Home | History | Annotate | Line # | Download | only in netinet
ip_mroute.c revision 1.140
      1 /*	$NetBSD: ip_mroute.c,v 1.140 2016/06/10 13:27:16 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.140 2016/06/10 13:27:16 ozaki-r Exp $");
     97 
     98 #ifdef _KERNEL_OPT
     99 #include "opt_inet.h"
    100 #include "opt_ipsec.h"
    101 #include "opt_pim.h"
    102 #endif
    103 
    104 #ifdef PIM
    105 #define _PIM_VT 1
    106 #endif
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/socket.h>
    113 #include <sys/socketvar.h>
    114 #include <sys/protosw.h>
    115 #include <sys/errno.h>
    116 #include <sys/time.h>
    117 #include <sys/kernel.h>
    118 #include <sys/kmem.h>
    119 #include <sys/ioctl.h>
    120 #include <sys/syslog.h>
    121 
    122 #include <net/if.h>
    123 #include <net/raw_cb.h>
    124 
    125 #include <netinet/in.h>
    126 #include <netinet/in_var.h>
    127 #include <netinet/in_systm.h>
    128 #include <netinet/ip.h>
    129 #include <netinet/ip_var.h>
    130 #include <netinet/in_pcb.h>
    131 #include <netinet/udp.h>
    132 #include <netinet/igmp.h>
    133 #include <netinet/igmp_var.h>
    134 #include <netinet/ip_mroute.h>
    135 #ifdef PIM
    136 #include <netinet/pim.h>
    137 #include <netinet/pim_var.h>
    138 #endif
    139 #include <netinet/ip_encap.h>
    140 
    141 #ifdef IPSEC
    142 #include <netipsec/ipsec.h>
    143 #include <netipsec/key.h>
    144 #endif
    145 
    146 #define IP_MULTICASTOPTS 0
    147 #define	M_PULLUP(m, len)						 \
    148 	do {								 \
    149 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    150 			(m) = m_pullup((m), (len));			 \
    151 	} while (/*CONSTCOND*/ 0)
    152 
    153 /*
    154  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    155  * except for netstat or debugging purposes.
    156  */
    157 struct socket  *ip_mrouter  = NULL;
    158 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    159 
    160 #define NO_RTE_FOUND 	0x1
    161 #define RTE_FOUND	0x2
    162 
    163 #define	MFCHASH(a, g)							\
    164 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    165 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    166 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    167 u_long	mfchash;
    168 
    169 u_char		nexpire[MFCTBLSIZ];
    170 struct vif	viftable[MAXVIFS];
    171 struct mrtstat	mrtstat;
    172 u_int		mrtdebug = 0;	  /* debug level 	*/
    173 #define		DEBUG_MFC	0x02
    174 #define		DEBUG_FORWARD	0x04
    175 #define		DEBUG_EXPIRE	0x08
    176 #define		DEBUG_XMIT	0x10
    177 #define		DEBUG_PIM	0x20
    178 
    179 #define		VIFI_INVALID	((vifi_t) -1)
    180 
    181 u_int       	tbfdebug = 0;     /* tbf debug level 	*/
    182 #ifdef RSVP_ISI
    183 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
    184 #define	RSVP_DPRINTF(a)	do if (rsvpdebug) printf a; while (/*CONSTCOND*/0)
    185 extern struct socket *ip_rsvpd;
    186 extern int rsvp_on;
    187 #else
    188 #define	RSVP_DPRINTF(a)	do {} while (/*CONSTCOND*/0)
    189 #endif /* RSVP_ISI */
    190 
    191 /* vif attachment using sys/netinet/ip_encap.c */
    192 static void vif_input(struct mbuf *, int, int);
    193 static int vif_encapcheck(struct mbuf *, int, int, void *);
    194 
    195 static const struct encapsw vif_encapsw = {
    196 	.encapsw4 = {
    197 		.pr_input	= vif_input,
    198 		.pr_ctlinput	= NULL,
    199 	}
    200 };
    201 
    202 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    203 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    204 
    205 /*
    206  * Define the token bucket filter structures
    207  */
    208 
    209 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    210 
    211 static int get_sg_cnt(struct sioc_sg_req *);
    212 static int get_vif_cnt(struct sioc_vif_req *);
    213 static int ip_mrouter_init(struct socket *, int);
    214 static int set_assert(int);
    215 static int add_vif(struct vifctl *);
    216 static int del_vif(vifi_t *);
    217 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
    218 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
    219 static void expire_mfc(struct mfc *);
    220 static int add_mfc(struct sockopt *);
    221 #ifdef UPCALL_TIMING
    222 static void collate(struct timeval *);
    223 #endif
    224 static int del_mfc(struct sockopt *);
    225 static int set_api_config(struct sockopt *); /* chose API capabilities */
    226 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
    227 static void expire_upcalls(void *);
    228 #ifdef RSVP_ISI
    229 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
    230 #else
    231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
    232 #endif
    233 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
    234 static void encap_send(struct ip *, struct vif *, struct mbuf *);
    235 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
    236 static void tbf_queue(struct vif *, struct mbuf *);
    237 static void tbf_process_q(struct vif *);
    238 static void tbf_reprocess_q(void *);
    239 static int tbf_dq_sel(struct vif *, struct ip *);
    240 static void tbf_send_packet(struct vif *, struct mbuf *);
    241 static void tbf_update_tokens(struct vif *);
    242 static int priority(struct vif *, struct ip *);
    243 
    244 /*
    245  * Bandwidth monitoring
    246  */
    247 static void free_bw_list(struct bw_meter *);
    248 static int add_bw_upcall(struct bw_upcall *);
    249 static int del_bw_upcall(struct bw_upcall *);
    250 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
    251 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
    252 static void bw_upcalls_send(void);
    253 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
    254 static void unschedule_bw_meter(struct bw_meter *);
    255 static void bw_meter_process(void);
    256 static void expire_bw_upcalls_send(void *);
    257 static void expire_bw_meter_process(void *);
    258 
    259 #ifdef PIM
    260 static int pim_register_send(struct ip *, struct vif *,
    261 		struct mbuf *, struct mfc *);
    262 static int pim_register_send_rp(struct ip *, struct vif *,
    263 		struct mbuf *, struct mfc *);
    264 static int pim_register_send_upcall(struct ip *, struct vif *,
    265 		struct mbuf *, struct mfc *);
    266 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
    267 #endif
    268 
    269 /*
    270  * 'Interfaces' associated with decapsulator (so we can tell
    271  * packets that went through it from ones that get reflected
    272  * by a broken gateway).  These interfaces are never linked into
    273  * the system ifnet list & no routes point to them.  I.e., packets
    274  * can't be sent this way.  They only exist as a placeholder for
    275  * multicast source verification.
    276  */
    277 #if 0
    278 struct ifnet multicast_decap_if[MAXVIFS];
    279 #endif
    280 
    281 #define	ENCAP_TTL	64
    282 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
    283 
    284 /* prototype IP hdr for encapsulated packets */
    285 struct ip multicast_encap_iphdr = {
    286 	.ip_hl = sizeof(struct ip) >> 2,
    287 	.ip_v = IPVERSION,
    288 	.ip_len = sizeof(struct ip),
    289 	.ip_ttl = ENCAP_TTL,
    290 	.ip_p = ENCAP_PROTO,
    291 };
    292 
    293 /*
    294  * Bandwidth meter variables and constants
    295  */
    296 
    297 /*
    298  * Pending timeouts are stored in a hash table, the key being the
    299  * expiration time. Periodically, the entries are analysed and processed.
    300  */
    301 #define BW_METER_BUCKETS	1024
    302 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    303 struct callout bw_meter_ch;
    304 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    305 
    306 /*
    307  * Pending upcalls are stored in a vector which is flushed when
    308  * full, or periodically
    309  */
    310 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    311 static u_int	bw_upcalls_n; /* # of pending upcalls */
    312 struct callout	bw_upcalls_ch;
    313 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    314 
    315 #ifdef PIM
    316 struct pimstat pimstat;
    317 
    318 /*
    319  * Note: the PIM Register encapsulation adds the following in front of a
    320  * data packet:
    321  *
    322  * struct pim_encap_hdr {
    323  *    struct ip ip;
    324  *    struct pim_encap_pimhdr  pim;
    325  * }
    326  *
    327  */
    328 
    329 struct pim_encap_pimhdr {
    330 	struct pim pim;
    331 	uint32_t   flags;
    332 };
    333 
    334 static struct ip pim_encap_iphdr = {
    335 	.ip_v = IPVERSION,
    336 	.ip_hl = sizeof(struct ip) >> 2,
    337 	.ip_len = sizeof(struct ip),
    338 	.ip_ttl = ENCAP_TTL,
    339 	.ip_p = IPPROTO_PIM,
    340 };
    341 
    342 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    343     {
    344 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    345 	0,			/* reserved */
    346 	0,			/* checksum */
    347     },
    348     0				/* flags */
    349 };
    350 
    351 static struct ifnet multicast_register_if;
    352 static vifi_t reg_vif_num = VIFI_INVALID;
    353 #endif /* PIM */
    354 
    355 
    356 /*
    357  * Private variables.
    358  */
    359 static vifi_t	   numvifs = 0;
    360 
    361 static struct callout expire_upcalls_ch;
    362 
    363 /*
    364  * whether or not special PIM assert processing is enabled.
    365  */
    366 static int pim_assert;
    367 /*
    368  * Rate limit for assert notification messages, in usec
    369  */
    370 #define ASSERT_MSG_TIME		3000000
    371 
    372 /*
    373  * Kernel multicast routing API capabilities and setup.
    374  * If more API capabilities are added to the kernel, they should be
    375  * recorded in `mrt_api_support'.
    376  */
    377 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    378 					  MRT_MFC_FLAGS_BORDER_VIF |
    379 					  MRT_MFC_RP |
    380 					  MRT_MFC_BW_UPCALL);
    381 static u_int32_t mrt_api_config = 0;
    382 
    383 /*
    384  * Find a route for a given origin IP address and Multicast group address
    385  * Type of service parameter to be added in the future!!!
    386  * Statistics are updated by the caller if needed
    387  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    388  */
    389 static struct mfc *
    390 mfc_find(struct in_addr *o, struct in_addr *g)
    391 {
    392 	struct mfc *rt;
    393 
    394 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    395 		if (in_hosteq(rt->mfc_origin, *o) &&
    396 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    397 		    (rt->mfc_stall == NULL))
    398 			break;
    399 	}
    400 
    401 	return (rt);
    402 }
    403 
    404 /*
    405  * Macros to compute elapsed time efficiently
    406  * Borrowed from Van Jacobson's scheduling code
    407  */
    408 #define TV_DELTA(a, b, delta) do {					\
    409 	int xxs;							\
    410 	delta = (a).tv_usec - (b).tv_usec;				\
    411 	xxs = (a).tv_sec - (b).tv_sec;					\
    412 	switch (xxs) {							\
    413 	case 2:								\
    414 		delta += 1000000;					\
    415 		/* fall through */					\
    416 	case 1:								\
    417 		delta += 1000000;					\
    418 		/* fall through */					\
    419 	case 0:								\
    420 		break;							\
    421 	default:							\
    422 		delta += (1000000 * xxs);				\
    423 		break;							\
    424 	}								\
    425 } while (/*CONSTCOND*/ 0)
    426 
    427 #ifdef UPCALL_TIMING
    428 u_int32_t upcall_data[51];
    429 #endif /* UPCALL_TIMING */
    430 
    431 /*
    432  * Handle MRT setsockopt commands to modify the multicast routing tables.
    433  */
    434 int
    435 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
    436 {
    437 	int error;
    438 	int optval;
    439 	struct vifctl vifc;
    440 	vifi_t vifi;
    441 	struct bw_upcall bwuc;
    442 
    443 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
    444 		error = ENOPROTOOPT;
    445 	else {
    446 		switch (sopt->sopt_name) {
    447 		case MRT_INIT:
    448 			error = sockopt_getint(sopt, &optval);
    449 			if (error)
    450 				break;
    451 
    452 			error = ip_mrouter_init(so, optval);
    453 			break;
    454 		case MRT_DONE:
    455 			error = ip_mrouter_done();
    456 			break;
    457 		case MRT_ADD_VIF:
    458 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
    459 			if (error)
    460 				break;
    461 			error = add_vif(&vifc);
    462 			break;
    463 		case MRT_DEL_VIF:
    464 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
    465 			if (error)
    466 				break;
    467 			error = del_vif(&vifi);
    468 			break;
    469 		case MRT_ADD_MFC:
    470 			error = add_mfc(sopt);
    471 			break;
    472 		case MRT_DEL_MFC:
    473 			error = del_mfc(sopt);
    474 			break;
    475 		case MRT_ASSERT:
    476 			error = sockopt_getint(sopt, &optval);
    477 			if (error)
    478 				break;
    479 			error = set_assert(optval);
    480 			break;
    481 		case MRT_API_CONFIG:
    482 			error = set_api_config(sopt);
    483 			break;
    484 		case MRT_ADD_BW_UPCALL:
    485 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    486 			if (error)
    487 				break;
    488 			error = add_bw_upcall(&bwuc);
    489 			break;
    490 		case MRT_DEL_BW_UPCALL:
    491 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    492 			if (error)
    493 				break;
    494 			error = del_bw_upcall(&bwuc);
    495 			break;
    496 		default:
    497 			error = ENOPROTOOPT;
    498 			break;
    499 		}
    500 	}
    501 	return (error);
    502 }
    503 
    504 /*
    505  * Handle MRT getsockopt commands
    506  */
    507 int
    508 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
    509 {
    510 	int error;
    511 
    512 	if (so != ip_mrouter)
    513 		error = ENOPROTOOPT;
    514 	else {
    515 		switch (sopt->sopt_name) {
    516 		case MRT_VERSION:
    517 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
    518 			break;
    519 		case MRT_ASSERT:
    520 			error = sockopt_setint(sopt, pim_assert);
    521 			break;
    522 		case MRT_API_SUPPORT:
    523 			error = sockopt_set(sopt, &mrt_api_support,
    524 			    sizeof(mrt_api_support));
    525 			break;
    526 		case MRT_API_CONFIG:
    527 			error = sockopt_set(sopt, &mrt_api_config,
    528 			    sizeof(mrt_api_config));
    529 			break;
    530 		default:
    531 			error = ENOPROTOOPT;
    532 			break;
    533 		}
    534 	}
    535 	return (error);
    536 }
    537 
    538 /*
    539  * Handle ioctl commands to obtain information from the cache
    540  */
    541 int
    542 mrt_ioctl(struct socket *so, u_long cmd, void *data)
    543 {
    544 	int error;
    545 
    546 	if (so != ip_mrouter)
    547 		error = EINVAL;
    548 	else
    549 		switch (cmd) {
    550 		case SIOCGETVIFCNT:
    551 			error = get_vif_cnt((struct sioc_vif_req *)data);
    552 			break;
    553 		case SIOCGETSGCNT:
    554 			error = get_sg_cnt((struct sioc_sg_req *)data);
    555 			break;
    556 		default:
    557 			error = EINVAL;
    558 			break;
    559 		}
    560 
    561 	return (error);
    562 }
    563 
    564 /*
    565  * returns the packet, byte, rpf-failure count for the source group provided
    566  */
    567 static int
    568 get_sg_cnt(struct sioc_sg_req *req)
    569 {
    570 	int s;
    571 	struct mfc *rt;
    572 
    573 	s = splsoftnet();
    574 	rt = mfc_find(&req->src, &req->grp);
    575 	if (rt == NULL) {
    576 		splx(s);
    577 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    578 		return (EADDRNOTAVAIL);
    579 	}
    580 	req->pktcnt = rt->mfc_pkt_cnt;
    581 	req->bytecnt = rt->mfc_byte_cnt;
    582 	req->wrong_if = rt->mfc_wrong_if;
    583 	splx(s);
    584 
    585 	return (0);
    586 }
    587 
    588 /*
    589  * returns the input and output packet and byte counts on the vif provided
    590  */
    591 static int
    592 get_vif_cnt(struct sioc_vif_req *req)
    593 {
    594 	vifi_t vifi = req->vifi;
    595 
    596 	if (vifi >= numvifs)
    597 		return (EINVAL);
    598 
    599 	req->icount = viftable[vifi].v_pkt_in;
    600 	req->ocount = viftable[vifi].v_pkt_out;
    601 	req->ibytes = viftable[vifi].v_bytes_in;
    602 	req->obytes = viftable[vifi].v_bytes_out;
    603 
    604 	return (0);
    605 }
    606 
    607 /*
    608  * Enable multicast routing
    609  */
    610 static int
    611 ip_mrouter_init(struct socket *so, int v)
    612 {
    613 	if (mrtdebug)
    614 		log(LOG_DEBUG,
    615 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    616 		    so->so_type, so->so_proto->pr_protocol);
    617 
    618 	if (so->so_type != SOCK_RAW ||
    619 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    620 		return (EOPNOTSUPP);
    621 
    622 	if (v != 1)
    623 		return (EINVAL);
    624 
    625 	if (ip_mrouter != NULL)
    626 		return (EADDRINUSE);
    627 
    628 	ip_mrouter = so;
    629 
    630 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
    631 	memset((void *)nexpire, 0, sizeof(nexpire));
    632 
    633 	pim_assert = 0;
    634 
    635 	callout_init(&expire_upcalls_ch, 0);
    636 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    637 		      expire_upcalls, NULL);
    638 
    639 	callout_init(&bw_upcalls_ch, 0);
    640 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    641 		      expire_bw_upcalls_send, NULL);
    642 
    643 	callout_init(&bw_meter_ch, 0);
    644 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    645 		      expire_bw_meter_process, NULL);
    646 
    647 	if (mrtdebug)
    648 		log(LOG_DEBUG, "ip_mrouter_init\n");
    649 
    650 	return (0);
    651 }
    652 
    653 /*
    654  * Disable multicast routing
    655  */
    656 int
    657 ip_mrouter_done(void)
    658 {
    659 	vifi_t vifi;
    660 	struct vif *vifp;
    661 	int i;
    662 	int s;
    663 
    664 	s = splsoftnet();
    665 
    666 	/* Clear out all the vifs currently in use. */
    667 	for (vifi = 0; vifi < numvifs; vifi++) {
    668 		vifp = &viftable[vifi];
    669 		if (!in_nullhost(vifp->v_lcl_addr))
    670 			reset_vif(vifp);
    671 	}
    672 
    673 	numvifs = 0;
    674 	pim_assert = 0;
    675 	mrt_api_config = 0;
    676 
    677 	callout_stop(&expire_upcalls_ch);
    678 	callout_stop(&bw_upcalls_ch);
    679 	callout_stop(&bw_meter_ch);
    680 
    681 	/*
    682 	 * Free all multicast forwarding cache entries.
    683 	 */
    684 	for (i = 0; i < MFCTBLSIZ; i++) {
    685 		struct mfc *rt, *nrt;
    686 
    687 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    688 			nrt = LIST_NEXT(rt, mfc_hash);
    689 
    690 			expire_mfc(rt);
    691 		}
    692 	}
    693 
    694 	memset((void *)nexpire, 0, sizeof(nexpire));
    695 	hashdone(mfchashtbl, HASH_LIST, mfchash);
    696 	mfchashtbl = NULL;
    697 
    698 	bw_upcalls_n = 0;
    699 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
    700 
    701 	/* Reset de-encapsulation cache. */
    702 
    703 	ip_mrouter = NULL;
    704 
    705 	splx(s);
    706 
    707 	if (mrtdebug)
    708 		log(LOG_DEBUG, "ip_mrouter_done\n");
    709 
    710 	return (0);
    711 }
    712 
    713 void
    714 ip_mrouter_detach(struct ifnet *ifp)
    715 {
    716 	int vifi, i;
    717 	struct vif *vifp;
    718 	struct mfc *rt;
    719 	struct rtdetq *rte;
    720 
    721 	/* XXX not sure about side effect to userland routing daemon */
    722 	for (vifi = 0; vifi < numvifs; vifi++) {
    723 		vifp = &viftable[vifi];
    724 		if (vifp->v_ifp == ifp)
    725 			reset_vif(vifp);
    726 	}
    727 	for (i = 0; i < MFCTBLSIZ; i++) {
    728 		if (nexpire[i] == 0)
    729 			continue;
    730 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    731 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    732 				if (rte->ifp == ifp)
    733 					rte->ifp = NULL;
    734 			}
    735 		}
    736 	}
    737 }
    738 
    739 /*
    740  * Set PIM assert processing global
    741  */
    742 static int
    743 set_assert(int i)
    744 {
    745 	pim_assert = !!i;
    746 	return (0);
    747 }
    748 
    749 /*
    750  * Configure API capabilities
    751  */
    752 static int
    753 set_api_config(struct sockopt *sopt)
    754 {
    755 	u_int32_t apival;
    756 	int i, error;
    757 
    758 	/*
    759 	 * We can set the API capabilities only if it is the first operation
    760 	 * after MRT_INIT. I.e.:
    761 	 *  - there are no vifs installed
    762 	 *  - pim_assert is not enabled
    763 	 *  - the MFC table is empty
    764 	 */
    765 	error = sockopt_get(sopt, &apival, sizeof(apival));
    766 	if (error)
    767 		return (error);
    768 	if (numvifs > 0)
    769 		return (EPERM);
    770 	if (pim_assert)
    771 		return (EPERM);
    772 	for (i = 0; i < MFCTBLSIZ; i++) {
    773 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
    774 			return (EPERM);
    775 	}
    776 
    777 	mrt_api_config = apival & mrt_api_support;
    778 	return (0);
    779 }
    780 
    781 /*
    782  * Add a vif to the vif table
    783  */
    784 static int
    785 add_vif(struct vifctl *vifcp)
    786 {
    787 	struct vif *vifp;
    788 	struct ifaddr *ifa;
    789 	struct ifnet *ifp;
    790 	int error, s;
    791 	struct sockaddr_in sin;
    792 
    793 	if (vifcp->vifc_vifi >= MAXVIFS)
    794 		return (EINVAL);
    795 	if (in_nullhost(vifcp->vifc_lcl_addr))
    796 		return (EADDRNOTAVAIL);
    797 
    798 	vifp = &viftable[vifcp->vifc_vifi];
    799 	if (!in_nullhost(vifp->v_lcl_addr))
    800 		return (EADDRINUSE);
    801 
    802 	/* Find the interface with an address in AF_INET family. */
    803 #ifdef PIM
    804 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    805 		/*
    806 		 * XXX: Because VIFF_REGISTER does not really need a valid
    807 		 * local interface (e.g. it could be 127.0.0.2), we don't
    808 		 * check its address.
    809 		 */
    810 	    ifp = NULL;
    811 	} else
    812 #endif
    813 	{
    814 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
    815 		ifa = ifa_ifwithaddr(sintosa(&sin));
    816 		if (ifa == NULL)
    817 			return (EADDRNOTAVAIL);
    818 		ifp = ifa->ifa_ifp;
    819 	}
    820 
    821 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    822 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    823 			log(LOG_ERR, "source routed tunnels not supported\n");
    824 			return (EOPNOTSUPP);
    825 		}
    826 
    827 		/* attach this vif to decapsulator dispatch table */
    828 		/*
    829 		 * XXX Use addresses in registration so that matching
    830 		 * can be done with radix tree in decapsulator.  But,
    831 		 * we need to check inner header for multicast, so
    832 		 * this requires both radix tree lookup and then a
    833 		 * function to check, and this is not supported yet.
    834 		 */
    835 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    836 		    vif_encapcheck, &vif_encapsw, vifp);
    837 		if (!vifp->v_encap_cookie)
    838 			return (EINVAL);
    839 
    840 		/* Create a fake encapsulation interface. */
    841 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
    842 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    843 			 "mdecap%d", vifcp->vifc_vifi);
    844 
    845 		/* Prepare cached route entry. */
    846 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    847 #ifdef PIM
    848 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    849 		ifp = &multicast_register_if;
    850 		if (mrtdebug)
    851 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    852 			    (void *)ifp);
    853 		if (reg_vif_num == VIFI_INVALID) {
    854 			memset(ifp, 0, sizeof(*ifp));
    855 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    856 				 "register_vif");
    857 			ifp->if_flags = IFF_LOOPBACK;
    858 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    859 			reg_vif_num = vifcp->vifc_vifi;
    860 		}
    861 #endif
    862 	} else {
    863 		/* Make sure the interface supports multicast. */
    864 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    865 			return (EOPNOTSUPP);
    866 
    867 		/* Enable promiscuous reception of all IP multicasts. */
    868 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    869 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
    870 		if (error)
    871 			return (error);
    872 	}
    873 
    874 	s = splsoftnet();
    875 
    876 	/* Define parameters for the tbf structure. */
    877 	vifp->tbf_q = NULL;
    878 	vifp->tbf_t = &vifp->tbf_q;
    879 	microtime(&vifp->tbf_last_pkt_t);
    880 	vifp->tbf_n_tok = 0;
    881 	vifp->tbf_q_len = 0;
    882 	vifp->tbf_max_q_len = MAXQSIZE;
    883 
    884 	vifp->v_flags = vifcp->vifc_flags;
    885 	vifp->v_threshold = vifcp->vifc_threshold;
    886 	/* scaling up here allows division by 1024 in critical code */
    887 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
    888 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
    889 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
    890 	vifp->v_ifp = ifp;
    891 	/* Initialize per vif pkt counters. */
    892 	vifp->v_pkt_in = 0;
    893 	vifp->v_pkt_out = 0;
    894 	vifp->v_bytes_in = 0;
    895 	vifp->v_bytes_out = 0;
    896 
    897 	callout_init(&vifp->v_repq_ch, 0);
    898 
    899 #ifdef RSVP_ISI
    900 	vifp->v_rsvp_on = 0;
    901 	vifp->v_rsvpd = NULL;
    902 #endif /* RSVP_ISI */
    903 
    904 	splx(s);
    905 
    906 	/* Adjust numvifs up if the vifi is higher than numvifs. */
    907 	if (numvifs <= vifcp->vifc_vifi)
    908 		numvifs = vifcp->vifc_vifi + 1;
    909 
    910 	if (mrtdebug)
    911 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
    912 		    vifcp->vifc_vifi,
    913 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
    914 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
    915 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
    916 		    vifcp->vifc_threshold,
    917 		    vifcp->vifc_rate_limit);
    918 
    919 	return (0);
    920 }
    921 
    922 void
    923 reset_vif(struct vif *vifp)
    924 {
    925 	struct mbuf *m, *n;
    926 	struct ifnet *ifp;
    927 	struct sockaddr_in sin;
    928 
    929 	callout_stop(&vifp->v_repq_ch);
    930 
    931 	/* detach this vif from decapsulator dispatch table */
    932 	encap_detach(vifp->v_encap_cookie);
    933 	vifp->v_encap_cookie = NULL;
    934 
    935 	/*
    936 	 * Free packets queued at the interface
    937 	 */
    938 	for (m = vifp->tbf_q; m != NULL; m = n) {
    939 		n = m->m_nextpkt;
    940 		m_freem(m);
    941 	}
    942 
    943 	if (vifp->v_flags & VIFF_TUNNEL)
    944 		free(vifp->v_ifp, M_MRTABLE);
    945 	else if (vifp->v_flags & VIFF_REGISTER) {
    946 #ifdef PIM
    947 		reg_vif_num = VIFI_INVALID;
    948 #endif
    949 	} else {
    950 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    951 		ifp = vifp->v_ifp;
    952 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
    953 	}
    954 	memset((void *)vifp, 0, sizeof(*vifp));
    955 }
    956 
    957 /*
    958  * Delete a vif from the vif table
    959  */
    960 static int
    961 del_vif(vifi_t *vifip)
    962 {
    963 	struct vif *vifp;
    964 	vifi_t vifi;
    965 	int s;
    966 
    967 	if (*vifip >= numvifs)
    968 		return (EINVAL);
    969 
    970 	vifp = &viftable[*vifip];
    971 	if (in_nullhost(vifp->v_lcl_addr))
    972 		return (EADDRNOTAVAIL);
    973 
    974 	s = splsoftnet();
    975 
    976 	reset_vif(vifp);
    977 
    978 	/* Adjust numvifs down */
    979 	for (vifi = numvifs; vifi > 0; vifi--)
    980 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
    981 			break;
    982 	numvifs = vifi;
    983 
    984 	splx(s);
    985 
    986 	if (mrtdebug)
    987 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
    988 
    989 	return (0);
    990 }
    991 
    992 /*
    993  * update an mfc entry without resetting counters and S,G addresses.
    994  */
    995 static void
    996 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    997 {
    998 	int i;
    999 
   1000 	rt->mfc_parent = mfccp->mfcc_parent;
   1001 	for (i = 0; i < numvifs; i++) {
   1002 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
   1003 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
   1004 			MRT_MFC_FLAGS_ALL;
   1005 	}
   1006 	/* set the RP address */
   1007 	if (mrt_api_config & MRT_MFC_RP)
   1008 		rt->mfc_rp = mfccp->mfcc_rp;
   1009 	else
   1010 		rt->mfc_rp = zeroin_addr;
   1011 }
   1012 
   1013 /*
   1014  * fully initialize an mfc entry from the parameter.
   1015  */
   1016 static void
   1017 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
   1018 {
   1019 	rt->mfc_origin     = mfccp->mfcc_origin;
   1020 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
   1021 
   1022 	update_mfc_params(rt, mfccp);
   1023 
   1024 	/* initialize pkt counters per src-grp */
   1025 	rt->mfc_pkt_cnt    = 0;
   1026 	rt->mfc_byte_cnt   = 0;
   1027 	rt->mfc_wrong_if   = 0;
   1028 	timerclear(&rt->mfc_last_assert);
   1029 }
   1030 
   1031 static void
   1032 expire_mfc(struct mfc *rt)
   1033 {
   1034 	struct rtdetq *rte, *nrte;
   1035 
   1036 	free_bw_list(rt->mfc_bw_meter);
   1037 
   1038 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1039 		nrte = rte->next;
   1040 		m_freem(rte->m);
   1041 		free(rte, M_MRTABLE);
   1042 	}
   1043 
   1044 	LIST_REMOVE(rt, mfc_hash);
   1045 	free(rt, M_MRTABLE);
   1046 }
   1047 
   1048 /*
   1049  * Add an mfc entry
   1050  */
   1051 static int
   1052 add_mfc(struct sockopt *sopt)
   1053 {
   1054 	struct mfcctl2 mfcctl2;
   1055 	struct mfcctl2 *mfccp;
   1056 	struct mfc *rt;
   1057 	u_int32_t hash = 0;
   1058 	struct rtdetq *rte, *nrte;
   1059 	u_short nstl;
   1060 	int s;
   1061 	int error;
   1062 
   1063 	/*
   1064 	 * select data size depending on API version.
   1065 	 */
   1066 	mfccp = &mfcctl2;
   1067 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1068 
   1069 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1070 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1071 	else
   1072 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1073 
   1074 	if (error)
   1075 		return (error);
   1076 
   1077 	s = splsoftnet();
   1078 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1079 
   1080 	/* If an entry already exists, just update the fields */
   1081 	if (rt) {
   1082 		if (mrtdebug & DEBUG_MFC)
   1083 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1084 			    ntohl(mfccp->mfcc_origin.s_addr),
   1085 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1086 			    mfccp->mfcc_parent);
   1087 
   1088 		update_mfc_params(rt, mfccp);
   1089 
   1090 		splx(s);
   1091 		return (0);
   1092 	}
   1093 
   1094 	/*
   1095 	 * Find the entry for which the upcall was made and update
   1096 	 */
   1097 	nstl = 0;
   1098 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1099 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1100 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1101 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1102 		    rt->mfc_stall != NULL) {
   1103 			if (nstl++)
   1104 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1105 				    "multiple kernel entries",
   1106 				    ntohl(mfccp->mfcc_origin.s_addr),
   1107 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1108 				    mfccp->mfcc_parent, rt->mfc_stall);
   1109 
   1110 			if (mrtdebug & DEBUG_MFC)
   1111 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1112 				    ntohl(mfccp->mfcc_origin.s_addr),
   1113 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1114 				    mfccp->mfcc_parent, rt->mfc_stall);
   1115 
   1116 			rte = rt->mfc_stall;
   1117 			init_mfc_params(rt, mfccp);
   1118 			rt->mfc_stall = NULL;
   1119 
   1120 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1121 			nexpire[hash]--;
   1122 
   1123 			/* free packets Qed at the end of this entry */
   1124 			for (; rte != NULL; rte = nrte) {
   1125 				nrte = rte->next;
   1126 				if (rte->ifp) {
   1127 #ifdef RSVP_ISI
   1128 					ip_mdq(rte->m, rte->ifp, rt, -1);
   1129 #else
   1130 					ip_mdq(rte->m, rte->ifp, rt);
   1131 #endif /* RSVP_ISI */
   1132 				}
   1133 				m_freem(rte->m);
   1134 #ifdef UPCALL_TIMING
   1135 				collate(&rte->t);
   1136 #endif /* UPCALL_TIMING */
   1137 				free(rte, M_MRTABLE);
   1138 			}
   1139 		}
   1140 	}
   1141 
   1142 	/*
   1143 	 * It is possible that an entry is being inserted without an upcall
   1144 	 */
   1145 	if (nstl == 0) {
   1146 		/*
   1147 		 * No mfc; make a new one
   1148 		 */
   1149 		if (mrtdebug & DEBUG_MFC)
   1150 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1151 			    ntohl(mfccp->mfcc_origin.s_addr),
   1152 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1153 			    mfccp->mfcc_parent);
   1154 
   1155 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1156 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1157 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1158 				init_mfc_params(rt, mfccp);
   1159 				if (rt->mfc_expire)
   1160 					nexpire[hash]--;
   1161 				rt->mfc_expire = 0;
   1162 				break; /* XXX */
   1163 			}
   1164 		}
   1165 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1166 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1167 						  M_NOWAIT);
   1168 			if (rt == NULL) {
   1169 				splx(s);
   1170 				return (ENOBUFS);
   1171 			}
   1172 
   1173 			init_mfc_params(rt, mfccp);
   1174 			rt->mfc_expire	= 0;
   1175 			rt->mfc_stall	= NULL;
   1176 			rt->mfc_bw_meter = NULL;
   1177 
   1178 			/* insert new entry at head of hash chain */
   1179 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1180 		}
   1181 	}
   1182 
   1183 	splx(s);
   1184 	return (0);
   1185 }
   1186 
   1187 #ifdef UPCALL_TIMING
   1188 /*
   1189  * collect delay statistics on the upcalls
   1190  */
   1191 static void
   1192 collate(struct timeval *t)
   1193 {
   1194 	u_int32_t d;
   1195 	struct timeval tp;
   1196 	u_int32_t delta;
   1197 
   1198 	microtime(&tp);
   1199 
   1200 	if (timercmp(t, &tp, <)) {
   1201 		TV_DELTA(tp, *t, delta);
   1202 
   1203 		d = delta >> 10;
   1204 		if (d > 50)
   1205 			d = 50;
   1206 
   1207 		++upcall_data[d];
   1208 	}
   1209 }
   1210 #endif /* UPCALL_TIMING */
   1211 
   1212 /*
   1213  * Delete an mfc entry
   1214  */
   1215 static int
   1216 del_mfc(struct sockopt *sopt)
   1217 {
   1218 	struct mfcctl2 mfcctl2;
   1219 	struct mfcctl2 *mfccp;
   1220 	struct mfc *rt;
   1221 	int s;
   1222 	int error;
   1223 
   1224 	/*
   1225 	 * XXX: for deleting MFC entries the information in entries
   1226 	 * of size "struct mfcctl" is sufficient.
   1227 	 */
   1228 
   1229 	mfccp = &mfcctl2;
   1230 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1231 
   1232 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1233 	if (error) {
   1234 		/* Try with the size of mfcctl2. */
   1235 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1236 		if (error)
   1237 			return (error);
   1238 	}
   1239 
   1240 	if (mrtdebug & DEBUG_MFC)
   1241 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1242 		    ntohl(mfccp->mfcc_origin.s_addr),
   1243 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1244 
   1245 	s = splsoftnet();
   1246 
   1247 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1248 	if (rt == NULL) {
   1249 		splx(s);
   1250 		return (EADDRNOTAVAIL);
   1251 	}
   1252 
   1253 	/*
   1254 	 * free the bw_meter entries
   1255 	 */
   1256 	free_bw_list(rt->mfc_bw_meter);
   1257 	rt->mfc_bw_meter = NULL;
   1258 
   1259 	LIST_REMOVE(rt, mfc_hash);
   1260 	free(rt, M_MRTABLE);
   1261 
   1262 	splx(s);
   1263 	return (0);
   1264 }
   1265 
   1266 static int
   1267 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
   1268 {
   1269 	if (s) {
   1270 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
   1271 			sorwakeup(s);
   1272 			return (0);
   1273 		}
   1274 	}
   1275 	m_freem(mm);
   1276 	return (-1);
   1277 }
   1278 
   1279 /*
   1280  * IP multicast forwarding function. This function assumes that the packet
   1281  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1282  * pointed to by "ifp", and the packet is to be relayed to other networks
   1283  * that have members of the packet's destination IP multicast group.
   1284  *
   1285  * The packet is returned unscathed to the caller, unless it is
   1286  * erroneous, in which case a non-zero return value tells the caller to
   1287  * discard it.
   1288  */
   1289 
   1290 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1291 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1292 
   1293 int
   1294 #ifdef RSVP_ISI
   1295 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
   1296 #else
   1297 ip_mforward(struct mbuf *m, struct ifnet *ifp)
   1298 #endif /* RSVP_ISI */
   1299 {
   1300 	struct ip *ip = mtod(m, struct ip *);
   1301 	struct mfc *rt;
   1302 	static int srctun = 0;
   1303 	struct mbuf *mm;
   1304 	struct sockaddr_in sin;
   1305 	int s;
   1306 	vifi_t vifi;
   1307 
   1308 	if (mrtdebug & DEBUG_FORWARD)
   1309 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1310 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1311 
   1312 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1313 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1314 		/*
   1315 		 * Packet arrived via a physical interface or
   1316 		 * an encapsulated tunnel or a register_vif.
   1317 		 */
   1318 	} else {
   1319 		/*
   1320 		 * Packet arrived through a source-route tunnel.
   1321 		 * Source-route tunnels are no longer supported.
   1322 		 */
   1323 		if ((srctun++ % 1000) == 0)
   1324 			log(LOG_ERR,
   1325 			    "ip_mforward: received source-routed packet from %x\n",
   1326 			    ntohl(ip->ip_src.s_addr));
   1327 
   1328 		return (1);
   1329 	}
   1330 
   1331 	/*
   1332 	 * Clear any in-bound checksum flags for this packet.
   1333 	 */
   1334 	m->m_pkthdr.csum_flags = 0;
   1335 
   1336 #ifdef RSVP_ISI
   1337 	if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
   1338 		if (ip->ip_ttl < MAXTTL)
   1339 			ip->ip_ttl++;	/* compensate for -1 in *_send routines */
   1340 		if (ip->ip_p == IPPROTO_RSVP) {
   1341 			struct vif *vifp = viftable + vifi;
   1342 			RSVP_DPRINTF(("%s: Sending IPPROTO_RSVP from %x to %x"
   1343 			    " on vif %d (%s%s)\n", __func__,
   1344 			    ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
   1345 			    (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
   1346 			    vifp->v_ifp->if_xname));
   1347 		}
   1348 		return (ip_mdq(m, ifp, NULL, vifi));
   1349 	}
   1350 	if (ip->ip_p == IPPROTO_RSVP) {
   1351 		RSVP_DPRINTF(("%s: Warning: IPPROTO_RSVP from %x to %x"
   1352 		    " without vif option\n", __func__,
   1353 		    ntohl(ip->ip_src), ntohl(ip->ip_dst));
   1354 	}
   1355 #endif /* RSVP_ISI */
   1356 
   1357 	/*
   1358 	 * Don't forward a packet with time-to-live of zero or one,
   1359 	 * or a packet destined to a local-only group.
   1360 	 */
   1361 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1362 		return (0);
   1363 
   1364 	/*
   1365 	 * Determine forwarding vifs from the forwarding cache table
   1366 	 */
   1367 	s = splsoftnet();
   1368 	++mrtstat.mrts_mfc_lookups;
   1369 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1370 
   1371 	/* Entry exists, so forward if necessary */
   1372 	if (rt != NULL) {
   1373 		splx(s);
   1374 #ifdef RSVP_ISI
   1375 		return (ip_mdq(m, ifp, rt, -1));
   1376 #else
   1377 		return (ip_mdq(m, ifp, rt));
   1378 #endif /* RSVP_ISI */
   1379 	} else {
   1380 		/*
   1381 		 * If we don't have a route for packet's origin,
   1382 		 * Make a copy of the packet & send message to routing daemon
   1383 		 */
   1384 
   1385 		struct mbuf *mb0;
   1386 		struct rtdetq *rte;
   1387 		u_int32_t hash;
   1388 		int hlen = ip->ip_hl << 2;
   1389 #ifdef UPCALL_TIMING
   1390 		struct timeval tp;
   1391 
   1392 		microtime(&tp);
   1393 #endif /* UPCALL_TIMING */
   1394 
   1395 		++mrtstat.mrts_mfc_misses;
   1396 
   1397 		mrtstat.mrts_no_route++;
   1398 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1399 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1400 			    ntohl(ip->ip_src.s_addr),
   1401 			    ntohl(ip->ip_dst.s_addr));
   1402 
   1403 		/*
   1404 		 * Allocate mbufs early so that we don't do extra work if we are
   1405 		 * just going to fail anyway.  Make sure to pullup the header so
   1406 		 * that other people can't step on it.
   1407 		 */
   1408 		rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
   1409 					      M_NOWAIT);
   1410 		if (rte == NULL) {
   1411 			splx(s);
   1412 			return (ENOBUFS);
   1413 		}
   1414 		mb0 = m_copypacket(m, M_DONTWAIT);
   1415 		M_PULLUP(mb0, hlen);
   1416 		if (mb0 == NULL) {
   1417 			free(rte, M_MRTABLE);
   1418 			splx(s);
   1419 			return (ENOBUFS);
   1420 		}
   1421 
   1422 		/* is there an upcall waiting for this flow? */
   1423 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1424 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1425 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1426 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1427 			    rt->mfc_stall != NULL)
   1428 				break;
   1429 		}
   1430 
   1431 		if (rt == NULL) {
   1432 			int i;
   1433 			struct igmpmsg *im;
   1434 
   1435 			/*
   1436 			 * Locate the vifi for the incoming interface for
   1437 			 * this packet.
   1438 			 * If none found, drop packet.
   1439 			 */
   1440 			for (vifi = 0; vifi < numvifs &&
   1441 				 viftable[vifi].v_ifp != ifp; vifi++)
   1442 				;
   1443 			if (vifi >= numvifs) /* vif not found, drop packet */
   1444 				goto non_fatal;
   1445 
   1446 			/* no upcall, so make a new entry */
   1447 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1448 						  M_NOWAIT);
   1449 			if (rt == NULL)
   1450 				goto fail;
   1451 
   1452 			/*
   1453 			 * Make a copy of the header to send to the user level
   1454 			 * process
   1455 			 */
   1456 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
   1457 			M_PULLUP(mm, hlen);
   1458 			if (mm == NULL)
   1459 				goto fail1;
   1460 
   1461 			/*
   1462 			 * Send message to routing daemon to install
   1463 			 * a route into the kernel table
   1464 			 */
   1465 
   1466 			im = mtod(mm, struct igmpmsg *);
   1467 			im->im_msgtype = IGMPMSG_NOCACHE;
   1468 			im->im_mbz = 0;
   1469 			im->im_vif = vifi;
   1470 
   1471 			mrtstat.mrts_upcalls++;
   1472 
   1473 			sockaddr_in_init(&sin, &ip->ip_src, 0);
   1474 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1475 				log(LOG_WARNING,
   1476 				    "ip_mforward: ip_mrouter socket queue full\n");
   1477 				++mrtstat.mrts_upq_sockfull;
   1478 			fail1:
   1479 				free(rt, M_MRTABLE);
   1480 			fail:
   1481 				free(rte, M_MRTABLE);
   1482 				m_freem(mb0);
   1483 				splx(s);
   1484 				return (ENOBUFS);
   1485 			}
   1486 
   1487 			/* insert new entry at head of hash chain */
   1488 			rt->mfc_origin = ip->ip_src;
   1489 			rt->mfc_mcastgrp = ip->ip_dst;
   1490 			rt->mfc_pkt_cnt = 0;
   1491 			rt->mfc_byte_cnt = 0;
   1492 			rt->mfc_wrong_if = 0;
   1493 			rt->mfc_expire = UPCALL_EXPIRE;
   1494 			nexpire[hash]++;
   1495 			for (i = 0; i < numvifs; i++) {
   1496 				rt->mfc_ttls[i] = 0;
   1497 				rt->mfc_flags[i] = 0;
   1498 			}
   1499 			rt->mfc_parent = -1;
   1500 
   1501 			/* clear the RP address */
   1502 			rt->mfc_rp = zeroin_addr;
   1503 
   1504 			rt->mfc_bw_meter = NULL;
   1505 
   1506 			/* link into table */
   1507 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1508 			/* Add this entry to the end of the queue */
   1509 			rt->mfc_stall = rte;
   1510 		} else {
   1511 			/* determine if q has overflowed */
   1512 			struct rtdetq **p;
   1513 			int npkts = 0;
   1514 
   1515 			/*
   1516 			 * XXX ouch! we need to append to the list, but we
   1517 			 * only have a pointer to the front, so we have to
   1518 			 * scan the entire list every time.
   1519 			 */
   1520 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1521 				if (++npkts > MAX_UPQ) {
   1522 					mrtstat.mrts_upq_ovflw++;
   1523 				non_fatal:
   1524 					free(rte, M_MRTABLE);
   1525 					m_freem(mb0);
   1526 					splx(s);
   1527 					return (0);
   1528 				}
   1529 
   1530 			/* Add this entry to the end of the queue */
   1531 			*p = rte;
   1532 		}
   1533 
   1534 		rte->next = NULL;
   1535 		rte->m = mb0;
   1536 		rte->ifp = ifp;
   1537 #ifdef UPCALL_TIMING
   1538 		rte->t = tp;
   1539 #endif /* UPCALL_TIMING */
   1540 
   1541 		splx(s);
   1542 
   1543 		return (0);
   1544 	}
   1545 }
   1546 
   1547 
   1548 /*ARGSUSED*/
   1549 static void
   1550 expire_upcalls(void *v)
   1551 {
   1552 	int i;
   1553 	int s;
   1554 
   1555 	s = splsoftnet();
   1556 
   1557 	for (i = 0; i < MFCTBLSIZ; i++) {
   1558 		struct mfc *rt, *nrt;
   1559 
   1560 		if (nexpire[i] == 0)
   1561 			continue;
   1562 
   1563 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1564 			nrt = LIST_NEXT(rt, mfc_hash);
   1565 
   1566 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1567 				continue;
   1568 			nexpire[i]--;
   1569 
   1570 			/*
   1571 			 * free the bw_meter entries
   1572 			 */
   1573 			while (rt->mfc_bw_meter != NULL) {
   1574 				struct bw_meter *x = rt->mfc_bw_meter;
   1575 
   1576 				rt->mfc_bw_meter = x->bm_mfc_next;
   1577 				kmem_free(x, sizeof(*x));
   1578 			}
   1579 
   1580 			++mrtstat.mrts_cache_cleanups;
   1581 			if (mrtdebug & DEBUG_EXPIRE)
   1582 				log(LOG_DEBUG,
   1583 				    "expire_upcalls: expiring (%x %x)\n",
   1584 				    ntohl(rt->mfc_origin.s_addr),
   1585 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1586 
   1587 			expire_mfc(rt);
   1588 		}
   1589 	}
   1590 
   1591 	splx(s);
   1592 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1593 	    expire_upcalls, NULL);
   1594 }
   1595 
   1596 /*
   1597  * Packet forwarding routine once entry in the cache is made
   1598  */
   1599 static int
   1600 #ifdef RSVP_ISI
   1601 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
   1602 #else
   1603 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
   1604 #endif /* RSVP_ISI */
   1605 {
   1606 	struct ip  *ip = mtod(m, struct ip *);
   1607 	vifi_t vifi;
   1608 	struct vif *vifp;
   1609 	struct sockaddr_in sin;
   1610 	int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1611 
   1612 /*
   1613  * Macro to send packet on vif.  Since RSVP packets don't get counted on
   1614  * input, they shouldn't get counted on output, so statistics keeping is
   1615  * separate.
   1616  */
   1617 #define MC_SEND(ip, vifp, m) do {					\
   1618 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1619 		encap_send((ip), (vifp), (m));				\
   1620 	else								\
   1621 		phyint_send((ip), (vifp), (m));				\
   1622 } while (/*CONSTCOND*/ 0)
   1623 
   1624 #ifdef RSVP_ISI
   1625 	/*
   1626 	 * If xmt_vif is not -1, send on only the requested vif.
   1627 	 *
   1628 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
   1629 	 */
   1630 	if (xmt_vif < numvifs) {
   1631 #ifdef PIM
   1632 		if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
   1633 			pim_register_send(ip, viftable + xmt_vif, m, rt);
   1634 		else
   1635 #endif
   1636 		MC_SEND(ip, viftable + xmt_vif, m);
   1637 		return (1);
   1638 	}
   1639 #endif /* RSVP_ISI */
   1640 
   1641 	/*
   1642 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1643 	 */
   1644 	vifi = rt->mfc_parent;
   1645 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1646 		/* came in the wrong interface */
   1647 		if (mrtdebug & DEBUG_FORWARD)
   1648 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1649 			    ifp, vifi,
   1650 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1651 		++mrtstat.mrts_wrong_if;
   1652 		++rt->mfc_wrong_if;
   1653 		/*
   1654 		 * If we are doing PIM assert processing, send a message
   1655 		 * to the routing daemon.
   1656 		 *
   1657 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1658 		 * can complete the SPT switch, regardless of the type
   1659 		 * of the iif (broadcast media, GRE tunnel, etc).
   1660 		 */
   1661 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1662 			struct timeval now;
   1663 			u_int32_t delta;
   1664 
   1665 #ifdef PIM
   1666 			if (ifp == &multicast_register_if)
   1667 				pimstat.pims_rcv_registers_wrongiif++;
   1668 #endif
   1669 
   1670 			/* Get vifi for the incoming packet */
   1671 			for (vifi = 0;
   1672 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1673 			     vifi++)
   1674 			    ;
   1675 			if (vifi >= numvifs) {
   1676 				/* The iif is not found: ignore the packet. */
   1677 				return (0);
   1678 			}
   1679 
   1680 			if (rt->mfc_flags[vifi] &
   1681 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1682 				/* WRONGVIF disabled: ignore the packet */
   1683 				return (0);
   1684 			}
   1685 
   1686 			microtime(&now);
   1687 
   1688 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1689 
   1690 			if (delta > ASSERT_MSG_TIME) {
   1691 				struct igmpmsg *im;
   1692 				int hlen = ip->ip_hl << 2;
   1693 				struct mbuf *mm =
   1694 				    m_copym(m, 0, hlen, M_DONTWAIT);
   1695 
   1696 				M_PULLUP(mm, hlen);
   1697 				if (mm == NULL)
   1698 					return (ENOBUFS);
   1699 
   1700 				rt->mfc_last_assert = now;
   1701 
   1702 				im = mtod(mm, struct igmpmsg *);
   1703 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1704 				im->im_mbz	= 0;
   1705 				im->im_vif	= vifi;
   1706 
   1707 				mrtstat.mrts_upcalls++;
   1708 
   1709 				sockaddr_in_init(&sin, &im->im_src, 0);
   1710 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1711 					log(LOG_WARNING,
   1712 					    "ip_mforward: ip_mrouter socket queue full\n");
   1713 					++mrtstat.mrts_upq_sockfull;
   1714 					return (ENOBUFS);
   1715 				}
   1716 			}
   1717 		}
   1718 		return (0);
   1719 	}
   1720 
   1721 	/* If I sourced this packet, it counts as output, else it was input. */
   1722 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1723 		viftable[vifi].v_pkt_out++;
   1724 		viftable[vifi].v_bytes_out += plen;
   1725 	} else {
   1726 		viftable[vifi].v_pkt_in++;
   1727 		viftable[vifi].v_bytes_in += plen;
   1728 	}
   1729 	rt->mfc_pkt_cnt++;
   1730 	rt->mfc_byte_cnt += plen;
   1731 
   1732 	/*
   1733 	 * For each vif, decide if a copy of the packet should be forwarded.
   1734 	 * Forward if:
   1735 	 *		- the ttl exceeds the vif's threshold
   1736 	 *		- there are group members downstream on interface
   1737 	 */
   1738 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
   1739 		if ((rt->mfc_ttls[vifi] > 0) &&
   1740 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1741 			vifp->v_pkt_out++;
   1742 			vifp->v_bytes_out += plen;
   1743 #ifdef PIM
   1744 			if (vifp->v_flags & VIFF_REGISTER)
   1745 				pim_register_send(ip, vifp, m, rt);
   1746 			else
   1747 #endif
   1748 			MC_SEND(ip, vifp, m);
   1749 		}
   1750 
   1751 	/*
   1752 	 * Perform upcall-related bw measuring.
   1753 	 */
   1754 	if (rt->mfc_bw_meter != NULL) {
   1755 		struct bw_meter *x;
   1756 		struct timeval now;
   1757 
   1758 		microtime(&now);
   1759 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1760 			bw_meter_receive_packet(x, plen, &now);
   1761 	}
   1762 
   1763 	return (0);
   1764 }
   1765 
   1766 #ifdef RSVP_ISI
   1767 /*
   1768  * check if a vif number is legal/ok. This is used by ip_output.
   1769  */
   1770 int
   1771 legal_vif_num(int vif)
   1772 {
   1773 	if (vif >= 0 && vif < numvifs)
   1774 		return (1);
   1775 	else
   1776 		return (0);
   1777 }
   1778 #endif /* RSVP_ISI */
   1779 
   1780 static void
   1781 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1782 {
   1783 	struct mbuf *mb_copy;
   1784 	int hlen = ip->ip_hl << 2;
   1785 
   1786 	/*
   1787 	 * Make a new reference to the packet; make sure that
   1788 	 * the IP header is actually copied, not just referenced,
   1789 	 * so that ip_output() only scribbles on the copy.
   1790 	 */
   1791 	mb_copy = m_copypacket(m, M_DONTWAIT);
   1792 	M_PULLUP(mb_copy, hlen);
   1793 	if (mb_copy == NULL)
   1794 		return;
   1795 
   1796 	if (vifp->v_rate_limit <= 0)
   1797 		tbf_send_packet(vifp, mb_copy);
   1798 	else
   1799 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1800 		    ntohs(ip->ip_len));
   1801 }
   1802 
   1803 static void
   1804 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1805 {
   1806 	struct mbuf *mb_copy;
   1807 	struct ip *ip_copy;
   1808 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1809 
   1810 	/* Take care of delayed checksums */
   1811 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1812 		in_delayed_cksum(m);
   1813 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1814 	}
   1815 
   1816 	/*
   1817 	 * copy the old packet & pullup its IP header into the
   1818 	 * new mbuf so we can modify it.  Try to fill the new
   1819 	 * mbuf since if we don't the ethernet driver will.
   1820 	 */
   1821 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1822 	if (mb_copy == NULL)
   1823 		return;
   1824 	mb_copy->m_data += max_linkhdr;
   1825 	mb_copy->m_pkthdr.len = len;
   1826 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1827 
   1828 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
   1829 		m_freem(mb_copy);
   1830 		return;
   1831 	}
   1832 	i = MHLEN - max_linkhdr;
   1833 	if (i > len)
   1834 		i = len;
   1835 	mb_copy = m_pullup(mb_copy, i);
   1836 	if (mb_copy == NULL)
   1837 		return;
   1838 
   1839 	/*
   1840 	 * fill in the encapsulating IP header.
   1841 	 */
   1842 	ip_copy = mtod(mb_copy, struct ip *);
   1843 	*ip_copy = multicast_encap_iphdr;
   1844 	if (len < IP_MINFRAGSIZE)
   1845 		ip_copy->ip_id = 0;
   1846 	else
   1847 		ip_copy->ip_id = ip_newid(NULL);
   1848 	ip_copy->ip_len = htons(len);
   1849 	ip_copy->ip_src = vifp->v_lcl_addr;
   1850 	ip_copy->ip_dst = vifp->v_rmt_addr;
   1851 
   1852 	/*
   1853 	 * turn the encapsulated IP header back into a valid one.
   1854 	 */
   1855 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
   1856 	--ip->ip_ttl;
   1857 	ip->ip_sum = 0;
   1858 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   1859 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   1860 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   1861 
   1862 	if (vifp->v_rate_limit <= 0)
   1863 		tbf_send_packet(vifp, mb_copy);
   1864 	else
   1865 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   1866 }
   1867 
   1868 /*
   1869  * De-encapsulate a packet and feed it back through ip input.
   1870  */
   1871 static void
   1872 vif_input(struct mbuf *m, int off, int proto)
   1873 {
   1874 	struct vif *vifp;
   1875 
   1876 	vifp = (struct vif *)encap_getarg(m);
   1877 	if (!vifp || proto != ENCAP_PROTO) {
   1878 		m_freem(m);
   1879 		mrtstat.mrts_bad_tunnel++;
   1880 		return;
   1881 	}
   1882 
   1883 	m_adj(m, off);
   1884 	m_set_rcvif(m, vifp->v_ifp);
   1885 
   1886 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
   1887 		m_freem(m);
   1888 	}
   1889 }
   1890 
   1891 /*
   1892  * Check if the packet should be received on the vif denoted by arg.
   1893  * (The encap selection code will call this once per vif since each is
   1894  * registered separately.)
   1895  */
   1896 static int
   1897 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
   1898 {
   1899 	struct vif *vifp;
   1900 	struct ip ip;
   1901 
   1902 #ifdef DIAGNOSTIC
   1903 	if (!arg || proto != IPPROTO_IPV4)
   1904 		panic("unexpected arg in vif_encapcheck");
   1905 #endif
   1906 
   1907 	/*
   1908 	 * Accept the packet only if the inner heaader is multicast
   1909 	 * and the outer header matches a tunnel-mode vif.  Order
   1910 	 * checks in the hope that common non-matching packets will be
   1911 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
   1912 	 * parallel tunnel (e.g. gif(4)) is unlikely.
   1913 	 */
   1914 
   1915 	/* Obtain the outer IP header and the vif pointer. */
   1916 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
   1917 	vifp = (struct vif *)arg;
   1918 
   1919 	/*
   1920 	 * The outer source must match the vif's remote peer address.
   1921 	 * For a multicast router with several tunnels, this is the
   1922 	 * only check that will fail on packets in other tunnels,
   1923 	 * assuming the local address is the same.
   1924 	 */
   1925 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   1926 		return 0;
   1927 
   1928 	/* The outer destination must match the vif's local address. */
   1929 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
   1930 		return 0;
   1931 
   1932 	/* The vif must be of tunnel type. */
   1933 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
   1934 		return 0;
   1935 
   1936 	/* Check that the inner destination is multicast. */
   1937 	m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
   1938 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   1939 		return 0;
   1940 
   1941 	/*
   1942 	 * We have checked that both the outer src and dst addresses
   1943 	 * match the vif, and that the inner destination is multicast
   1944 	 * (224/5).  By claiming more than 64, we intend to
   1945 	 * preferentially take packets that also match a parallel
   1946 	 * gif(4).
   1947 	 */
   1948 	return 32 + 32 + 5;
   1949 }
   1950 
   1951 /*
   1952  * Token bucket filter module
   1953  */
   1954 static void
   1955 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
   1956 {
   1957 
   1958 	if (len > MAX_BKT_SIZE) {
   1959 		/* drop if packet is too large */
   1960 		mrtstat.mrts_pkt2large++;
   1961 		m_freem(m);
   1962 		return;
   1963 	}
   1964 
   1965 	tbf_update_tokens(vifp);
   1966 
   1967 	/*
   1968 	 * If there are enough tokens, and the queue is empty, send this packet
   1969 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   1970 	 */
   1971 	if (vifp->tbf_q_len == 0) {
   1972 		if (len <= vifp->tbf_n_tok) {
   1973 			vifp->tbf_n_tok -= len;
   1974 			tbf_send_packet(vifp, m);
   1975 		} else {
   1976 			/* queue packet and timeout till later */
   1977 			tbf_queue(vifp, m);
   1978 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1979 			    tbf_reprocess_q, vifp);
   1980 		}
   1981 	} else {
   1982 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   1983 		    !tbf_dq_sel(vifp, ip)) {
   1984 			/* queue full, and couldn't make room */
   1985 			mrtstat.mrts_q_overflow++;
   1986 			m_freem(m);
   1987 		} else {
   1988 			/* queue length low enough, or made room */
   1989 			tbf_queue(vifp, m);
   1990 			tbf_process_q(vifp);
   1991 		}
   1992 	}
   1993 }
   1994 
   1995 /*
   1996  * adds a packet to the queue at the interface
   1997  */
   1998 static void
   1999 tbf_queue(struct vif *vifp, struct mbuf *m)
   2000 {
   2001 	int s = splsoftnet();
   2002 
   2003 	/* insert at tail */
   2004 	*vifp->tbf_t = m;
   2005 	vifp->tbf_t = &m->m_nextpkt;
   2006 	vifp->tbf_q_len++;
   2007 
   2008 	splx(s);
   2009 }
   2010 
   2011 
   2012 /*
   2013  * processes the queue at the interface
   2014  */
   2015 static void
   2016 tbf_process_q(struct vif *vifp)
   2017 {
   2018 	struct mbuf *m;
   2019 	int len;
   2020 	int s = splsoftnet();
   2021 
   2022 	/*
   2023 	 * Loop through the queue at the interface and send as many packets
   2024 	 * as possible.
   2025 	 */
   2026 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   2027 		len = ntohs(mtod(m, struct ip *)->ip_len);
   2028 
   2029 		/* determine if the packet can be sent */
   2030 		if (len <= vifp->tbf_n_tok) {
   2031 			/* if so,
   2032 			 * reduce no of tokens, dequeue the packet,
   2033 			 * send the packet.
   2034 			 */
   2035 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   2036 				vifp->tbf_t = &vifp->tbf_q;
   2037 			--vifp->tbf_q_len;
   2038 
   2039 			m->m_nextpkt = NULL;
   2040 			vifp->tbf_n_tok -= len;
   2041 			tbf_send_packet(vifp, m);
   2042 		} else
   2043 			break;
   2044 	}
   2045 	splx(s);
   2046 }
   2047 
   2048 static void
   2049 tbf_reprocess_q(void *arg)
   2050 {
   2051 	struct vif *vifp = arg;
   2052 
   2053 	if (ip_mrouter == NULL)
   2054 		return;
   2055 
   2056 	tbf_update_tokens(vifp);
   2057 	tbf_process_q(vifp);
   2058 
   2059 	if (vifp->tbf_q_len != 0)
   2060 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   2061 		    tbf_reprocess_q, vifp);
   2062 }
   2063 
   2064 /* function that will selectively discard a member of the queue
   2065  * based on the precedence value and the priority
   2066  */
   2067 static int
   2068 tbf_dq_sel(struct vif *vifp, struct ip *ip)
   2069 {
   2070 	u_int p;
   2071 	struct mbuf **mp, *m;
   2072 	int s = splsoftnet();
   2073 
   2074 	p = priority(vifp, ip);
   2075 
   2076 	for (mp = &vifp->tbf_q, m = *mp;
   2077 	    m != NULL;
   2078 	    mp = &m->m_nextpkt, m = *mp) {
   2079 		if (p > priority(vifp, mtod(m, struct ip *))) {
   2080 			if ((*mp = m->m_nextpkt) == NULL)
   2081 				vifp->tbf_t = mp;
   2082 			--vifp->tbf_q_len;
   2083 
   2084 			m_freem(m);
   2085 			mrtstat.mrts_drop_sel++;
   2086 			splx(s);
   2087 			return (1);
   2088 		}
   2089 	}
   2090 	splx(s);
   2091 	return (0);
   2092 }
   2093 
   2094 static void
   2095 tbf_send_packet(struct vif *vifp, struct mbuf *m)
   2096 {
   2097 	int error;
   2098 	int s = splsoftnet();
   2099 
   2100 	if (vifp->v_flags & VIFF_TUNNEL) {
   2101 		/* If tunnel options */
   2102 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
   2103 	} else {
   2104 		/* if physical interface option, extract the options and then send */
   2105 		struct ip_moptions imo;
   2106 
   2107 		imo.imo_multicast_ifp = vifp->v_ifp;
   2108 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2109 		imo.imo_multicast_loop = 1;
   2110 #ifdef RSVP_ISI
   2111 		imo.imo_multicast_vif = -1;
   2112 #endif
   2113 
   2114 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
   2115 		    &imo, NULL);
   2116 
   2117 		if (mrtdebug & DEBUG_XMIT)
   2118 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2119 			    (long)(vifp - viftable), error);
   2120 	}
   2121 	splx(s);
   2122 }
   2123 
   2124 /* determine the current time and then
   2125  * the elapsed time (between the last time and time now)
   2126  * in milliseconds & update the no. of tokens in the bucket
   2127  */
   2128 static void
   2129 tbf_update_tokens(struct vif *vifp)
   2130 {
   2131 	struct timeval tp;
   2132 	u_int32_t tm;
   2133 	int s = splsoftnet();
   2134 
   2135 	microtime(&tp);
   2136 
   2137 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2138 
   2139 	/*
   2140 	 * This formula is actually
   2141 	 * "time in seconds" * "bytes/second".
   2142 	 *
   2143 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2144 	 *
   2145 	 * The (1000/1024) was introduced in add_vif to optimize
   2146 	 * this divide into a shift.
   2147 	 */
   2148 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2149 	vifp->tbf_last_pkt_t = tp;
   2150 
   2151 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2152 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2153 
   2154 	splx(s);
   2155 }
   2156 
   2157 static int
   2158 priority(struct vif *vifp, struct ip *ip)
   2159 {
   2160 	int prio = 50;	/* the lowest priority -- default case */
   2161 
   2162 	/* temporary hack; may add general packet classifier some day */
   2163 
   2164 	/*
   2165 	 * The UDP port space is divided up into four priority ranges:
   2166 	 * [0, 16384)     : unclassified - lowest priority
   2167 	 * [16384, 32768) : audio - highest priority
   2168 	 * [32768, 49152) : whiteboard - medium priority
   2169 	 * [49152, 65536) : video - low priority
   2170 	 */
   2171 	if (ip->ip_p == IPPROTO_UDP) {
   2172 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2173 
   2174 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2175 		case 0x4000:
   2176 			prio = 70;
   2177 			break;
   2178 		case 0x8000:
   2179 			prio = 60;
   2180 			break;
   2181 		case 0xc000:
   2182 			prio = 55;
   2183 			break;
   2184 		}
   2185 
   2186 		if (tbfdebug > 1)
   2187 			log(LOG_DEBUG, "port %x prio %d\n",
   2188 			    ntohs(udp->uh_dport), prio);
   2189 	}
   2190 
   2191 	return (prio);
   2192 }
   2193 
   2194 /*
   2195  * End of token bucket filter modifications
   2196  */
   2197 #ifdef RSVP_ISI
   2198 int
   2199 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
   2200 {
   2201 	int vifi, s;
   2202 
   2203 	RSVP_DPRINTF(("%s: so_type = %d, pr_protocol = %d\n", __func__
   2204 	    so->so_type, so->so_proto->pr_protocol));
   2205 
   2206 	if (so->so_type != SOCK_RAW ||
   2207 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2208 		return (EOPNOTSUPP);
   2209 
   2210 	/* Check mbuf. */
   2211 	if (m == NULL || m->m_len != sizeof(int)) {
   2212 		return (EINVAL);
   2213 	}
   2214 	vifi = *(mtod(m, int *));
   2215 
   2216 	RSVP_DPRINTF(("%s: vif = %d rsvp_on = %d\n", __func__, vifi, rsvp_on));
   2217 
   2218 	s = splsoftnet();
   2219 
   2220 	/* Check vif. */
   2221 	if (!legal_vif_num(vifi)) {
   2222 		splx(s);
   2223 		return (EADDRNOTAVAIL);
   2224 	}
   2225 
   2226 	/* Check if socket is available. */
   2227 	if (viftable[vifi].v_rsvpd != NULL) {
   2228 		splx(s);
   2229 		return (EADDRINUSE);
   2230 	}
   2231 
   2232 	viftable[vifi].v_rsvpd = so;
   2233 	/*
   2234 	 * This may seem silly, but we need to be sure we don't over-increment
   2235 	 * the RSVP counter, in case something slips up.
   2236 	 */
   2237 	if (!viftable[vifi].v_rsvp_on) {
   2238 		viftable[vifi].v_rsvp_on = 1;
   2239 		rsvp_on++;
   2240 	}
   2241 
   2242 	splx(s);
   2243 	return (0);
   2244 }
   2245 
   2246 int
   2247 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
   2248 {
   2249 	int vifi, s;
   2250 
   2251 	RSVP_DPRINTF(("%s: so_type = %d, pr_protocol = %d\n", __func__,
   2252 	    so->so_type, so->so_proto->pr_protocol));
   2253 
   2254 	if (so->so_type != SOCK_RAW ||
   2255 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2256 		return (EOPNOTSUPP);
   2257 
   2258 	/* Check mbuf. */
   2259 	if (m == NULL || m->m_len != sizeof(int)) {
   2260 		return (EINVAL);
   2261 	}
   2262 	vifi = *(mtod(m, int *));
   2263 
   2264 	s = splsoftnet();
   2265 
   2266 	/* Check vif. */
   2267 	if (!legal_vif_num(vifi)) {
   2268 		splx(s);
   2269 		return (EADDRNOTAVAIL);
   2270 	}
   2271 
   2272 	RSVP_DPRINTF(("%s: v_rsvpd = %x so = %x\n", __func__,
   2273 	    viftable[vifi].v_rsvpd, so));
   2274 
   2275 	viftable[vifi].v_rsvpd = NULL;
   2276 	/*
   2277 	 * This may seem silly, but we need to be sure we don't over-decrement
   2278 	 * the RSVP counter, in case something slips up.
   2279 	 */
   2280 	if (viftable[vifi].v_rsvp_on) {
   2281 		viftable[vifi].v_rsvp_on = 0;
   2282 		rsvp_on--;
   2283 	}
   2284 
   2285 	splx(s);
   2286 	return (0);
   2287 }
   2288 
   2289 void
   2290 ip_rsvp_force_done(struct socket *so)
   2291 {
   2292 	int vifi, s;
   2293 
   2294 	/* Don't bother if it is not the right type of socket. */
   2295 	if (so->so_type != SOCK_RAW ||
   2296 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2297 		return;
   2298 
   2299 	s = splsoftnet();
   2300 
   2301 	/*
   2302 	 * The socket may be attached to more than one vif...this
   2303 	 * is perfectly legal.
   2304 	 */
   2305 	for (vifi = 0; vifi < numvifs; vifi++) {
   2306 		if (viftable[vifi].v_rsvpd == so) {
   2307 			viftable[vifi].v_rsvpd = NULL;
   2308 			/*
   2309 			 * This may seem silly, but we need to be sure we don't
   2310 			 * over-decrement the RSVP counter, in case something
   2311 			 * slips up.
   2312 			 */
   2313 			if (viftable[vifi].v_rsvp_on) {
   2314 				viftable[vifi].v_rsvp_on = 0;
   2315 				rsvp_on--;
   2316 			}
   2317 		}
   2318 	}
   2319 
   2320 	splx(s);
   2321 	return;
   2322 }
   2323 
   2324 void
   2325 rsvp_input(struct mbuf *m, struct ifnet *ifp)
   2326 {
   2327 	int vifi, s;
   2328 	struct ip *ip = mtod(m, struct ip *);
   2329 	struct sockaddr_in rsvp_src;
   2330 
   2331 	RSVP_DPRINTF(("%s: rsvp_on %d\n", __func__, rsvp_on));
   2332 
   2333 	/*
   2334 	 * Can still get packets with rsvp_on = 0 if there is a local member
   2335 	 * of the group to which the RSVP packet is addressed.  But in this
   2336 	 * case we want to throw the packet away.
   2337 	 */
   2338 	if (!rsvp_on) {
   2339 		m_freem(m);
   2340 		return;
   2341 	}
   2342 
   2343 	/*
   2344 	 * If the old-style non-vif-associated socket is set, then use
   2345 	 * it and ignore the new ones.
   2346 	 */
   2347 	if (ip_rsvpd != NULL) {
   2348 		RSVP_DPRINTF(("%s: Sending packet up old-style socket\n",
   2349 		    __func__));
   2350 		rip_input(m);	/*XXX*/
   2351 		return;
   2352 	}
   2353 
   2354 	s = splsoftnet();
   2355 
   2356 	RSVP_DPRINTF(("%s: check vifs\n", __func__));
   2357 
   2358 	/* Find which vif the packet arrived on. */
   2359 	for (vifi = 0; vifi < numvifs; vifi++) {
   2360 		if (viftable[vifi].v_ifp == ifp)
   2361 			break;
   2362 	}
   2363 
   2364 	if (vifi == numvifs) {
   2365 		/* Can't find vif packet arrived on. Drop packet. */
   2366 		RSVP_DPRINTF("%s: Can't find vif for packet...dropping it.\n",
   2367 		    __func__));
   2368 		m_freem(m);
   2369 		splx(s);
   2370 		return;
   2371 	}
   2372 
   2373 	RSVP_DPRINTF(("%s: check socket\n", __func__));
   2374 
   2375 	if (viftable[vifi].v_rsvpd == NULL) {
   2376 		/*
   2377 		 * drop packet, since there is no specific socket for this
   2378 		 * interface
   2379 		 */
   2380 		RSVP_DPRINTF(("%s: No socket defined for vif %d\n", __func__,
   2381 		    vifi));
   2382 		m_freem(m);
   2383 		splx(s);
   2384 		return;
   2385 	}
   2386 
   2387 	sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
   2388 
   2389 	if (m)
   2390 		RSVP_DPRINTF(("%s: m->m_len = %d, sbspace() = %d\n", __func__,
   2391 		    m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)));
   2392 
   2393 	if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
   2394 		RSVP_DPRINTF(("%s: Failed to append to socket\n", __func__));
   2395 	else
   2396 		RSVP_DPRINTF(("%s: send packet up\n", __func__));
   2397 
   2398 	splx(s);
   2399 }
   2400 #endif /* RSVP_ISI */
   2401 
   2402 /*
   2403  * Code for bandwidth monitors
   2404  */
   2405 
   2406 /*
   2407  * Define common interface for timeval-related methods
   2408  */
   2409 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2410 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2411 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2412 
   2413 static uint32_t
   2414 compute_bw_meter_flags(struct bw_upcall *req)
   2415 {
   2416     uint32_t flags = 0;
   2417 
   2418     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2419 	flags |= BW_METER_UNIT_PACKETS;
   2420     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2421 	flags |= BW_METER_UNIT_BYTES;
   2422     if (req->bu_flags & BW_UPCALL_GEQ)
   2423 	flags |= BW_METER_GEQ;
   2424     if (req->bu_flags & BW_UPCALL_LEQ)
   2425 	flags |= BW_METER_LEQ;
   2426 
   2427     return flags;
   2428 }
   2429 
   2430 /*
   2431  * Add a bw_meter entry
   2432  */
   2433 static int
   2434 add_bw_upcall(struct bw_upcall *req)
   2435 {
   2436     int s;
   2437     struct mfc *mfc;
   2438     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2439 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2440     struct timeval now;
   2441     struct bw_meter *x;
   2442     uint32_t flags;
   2443 
   2444     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2445 	return EOPNOTSUPP;
   2446 
   2447     /* Test if the flags are valid */
   2448     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2449 	return EINVAL;
   2450     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2451 	return EINVAL;
   2452     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2453 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2454 	return EINVAL;
   2455 
   2456     /* Test if the threshold time interval is valid */
   2457     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2458 	return EINVAL;
   2459 
   2460     flags = compute_bw_meter_flags(req);
   2461 
   2462     /*
   2463      * Find if we have already same bw_meter entry
   2464      */
   2465     s = splsoftnet();
   2466     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2467     if (mfc == NULL) {
   2468 	splx(s);
   2469 	return EADDRNOTAVAIL;
   2470     }
   2471     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2472 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2473 			   &req->bu_threshold.b_time, ==)) &&
   2474 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2475 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2476 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2477 	    splx(s);
   2478 	    return 0;		/* XXX Already installed */
   2479 	}
   2480     }
   2481 
   2482     /* Allocate the new bw_meter entry */
   2483     x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
   2484     if (x == NULL) {
   2485 	splx(s);
   2486 	return ENOBUFS;
   2487     }
   2488 
   2489     /* Set the new bw_meter entry */
   2490     x->bm_threshold.b_time = req->bu_threshold.b_time;
   2491     microtime(&now);
   2492     x->bm_start_time = now;
   2493     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2494     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2495     x->bm_measured.b_packets = 0;
   2496     x->bm_measured.b_bytes = 0;
   2497     x->bm_flags = flags;
   2498     x->bm_time_next = NULL;
   2499     x->bm_time_hash = BW_METER_BUCKETS;
   2500 
   2501     /* Add the new bw_meter entry to the front of entries for this MFC */
   2502     x->bm_mfc = mfc;
   2503     x->bm_mfc_next = mfc->mfc_bw_meter;
   2504     mfc->mfc_bw_meter = x;
   2505     schedule_bw_meter(x, &now);
   2506     splx(s);
   2507 
   2508     return 0;
   2509 }
   2510 
   2511 static void
   2512 free_bw_list(struct bw_meter *list)
   2513 {
   2514     while (list != NULL) {
   2515 	struct bw_meter *x = list;
   2516 
   2517 	list = list->bm_mfc_next;
   2518 	unschedule_bw_meter(x);
   2519 	kmem_free(x, sizeof(*x));
   2520     }
   2521 }
   2522 
   2523 /*
   2524  * Delete one or multiple bw_meter entries
   2525  */
   2526 static int
   2527 del_bw_upcall(struct bw_upcall *req)
   2528 {
   2529     int s;
   2530     struct mfc *mfc;
   2531     struct bw_meter *x;
   2532 
   2533     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2534 	return EOPNOTSUPP;
   2535 
   2536     s = splsoftnet();
   2537     /* Find the corresponding MFC entry */
   2538     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2539     if (mfc == NULL) {
   2540 	splx(s);
   2541 	return EADDRNOTAVAIL;
   2542     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2543 	/*
   2544 	 * Delete all bw_meter entries for this mfc
   2545 	 */
   2546 	struct bw_meter *list;
   2547 
   2548 	list = mfc->mfc_bw_meter;
   2549 	mfc->mfc_bw_meter = NULL;
   2550 	free_bw_list(list);
   2551 	splx(s);
   2552 	return 0;
   2553     } else {			/* Delete a single bw_meter entry */
   2554 	struct bw_meter *prev;
   2555 	uint32_t flags = 0;
   2556 
   2557 	flags = compute_bw_meter_flags(req);
   2558 
   2559 	/* Find the bw_meter entry to delete */
   2560 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2561 	     prev = x, x = x->bm_mfc_next) {
   2562 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2563 			       &req->bu_threshold.b_time, ==)) &&
   2564 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2565 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2566 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2567 		break;
   2568 	}
   2569 	if (x != NULL) { /* Delete entry from the list for this MFC */
   2570 	    if (prev != NULL)
   2571 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2572 	    else
   2573 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2574 
   2575 	    unschedule_bw_meter(x);
   2576 	    splx(s);
   2577 	    /* Free the bw_meter entry */
   2578 	    kmem_free(x, sizeof(*x));
   2579 	    return 0;
   2580 	} else {
   2581 	    splx(s);
   2582 	    return EINVAL;
   2583 	}
   2584     }
   2585     /* NOTREACHED */
   2586 }
   2587 
   2588 /*
   2589  * Perform bandwidth measurement processing that may result in an upcall
   2590  */
   2591 static void
   2592 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2593 {
   2594     struct timeval delta;
   2595 
   2596     delta = *nowp;
   2597     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2598 
   2599     if (x->bm_flags & BW_METER_GEQ) {
   2600 	/*
   2601 	 * Processing for ">=" type of bw_meter entry
   2602 	 */
   2603 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2604 	    /* Reset the bw_meter entry */
   2605 	    x->bm_start_time = *nowp;
   2606 	    x->bm_measured.b_packets = 0;
   2607 	    x->bm_measured.b_bytes = 0;
   2608 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2609 	}
   2610 
   2611 	/* Record that a packet is received */
   2612 	x->bm_measured.b_packets++;
   2613 	x->bm_measured.b_bytes += plen;
   2614 
   2615 	/*
   2616 	 * Test if we should deliver an upcall
   2617 	 */
   2618 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2619 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2620 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2621 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2622 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2623 		/* Prepare an upcall for delivery */
   2624 		bw_meter_prepare_upcall(x, nowp);
   2625 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2626 	    }
   2627 	}
   2628     } else if (x->bm_flags & BW_METER_LEQ) {
   2629 	/*
   2630 	 * Processing for "<=" type of bw_meter entry
   2631 	 */
   2632 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2633 	    /*
   2634 	     * We are behind time with the multicast forwarding table
   2635 	     * scanning for "<=" type of bw_meter entries, so test now
   2636 	     * if we should deliver an upcall.
   2637 	     */
   2638 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2639 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2640 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2641 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2642 		/* Prepare an upcall for delivery */
   2643 		bw_meter_prepare_upcall(x, nowp);
   2644 	    }
   2645 	    /* Reschedule the bw_meter entry */
   2646 	    unschedule_bw_meter(x);
   2647 	    schedule_bw_meter(x, nowp);
   2648 	}
   2649 
   2650 	/* Record that a packet is received */
   2651 	x->bm_measured.b_packets++;
   2652 	x->bm_measured.b_bytes += plen;
   2653 
   2654 	/*
   2655 	 * Test if we should restart the measuring interval
   2656 	 */
   2657 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2658 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2659 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2660 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2661 	    /* Don't restart the measuring interval */
   2662 	} else {
   2663 	    /* Do restart the measuring interval */
   2664 	    /*
   2665 	     * XXX: note that we don't unschedule and schedule, because this
   2666 	     * might be too much overhead per packet. Instead, when we process
   2667 	     * all entries for a given timer hash bin, we check whether it is
   2668 	     * really a timeout. If not, we reschedule at that time.
   2669 	     */
   2670 	    x->bm_start_time = *nowp;
   2671 	    x->bm_measured.b_packets = 0;
   2672 	    x->bm_measured.b_bytes = 0;
   2673 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2674 	}
   2675     }
   2676 }
   2677 
   2678 /*
   2679  * Prepare a bandwidth-related upcall
   2680  */
   2681 static void
   2682 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2683 {
   2684     struct timeval delta;
   2685     struct bw_upcall *u;
   2686 
   2687     /*
   2688      * Compute the measured time interval
   2689      */
   2690     delta = *nowp;
   2691     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2692 
   2693     /*
   2694      * If there are too many pending upcalls, deliver them now
   2695      */
   2696     if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2697 	bw_upcalls_send();
   2698 
   2699     /*
   2700      * Set the bw_upcall entry
   2701      */
   2702     u = &bw_upcalls[bw_upcalls_n++];
   2703     u->bu_src = x->bm_mfc->mfc_origin;
   2704     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2705     u->bu_threshold.b_time = x->bm_threshold.b_time;
   2706     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2707     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2708     u->bu_measured.b_time = delta;
   2709     u->bu_measured.b_packets = x->bm_measured.b_packets;
   2710     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2711     u->bu_flags = 0;
   2712     if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2713 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2714     if (x->bm_flags & BW_METER_UNIT_BYTES)
   2715 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2716     if (x->bm_flags & BW_METER_GEQ)
   2717 	u->bu_flags |= BW_UPCALL_GEQ;
   2718     if (x->bm_flags & BW_METER_LEQ)
   2719 	u->bu_flags |= BW_UPCALL_LEQ;
   2720 }
   2721 
   2722 /*
   2723  * Send the pending bandwidth-related upcalls
   2724  */
   2725 static void
   2726 bw_upcalls_send(void)
   2727 {
   2728     struct mbuf *m;
   2729     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2730     struct sockaddr_in k_igmpsrc = {
   2731 	    .sin_len = sizeof(k_igmpsrc),
   2732 	    .sin_family = AF_INET,
   2733     };
   2734     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
   2735 				      0,		/* unused2 */
   2736 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
   2737 				      0,		/* im_mbz  */
   2738 				      0,		/* im_vif  */
   2739 				      0,		/* unused3 */
   2740 				      { 0 },		/* im_src  */
   2741 				      { 0 } };		/* im_dst  */
   2742 
   2743     if (bw_upcalls_n == 0)
   2744 	return;			/* No pending upcalls */
   2745 
   2746     bw_upcalls_n = 0;
   2747 
   2748     /*
   2749      * Allocate a new mbuf, initialize it with the header and
   2750      * the payload for the pending calls.
   2751      */
   2752     MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2753     if (m == NULL) {
   2754 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2755 	return;
   2756     }
   2757 
   2758     m->m_len = m->m_pkthdr.len = 0;
   2759     m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
   2760     m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
   2761 
   2762     /*
   2763      * Send the upcalls
   2764      * XXX do we need to set the address in k_igmpsrc ?
   2765      */
   2766     mrtstat.mrts_upcalls++;
   2767     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2768 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2769 	++mrtstat.mrts_upq_sockfull;
   2770     }
   2771 }
   2772 
   2773 /*
   2774  * Compute the timeout hash value for the bw_meter entries
   2775  */
   2776 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2777     do {								\
   2778 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2779 									\
   2780 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
   2781 	(hash) = next_timeval.tv_sec;					\
   2782 	if (next_timeval.tv_usec)					\
   2783 	    (hash)++; /* XXX: make sure we don't timeout early */	\
   2784 	(hash) %= BW_METER_BUCKETS;					\
   2785     } while (/*CONSTCOND*/ 0)
   2786 
   2787 /*
   2788  * Schedule a timer to process periodically bw_meter entry of type "<="
   2789  * by linking the entry in the proper hash bucket.
   2790  */
   2791 static void
   2792 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   2793 {
   2794     int time_hash;
   2795 
   2796     if (!(x->bm_flags & BW_METER_LEQ))
   2797 	return;		/* XXX: we schedule timers only for "<=" entries */
   2798 
   2799     /*
   2800      * Reset the bw_meter entry
   2801      */
   2802     x->bm_start_time = *nowp;
   2803     x->bm_measured.b_packets = 0;
   2804     x->bm_measured.b_bytes = 0;
   2805     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2806 
   2807     /*
   2808      * Compute the timeout hash value and insert the entry
   2809      */
   2810     BW_METER_TIMEHASH(x, time_hash);
   2811     x->bm_time_next = bw_meter_timers[time_hash];
   2812     bw_meter_timers[time_hash] = x;
   2813     x->bm_time_hash = time_hash;
   2814 }
   2815 
   2816 /*
   2817  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   2818  * by removing the entry from the proper hash bucket.
   2819  */
   2820 static void
   2821 unschedule_bw_meter(struct bw_meter *x)
   2822 {
   2823     int time_hash;
   2824     struct bw_meter *prev, *tmp;
   2825 
   2826     if (!(x->bm_flags & BW_METER_LEQ))
   2827 	return;		/* XXX: we schedule timers only for "<=" entries */
   2828 
   2829     /*
   2830      * Compute the timeout hash value and delete the entry
   2831      */
   2832     time_hash = x->bm_time_hash;
   2833     if (time_hash >= BW_METER_BUCKETS)
   2834 	return;		/* Entry was not scheduled */
   2835 
   2836     for (prev = NULL, tmp = bw_meter_timers[time_hash];
   2837 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   2838 	if (tmp == x)
   2839 	    break;
   2840 
   2841     if (tmp == NULL)
   2842 	panic("unschedule_bw_meter: bw_meter entry not found");
   2843 
   2844     if (prev != NULL)
   2845 	prev->bm_time_next = x->bm_time_next;
   2846     else
   2847 	bw_meter_timers[time_hash] = x->bm_time_next;
   2848 
   2849     x->bm_time_next = NULL;
   2850     x->bm_time_hash = BW_METER_BUCKETS;
   2851 }
   2852 
   2853 /*
   2854  * Process all "<=" type of bw_meter that should be processed now,
   2855  * and for each entry prepare an upcall if necessary. Each processed
   2856  * entry is rescheduled again for the (periodic) processing.
   2857  *
   2858  * This is run periodically (once per second normally). On each round,
   2859  * all the potentially matching entries are in the hash slot that we are
   2860  * looking at.
   2861  */
   2862 static void
   2863 bw_meter_process(void)
   2864 {
   2865     int s;
   2866     static uint32_t last_tv_sec;	/* last time we processed this */
   2867 
   2868     uint32_t loops;
   2869     int i;
   2870     struct timeval now, process_endtime;
   2871 
   2872     microtime(&now);
   2873     if (last_tv_sec == now.tv_sec)
   2874 	return;		/* nothing to do */
   2875 
   2876     loops = now.tv_sec - last_tv_sec;
   2877     last_tv_sec = now.tv_sec;
   2878     if (loops > BW_METER_BUCKETS)
   2879 	loops = BW_METER_BUCKETS;
   2880 
   2881     s = splsoftnet();
   2882     /*
   2883      * Process all bins of bw_meter entries from the one after the last
   2884      * processed to the current one. On entry, i points to the last bucket
   2885      * visited, so we need to increment i at the beginning of the loop.
   2886      */
   2887     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   2888 	struct bw_meter *x, *tmp_list;
   2889 
   2890 	if (++i >= BW_METER_BUCKETS)
   2891 	    i = 0;
   2892 
   2893 	/* Disconnect the list of bw_meter entries from the bin */
   2894 	tmp_list = bw_meter_timers[i];
   2895 	bw_meter_timers[i] = NULL;
   2896 
   2897 	/* Process the list of bw_meter entries */
   2898 	while (tmp_list != NULL) {
   2899 	    x = tmp_list;
   2900 	    tmp_list = tmp_list->bm_time_next;
   2901 
   2902 	    /* Test if the time interval is over */
   2903 	    process_endtime = x->bm_start_time;
   2904 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   2905 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   2906 		/* Not yet: reschedule, but don't reset */
   2907 		int time_hash;
   2908 
   2909 		BW_METER_TIMEHASH(x, time_hash);
   2910 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   2911 		    /*
   2912 		     * XXX: somehow the bin processing is a bit ahead of time.
   2913 		     * Put the entry in the next bin.
   2914 		     */
   2915 		    if (++time_hash >= BW_METER_BUCKETS)
   2916 			time_hash = 0;
   2917 		}
   2918 		x->bm_time_next = bw_meter_timers[time_hash];
   2919 		bw_meter_timers[time_hash] = x;
   2920 		x->bm_time_hash = time_hash;
   2921 
   2922 		continue;
   2923 	    }
   2924 
   2925 	    /*
   2926 	     * Test if we should deliver an upcall
   2927 	     */
   2928 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2929 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2930 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2931 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2932 		/* Prepare an upcall for delivery */
   2933 		bw_meter_prepare_upcall(x, &now);
   2934 	    }
   2935 
   2936 	    /*
   2937 	     * Reschedule for next processing
   2938 	     */
   2939 	    schedule_bw_meter(x, &now);
   2940 	}
   2941     }
   2942 
   2943     /* Send all upcalls that are pending delivery */
   2944     bw_upcalls_send();
   2945 
   2946     splx(s);
   2947 }
   2948 
   2949 /*
   2950  * A periodic function for sending all upcalls that are pending delivery
   2951  */
   2952 static void
   2953 expire_bw_upcalls_send(void *unused)
   2954 {
   2955     int s;
   2956 
   2957     s = splsoftnet();
   2958     bw_upcalls_send();
   2959     splx(s);
   2960 
   2961     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   2962 		  expire_bw_upcalls_send, NULL);
   2963 }
   2964 
   2965 /*
   2966  * A periodic function for periodic scanning of the multicast forwarding
   2967  * table for processing all "<=" bw_meter entries.
   2968  */
   2969 static void
   2970 expire_bw_meter_process(void *unused)
   2971 {
   2972     if (mrt_api_config & MRT_MFC_BW_UPCALL)
   2973 	bw_meter_process();
   2974 
   2975     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   2976 		  expire_bw_meter_process, NULL);
   2977 }
   2978 
   2979 /*
   2980  * End of bandwidth monitoring code
   2981  */
   2982 
   2983 #ifdef PIM
   2984 /*
   2985  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   2986  */
   2987 static int
   2988 pim_register_send(struct ip *ip, struct vif *vifp,
   2989 	struct mbuf *m, struct mfc *rt)
   2990 {
   2991     struct mbuf *mb_copy, *mm;
   2992 
   2993     if (mrtdebug & DEBUG_PIM)
   2994         log(LOG_DEBUG, "pim_register_send: \n");
   2995 
   2996     mb_copy = pim_register_prepare(ip, m);
   2997     if (mb_copy == NULL)
   2998 	return ENOBUFS;
   2999 
   3000     /*
   3001      * Send all the fragments. Note that the mbuf for each fragment
   3002      * is freed by the sending machinery.
   3003      */
   3004     for (mm = mb_copy; mm; mm = mb_copy) {
   3005 	mb_copy = mm->m_nextpkt;
   3006 	mm->m_nextpkt = NULL;
   3007 	mm = m_pullup(mm, sizeof(struct ip));
   3008 	if (mm != NULL) {
   3009 	    ip = mtod(mm, struct ip *);
   3010 	    if ((mrt_api_config & MRT_MFC_RP) &&
   3011 		!in_nullhost(rt->mfc_rp)) {
   3012 		pim_register_send_rp(ip, vifp, mm, rt);
   3013 	    } else {
   3014 		pim_register_send_upcall(ip, vifp, mm, rt);
   3015 	    }
   3016 	}
   3017     }
   3018 
   3019     return 0;
   3020 }
   3021 
   3022 /*
   3023  * Return a copy of the data packet that is ready for PIM Register
   3024  * encapsulation.
   3025  * XXX: Note that in the returned copy the IP header is a valid one.
   3026  */
   3027 static struct mbuf *
   3028 pim_register_prepare(struct ip *ip, struct mbuf *m)
   3029 {
   3030     struct mbuf *mb_copy = NULL;
   3031     int mtu;
   3032 
   3033     /* Take care of delayed checksums */
   3034     if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   3035 	in_delayed_cksum(m);
   3036 	m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   3037     }
   3038 
   3039     /*
   3040      * Copy the old packet & pullup its IP header into the
   3041      * new mbuf so we can modify it.
   3042      */
   3043     mb_copy = m_copypacket(m, M_DONTWAIT);
   3044     if (mb_copy == NULL)
   3045 	return NULL;
   3046     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   3047     if (mb_copy == NULL)
   3048 	return NULL;
   3049 
   3050     /* take care of the TTL */
   3051     ip = mtod(mb_copy, struct ip *);
   3052     --ip->ip_ttl;
   3053 
   3054     /* Compute the MTU after the PIM Register encapsulation */
   3055     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   3056 
   3057     if (ntohs(ip->ip_len) <= mtu) {
   3058 	/* Turn the IP header into a valid one */
   3059 	ip->ip_sum = 0;
   3060 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   3061     } else {
   3062 	/* Fragment the packet */
   3063 	if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   3064 	    /* XXX: mb_copy was freed by ip_fragment() */
   3065 	    return NULL;
   3066 	}
   3067     }
   3068     return mb_copy;
   3069 }
   3070 
   3071 /*
   3072  * Send an upcall with the data packet to the user-level process.
   3073  */
   3074 static int
   3075 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   3076     struct mbuf *mb_copy, struct mfc *rt)
   3077 {
   3078     struct mbuf *mb_first;
   3079     int len = ntohs(ip->ip_len);
   3080     struct igmpmsg *im;
   3081     struct sockaddr_in k_igmpsrc = {
   3082 	    .sin_len = sizeof(k_igmpsrc),
   3083 	    .sin_family = AF_INET,
   3084     };
   3085 
   3086     /*
   3087      * Add a new mbuf with an upcall header
   3088      */
   3089     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3090     if (mb_first == NULL) {
   3091 	m_freem(mb_copy);
   3092 	return ENOBUFS;
   3093     }
   3094     mb_first->m_data += max_linkhdr;
   3095     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   3096     mb_first->m_len = sizeof(struct igmpmsg);
   3097     mb_first->m_next = mb_copy;
   3098 
   3099     /* Send message to routing daemon */
   3100     im = mtod(mb_first, struct igmpmsg *);
   3101     im->im_msgtype	= IGMPMSG_WHOLEPKT;
   3102     im->im_mbz		= 0;
   3103     im->im_vif		= vifp - viftable;
   3104     im->im_src		= ip->ip_src;
   3105     im->im_dst		= ip->ip_dst;
   3106 
   3107     k_igmpsrc.sin_addr	= ip->ip_src;
   3108 
   3109     mrtstat.mrts_upcalls++;
   3110 
   3111     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   3112 	if (mrtdebug & DEBUG_PIM)
   3113 	    log(LOG_WARNING,
   3114 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
   3115 	++mrtstat.mrts_upq_sockfull;
   3116 	return ENOBUFS;
   3117     }
   3118 
   3119     /* Keep statistics */
   3120     pimstat.pims_snd_registers_msgs++;
   3121     pimstat.pims_snd_registers_bytes += len;
   3122 
   3123     return 0;
   3124 }
   3125 
   3126 /*
   3127  * Encapsulate the data packet in PIM Register message and send it to the RP.
   3128  */
   3129 static int
   3130 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   3131 	struct mbuf *mb_copy, struct mfc *rt)
   3132 {
   3133     struct mbuf *mb_first;
   3134     struct ip *ip_outer;
   3135     struct pim_encap_pimhdr *pimhdr;
   3136     int len = ntohs(ip->ip_len);
   3137     vifi_t vifi = rt->mfc_parent;
   3138 
   3139     if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   3140 	m_freem(mb_copy);
   3141 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
   3142     }
   3143 
   3144     /*
   3145      * Add a new mbuf with the encapsulating header
   3146      */
   3147     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3148     if (mb_first == NULL) {
   3149 	m_freem(mb_copy);
   3150 	return ENOBUFS;
   3151     }
   3152     mb_first->m_data += max_linkhdr;
   3153     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   3154     mb_first->m_next = mb_copy;
   3155 
   3156     mb_first->m_pkthdr.len = len + mb_first->m_len;
   3157 
   3158     /*
   3159      * Fill in the encapsulating IP and PIM header
   3160      */
   3161     ip_outer = mtod(mb_first, struct ip *);
   3162     *ip_outer = pim_encap_iphdr;
   3163      if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
   3164 	ip_outer->ip_id = 0;
   3165     else
   3166 	ip_outer->ip_id = ip_newid(NULL);
   3167     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   3168 			     sizeof(pim_encap_pimhdr));
   3169     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   3170     ip_outer->ip_dst = rt->mfc_rp;
   3171     /*
   3172      * Copy the inner header TOS to the outer header, and take care of the
   3173      * IP_DF bit.
   3174      */
   3175     ip_outer->ip_tos = ip->ip_tos;
   3176     if (ntohs(ip->ip_off) & IP_DF)
   3177 	ip_outer->ip_off |= htons(IP_DF);
   3178     pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
   3179 					 + sizeof(pim_encap_iphdr));
   3180     *pimhdr = pim_encap_pimhdr;
   3181     /* If the iif crosses a border, set the Border-bit */
   3182     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   3183 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   3184 
   3185     mb_first->m_data += sizeof(pim_encap_iphdr);
   3186     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   3187     mb_first->m_data -= sizeof(pim_encap_iphdr);
   3188 
   3189     if (vifp->v_rate_limit == 0)
   3190 	tbf_send_packet(vifp, mb_first);
   3191     else
   3192 	tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   3193 
   3194     /* Keep statistics */
   3195     pimstat.pims_snd_registers_msgs++;
   3196     pimstat.pims_snd_registers_bytes += len;
   3197 
   3198     return 0;
   3199 }
   3200 
   3201 /*
   3202  * PIM-SMv2 and PIM-DM messages processing.
   3203  * Receives and verifies the PIM control messages, and passes them
   3204  * up to the listening socket, using rip_input().
   3205  * The only message with special processing is the PIM_REGISTER message
   3206  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   3207  * is passed to if_simloop().
   3208  */
   3209 void
   3210 pim_input(struct mbuf *m, ...)
   3211 {
   3212     struct ip *ip = mtod(m, struct ip *);
   3213     struct pim *pim;
   3214     int minlen;
   3215     int datalen;
   3216     int ip_tos;
   3217     int proto;
   3218     int iphlen;
   3219     va_list ap;
   3220 
   3221     va_start(ap, m);
   3222     iphlen = va_arg(ap, int);
   3223     proto = va_arg(ap, int);
   3224     va_end(ap);
   3225 
   3226     datalen = ntohs(ip->ip_len) - iphlen;
   3227 
   3228     /* Keep statistics */
   3229     pimstat.pims_rcv_total_msgs++;
   3230     pimstat.pims_rcv_total_bytes += datalen;
   3231 
   3232     /*
   3233      * Validate lengths
   3234      */
   3235     if (datalen < PIM_MINLEN) {
   3236 	pimstat.pims_rcv_tooshort++;
   3237 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   3238 	    datalen, (u_long)ip->ip_src.s_addr);
   3239 	m_freem(m);
   3240 	return;
   3241     }
   3242 
   3243     /*
   3244      * If the packet is at least as big as a REGISTER, go agead
   3245      * and grab the PIM REGISTER header size, to avoid another
   3246      * possible m_pullup() later.
   3247      *
   3248      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   3249      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   3250      */
   3251     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   3252     /*
   3253      * Get the IP and PIM headers in contiguous memory, and
   3254      * possibly the PIM REGISTER header.
   3255      */
   3256     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   3257 	(m = m_pullup(m, minlen)) == NULL) {
   3258 	log(LOG_ERR, "pim_input: m_pullup failure\n");
   3259 	return;
   3260     }
   3261     /* m_pullup() may have given us a new mbuf so reset ip. */
   3262     ip = mtod(m, struct ip *);
   3263     ip_tos = ip->ip_tos;
   3264 
   3265     /* adjust mbuf to point to the PIM header */
   3266     m->m_data += iphlen;
   3267     m->m_len  -= iphlen;
   3268     pim = mtod(m, struct pim *);
   3269 
   3270     /*
   3271      * Validate checksum. If PIM REGISTER, exclude the data packet.
   3272      *
   3273      * XXX: some older PIMv2 implementations don't make this distinction,
   3274      * so for compatibility reason perform the checksum over part of the
   3275      * message, and if error, then over the whole message.
   3276      */
   3277     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   3278 	/* do nothing, checksum okay */
   3279     } else if (in_cksum(m, datalen)) {
   3280 	pimstat.pims_rcv_badsum++;
   3281 	if (mrtdebug & DEBUG_PIM)
   3282 	    log(LOG_DEBUG, "pim_input: invalid checksum\n");
   3283 	m_freem(m);
   3284 	return;
   3285     }
   3286 
   3287     /* PIM version check */
   3288     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   3289 	pimstat.pims_rcv_badversion++;
   3290 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3291 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3292 	m_freem(m);
   3293 	return;
   3294     }
   3295 
   3296     /* restore mbuf back to the outer IP */
   3297     m->m_data -= iphlen;
   3298     m->m_len  += iphlen;
   3299 
   3300     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3301 	/*
   3302 	 * Since this is a REGISTER, we'll make a copy of the register
   3303 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3304 	 * routing daemon.
   3305 	 */
   3306 	int s;
   3307 	struct sockaddr_in dst = {
   3308 		.sin_len = sizeof(dst),
   3309 		.sin_family = AF_INET,
   3310 	};
   3311 	struct mbuf *mcp;
   3312 	struct ip *encap_ip;
   3313 	u_int32_t *reghdr;
   3314 	struct ifnet *vifp;
   3315 
   3316 	s = splsoftnet();
   3317 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3318 	    splx(s);
   3319 	    if (mrtdebug & DEBUG_PIM)
   3320 		log(LOG_DEBUG,
   3321 		    "pim_input: register vif not set: %d\n", reg_vif_num);
   3322 	    m_freem(m);
   3323 	    return;
   3324 	}
   3325 	/* XXX need refcnt? */
   3326 	vifp = viftable[reg_vif_num].v_ifp;
   3327 	splx(s);
   3328 
   3329 	/*
   3330 	 * Validate length
   3331 	 */
   3332 	if (datalen < PIM_REG_MINLEN) {
   3333 	    pimstat.pims_rcv_tooshort++;
   3334 	    pimstat.pims_rcv_badregisters++;
   3335 	    log(LOG_ERR,
   3336 		"pim_input: register packet size too small %d from %lx\n",
   3337 		datalen, (u_long)ip->ip_src.s_addr);
   3338 	    m_freem(m);
   3339 	    return;
   3340 	}
   3341 
   3342 	reghdr = (u_int32_t *)(pim + 1);
   3343 	encap_ip = (struct ip *)(reghdr + 1);
   3344 
   3345 	if (mrtdebug & DEBUG_PIM) {
   3346 	    log(LOG_DEBUG,
   3347 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3348 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3349 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3350 		ntohs(encap_ip->ip_len));
   3351 	}
   3352 
   3353 	/* verify the version number of the inner packet */
   3354 	if (encap_ip->ip_v != IPVERSION) {
   3355 	    pimstat.pims_rcv_badregisters++;
   3356 	    if (mrtdebug & DEBUG_PIM) {
   3357 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3358 		    "of the inner packet\n", encap_ip->ip_v);
   3359 	    }
   3360 	    m_freem(m);
   3361 	    return;
   3362 	}
   3363 
   3364 	/* verify the inner packet is destined to a mcast group */
   3365 	if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3366 	    pimstat.pims_rcv_badregisters++;
   3367 	    if (mrtdebug & DEBUG_PIM)
   3368 		log(LOG_DEBUG,
   3369 		    "pim_input: inner packet of register is not "
   3370 		    "multicast %lx\n",
   3371 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3372 	    m_freem(m);
   3373 	    return;
   3374 	}
   3375 
   3376 	/* If a NULL_REGISTER, pass it to the daemon */
   3377 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3378 	    goto pim_input_to_daemon;
   3379 
   3380 	/*
   3381 	 * Copy the TOS from the outer IP header to the inner IP header.
   3382 	 */
   3383 	if (encap_ip->ip_tos != ip_tos) {
   3384 	    /* Outer TOS -> inner TOS */
   3385 	    encap_ip->ip_tos = ip_tos;
   3386 	    /* Recompute the inner header checksum. Sigh... */
   3387 
   3388 	    /* adjust mbuf to point to the inner IP header */
   3389 	    m->m_data += (iphlen + PIM_MINLEN);
   3390 	    m->m_len  -= (iphlen + PIM_MINLEN);
   3391 
   3392 	    encap_ip->ip_sum = 0;
   3393 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3394 
   3395 	    /* restore mbuf to point back to the outer IP header */
   3396 	    m->m_data -= (iphlen + PIM_MINLEN);
   3397 	    m->m_len  += (iphlen + PIM_MINLEN);
   3398 	}
   3399 
   3400 	/*
   3401 	 * Decapsulate the inner IP packet and loopback to forward it
   3402 	 * as a normal multicast packet. Also, make a copy of the
   3403 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3404 	 * to pass to the daemon later, so it can take the appropriate
   3405 	 * actions (e.g., send back PIM_REGISTER_STOP).
   3406 	 * XXX: here m->m_data points to the outer IP header.
   3407 	 */
   3408 	mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
   3409 	if (mcp == NULL) {
   3410 	    log(LOG_ERR,
   3411 		"pim_input: pim register: could not copy register head\n");
   3412 	    m_freem(m);
   3413 	    return;
   3414 	}
   3415 
   3416 	/* Keep statistics */
   3417 	/* XXX: registers_bytes include only the encap. mcast pkt */
   3418 	pimstat.pims_rcv_registers_msgs++;
   3419 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3420 
   3421 	/*
   3422 	 * forward the inner ip packet; point m_data at the inner ip.
   3423 	 */
   3424 	m_adj(m, iphlen + PIM_MINLEN);
   3425 
   3426 	if (mrtdebug & DEBUG_PIM) {
   3427 	    log(LOG_DEBUG,
   3428 		"pim_input: forwarding decapsulated register: "
   3429 		"src %lx, dst %lx, vif %d\n",
   3430 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3431 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3432 		reg_vif_num);
   3433 	}
   3434 	/* NB: vifp was collected above; can it change on us? */
   3435 	looutput(vifp, m, (struct sockaddr *)&dst, NULL);
   3436 
   3437 	/* prepare the register head to send to the mrouting daemon */
   3438 	m = mcp;
   3439     }
   3440 
   3441 pim_input_to_daemon:
   3442     /*
   3443      * Pass the PIM message up to the daemon; if it is a Register message,
   3444      * pass the 'head' only up to the daemon. This includes the
   3445      * outer IP header, PIM header, PIM-Register header and the
   3446      * inner IP header.
   3447      * XXX: the outer IP header pkt size of a Register is not adjust to
   3448      * reflect the fact that the inner multicast data is truncated.
   3449      */
   3450     rip_input(m, iphlen, proto);
   3451 
   3452     return;
   3453 }
   3454 #endif /* PIM */
   3455