   1664 
   1665 #ifdef PIM
   1666 			if (ifp == &multicast_register_if)
   1667 				pimstat.pims_rcv_registers_wrongiif++;
   1668 #endif
   1669 
   1670 			/* Get vifi for the incoming packet */
   1671 			for (vifi = 0;
   1672 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1673 			     vifi++)
   1674 			    ;
   1675 			if (vifi >= numvifs) {
   1676 				/* The iif is not found: ignore the packet. */
   1677 				return (0);
   1678 			}
   1679 
   1680 			if (rt->mfc_flags[vifi] &
   1681 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1682 				/* WRONGVIF disabled: ignore the packet */
   1683 				return (0);
   1684 			}
   1685 
   1686 			microtime(&now);
   1687 
   1688 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1689 
   1690 			if (delta > ASSERT_MSG_TIME) {
   1691 				struct igmpmsg *im;
   1692 				int hlen = ip->ip_hl << 2;
   1693 				struct mbuf *mm =
   1694 				    m_copym(m, 0, hlen, M_DONTWAIT);
   1695 
   1696 				M_PULLUP(mm, hlen);
   1697 				if (mm == NULL)
   1698 					return (ENOBUFS);
   1699 
   1700 				rt->mfc_last_assert = now;
   1701 
   1702 				im = mtod(mm, struct igmpmsg *);
   1703 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1704 				im->im_mbz	= 0;
   1705 				im->im_vif	= vifi;
   1706 
   1707 				mrtstat.mrts_upcalls++;
   1708 
   1709 				sockaddr_in_init(&sin, &im->im_src, 0);
   1710 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1711 					log(LOG_WARNING,
   1712 					    "ip_mforward: ip_mrouter socket queue full\n");
   1713 					++mrtstat.mrts_upq_sockfull;
   1714 					return (ENOBUFS);
   1715 				}
   1716 			}
   1717 		}
   1718 		return (0);
   1719 	}
   1720 
   1721 	/* If I sourced this packet, it counts as output, else it was input. */
   1722 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1723 		viftable[vifi].v_pkt_out++;
   1724 		viftable[vifi].v_bytes_out += plen;
   1725 	} else {
   1726 		viftable[vifi].v_pkt_in++;
   1727 		viftable[vifi].v_bytes_in += plen;
   1728 	}
   1729 	rt->mfc_pkt_cnt++;
   1730 	rt->mfc_byte_cnt += plen;
   1731 
   1732 	/*
   1733 	 * For each vif, decide if a copy of the packet should be forwarded.
   1734 	 * Forward if:
   1735 	 *		- the ttl exceeds the vif's threshold
   1736 	 *		- there are group members downstream on interface
   1737 	 */
   1738 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
   1739 		if ((rt->mfc_ttls[vifi] > 0) &&
   1740 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1741 			vifp->v_pkt_out++;
   1742 			vifp->v_bytes_out += plen;
   1743 #ifdef PIM
   1744 			if (vifp->v_flags & VIFF_REGISTER)
   1745 				pim_register_send(ip, vifp, m, rt);
   1746 			else
   1747 #endif
   1748 			MC_SEND(ip, vifp, m);
   1749 		}
   1750 
   1751 	/*
   1752 	 * Perform upcall-related bw measuring.
   1753 	 */
   1754 	if (rt->mfc_bw_meter != NULL) {
   1755 		struct bw_meter *x;
   1756 		struct timeval now;
   1757 
   1758 		microtime(&now);
   1759 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1760 			bw_meter_receive_packet(x, plen, &now);
   1761 	}
   1762 
   1763 	return (0);
   1764 }
   1765 
   1766 #ifdef RSVP_ISI
   1767 /*
   1768  * check if a vif number is legal/ok. This is used by ip_output.
   1769  */
   1770 int
   1771 legal_vif_num(int vif)
   1772 {
   1773 	if (vif >= 0 && vif < numvifs)
   1774 		return (1);
   1775 	else
   1776 		return (0);
   1777 }
   1778 #endif /* RSVP_ISI */
   1779 
   1780 static void
   1781 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1782 {
   1783 	struct mbuf *mb_copy;
   1784 	int hlen = ip->ip_hl << 2;
   1785 
   1786 	/*
   1787 	 * Make a new reference to the packet; make sure that
   1788 	 * the IP header is actually copied, not just referenced,
   1789 	 * so that ip_output() only scribbles on the copy.
   1790 	 */
   1791 	mb_copy = m_copypacket(m, M_DONTWAIT);
   1792 	M_PULLUP(mb_copy, hlen);
   1793 	if (mb_copy == NULL)
   1794 		return;
   1795 
   1796 	if (vifp->v_rate_limit <= 0)
   1797 		tbf_send_packet(vifp, mb_copy);
   1798 	else
   1799 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1800 		    ntohs(ip->ip_len));
   1801 }
   1802 
   1803 static void
   1804 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1805 {
   1806 	struct mbuf *mb_copy;
   1807 	struct ip *ip_copy;
   1808 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1809 
   1810 	/* Take care of delayed checksums */
   1811 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1812 		in_delayed_cksum(m);
   1813 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1814 	}
   1815 
   1816 	/*
   1817 	 * copy the old packet & pullup its IP header into the
   1818 	 * new mbuf so we can modify it.  Try to fill the new
   1819 	 * mbuf since if we don't the ethernet driver will.
   1820 	 */
   1821 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1822 	if (mb_copy == NULL)
   1823 		return;
   1824 	mb_copy->m_data += max_linkhdr;
   1825 	mb_copy->m_pkthdr.len = len;
   1826 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1827 
   1828 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
   1829 		m_freem(mb_copy);
   1830 		return;
   1831 	}
   1832 	i = MHLEN - max_linkhdr;
   1833 	if (i > len)
   1834 		i = len;
   1835 	mb_copy = m_pullup(mb_copy, i);
   1836 	if (mb_copy == NULL)
   1837 		return;
   1838 
   1839 	/*
   1840 	 * fill in the encapsulating IP header.
   1841 	 */
   1842 	ip_copy = mtod(mb_copy, struct ip *);
   1843 	*ip_copy = multicast_encap_iphdr;
   1844 	if (len < IP_MINFRAGSIZE)
   1845 		ip_copy->ip_id = 0;
   1846 	else
   1847 		ip_copy->ip_id = ip_newid(NULL);
   1848 	ip_copy->ip_len = htons(len);
   1849 	ip_copy->ip_src = vifp->v_lcl_addr;
   1850 	ip_copy->ip_dst = vifp->v_rmt_addr;
   1851 
   1852 	/*
   1853 	 * turn the encapsulated IP header back into a valid one.
   1854 	 */
   1855 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
   1856 	--ip->ip_ttl;
   1857 	ip->ip_sum = 0;
   1858 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   1859 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   1860 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   1861 
   1862 	if (vifp->v_rate_limit <= 0)
   1863 		tbf_send_packet(vifp, mb_copy);
   1864 	else
   1865 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   1866 }
   1867 
   1868 /*
   1869  * De-encapsulate a packet and feed it back through ip input.
   1870  */
   1871 static void
   1872 vif_input(struct mbuf *m, ...)
   1873 {
   1874 	int off, proto;
   1875 	va_list ap;
   1876 	struct vif *vifp;
   1877 
   1878 	va_start(ap, m);
   1879 	off = va_arg(ap, int);
   1880 	proto = va_arg(ap, int);
   1881 	va_end(ap);
   1882 
   1883 	vifp = (struct vif *)encap_getarg(m);
   1884 	if (!vifp || proto != ENCAP_PROTO) {
   1885 		m_freem(m);
   1886 		mrtstat.mrts_bad_tunnel++;
   1887 		return;
   1888 	}
   1889 
   1890 	m_adj(m, off);
   1891 	m->m_pkthdr.rcvif = vifp->v_ifp;
   1892 
   1893 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
   1894 		m_freem(m);
   1895 	}
   1896 }
   1897 
   1898 /*
   1899  * Check if the packet should be received on the vif denoted by arg.
   1900  * (The encap selection code will call this once per vif since each is
   1901  * registered separately.)
   1902  */
   1903 static int
   1904 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
   1905 {
   1906 	struct vif *vifp;
   1907 	struct ip ip;
   1908 
   1909 #ifdef DIAGNOSTIC
   1910 	if (!arg || proto != IPPROTO_IPV4)
   1911 		panic("unexpected arg in vif_encapcheck");
   1912 #endif
   1913 
   1914 	/*
   1915 	 * Accept the packet only if the inner heaader is multicast
   1916 	 * and the outer header matches a tunnel-mode vif.  Order
   1917 	 * checks in the hope that common non-matching packets will be
   1918 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
   1919 	 * parallel tunnel (e.g. gif(4)) is unlikely.
   1920 	 */
   1921 
   1922 	/* Obtain the outer IP header and the vif pointer. */
   1923 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
   1924 	vifp = (struct vif *)arg;
   1925 
   1926 	/*
   1927 	 * The outer source must match the vif's remote peer address.
   1928 	 * For a multicast router with several tunnels, this is the
   1929 	 * only check that will fail on packets in other tunnels,
   1930 	 * assuming the local address is the same.
   1931 	 */
   1932 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   1933 		return 0;
   1934 
   1935 	/* The outer destination must match the vif's local address. */
   1936 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
   1937 		return 0;
   1938 
   1939 	/* The vif must be of tunnel type. */
   1940 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
   1941 		return 0;
   1942 
   1943 	/* Check that the inner destination is multicast. */
   1944 	m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
   1945 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   1946 		return 0;
   1947 
   1948 	/*
   1949 	 * We have checked that both the outer src and dst addresses
   1950 	 * match the vif, and that the inner destination is multicast
   1951 	 * (224/5).  By claiming more than 64, we intend to
   1952 	 * preferentially take packets that also match a parallel
   1953 	 * gif(4).
   1954 	 */
   1955 	return 32 + 32 + 5;
   1956 }
   1957 
   1958 /*
   1959  * Token bucket filter module
   1960  */
   1961 static void
   1962 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
   1963 {
   1964 
   1965 	if (len > MAX_BKT_SIZE) {
   1966 		/* drop if packet is too large */
   1967 		mrtstat.mrts_pkt2large++;
   1968 		m_freem(m);
   1969 		return;
   1970 	}
   1971 
   1972 	tbf_update_tokens(vifp);
   1973 
   1974 	/*
   1975 	 * If there are enough tokens, and the queue is empty, send this packet
   1976 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   1977 	 */
   1978 	if (vifp->tbf_q_len == 0) {
   1979 		if (len <= vifp->tbf_n_tok) {
   1980 			vifp->tbf_n_tok -= len;
   1981 			tbf_send_packet(vifp, m);
   1982 		} else {
   1983 			/* queue packet and timeout till later */
   1984 			tbf_queue(vifp, m);
   1985 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1986 			    tbf_reprocess_q, vifp);
   1987 		}
   1988 	} else {
   1989 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   1990 		    !tbf_dq_sel(vifp, ip)) {
   1991 			/* queue full, and couldn't make room */
   1992 			mrtstat.mrts_q_overflow++;
   1993 			m_freem(m);
   1994 		} else {
   1995 			/* queue length low enough, or made room */
   1996 			tbf_queue(vifp, m);
   1997 			tbf_process_q(vifp);
   1998 		}
   1999 	}
   2000 }
   2001 
   2002 /*
   2003  * adds a packet to the queue at the interface
   2004  */
   2005 static void
   2006 tbf_queue(struct vif *vifp, struct mbuf *m)
   2007 {
   2008 	int s = splsoftnet();
   2009 
   2010 	/* insert at tail */
   2011 	*vifp->tbf_t = m;
   2012 	vifp->tbf_t = &m->m_nextpkt;
   2013 	vifp->tbf_q_len++;
   2014 
   2015 	splx(s);
   2016 }
   2017 
   2018 
   2019 /*
   2020  * processes the queue at the interface
   2021  */
   2022 static void
   2023 tbf_process_q(struct vif *vifp)
   2024 {
   2025 	struct mbuf *m;
   2026 	int len;
   2027 	int s = splsoftnet();
   2028 
   2029 	/*
   2030 	 * Loop through the queue at the interface and send as many packets
   2031 	 * as possible.
   2032 	 */
   2033 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   2034 		len = ntohs(mtod(m, struct ip *)->ip_len);
   2035 
   2036 		/* determine if the packet can be sent */
   2037 		if (len <= vifp->tbf_n_tok) {
   2038 			/* if so,
   2039 			 * reduce no of tokens, dequeue the packet,
   2040 			 * send the packet.
   2041 			 */
   2042 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   2043 				vifp->tbf_t = &vifp->tbf_q;
   2044 			--vifp->tbf_q_len;
   2045 
   2046 			m->m_nextpkt = NULL;
   2047 			vifp->tbf_n_tok -= len;
   2048 			tbf_send_packet(vifp, m);
   2049 		} else
   2050 			break;
   2051 	}
   2052 	splx(s);
   2053 }
   2054 
   2055 static void
   2056 tbf_reprocess_q(void *arg)
   2057 {
   2058 	struct vif *vifp = arg;
   2059 
   2060 	if (ip_mrouter == NULL)
   2061 		return;
   2062 
   2063 	tbf_update_tokens(vifp);
   2064 	tbf_process_q(vifp);
   2065 
   2066 	if (vifp->tbf_q_len != 0)
   2067 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   2068 		    tbf_reprocess_q, vifp);
   2069 }
   2070 
   2071 /* function that will selectively discard a member of the queue
   2072  * based on the precedence value and the priority
   2073  */
   2074 static int
   2075 tbf_dq_sel(struct vif *vifp, struct ip *ip)
   2076 {
   2077 	u_int p;
   2078 	struct mbuf **mp, *m;
   2079 	int s = splsoftnet();
   2080 
   2081 	p = priority(vifp, ip);
   2082 
   2083 	for (mp = &vifp->tbf_q, m = *mp;
   2084 	    m != NULL;
   2085 	    mp = &m->m_nextpkt, m = *mp) {
   2086 		if (p > priority(vifp, mtod(m, struct ip *))) {
   2087 			if ((*mp = m->m_nextpkt) == NULL)
   2088 				vifp->tbf_t = mp;
   2089 			--vifp->tbf_q_len;
   2090 
   2091 			m_freem(m);
   2092 			mrtstat.mrts_drop_sel++;
   2093 			splx(s);
   2094 			return (1);
   2095 		}
   2096 	}
   2097 	splx(s);
   2098 	return (0);
   2099 }
   2100 
   2101 static void
   2102 tbf_send_packet(struct vif *vifp, struct mbuf *m)
   2103 {
   2104 	int error;
   2105 	int s = splsoftnet();
   2106 
   2107 	if (vifp->v_flags & VIFF_TUNNEL) {
   2108 		/* If tunnel options */
   2109 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
   2110 	} else {
   2111 		/* if physical interface option, extract the options and then send */
   2112 		struct ip_moptions imo;
   2113 
   2114 		imo.imo_multicast_ifp = vifp->v_ifp;
   2115 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2116 		imo.imo_multicast_loop = 1;
   2117 #ifdef RSVP_ISI
   2118 		imo.imo_multicast_vif = -1;
   2119 #endif
   2120 
   2121 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
   2122 		    &imo, NULL);
   2123 
   2124 		if (mrtdebug & DEBUG_XMIT)
   2125 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2126 			    (long)(vifp - viftable), error);
   2127 	}
   2128 	splx(s);
   2129 }
   2130 
   2131 /* determine the current time and then
   2132  * the elapsed time (between the last time and time now)
   2133  * in milliseconds & update the no. of tokens in the bucket
   2134  */
   2135 static void
   2136 tbf_update_tokens(struct vif *vifp)
   2137 {
   2138 	struct timeval tp;
   2139 	u_int32_t tm;
   2140 	int s = splsoftnet();
   2141 
   2142 	microtime(&tp);
   2143 
   2144 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2145 
   2146 	/*
   2147 	 * This formula is actually
   2148 	 * "time in seconds" * "bytes/second".
   2149 	 *
   2150 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2151 	 *
   2152 	 * The (1000/1024) was introduced in add_vif to optimize
   2153 	 * this divide into a shift.
   2154 	 */
   2155 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2156 	vifp->tbf_last_pkt_t = tp;
   2157 
   2158 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2159 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2160 
   2161 	splx(s);
   2162 }
   2163 
   2164 static int
   2165 priority(struct vif *vifp, struct ip *ip)
   2166 {
   2167 	int prio = 50;	/* the lowest priority -- default case */
   2168 
   2169 	/* temporary hack; may add general packet classifier some day */
   2170 
   2171 	/*
   2172 	 * The UDP port space is divided up into four priority ranges:
   2173 	 * [0, 16384)     : unclassified - lowest priority
   2174 	 * [16384, 32768) : audio - highest priority
   2175 	 * [32768, 49152) : whiteboard - medium priority
   2176 	 * [49152, 65536) : video - low priority
   2177 	 */
   2178 	if (ip->ip_p == IPPROTO_UDP) {
   2179 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2180 
   2181 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2182 		case 0x4000:
   2183 			prio = 70;
   2184 			break;
   2185 		case 0x8000:
   2186 			prio = 60;
   2187 			break;
   2188 		case 0xc000:
   2189 			prio = 55;
   2190 			break;
   2191 		}
   2192 
   2193 		if (tbfdebug > 1)
   2194 			log(LOG_DEBUG, "port %x prio %d\n",
   2195 			    ntohs(udp->uh_dport), prio);
   2196 	}
   2197 
   2198 	return (prio);
   2199 }
   2200 
   2201 /*
   2202  * End of token bucket filter modifications
   2203  */
   2204 #ifdef RSVP_ISI
   2205 int
   2206 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
   2207 {
   2208 	int vifi, s;
   2209 
   2210 	if (rsvpdebug)
   2211 		printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
   2212 		    so->so_type, so->so_proto->pr_protocol);
   2213 
   2214 	if (so->so_type != SOCK_RAW ||
   2215 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2216 		return (EOPNOTSUPP);
   2217 
   2218 	/* Check mbuf. */
   2219 	if (m == NULL || m->m_len != sizeof(int)) {
   2220 		return (EINVAL);
   2221 	}
   2222 	vifi = *(mtod(m, int *));
   2223 
   2224 	if (rsvpdebug)
   2225 		printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
   2226 		       vifi, rsvp_on);
   2227 
   2228 	s = splsoftnet();
   2229 
   2230 	/* Check vif. */
   2231 	if (!legal_vif_num(vifi)) {
   2232 		splx(s);
   2233 		return (EADDRNOTAVAIL);
   2234 	}
   2235 
   2236 	/* Check if socket is available. */
   2237 	if (viftable[vifi].v_rsvpd != NULL) {
   2238 		splx(s);
   2239 		return (EADDRINUSE);
   2240 	}
   2241 
   2242 	viftable[vifi].v_rsvpd = so;
   2243 	/*
   2244 	 * This may seem silly, but we need to be sure we don't over-increment
   2245 	 * the RSVP counter, in case something slips up.
   2246 	 */
   2247 	if (!viftable[vifi].v_rsvp_on) {
   2248 		viftable[vifi].v_rsvp_on = 1;
   2249 		rsvp_on++;
   2250 	}
   2251 
   2252 	splx(s);
   2253 	return (0);
   2254 }
   2255 
   2256 int
   2257 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
   2258 {
   2259 	int vifi, s;
   2260 
   2261 	if (rsvpdebug)
   2262 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
   2263 		    so->so_type, so->so_proto->pr_protocol);
   2264 
   2265 	if (so->so_type != SOCK_RAW ||
   2266 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2267 		return (EOPNOTSUPP);
   2268 
   2269 	/* Check mbuf. */
   2270 	if (m == NULL || m->m_len != sizeof(int)) {
   2271 		return (EINVAL);
   2272 	}
   2273 	vifi = *(mtod(m, int *));
   2274 
   2275 	s = splsoftnet();
   2276 
   2277 	/* Check vif. */
   2278 	if (!legal_vif_num(vifi)) {
   2279 		splx(s);
   2280 		return (EADDRNOTAVAIL);
   2281 	}
   2282 
   2283 	if (rsvpdebug)
   2284 		printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
   2285 		    viftable[vifi].v_rsvpd, so);
   2286 
   2287 	viftable[vifi].v_rsvpd = NULL;
   2288 	/*
   2289 	 * This may seem silly, but we need to be sure we don't over-decrement
   2290 	 * the RSVP counter, in case something slips up.
   2291 	 */
   2292 	if (viftable[vifi].v_rsvp_on) {
   2293 		viftable[vifi].v_rsvp_on = 0;
   2294 		rsvp_on--;
   2295 	}
   2296 
   2297 	splx(s);
   2298 	return (0);
   2299 }
   2300 
   2301 void
   2302 ip_rsvp_force_done(struct socket *so)
   2303 {
   2304 	int vifi, s;
   2305 
   2306 	/* Don't bother if it is not the right type of socket. */
   2307 	if (so->so_type != SOCK_RAW ||
   2308 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2309 		return;
   2310 
   2311 	s = splsoftnet();
   2312 
   2313 	/*
   2314 	 * The socket may be attached to more than one vif...this
   2315 	 * is perfectly legal.
   2316 	 */
   2317 	for (vifi = 0; vifi < numvifs; vifi++) {
   2318 		if (viftable[vifi].v_rsvpd == so) {
   2319 			viftable[vifi].v_rsvpd = NULL;
   2320 			/*
   2321 			 * This may seem silly, but we need to be sure we don't
   2322 			 * over-decrement the RSVP counter, in case something
   2323 			 * slips up.
   2324 			 */
   2325 			if (viftable[vifi].v_rsvp_on) {
   2326 				viftable[vifi].v_rsvp_on = 0;
   2327 				rsvp_on--;
   2328 			}
   2329 		}
   2330 	}
   2331 
   2332 	splx(s);
   2333 	return;
   2334 }
   2335 
   2336 void
   2337 rsvp_input(struct mbuf *m, struct ifnet *ifp)
   2338 {
   2339 	int vifi, s;
   2340 	struct ip *ip = mtod(m, struct ip *);
   2341 	struct sockaddr_in rsvp_src;
   2342 
   2343 	if (rsvpdebug)
   2344 		printf("rsvp_input: rsvp_on %d\n", rsvp_on);
   2345 
   2346 	/*
   2347 	 * Can still get packets with rsvp_on = 0 if there is a local member
   2348 	 * of the group to which the RSVP packet is addressed.  But in this
   2349 	 * case we want to throw the packet away.
   2350 	 */
   2351 	if (!rsvp_on) {
   2352 		m_freem(m);
   2353 		return;
   2354 	}
   2355 
   2356 	/*
   2357 	 * If the old-style non-vif-associated socket is set, then use
   2358 	 * it and ignore the new ones.
   2359 	 */
   2360 	if (ip_rsvpd != NULL) {
   2361 		if (rsvpdebug)
   2362 			printf("rsvp_input: "
   2363 			    "Sending packet up old-style socket\n");
   2364 		rip_input(m);	/*XXX*/
   2365 		return;
   2366 	}
   2367 
   2368 	s = splsoftnet();
   2369 
   2370 	if (rsvpdebug)
   2371 		printf("rsvp_input: check vifs\n");
   2372 
   2373 	/* Find which vif the packet arrived on. */
   2374 	for (vifi = 0; vifi < numvifs; vifi++) {
   2375 		if (viftable[vifi].v_ifp == ifp)
   2376 			break;
   2377 	}
   2378 
   2379 	if (vifi == numvifs) {
   2380 		/* Can't find vif packet arrived on. Drop packet. */
   2381 		if (rsvpdebug)
   2382 			printf("rsvp_input: "
   2383 			    "Can't find vif for packet...dropping it.\n");
   2384 		m_freem(m);
   2385 		splx(s);
   2386 		return;
   2387 	}
   2388 
   2389 	if (rsvpdebug)
   2390 		printf("rsvp_input: check socket\n");
   2391 
   2392 	if (viftable[vifi].v_rsvpd == NULL) {
   2393 		/*
   2394 		 * drop packet, since there is no specific socket for this
   2395 		 * interface
   2396 		 */
   2397 		if (rsvpdebug)
   2398 			printf("rsvp_input: No socket defined for vif %d\n",
   2399 			    vifi);
   2400 		m_freem(m);
   2401 		splx(s);
   2402 		return;
   2403 	}
   2404 
   2405 	sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
   2406 
   2407 	if (rsvpdebug && m)
   2408 		printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
   2409 		    m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
   2410 
   2411 	if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
   2412 		if (rsvpdebug)
   2413 			printf("rsvp_input: Failed to append to socket\n");
   2414 	else
   2415 		if (rsvpdebug)
   2416 			printf("rsvp_input: send packet up\n");
   2417 
   2418 	splx(s);
   2419 }
   2420 #endif /* RSVP_ISI */
   2421 
   2422 /*
   2423  * Code for bandwidth monitors
   2424  */
   2425 
   2426 /*
   2427  * Define common interface for timeval-related methods
   2428  */
   2429 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2430 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2431 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2432 
   2433 static uint32_t
   2434 compute_bw_meter_flags(struct bw_upcall *req)
   2435 {
   2436     uint32_t flags = 0;
   2437 
   2438     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2439 	flags |= BW_METER_UNIT_PACKETS;
   2440     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2441 	flags |= BW_METER_UNIT_BYTES;
   2442     if (req->bu_flags & BW_UPCALL_GEQ)
   2443 	flags |= BW_METER_GEQ;
   2444     if (req->bu_flags & BW_UPCALL_LEQ)
   2445 	flags |= BW_METER_LEQ;
   2446 
   2447     return flags;
   2448 }
   2449 
   2450 /*
   2451  * Add a bw_meter entry
   2452  */
   2453 static int
   2454 add_bw_upcall(struct bw_upcall *req)
   2455 {
   2456     int s;
   2457     struct mfc *mfc;
   2458     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2459 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2460     struct timeval now;
   2461     struct bw_meter *x;
   2462     uint32_t flags;
   2463 
   2464     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2465 	return EOPNOTSUPP;
   2466 
   2467     /* Test if the flags are valid */
   2468     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2469 	return EINVAL;
   2470     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2471 	return EINVAL;
   2472     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2473 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2474 	return EINVAL;
   2475 
   2476     /* Test if the threshold time interval is valid */
   2477     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2478 	return EINVAL;
   2479 
   2480     flags = compute_bw_meter_flags(req);
   2481 
   2482     /*
   2483      * Find if we have already same bw_meter entry
   2484      */
   2485     s = splsoftnet();
   2486     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2487     if (mfc == NULL) {
   2488 	splx(s);
   2489 	return EADDRNOTAVAIL;
   2490     }
   2491     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2492 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2493 			   &req->bu_threshold.b_time, ==)) &&
   2494 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2495 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2496 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2497 	    splx(s);
   2498 	    return 0;		/* XXX Already installed */
   2499 	}
   2500     }
   2501 
   2502     /* Allocate the new bw_meter entry */
   2503     x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
   2504     if (x == NULL) {
   2505 	splx(s);
   2506 	return ENOBUFS;
   2507     }
   2508 
   2509     /* Set the new bw_meter entry */
   2510     x->bm_threshold.b_time = req->bu_threshold.b_time;
   2511     microtime(&now);
   2512     x->bm_start_time = now;
   2513     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2514     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2515     x->bm_measured.b_packets = 0;
   2516     x->bm_measured.b_bytes = 0;
   2517     x->bm_flags = flags;
   2518     x->bm_time_next = NULL;
   2519     x->bm_time_hash = BW_METER_BUCKETS;
   2520 
   2521     /* Add the new bw_meter entry to the front of entries for this MFC */
   2522     x->bm_mfc = mfc;
   2523     x->bm_mfc_next = mfc->mfc_bw_meter;
   2524     mfc->mfc_bw_meter = x;
   2525     schedule_bw_meter(x, &now);
   2526     splx(s);
   2527 
   2528     return 0;
   2529 }
   2530 
   2531 static void
   2532 free_bw_list(struct bw_meter *list)
   2533 {
   2534     while (list != NULL) {
   2535 	struct bw_meter *x = list;
   2536 
   2537 	list = list->bm_mfc_next;
   2538 	unschedule_bw_meter(x);
   2539 	kmem_free(x, sizeof(*x));
   2540     }
   2541 }
   2542 
   2543 /*
   2544  * Delete one or multiple bw_meter entries
   2545  */
   2546 static int
   2547 del_bw_upcall(struct bw_upcall *req)
   2548 {
   2549     int s;
   2550     struct mfc *mfc;
   2551     struct bw_meter *x;
   2552 
   2553     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2554 	return EOPNOTSUPP;
   2555 
   2556     s = splsoftnet();
   2557     /* Find the corresponding MFC entry */
   2558     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2559     if (mfc == NULL) {
   2560 	splx(s);
   2561 	return EADDRNOTAVAIL;
   2562     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2563 	/*
   2564 	 * Delete all bw_meter entries for this mfc
   2565 	 */
   2566 	struct bw_meter *list;
   2567 
   2568 	list = mfc->mfc_bw_meter;
   2569 	mfc->mfc_bw_meter = NULL;
   2570 	free_bw_list(list);
   2571 	splx(s);
   2572 	return 0;
   2573     } else {			/* Delete a single bw_meter entry */
   2574 	struct bw_meter *prev;
   2575 	uint32_t flags = 0;
   2576 
   2577 	flags = compute_bw_meter_flags(req);
   2578 
   2579 	/* Find the bw_meter entry to delete */
   2580 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2581 	     prev = x, x = x->bm_mfc_next) {
   2582 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2583 			       &req->bu_threshold.b_time, ==)) &&
   2584 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2585 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2586 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2587 		break;
   2588 	}
   2589 	if (x != NULL) { /* Delete entry from the list for this MFC */
   2590 	    if (prev != NULL)
   2591 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2592 	    else
   2593 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2594 
   2595 	    unschedule_bw_meter(x);
   2596 	    splx(s);
   2597 	    /* Free the bw_meter entry */
   2598 	    kmem_free(x, sizeof(*x));
   2599 	    return 0;
   2600 	} else {
   2601 	    splx(s);
   2602 	    return EINVAL;
   2603 	}
   2604     }
   2605     /* NOTREACHED */
   2606 }
   2607 
   2608 /*
   2609  * Perform bandwidth measurement processing that may result in an upcall
   2610  */
   2611 static void
   2612 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2613 {
   2614     struct timeval delta;
   2615 
   2616     delta = *nowp;
   2617     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2618 
   2619     if (x->bm_flags & BW_METER_GEQ) {
   2620 	/*
   2621 	 * Processing for ">=" type of bw_meter entry
   2622 	 */
   2623 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2624 	    /* Reset the bw_meter entry */
   2625 	    x->bm_start_time = *nowp;
   2626 	    x->bm_measured.b_packets = 0;
   2627 	    x->bm_measured.b_bytes = 0;
   2628 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2629 	}
   2630 
   2631 	/* Record that a packet is received */
   2632 	x->bm_measured.b_packets++;
   2633 	x->bm_measured.b_bytes += plen;
   2634 
   2635 	/*
   2636 	 * Test if we should deliver an upcall
   2637 	 */
   2638 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2639 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2640 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2641 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2642 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2643 		/* Prepare an upcall for delivery */
   2644 		bw_meter_prepare_upcall(x, nowp);
   2645 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2646 	    }
   2647 	}
   2648     } else if (x->bm_flags & BW_METER_LEQ) {
   2649 	/*
   2650 	 * Processing for "<=" type of bw_meter entry
   2651 	 */
   2652 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2653 	    /*
   2654 	     * We are behind time with the multicast forwarding table
   2655 	     * scanning for "<=" type of bw_meter entries, so test now
   2656 	     * if we should deliver an upcall.
   2657 	     */
   2658 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2659 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2660 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2661 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2662 		/* Prepare an upcall for delivery */
   2663 		bw_meter_prepare_upcall(x, nowp);
   2664 	    }
   2665 	    /* Reschedule the bw_meter entry */
   2666 	    unschedule_bw_meter(x);
   2667 	    schedule_bw_meter(x, nowp);
   2668 	}
   2669 
   2670 	/* Record that a packet is received */
   2671 	x->bm_measured.b_packets++;
   2672 	x->bm_measured.b_bytes += plen;
   2673 
   2674 	/*
   2675 	 * Test if we should restart the measuring interval
   2676 	 */
   2677 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2678 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2679 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2680 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2681 	    /* Don't restart the measuring interval */
   2682 	} else {
   2683 	    /* Do restart the measuring interval */
   2684 	    /*
   2685 	     * XXX: note that we don't unschedule and schedule, because this
   2686 	     * might be too much overhead per packet. Instead, when we process
   2687 	     * all entries for a given timer hash bin, we check whether it is
   2688 	     * really a timeout. If not, we reschedule at that time.
   2689 	     */
   2690 	    x->bm_start_time = *nowp;
   2691 	    x->bm_measured.b_packets = 0;
   2692 	    x->bm_measured.b_bytes = 0;
   2693 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2694 	}
   2695     }
   2696 }
   2697 
   2698 /*
   2699  * Prepare a bandwidth-related upcall
   2700  */
   2701 static void
   2702 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2703 {
   2704     struct timeval delta;
   2705     struct bw_upcall *u;
   2706 
   2707     /*
   2708      * Compute the measured time interval
   2709      */
   2710     delta = *nowp;
   2711     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2712 
   2713     /*
   2714      * If there are too many pending upcalls, deliver them now
   2715      */
   2716     if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2717 	bw_upcalls_send();
   2718 
   2719     /*
   2720      * Set the bw_upcall entry
   2721      */
   2722     u = &bw_upcalls[bw_upcalls_n++];
   2723     u->bu_src = x->bm_mfc->mfc_origin;
   2724     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2725     u->bu_threshold.b_time = x->bm_threshold.b_time;
   2726     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2727     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2728     u->bu_measured.b_time = delta;
   2729     u->bu_measured.b_packets = x->bm_measured.b_packets;
   2730     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2731     u->bu_flags = 0;
   2732     if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2733 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2734     if (x->bm_flags & BW_METER_UNIT_BYTES)
   2735 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2736     if (x->bm_flags & BW_METER_GEQ)
   2737 	u->bu_flags |= BW_UPCALL_GEQ;
   2738     if (x->bm_flags & BW_METER_LEQ)
   2739 	u->bu_flags |= BW_UPCALL_LEQ;
   2740 }
   2741 
   2742 /*
   2743  * Send the pending bandwidth-related upcalls
   2744  */
   2745 static void
   2746 bw_upcalls_send(void)
   2747 {
   2748     struct mbuf *m;
   2749     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2750     struct sockaddr_in k_igmpsrc = {
   2751 	    .sin_len = sizeof(k_igmpsrc),
   2752 	    .sin_family = AF_INET,
   2753     };
   2754     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
   2755 				      0,		/* unused2 */
   2756 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
   2757 				      0,		/* im_mbz  */
   2758 				      0,		/* im_vif  */
   2759 				      0,		/* unused3 */
   2760 				      { 0 },		/* im_src  */
   2761 				      { 0 } };		/* im_dst  */
   2762 
   2763     if (bw_upcalls_n == 0)
   2764 	return;			/* No pending upcalls */
   2765 
   2766     bw_upcalls_n = 0;
   2767 
   2768     /*
   2769      * Allocate a new mbuf, initialize it with the header and
   2770      * the payload for the pending calls.
   2771      */
   2772     MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2773     if (m == NULL) {
   2774 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2775 	return;
   2776     }
   2777 
   2778     m->m_len = m->m_pkthdr.len = 0;
   2779     m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
   2780     m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
   2781 
   2782     /*
   2783      * Send the upcalls
   2784      * XXX do we need to set the address in k_igmpsrc ?
   2785      */
   2786     mrtstat.mrts_upcalls++;
   2787     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2788 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2789 	++mrtstat.mrts_upq_sockfull;
   2790     }
   2791 }
   2792 
   2793 /*
   2794  * Compute the timeout hash value for the bw_meter entries
   2795  */
   2796 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2797     do {								\
   2798 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2799 									\
   2800 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
   2801 	(hash) = next_timeval.tv_sec;					\
   2802 	if (next_timeval.tv_usec)					\
   2803 	    (hash)++; /* XXX: make sure we don't timeout early */	\
   2804 	(hash) %= BW_METER_BUCKETS;					\
   2805     } while (/*CONSTCOND*/ 0)
   2806 
   2807 /*
   2808  * Schedule a timer to process periodically bw_meter entry of type "<="
   2809  * by linking the entry in the proper hash bucket.
   2810  */
   2811 static void
   2812 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   2813 {
   2814     int time_hash;
   2815 
   2816     if (!(x->bm_flags & BW_METER_LEQ))
   2817 	return;		/* XXX: we schedule timers only for "<=" entries */
   2818 
   2819     /*
   2820      * Reset the bw_meter entry
   2821      */
   2822     x->bm_start_time = *nowp;
   2823     x->bm_measured.b_packets = 0;
   2824     x->bm_measured.b_bytes = 0;
   2825     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2826 
   2827     /*
   2828      * Compute the timeout hash value and insert the entry
   2829      */
   2830     BW_METER_TIMEHASH(x, time_hash);
   2831     x->bm_time_next = bw_meter_timers[time_hash];
   2832     bw_meter_timers[time_hash] = x;
   2833     x->bm_time_hash = time_hash;
   2834 }
   2835 
   2836 /*
   2837  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   2838  * by removing the entry from the proper hash bucket.
   2839  */
   2840 static void
   2841 unschedule_bw_meter(struct bw_meter *x)
   2842 {
   2843     int time_hash;
   2844     struct bw_meter *prev, *tmp;
   2845 
   2846     if (!(x->bm_flags & BW_METER_LEQ))
   2847 	return;		/* XXX: we schedule timers only for "<=" entries */
   2848 
   2849     /*
   2850      * Compute the timeout hash value and delete the entry
   2851      */
   2852     time_hash = x->bm_time_hash;
   2853     if (time_hash >= BW_METER_BUCKETS)
   2854 	return;		/* Entry was not scheduled */
   2855 
   2856     for (prev = NULL, tmp = bw_meter_timers[time_hash];
   2857 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   2858 	if (tmp == x)
   2859 	    break;
   2860 
   2861     if (tmp == NULL)
   2862 	panic("unschedule_bw_meter: bw_meter entry not found");
   2863 
   2864     if (prev != NULL)
   2865 	prev->bm_time_next = x->bm_time_next;
   2866     else
   2867 	bw_meter_timers[time_hash] = x->bm_time_next;
   2868 
   2869     x->bm_time_next = NULL;
   2870     x->bm_time_hash = BW_METER_BUCKETS;
   2871 }
   2872 
   2873 /*
   2874  * Process all "<=" type of bw_meter that should be processed now,
   2875  * and for each entry prepare an upcall if necessary. Each processed
   2876  * entry is rescheduled again for the (periodic) processing.
   2877  *
   2878  * This is run periodically (once per second normally). On each round,
   2879  * all the potentially matching entries are in the hash slot that we are
   2880  * looking at.
   2881  */
   2882 static void
   2883 bw_meter_process(void)
   2884 {
   2885     int s;
   2886     static uint32_t last_tv_sec;	/* last time we processed this */
   2887 
   2888     uint32_t loops;
   2889     int i;
   2890     struct timeval now, process_endtime;
   2891 
   2892     microtime(&now);
   2893     if (last_tv_sec == now.tv_sec)
   2894 	return;		/* nothing to do */
   2895 
   2896     loops = now.tv_sec - last_tv_sec;
   2897     last_tv_sec = now.tv_sec;
   2898     if (loops > BW_METER_BUCKETS)
   2899 	loops = BW_METER_BUCKETS;
   2900 
   2901     s = splsoftnet();
   2902     /*
   2903      * Process all bins of bw_meter entries from the one after the last
   2904      * processed to the current one. On entry, i points to the last bucket
   2905      * visited, so we need to increment i at the beginning of the loop.
   2906      */
   2907     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   2908 	struct bw_meter *x, *tmp_list;
   2909 
   2910 	if (++i >= BW_METER_BUCKETS)
   2911 	    i = 0;
   2912 
   2913 	/* Disconnect the list of bw_meter entries from the bin */
   2914 	tmp_list = bw_meter_timers[i];
   2915 	bw_meter_timers[i] = NULL;
   2916 
   2917 	/* Process the list of bw_meter entries */
   2918 	while (tmp_list != NULL) {
   2919 	    x = tmp_list;
   2920 	    tmp_list = tmp_list->bm_time_next;
   2921 
   2922 	    /* Test if the time interval is over */
   2923 	    process_endtime = x->bm_start_time;
   2924 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   2925 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   2926 		/* Not yet: reschedule, but don't reset */
   2927 		int time_hash;
   2928 
   2929 		BW_METER_TIMEHASH(x, time_hash);
   2930 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   2931 		    /*
   2932 		     * XXX: somehow the bin processing is a bit ahead of time.
   2933 		     * Put the entry in the next bin.
   2934 		     */
   2935 		    if (++time_hash >= BW_METER_BUCKETS)
   2936 			time_hash = 0;
   2937 		}
   2938 		x->bm_time_next = bw_meter_timers[time_hash];
   2939 		bw_meter_timers[time_hash] = x;
   2940 		x->bm_time_hash = time_hash;
   2941 
   2942 		continue;
   2943 	    }
   2944 
   2945 	    /*
   2946 	     * Test if we should deliver an upcall
   2947 	     */
   2948 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2949 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2950 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2951 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2952 		/* Prepare an upcall for delivery */
   2953 		bw_meter_prepare_upcall(x, &now);
   2954 	    }
   2955 
   2956 	    /*
   2957 	     * Reschedule for next processing
   2958 	     */
   2959 	    schedule_bw_meter(x, &now);
   2960 	}
   2961     }
   2962 
   2963     /* Send all upcalls that are pending delivery */
   2964     bw_upcalls_send();
   2965 
   2966     splx(s);
   2967 }
   2968 
   2969 /*
   2970  * A periodic function for sending all upcalls that are pending delivery
   2971  */
   2972 static void
   2973 expire_bw_upcalls_send(void *unused)
   2974 {
   2975     int s;
   2976 
   2977     s = splsoftnet();
   2978     bw_upcalls_send();
   2979     splx(s);
   2980 
   2981     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   2982 		  expire_bw_upcalls_send, NULL);
   2983 }
   2984 
   2985 /*
   2986  * A periodic function for periodic scanning of the multicast forwarding
   2987  * table for processing all "<=" bw_meter entries.
   2988  */
   2989 static void
   2990 expire_bw_meter_process(void *unused)
   2991 {
   2992     if (mrt_api_config & MRT_MFC_BW_UPCALL)
   2993 	bw_meter_process();
   2994 
   2995     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   2996 		  expire_bw_meter_process, NULL);
   2997 }
   2998 
   2999 /*
   3000  * End of bandwidth monitoring code
   3001  */
   3002 
   3003 #ifdef PIM
   3004 /*
   3005  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   3006  */
   3007 static int
   3008 pim_register_send(struct ip *ip, struct vif *vifp,
   3009 	struct mbuf *m, struct mfc *rt)
   3010 {
   3011     struct mbuf *mb_copy, *mm;
   3012 
   3013     if (mrtdebug & DEBUG_PIM)
   3014         log(LOG_DEBUG, "pim_register_send: \n");
   3015 
   3016     mb_copy = pim_register_prepare(ip, m);
   3017     if (mb_copy == NULL)
   3018 	return ENOBUFS;
   3019 
   3020     /*
   3021      * Send all the fragments. Note that the mbuf for each fragment
   3022      * is freed by the sending machinery.
   3023      */
   3024     for (mm = mb_copy; mm; mm = mb_copy) {
   3025 	mb_copy = mm->m_nextpkt;
   3026 	mm->m_nextpkt = NULL;
   3027 	mm = m_pullup(mm, sizeof(struct ip));
   3028 	if (mm != NULL) {
   3029 	    ip = mtod(mm, struct ip *);
   3030 	    if ((mrt_api_config & MRT_MFC_RP) &&
   3031 		!in_nullhost(rt->mfc_rp)) {
   3032 		pim_register_send_rp(ip, vifp, mm, rt);
   3033 	    } else {
   3034 		pim_register_send_upcall(ip, vifp, mm, rt);
   3035 	    }
   3036 	}
   3037     }
   3038 
   3039     return 0;
   3040 }
   3041 
   3042 /*
   3043  * Return a copy of the data packet that is ready for PIM Register
   3044  * encapsulation.
   3045  * XXX: Note that in the returned copy the IP header is a valid one.
   3046  */
   3047 static struct mbuf *
   3048 pim_register_prepare(struct ip *ip, struct mbuf *m)
   3049 {
   3050     struct mbuf *mb_copy = NULL;
   3051     int mtu;
   3052 
   3053     /* Take care of delayed checksums */
   3054     if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   3055 	in_delayed_cksum(m);
   3056 	m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   3057     }
   3058 
   3059     /*
   3060      * Copy the old packet & pullup its IP header into the
   3061      * new mbuf so we can modify it.
   3062      */
   3063     mb_copy = m_copypacket(m, M_DONTWAIT);
   3064     if (mb_copy == NULL)
   3065 	return NULL;
   3066     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   3067     if (mb_copy == NULL)
   3068 	return NULL;
   3069 
   3070     /* take care of the TTL */
   3071     ip = mtod(mb_copy, struct ip *);
   3072     --ip->ip_ttl;
   3073 
   3074     /* Compute the MTU after the PIM Register encapsulation */
   3075     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   3076 
   3077     if (ntohs(ip->ip_len) <= mtu) {
   3078 	/* Turn the IP header into a valid one */
   3079 	ip->ip_sum = 0;
   3080 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   3081     } else {
   3082 	/* Fragment the packet */
   3083 	if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   3084 	    /* XXX: mb_copy was freed by ip_fragment() */
   3085 	    return NULL;
   3086 	}
   3087     }
   3088     return mb_copy;
   3089 }
   3090 
   3091 /*
   3092  * Send an upcall with the data packet to the user-level process.
   3093  */
   3094 static int
   3095 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   3096     struct mbuf *mb_copy, struct mfc *rt)
   3097 {
   3098     struct mbuf *mb_first;
   3099     int len = ntohs(ip->ip_len);
   3100     struct igmpmsg *im;
   3101     struct sockaddr_in k_igmpsrc = {
   3102 	    .sin_len = sizeof(k_igmpsrc),
   3103 	    .sin_family = AF_INET,
   3104     };
   3105 
   3106     /*
   3107      * Add a new mbuf with an upcall header
   3108      */
   3109     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3110     if (mb_first == NULL) {
   3111 	m_freem(mb_copy);
   3112 	return ENOBUFS;
   3113     }
   3114     mb_first->m_data += max_linkhdr;
   3115     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   3116     mb_first->m_len = sizeof(struct igmpmsg);
   3117     mb_first->m_next = mb_copy;
   3118 
   3119     /* Send message to routing daemon */
   3120     im = mtod(mb_first, struct igmpmsg *);
   3121     im->im_msgtype	= IGMPMSG_WHOLEPKT;
   3122     im->im_mbz		= 0;
   3123     im->im_vif		= vifp - viftable;
   3124     im->im_src		= ip->ip_src;
   3125     im->im_dst		= ip->ip_dst;
   3126 
   3127     k_igmpsrc.sin_addr	= ip->ip_src;
   3128 
   3129     mrtstat.mrts_upcalls++;
   3130 
   3131     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   3132 	if (mrtdebug & DEBUG_PIM)
   3133 	    log(LOG_WARNING,
   3134 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
   3135 	++mrtstat.mrts_upq_sockfull;
   3136 	return ENOBUFS;
   3137     }
   3138 
   3139     /* Keep statistics */
   3140     pimstat.pims_snd_registers_msgs++;
   3141     pimstat.pims_snd_registers_bytes += len;
   3142 
   3143     return 0;
   3144 }
   3145 
   3146 /*
   3147  * Encapsulate the data packet in PIM Register message and send it to the RP.
   3148  */
   3149 static int
   3150 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   3151 	struct mbuf *mb_copy, struct mfc *rt)
   3152 {
   3153     struct mbuf *mb_first;
   3154     struct ip *ip_outer;
   3155     struct pim_encap_pimhdr *pimhdr;
   3156     int len = ntohs(ip->ip_len);
   3157     vifi_t vifi = rt->mfc_parent;
   3158 
   3159     if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   3160 	m_freem(mb_copy);
   3161 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
   3162     }
   3163 
   3164     /*
   3165      * Add a new mbuf with the encapsulating header
   3166      */
   3167     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3168     if (mb_first == NULL) {
   3169 	m_freem(mb_copy);
   3170 	return ENOBUFS;
   3171     }
   3172     mb_first->m_data += max_linkhdr;
   3173     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   3174     mb_first->m_next = mb_copy;
   3175 
   3176     mb_first->m_pkthdr.len = len + mb_first->m_len;
   3177 
   3178     /*
   3179      * Fill in the encapsulating IP and PIM header
   3180      */
   3181     ip_outer = mtod(mb_first, struct ip *);
   3182     *ip_outer = pim_encap_iphdr;
   3183      if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
   3184 	ip_outer->ip_id = 0;
   3185     else
   3186 	ip_outer->ip_id = ip_newid(NULL);
   3187     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   3188 			     sizeof(pim_encap_pimhdr));
   3189     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   3190     ip_outer->ip_dst = rt->mfc_rp;
   3191     /*
   3192      * Copy the inner header TOS to the outer header, and take care of the
   3193      * IP_DF bit.
   3194      */
   3195     ip_outer->ip_tos = ip->ip_tos;
   3196     if (ntohs(ip->ip_off) & IP_DF)
   3197 	ip_outer->ip_off |= htons(IP_DF);
   3198     pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
   3199 					 + sizeof(pim_encap_iphdr));
   3200     *pimhdr = pim_encap_pimhdr;
   3201     /* If the iif crosses a border, set the Border-bit */
   3202     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   3203 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   3204 
   3205     mb_first->m_data += sizeof(pim_encap_iphdr);
   3206     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   3207     mb_first->m_data -= sizeof(pim_encap_iphdr);
   3208 
   3209     if (vifp->v_rate_limit == 0)
   3210 	tbf_send_packet(vifp, mb_first);
   3211     else
   3212 	tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   3213 
   3214     /* Keep statistics */
   3215     pimstat.pims_snd_registers_msgs++;
   3216     pimstat.pims_snd_registers_bytes += len;
   3217 
   3218     return 0;
   3219 }
   3220 
   3221 /*
   3222  * PIM-SMv2 and PIM-DM messages processing.
   3223  * Receives and verifies the PIM control messages, and passes them
   3224  * up to the listening socket, using rip_input().
   3225  * The only message with special processing is the PIM_REGISTER message
   3226  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   3227  * is passed to if_simloop().
   3228  */
   3229 void
   3230 pim_input(struct mbuf *m, ...)
   3231 {
   3232     struct ip *ip = mtod(m, struct ip *);
   3233     struct pim *pim;
   3234     int minlen;
   3235     int datalen;
   3236     int ip_tos;
   3237     int proto;
   3238     int iphlen;
   3239     va_list ap;
   3240 
   3241     va_start(ap, m);
   3242     iphlen = va_arg(ap, int);
   3243     proto = va_arg(ap, int);
   3244     va_end(ap);
   3245 
   3246     datalen = ntohs(ip->ip_len) - iphlen;
   3247 
   3248     /* Keep statistics */
   3249     pimstat.pims_rcv_total_msgs++;
   3250     pimstat.pims_rcv_total_bytes += datalen;
   3251 
   3252     /*
   3253      * Validate lengths
   3254      */
   3255     if (datalen < PIM_MINLEN) {
   3256 	pimstat.pims_rcv_tooshort++;
   3257 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   3258 	    datalen, (u_long)ip->ip_src.s_addr);
   3259 	m_freem(m);
   3260 	return;
   3261     }
   3262 
   3263     /*
   3264      * If the packet is at least as big as a REGISTER, go agead
   3265      * and grab the PIM REGISTER header size, to avoid another
   3266      * possible m_pullup() later.
   3267      *
   3268      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   3269      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   3270      */
   3271     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   3272     /*
   3273      * Get the IP and PIM headers in contiguous memory, and
   3274      * possibly the PIM REGISTER header.
   3275      */
   3276     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   3277 	(m = m_pullup(m, minlen)) == NULL) {
   3278 	log(LOG_ERR, "pim_input: m_pullup failure\n");
   3279 	return;
   3280     }
   3281     /* m_pullup() may have given us a new mbuf so reset ip. */
   3282     ip = mtod(m, struct ip *);
   3283     ip_tos = ip->ip_tos;
   3284 
   3285     /* adjust mbuf to point to the PIM header */
   3286     m->m_data += iphlen;
   3287     m->m_len  -= iphlen;
   3288     pim = mtod(m, struct pim *);
   3289 
   3290     /*
   3291      * Validate checksum. If PIM REGISTER, exclude the data packet.
   3292      *
   3293      * XXX: some older PIMv2 implementations don't make this distinction,
   3294      * so for compatibility reason perform the checksum over part of the
   3295      * message, and if error, then over the whole message.
   3296      */
   3297     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   3298 	/* do nothing, checksum okay */
   3299     } else if (in_cksum(m, datalen)) {
   3300 	pimstat.pims_rcv_badsum++;
   3301 	if (mrtdebug & DEBUG_PIM)
   3302 	    log(LOG_DEBUG, "pim_input: invalid checksum\n");
   3303 	m_freem(m);
   3304 	return;
   3305     }
   3306 
   3307     /* PIM version check */
   3308     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   3309 	pimstat.pims_rcv_badversion++;
   3310 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3311 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3312 	m_freem(m);
   3313 	return;
   3314     }
   3315 
   3316     /* restore mbuf back to the outer IP */
   3317     m->m_data -= iphlen;
   3318     m->m_len  += iphlen;
   3319 
   3320     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3321 	/*
   3322 	 * Since this is a REGISTER, we'll make a copy of the register
   3323 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3324 	 * routing daemon.
   3325 	 */
   3326 	int s;
   3327 	struct sockaddr_in dst = {
   3328 		.sin_len = sizeof(dst),
   3329 		.sin_family = AF_INET,
   3330 	};
   3331 	struct mbuf *mcp;
   3332 	struct ip *encap_ip;
   3333 	u_int32_t *reghdr;
   3334 	struct ifnet *vifp;
   3335 
   3336 	s = splsoftnet();
   3337 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3338 	    splx(s);
   3339 	    if (mrtdebug & DEBUG_PIM)
   3340 		log(LOG_DEBUG,
   3341 		    "pim_input: register vif not set: %d\n", reg_vif_num);
   3342 	    m_freem(m);
   3343 	    return;
   3344 	}
   3345 	/* XXX need refcnt? */
   3346 	vifp = viftable[reg_vif_num].v_ifp;
   3347 	splx(s);
   3348 
   3349 	/*
   3350 	 * Validate length
   3351 	 */
   3352 	if (datalen < PIM_REG_MINLEN) {
   3353 	    pimstat.pims_rcv_tooshort++;
   3354 	    pimstat.pims_rcv_badregisters++;
   3355 	    log(LOG_ERR,
   3356 		"pim_input: register packet size too small %d from %lx\n",
   3357 		datalen, (u_long)ip->ip_src.s_addr);
   3358 	    m_freem(m);
   3359 	    return;
   3360 	}
   3361 
   3362 	reghdr = (u_int32_t *)(pim + 1);
   3363 	encap_ip = (struct ip *)(reghdr + 1);
   3364 
   3365 	if (mrtdebug & DEBUG_PIM) {
   3366 	    log(LOG_DEBUG,
   3367 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3368 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3369 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3370 		ntohs(encap_ip->ip_len));
   3371 	}
   3372 
   3373 	/* verify the version number of the inner packet */
   3374 	if (encap_ip->ip_v != IPVERSION) {
   3375 	    pimstat.pims_rcv_badregisters++;
   3376 	    if (mrtdebug & DEBUG_PIM) {
   3377 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3378 		    "of the inner packet\n", encap_ip->ip_v);
   3379 	    }
   3380 	    m_freem(m);
   3381 	    return;
   3382 	}
   3383 
   3384 	/* verify the inner packet is destined to a mcast group */
   3385 	if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3386 	    pimstat.pims_rcv_badregisters++;
   3387 	    if (mrtdebug & DEBUG_PIM)
   3388 		log(LOG_DEBUG,
   3389 		    "pim_input: inner packet of register is not "
   3390 		    "multicast %lx\n",
   3391 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3392 	    m_freem(m);
   3393 	    return;
   3394 	}
   3395 
   3396 	/* If a NULL_REGISTER, pass it to the daemon */
   3397 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3398 	    goto pim_input_to_daemon;
   3399 
   3400 	/*
   3401 	 * Copy the TOS from the outer IP header to the inner IP header.
   3402 	 */
   3403 	if (encap_ip->ip_tos != ip_tos) {
   3404 	    /* Outer TOS -> inner TOS */
   3405 	    encap_ip->ip_tos = ip_tos;
   3406 	    /* Recompute the inner header checksum. Sigh... */
   3407 
   3408 	    /* adjust mbuf to point to the inner IP header */
   3409 	    m->m_data += (iphlen + PIM_MINLEN);
   3410 	    m->m_len  -= (iphlen + PIM_MINLEN);
   3411 
   3412 	    encap_ip->ip_sum = 0;
   3413 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3414 
   3415 	    /* restore mbuf to point back to the outer IP header */
   3416 	    m->m_data -= (iphlen + PIM_MINLEN);
   3417 	    m->m_len  += (iphlen + PIM_MINLEN);
   3418 	}
   3419 
   3420 	/*
   3421 	 * Decapsulate the inner IP packet and loopback to forward it
   3422 	 * as a normal multicast packet. Also, make a copy of the
   3423 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3424 	 * to pass to the daemon later, so it can take the appropriate
   3425 	 * actions (e.g., send back PIM_REGISTER_STOP).
   3426 	 * XXX: here m->m_data points to the outer IP header.
   3427 	 */
   3428 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
   3429 	if (mcp == NULL) {
   3430 	    log(LOG_ERR,
   3431 		"pim_input: pim register: could not copy register head\n");
   3432 	    m_freem(m);
   3433 	    return;
   3434 	}
   3435 
   3436 	/* Keep statistics */
   3437 	/* XXX: registers_bytes include only the encap. mcast pkt */
   3438 	pimstat.pims_rcv_registers_msgs++;
   3439 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3440 
   3441 	/*
   3442 	 * forward the inner ip packet; point m_data at the inner ip.
   3443 	 */
   3444 	m_adj(m, iphlen + PIM_MINLEN);
   3445 
   3446 	if (mrtdebug & DEBUG_PIM) {
   3447 	    log(LOG_DEBUG,
   3448 		"pim_input: forwarding decapsulated register: "
   3449 		"src %lx, dst %lx, vif %d\n",
   3450 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3451 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3452 		reg_vif_num);
   3453 	}
   3454 	/* NB: vifp was collected above; can it change on us? */
   3455 	looutput(vifp, m, (struct sockaddr *)&dst, NULL);
   3456 
   3457 	/* prepare the register head to send to the mrouting daemon */
   3458 	m = mcp;
   3459     }
   3460 
   3461 pim_input_to_daemon:
   3462     /*
   3463      * Pass the PIM message up to the daemon; if it is a Register message,
   3464      * pass the 'head' only up to the daemon. This includes the
   3465      * outer IP header, PIM header, PIM-Register header and the
   3466      * inner IP header.
   3467      * XXX: the outer IP header pkt size of a Register is not adjust to
   3468      * reflect the fact that the inner multicast data is truncated.
   3469      */
   3470     rip_input(m, iphlen, proto);
   3471 
   3472     return;
   3473 }
   3474 #endif /* PIM */
   3475