ip_mroute.c revision 1.141 1 /* $NetBSD: ip_mroute.c,v 1.141 2016/06/21 03:28:27 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35 */
36
37 /*
38 * Copyright (c) 1989 Stephen Deering
39 *
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72 */
73
74 /*
75 * IP multicast forwarding procedures
76 *
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
89 *
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
93 */
94
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.141 2016/06/21 03:28:27 ozaki-r Exp $");
97
98 #ifdef _KERNEL_OPT
99 #include "opt_inet.h"
100 #include "opt_ipsec.h"
101 #include "opt_pim.h"
102 #endif
103
104 #ifdef PIM
105 #define _PIM_VT 1
106 #endif
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/callout.h>
111 #include <sys/mbuf.h>
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/protosw.h>
115 #include <sys/errno.h>
116 #include <sys/time.h>
117 #include <sys/kernel.h>
118 #include <sys/kmem.h>
119 #include <sys/ioctl.h>
120 #include <sys/syslog.h>
121
122 #include <net/if.h>
123 #include <net/raw_cb.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_var.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/ip_var.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/udp.h>
132 #include <netinet/igmp.h>
133 #include <netinet/igmp_var.h>
134 #include <netinet/ip_mroute.h>
135 #ifdef PIM
136 #include <netinet/pim.h>
137 #include <netinet/pim_var.h>
138 #endif
139 #include <netinet/ip_encap.h>
140
141 #ifdef IPSEC
142 #include <netipsec/ipsec.h>
143 #include <netipsec/key.h>
144 #endif
145
146 #define IP_MULTICASTOPTS 0
147 #define M_PULLUP(m, len) \
148 do { \
149 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
150 (m) = m_pullup((m), (len)); \
151 } while (/*CONSTCOND*/ 0)
152
153 /*
154 * Globals. All but ip_mrouter and ip_mrtproto could be static,
155 * except for netstat or debugging purposes.
156 */
157 struct socket *ip_mrouter = NULL;
158 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
159
160 #define NO_RTE_FOUND 0x1
161 #define RTE_FOUND 0x2
162
163 #define MFCHASH(a, g) \
164 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
165 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
166 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
167 u_long mfchash;
168
169 u_char nexpire[MFCTBLSIZ];
170 struct vif viftable[MAXVIFS];
171 struct mrtstat mrtstat;
172 u_int mrtdebug = 0; /* debug level */
173 #define DEBUG_MFC 0x02
174 #define DEBUG_FORWARD 0x04
175 #define DEBUG_EXPIRE 0x08
176 #define DEBUG_XMIT 0x10
177 #define DEBUG_PIM 0x20
178
179 #define VIFI_INVALID ((vifi_t) -1)
180
181 u_int tbfdebug = 0; /* tbf debug level */
182 #ifdef RSVP_ISI
183 u_int rsvpdebug = 0; /* rsvp debug level */
184 #define RSVP_DPRINTF(a) do if (rsvpdebug) printf a; while (/*CONSTCOND*/0)
185 extern struct socket *ip_rsvpd;
186 extern int rsvp_on;
187 #else
188 #define RSVP_DPRINTF(a) do {} while (/*CONSTCOND*/0)
189 #endif /* RSVP_ISI */
190
191 /* vif attachment using sys/netinet/ip_encap.c */
192 static void vif_input(struct mbuf *, int, int);
193 static int vif_encapcheck(struct mbuf *, int, int, void *);
194
195 static const struct encapsw vif_encapsw = {
196 .encapsw4 = {
197 .pr_input = vif_input,
198 .pr_ctlinput = NULL,
199 }
200 };
201
202 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
203 #define UPCALL_EXPIRE 6 /* number of timeouts */
204
205 /*
206 * Define the token bucket filter structures
207 */
208
209 #define TBF_REPROCESS (hz / 100) /* 100x / second */
210
211 static int get_sg_cnt(struct sioc_sg_req *);
212 static int get_vif_cnt(struct sioc_vif_req *);
213 static int ip_mrouter_init(struct socket *, int);
214 static int set_assert(int);
215 static int add_vif(struct vifctl *);
216 static int del_vif(vifi_t *);
217 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
218 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
219 static void expire_mfc(struct mfc *);
220 static int add_mfc(struct sockopt *);
221 #ifdef UPCALL_TIMING
222 static void collate(struct timeval *);
223 #endif
224 static int del_mfc(struct sockopt *);
225 static int set_api_config(struct sockopt *); /* chose API capabilities */
226 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
227 static void expire_upcalls(void *);
228 #ifdef RSVP_ISI
229 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
230 #else
231 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
232 #endif
233 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
234 static void encap_send(struct ip *, struct vif *, struct mbuf *);
235 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
236 static void tbf_queue(struct vif *, struct mbuf *);
237 static void tbf_process_q(struct vif *);
238 static void tbf_reprocess_q(void *);
239 static int tbf_dq_sel(struct vif *, struct ip *);
240 static void tbf_send_packet(struct vif *, struct mbuf *);
241 static void tbf_update_tokens(struct vif *);
242 static int priority(struct vif *, struct ip *);
243
244 /*
245 * Bandwidth monitoring
246 */
247 static void free_bw_list(struct bw_meter *);
248 static int add_bw_upcall(struct bw_upcall *);
249 static int del_bw_upcall(struct bw_upcall *);
250 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
251 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
252 static void bw_upcalls_send(void);
253 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
254 static void unschedule_bw_meter(struct bw_meter *);
255 static void bw_meter_process(void);
256 static void expire_bw_upcalls_send(void *);
257 static void expire_bw_meter_process(void *);
258
259 #ifdef PIM
260 static int pim_register_send(struct ip *, struct vif *,
261 struct mbuf *, struct mfc *);
262 static int pim_register_send_rp(struct ip *, struct vif *,
263 struct mbuf *, struct mfc *);
264 static int pim_register_send_upcall(struct ip *, struct vif *,
265 struct mbuf *, struct mfc *);
266 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
267 #endif
268
269 /*
270 * 'Interfaces' associated with decapsulator (so we can tell
271 * packets that went through it from ones that get reflected
272 * by a broken gateway). These interfaces are never linked into
273 * the system ifnet list & no routes point to them. I.e., packets
274 * can't be sent this way. They only exist as a placeholder for
275 * multicast source verification.
276 */
277 #if 0
278 struct ifnet multicast_decap_if[MAXVIFS];
279 #endif
280
281 #define ENCAP_TTL 64
282 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
283
284 /* prototype IP hdr for encapsulated packets */
285 struct ip multicast_encap_iphdr = {
286 .ip_hl = sizeof(struct ip) >> 2,
287 .ip_v = IPVERSION,
288 .ip_len = sizeof(struct ip),
289 .ip_ttl = ENCAP_TTL,
290 .ip_p = ENCAP_PROTO,
291 };
292
293 /*
294 * Bandwidth meter variables and constants
295 */
296
297 /*
298 * Pending timeouts are stored in a hash table, the key being the
299 * expiration time. Periodically, the entries are analysed and processed.
300 */
301 #define BW_METER_BUCKETS 1024
302 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
303 struct callout bw_meter_ch;
304 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
305
306 /*
307 * Pending upcalls are stored in a vector which is flushed when
308 * full, or periodically
309 */
310 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
311 static u_int bw_upcalls_n; /* # of pending upcalls */
312 struct callout bw_upcalls_ch;
313 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
314
315 #ifdef PIM
316 struct pimstat pimstat;
317
318 /*
319 * Note: the PIM Register encapsulation adds the following in front of a
320 * data packet:
321 *
322 * struct pim_encap_hdr {
323 * struct ip ip;
324 * struct pim_encap_pimhdr pim;
325 * }
326 *
327 */
328
329 struct pim_encap_pimhdr {
330 struct pim pim;
331 uint32_t flags;
332 };
333
334 static struct ip pim_encap_iphdr = {
335 .ip_v = IPVERSION,
336 .ip_hl = sizeof(struct ip) >> 2,
337 .ip_len = sizeof(struct ip),
338 .ip_ttl = ENCAP_TTL,
339 .ip_p = IPPROTO_PIM,
340 };
341
342 static struct pim_encap_pimhdr pim_encap_pimhdr = {
343 {
344 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
345 0, /* reserved */
346 0, /* checksum */
347 },
348 0 /* flags */
349 };
350
351 static struct ifnet multicast_register_if;
352 static vifi_t reg_vif_num = VIFI_INVALID;
353 #endif /* PIM */
354
355
356 /*
357 * Private variables.
358 */
359 static vifi_t numvifs = 0;
360
361 static struct callout expire_upcalls_ch;
362
363 /*
364 * whether or not special PIM assert processing is enabled.
365 */
366 static int pim_assert;
367 /*
368 * Rate limit for assert notification messages, in usec
369 */
370 #define ASSERT_MSG_TIME 3000000
371
372 /*
373 * Kernel multicast routing API capabilities and setup.
374 * If more API capabilities are added to the kernel, they should be
375 * recorded in `mrt_api_support'.
376 */
377 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
378 MRT_MFC_FLAGS_BORDER_VIF |
379 MRT_MFC_RP |
380 MRT_MFC_BW_UPCALL);
381 static u_int32_t mrt_api_config = 0;
382
383 /*
384 * Find a route for a given origin IP address and Multicast group address
385 * Type of service parameter to be added in the future!!!
386 * Statistics are updated by the caller if needed
387 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
388 */
389 static struct mfc *
390 mfc_find(struct in_addr *o, struct in_addr *g)
391 {
392 struct mfc *rt;
393
394 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
395 if (in_hosteq(rt->mfc_origin, *o) &&
396 in_hosteq(rt->mfc_mcastgrp, *g) &&
397 (rt->mfc_stall == NULL))
398 break;
399 }
400
401 return (rt);
402 }
403
404 /*
405 * Macros to compute elapsed time efficiently
406 * Borrowed from Van Jacobson's scheduling code
407 */
408 #define TV_DELTA(a, b, delta) do { \
409 int xxs; \
410 delta = (a).tv_usec - (b).tv_usec; \
411 xxs = (a).tv_sec - (b).tv_sec; \
412 switch (xxs) { \
413 case 2: \
414 delta += 1000000; \
415 /* fall through */ \
416 case 1: \
417 delta += 1000000; \
418 /* fall through */ \
419 case 0: \
420 break; \
421 default: \
422 delta += (1000000 * xxs); \
423 break; \
424 } \
425 } while (/*CONSTCOND*/ 0)
426
427 #ifdef UPCALL_TIMING
428 u_int32_t upcall_data[51];
429 #endif /* UPCALL_TIMING */
430
431 /*
432 * Handle MRT setsockopt commands to modify the multicast routing tables.
433 */
434 int
435 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
436 {
437 int error;
438 int optval;
439 struct vifctl vifc;
440 vifi_t vifi;
441 struct bw_upcall bwuc;
442
443 if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
444 error = ENOPROTOOPT;
445 else {
446 switch (sopt->sopt_name) {
447 case MRT_INIT:
448 error = sockopt_getint(sopt, &optval);
449 if (error)
450 break;
451
452 error = ip_mrouter_init(so, optval);
453 break;
454 case MRT_DONE:
455 error = ip_mrouter_done();
456 break;
457 case MRT_ADD_VIF:
458 error = sockopt_get(sopt, &vifc, sizeof(vifc));
459 if (error)
460 break;
461 error = add_vif(&vifc);
462 break;
463 case MRT_DEL_VIF:
464 error = sockopt_get(sopt, &vifi, sizeof(vifi));
465 if (error)
466 break;
467 error = del_vif(&vifi);
468 break;
469 case MRT_ADD_MFC:
470 error = add_mfc(sopt);
471 break;
472 case MRT_DEL_MFC:
473 error = del_mfc(sopt);
474 break;
475 case MRT_ASSERT:
476 error = sockopt_getint(sopt, &optval);
477 if (error)
478 break;
479 error = set_assert(optval);
480 break;
481 case MRT_API_CONFIG:
482 error = set_api_config(sopt);
483 break;
484 case MRT_ADD_BW_UPCALL:
485 error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
486 if (error)
487 break;
488 error = add_bw_upcall(&bwuc);
489 break;
490 case MRT_DEL_BW_UPCALL:
491 error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
492 if (error)
493 break;
494 error = del_bw_upcall(&bwuc);
495 break;
496 default:
497 error = ENOPROTOOPT;
498 break;
499 }
500 }
501 return (error);
502 }
503
504 /*
505 * Handle MRT getsockopt commands
506 */
507 int
508 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
509 {
510 int error;
511
512 if (so != ip_mrouter)
513 error = ENOPROTOOPT;
514 else {
515 switch (sopt->sopt_name) {
516 case MRT_VERSION:
517 error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
518 break;
519 case MRT_ASSERT:
520 error = sockopt_setint(sopt, pim_assert);
521 break;
522 case MRT_API_SUPPORT:
523 error = sockopt_set(sopt, &mrt_api_support,
524 sizeof(mrt_api_support));
525 break;
526 case MRT_API_CONFIG:
527 error = sockopt_set(sopt, &mrt_api_config,
528 sizeof(mrt_api_config));
529 break;
530 default:
531 error = ENOPROTOOPT;
532 break;
533 }
534 }
535 return (error);
536 }
537
538 /*
539 * Handle ioctl commands to obtain information from the cache
540 */
541 int
542 mrt_ioctl(struct socket *so, u_long cmd, void *data)
543 {
544 int error;
545
546 if (so != ip_mrouter)
547 error = EINVAL;
548 else
549 switch (cmd) {
550 case SIOCGETVIFCNT:
551 error = get_vif_cnt((struct sioc_vif_req *)data);
552 break;
553 case SIOCGETSGCNT:
554 error = get_sg_cnt((struct sioc_sg_req *)data);
555 break;
556 default:
557 error = EINVAL;
558 break;
559 }
560
561 return (error);
562 }
563
564 /*
565 * returns the packet, byte, rpf-failure count for the source group provided
566 */
567 static int
568 get_sg_cnt(struct sioc_sg_req *req)
569 {
570 int s;
571 struct mfc *rt;
572
573 s = splsoftnet();
574 rt = mfc_find(&req->src, &req->grp);
575 if (rt == NULL) {
576 splx(s);
577 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
578 return (EADDRNOTAVAIL);
579 }
580 req->pktcnt = rt->mfc_pkt_cnt;
581 req->bytecnt = rt->mfc_byte_cnt;
582 req->wrong_if = rt->mfc_wrong_if;
583 splx(s);
584
585 return (0);
586 }
587
588 /*
589 * returns the input and output packet and byte counts on the vif provided
590 */
591 static int
592 get_vif_cnt(struct sioc_vif_req *req)
593 {
594 vifi_t vifi = req->vifi;
595
596 if (vifi >= numvifs)
597 return (EINVAL);
598
599 req->icount = viftable[vifi].v_pkt_in;
600 req->ocount = viftable[vifi].v_pkt_out;
601 req->ibytes = viftable[vifi].v_bytes_in;
602 req->obytes = viftable[vifi].v_bytes_out;
603
604 return (0);
605 }
606
607 /*
608 * Enable multicast routing
609 */
610 static int
611 ip_mrouter_init(struct socket *so, int v)
612 {
613 if (mrtdebug)
614 log(LOG_DEBUG,
615 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
616 so->so_type, so->so_proto->pr_protocol);
617
618 if (so->so_type != SOCK_RAW ||
619 so->so_proto->pr_protocol != IPPROTO_IGMP)
620 return (EOPNOTSUPP);
621
622 if (v != 1)
623 return (EINVAL);
624
625 if (ip_mrouter != NULL)
626 return (EADDRINUSE);
627
628 ip_mrouter = so;
629
630 mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
631 memset((void *)nexpire, 0, sizeof(nexpire));
632
633 pim_assert = 0;
634
635 callout_init(&expire_upcalls_ch, 0);
636 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
637 expire_upcalls, NULL);
638
639 callout_init(&bw_upcalls_ch, 0);
640 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
641 expire_bw_upcalls_send, NULL);
642
643 callout_init(&bw_meter_ch, 0);
644 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
645 expire_bw_meter_process, NULL);
646
647 if (mrtdebug)
648 log(LOG_DEBUG, "ip_mrouter_init\n");
649
650 return (0);
651 }
652
653 /*
654 * Disable multicast routing
655 */
656 int
657 ip_mrouter_done(void)
658 {
659 vifi_t vifi;
660 struct vif *vifp;
661 int i;
662 int s;
663
664 s = splsoftnet();
665
666 /* Clear out all the vifs currently in use. */
667 for (vifi = 0; vifi < numvifs; vifi++) {
668 vifp = &viftable[vifi];
669 if (!in_nullhost(vifp->v_lcl_addr))
670 reset_vif(vifp);
671 }
672
673 numvifs = 0;
674 pim_assert = 0;
675 mrt_api_config = 0;
676
677 callout_stop(&expire_upcalls_ch);
678 callout_stop(&bw_upcalls_ch);
679 callout_stop(&bw_meter_ch);
680
681 /*
682 * Free all multicast forwarding cache entries.
683 */
684 for (i = 0; i < MFCTBLSIZ; i++) {
685 struct mfc *rt, *nrt;
686
687 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
688 nrt = LIST_NEXT(rt, mfc_hash);
689
690 expire_mfc(rt);
691 }
692 }
693
694 memset((void *)nexpire, 0, sizeof(nexpire));
695 hashdone(mfchashtbl, HASH_LIST, mfchash);
696 mfchashtbl = NULL;
697
698 bw_upcalls_n = 0;
699 memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
700
701 /* Reset de-encapsulation cache. */
702
703 ip_mrouter = NULL;
704
705 splx(s);
706
707 if (mrtdebug)
708 log(LOG_DEBUG, "ip_mrouter_done\n");
709
710 return (0);
711 }
712
713 void
714 ip_mrouter_detach(struct ifnet *ifp)
715 {
716 int vifi, i;
717 struct vif *vifp;
718 struct mfc *rt;
719 struct rtdetq *rte;
720
721 /* XXX not sure about side effect to userland routing daemon */
722 for (vifi = 0; vifi < numvifs; vifi++) {
723 vifp = &viftable[vifi];
724 if (vifp->v_ifp == ifp)
725 reset_vif(vifp);
726 }
727 for (i = 0; i < MFCTBLSIZ; i++) {
728 if (nexpire[i] == 0)
729 continue;
730 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
731 for (rte = rt->mfc_stall; rte; rte = rte->next) {
732 if (rte->ifp == ifp)
733 rte->ifp = NULL;
734 }
735 }
736 }
737 }
738
739 /*
740 * Set PIM assert processing global
741 */
742 static int
743 set_assert(int i)
744 {
745 pim_assert = !!i;
746 return (0);
747 }
748
749 /*
750 * Configure API capabilities
751 */
752 static int
753 set_api_config(struct sockopt *sopt)
754 {
755 u_int32_t apival;
756 int i, error;
757
758 /*
759 * We can set the API capabilities only if it is the first operation
760 * after MRT_INIT. I.e.:
761 * - there are no vifs installed
762 * - pim_assert is not enabled
763 * - the MFC table is empty
764 */
765 error = sockopt_get(sopt, &apival, sizeof(apival));
766 if (error)
767 return (error);
768 if (numvifs > 0)
769 return (EPERM);
770 if (pim_assert)
771 return (EPERM);
772 for (i = 0; i < MFCTBLSIZ; i++) {
773 if (LIST_FIRST(&mfchashtbl[i]) != NULL)
774 return (EPERM);
775 }
776
777 mrt_api_config = apival & mrt_api_support;
778 return (0);
779 }
780
781 /*
782 * Add a vif to the vif table
783 */
784 static int
785 add_vif(struct vifctl *vifcp)
786 {
787 struct vif *vifp;
788 struct ifaddr *ifa;
789 struct ifnet *ifp;
790 int error, s;
791 struct sockaddr_in sin;
792
793 if (vifcp->vifc_vifi >= MAXVIFS)
794 return (EINVAL);
795 if (in_nullhost(vifcp->vifc_lcl_addr))
796 return (EADDRNOTAVAIL);
797
798 vifp = &viftable[vifcp->vifc_vifi];
799 if (!in_nullhost(vifp->v_lcl_addr))
800 return (EADDRINUSE);
801
802 /* Find the interface with an address in AF_INET family. */
803 #ifdef PIM
804 if (vifcp->vifc_flags & VIFF_REGISTER) {
805 /*
806 * XXX: Because VIFF_REGISTER does not really need a valid
807 * local interface (e.g. it could be 127.0.0.2), we don't
808 * check its address.
809 */
810 ifp = NULL;
811 } else
812 #endif
813 {
814 sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
815 ifa = ifa_ifwithaddr(sintosa(&sin));
816 if (ifa == NULL)
817 return (EADDRNOTAVAIL);
818 ifp = ifa->ifa_ifp;
819 }
820
821 if (vifcp->vifc_flags & VIFF_TUNNEL) {
822 if (vifcp->vifc_flags & VIFF_SRCRT) {
823 log(LOG_ERR, "source routed tunnels not supported\n");
824 return (EOPNOTSUPP);
825 }
826
827 /* attach this vif to decapsulator dispatch table */
828 /*
829 * XXX Use addresses in registration so that matching
830 * can be done with radix tree in decapsulator. But,
831 * we need to check inner header for multicast, so
832 * this requires both radix tree lookup and then a
833 * function to check, and this is not supported yet.
834 */
835 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
836 vif_encapcheck, &vif_encapsw, vifp);
837 if (!vifp->v_encap_cookie)
838 return (EINVAL);
839
840 /* Create a fake encapsulation interface. */
841 ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
842 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
843 "mdecap%d", vifcp->vifc_vifi);
844
845 /* Prepare cached route entry. */
846 memset(&vifp->v_route, 0, sizeof(vifp->v_route));
847 #ifdef PIM
848 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
849 ifp = &multicast_register_if;
850 if (mrtdebug)
851 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
852 (void *)ifp);
853 if (reg_vif_num == VIFI_INVALID) {
854 memset(ifp, 0, sizeof(*ifp));
855 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
856 "register_vif");
857 ifp->if_flags = IFF_LOOPBACK;
858 memset(&vifp->v_route, 0, sizeof(vifp->v_route));
859 reg_vif_num = vifcp->vifc_vifi;
860 }
861 #endif
862 } else {
863 /* Make sure the interface supports multicast. */
864 if ((ifp->if_flags & IFF_MULTICAST) == 0)
865 return (EOPNOTSUPP);
866
867 /* Enable promiscuous reception of all IP multicasts. */
868 sockaddr_in_init(&sin, &zeroin_addr, 0);
869 error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
870 if (error)
871 return (error);
872 }
873
874 s = splsoftnet();
875
876 /* Define parameters for the tbf structure. */
877 vifp->tbf_q = NULL;
878 vifp->tbf_t = &vifp->tbf_q;
879 microtime(&vifp->tbf_last_pkt_t);
880 vifp->tbf_n_tok = 0;
881 vifp->tbf_q_len = 0;
882 vifp->tbf_max_q_len = MAXQSIZE;
883
884 vifp->v_flags = vifcp->vifc_flags;
885 vifp->v_threshold = vifcp->vifc_threshold;
886 /* scaling up here allows division by 1024 in critical code */
887 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
888 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
889 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
890 vifp->v_ifp = ifp;
891 /* Initialize per vif pkt counters. */
892 vifp->v_pkt_in = 0;
893 vifp->v_pkt_out = 0;
894 vifp->v_bytes_in = 0;
895 vifp->v_bytes_out = 0;
896
897 callout_init(&vifp->v_repq_ch, 0);
898
899 #ifdef RSVP_ISI
900 vifp->v_rsvp_on = 0;
901 vifp->v_rsvpd = NULL;
902 #endif /* RSVP_ISI */
903
904 splx(s);
905
906 /* Adjust numvifs up if the vifi is higher than numvifs. */
907 if (numvifs <= vifcp->vifc_vifi)
908 numvifs = vifcp->vifc_vifi + 1;
909
910 if (mrtdebug)
911 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
912 vifcp->vifc_vifi,
913 ntohl(vifcp->vifc_lcl_addr.s_addr),
914 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
915 ntohl(vifcp->vifc_rmt_addr.s_addr),
916 vifcp->vifc_threshold,
917 vifcp->vifc_rate_limit);
918
919 return (0);
920 }
921
922 void
923 reset_vif(struct vif *vifp)
924 {
925 struct mbuf *m, *n;
926 struct ifnet *ifp;
927 struct sockaddr_in sin;
928
929 callout_stop(&vifp->v_repq_ch);
930
931 /* detach this vif from decapsulator dispatch table */
932 encap_detach(vifp->v_encap_cookie);
933 vifp->v_encap_cookie = NULL;
934
935 /*
936 * Free packets queued at the interface
937 */
938 for (m = vifp->tbf_q; m != NULL; m = n) {
939 n = m->m_nextpkt;
940 m_freem(m);
941 }
942
943 if (vifp->v_flags & VIFF_TUNNEL)
944 free(vifp->v_ifp, M_MRTABLE);
945 else if (vifp->v_flags & VIFF_REGISTER) {
946 #ifdef PIM
947 reg_vif_num = VIFI_INVALID;
948 #endif
949 } else {
950 sockaddr_in_init(&sin, &zeroin_addr, 0);
951 ifp = vifp->v_ifp;
952 if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
953 }
954 memset((void *)vifp, 0, sizeof(*vifp));
955 }
956
957 /*
958 * Delete a vif from the vif table
959 */
960 static int
961 del_vif(vifi_t *vifip)
962 {
963 struct vif *vifp;
964 vifi_t vifi;
965 int s;
966
967 if (*vifip >= numvifs)
968 return (EINVAL);
969
970 vifp = &viftable[*vifip];
971 if (in_nullhost(vifp->v_lcl_addr))
972 return (EADDRNOTAVAIL);
973
974 s = splsoftnet();
975
976 reset_vif(vifp);
977
978 /* Adjust numvifs down */
979 for (vifi = numvifs; vifi > 0; vifi--)
980 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
981 break;
982 numvifs = vifi;
983
984 splx(s);
985
986 if (mrtdebug)
987 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
988
989 return (0);
990 }
991
992 /*
993 * update an mfc entry without resetting counters and S,G addresses.
994 */
995 static void
996 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
997 {
998 int i;
999
1000 rt->mfc_parent = mfccp->mfcc_parent;
1001 for (i = 0; i < numvifs; i++) {
1002 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1003 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1004 MRT_MFC_FLAGS_ALL;
1005 }
1006 /* set the RP address */
1007 if (mrt_api_config & MRT_MFC_RP)
1008 rt->mfc_rp = mfccp->mfcc_rp;
1009 else
1010 rt->mfc_rp = zeroin_addr;
1011 }
1012
1013 /*
1014 * fully initialize an mfc entry from the parameter.
1015 */
1016 static void
1017 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1018 {
1019 rt->mfc_origin = mfccp->mfcc_origin;
1020 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1021
1022 update_mfc_params(rt, mfccp);
1023
1024 /* initialize pkt counters per src-grp */
1025 rt->mfc_pkt_cnt = 0;
1026 rt->mfc_byte_cnt = 0;
1027 rt->mfc_wrong_if = 0;
1028 timerclear(&rt->mfc_last_assert);
1029 }
1030
1031 static void
1032 expire_mfc(struct mfc *rt)
1033 {
1034 struct rtdetq *rte, *nrte;
1035
1036 free_bw_list(rt->mfc_bw_meter);
1037
1038 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1039 nrte = rte->next;
1040 m_freem(rte->m);
1041 free(rte, M_MRTABLE);
1042 }
1043
1044 LIST_REMOVE(rt, mfc_hash);
1045 free(rt, M_MRTABLE);
1046 }
1047
1048 /*
1049 * Add an mfc entry
1050 */
1051 static int
1052 add_mfc(struct sockopt *sopt)
1053 {
1054 struct mfcctl2 mfcctl2;
1055 struct mfcctl2 *mfccp;
1056 struct mfc *rt;
1057 u_int32_t hash = 0;
1058 struct rtdetq *rte, *nrte;
1059 u_short nstl;
1060 int s;
1061 int error;
1062
1063 /*
1064 * select data size depending on API version.
1065 */
1066 mfccp = &mfcctl2;
1067 memset(&mfcctl2, 0, sizeof(mfcctl2));
1068
1069 if (mrt_api_config & MRT_API_FLAGS_ALL)
1070 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1071 else
1072 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1073
1074 if (error)
1075 return (error);
1076
1077 s = splsoftnet();
1078 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1079
1080 /* If an entry already exists, just update the fields */
1081 if (rt) {
1082 if (mrtdebug & DEBUG_MFC)
1083 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1084 ntohl(mfccp->mfcc_origin.s_addr),
1085 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1086 mfccp->mfcc_parent);
1087
1088 update_mfc_params(rt, mfccp);
1089
1090 splx(s);
1091 return (0);
1092 }
1093
1094 /*
1095 * Find the entry for which the upcall was made and update
1096 */
1097 nstl = 0;
1098 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1099 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1100 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1101 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1102 rt->mfc_stall != NULL) {
1103 if (nstl++)
1104 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1105 "multiple kernel entries",
1106 ntohl(mfccp->mfcc_origin.s_addr),
1107 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1108 mfccp->mfcc_parent, rt->mfc_stall);
1109
1110 if (mrtdebug & DEBUG_MFC)
1111 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1112 ntohl(mfccp->mfcc_origin.s_addr),
1113 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1114 mfccp->mfcc_parent, rt->mfc_stall);
1115
1116 rte = rt->mfc_stall;
1117 init_mfc_params(rt, mfccp);
1118 rt->mfc_stall = NULL;
1119
1120 rt->mfc_expire = 0; /* Don't clean this guy up */
1121 nexpire[hash]--;
1122
1123 /* free packets Qed at the end of this entry */
1124 for (; rte != NULL; rte = nrte) {
1125 nrte = rte->next;
1126 if (rte->ifp) {
1127 #ifdef RSVP_ISI
1128 ip_mdq(rte->m, rte->ifp, rt, -1);
1129 #else
1130 ip_mdq(rte->m, rte->ifp, rt);
1131 #endif /* RSVP_ISI */
1132 }
1133 m_freem(rte->m);
1134 #ifdef UPCALL_TIMING
1135 collate(&rte->t);
1136 #endif /* UPCALL_TIMING */
1137 free(rte, M_MRTABLE);
1138 }
1139 }
1140 }
1141
1142 /*
1143 * It is possible that an entry is being inserted without an upcall
1144 */
1145 if (nstl == 0) {
1146 /*
1147 * No mfc; make a new one
1148 */
1149 if (mrtdebug & DEBUG_MFC)
1150 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1151 ntohl(mfccp->mfcc_origin.s_addr),
1152 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1153 mfccp->mfcc_parent);
1154
1155 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1156 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1157 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1158 init_mfc_params(rt, mfccp);
1159 if (rt->mfc_expire)
1160 nexpire[hash]--;
1161 rt->mfc_expire = 0;
1162 break; /* XXX */
1163 }
1164 }
1165 if (rt == NULL) { /* no upcall, so make a new entry */
1166 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1167 M_NOWAIT);
1168 if (rt == NULL) {
1169 splx(s);
1170 return (ENOBUFS);
1171 }
1172
1173 init_mfc_params(rt, mfccp);
1174 rt->mfc_expire = 0;
1175 rt->mfc_stall = NULL;
1176 rt->mfc_bw_meter = NULL;
1177
1178 /* insert new entry at head of hash chain */
1179 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1180 }
1181 }
1182
1183 splx(s);
1184 return (0);
1185 }
1186
1187 #ifdef UPCALL_TIMING
1188 /*
1189 * collect delay statistics on the upcalls
1190 */
1191 static void
1192 collate(struct timeval *t)
1193 {
1194 u_int32_t d;
1195 struct timeval tp;
1196 u_int32_t delta;
1197
1198 microtime(&tp);
1199
1200 if (timercmp(t, &tp, <)) {
1201 TV_DELTA(tp, *t, delta);
1202
1203 d = delta >> 10;
1204 if (d > 50)
1205 d = 50;
1206
1207 ++upcall_data[d];
1208 }
1209 }
1210 #endif /* UPCALL_TIMING */
1211
1212 /*
1213 * Delete an mfc entry
1214 */
1215 static int
1216 del_mfc(struct sockopt *sopt)
1217 {
1218 struct mfcctl2 mfcctl2;
1219 struct mfcctl2 *mfccp;
1220 struct mfc *rt;
1221 int s;
1222 int error;
1223
1224 /*
1225 * XXX: for deleting MFC entries the information in entries
1226 * of size "struct mfcctl" is sufficient.
1227 */
1228
1229 mfccp = &mfcctl2;
1230 memset(&mfcctl2, 0, sizeof(mfcctl2));
1231
1232 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
1233 if (error) {
1234 /* Try with the size of mfcctl2. */
1235 error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
1236 if (error)
1237 return (error);
1238 }
1239
1240 if (mrtdebug & DEBUG_MFC)
1241 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1242 ntohl(mfccp->mfcc_origin.s_addr),
1243 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1244
1245 s = splsoftnet();
1246
1247 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1248 if (rt == NULL) {
1249 splx(s);
1250 return (EADDRNOTAVAIL);
1251 }
1252
1253 /*
1254 * free the bw_meter entries
1255 */
1256 free_bw_list(rt->mfc_bw_meter);
1257 rt->mfc_bw_meter = NULL;
1258
1259 LIST_REMOVE(rt, mfc_hash);
1260 free(rt, M_MRTABLE);
1261
1262 splx(s);
1263 return (0);
1264 }
1265
1266 static int
1267 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1268 {
1269 if (s) {
1270 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
1271 sorwakeup(s);
1272 return (0);
1273 }
1274 }
1275 m_freem(mm);
1276 return (-1);
1277 }
1278
1279 /*
1280 * IP multicast forwarding function. This function assumes that the packet
1281 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1282 * pointed to by "ifp", and the packet is to be relayed to other networks
1283 * that have members of the packet's destination IP multicast group.
1284 *
1285 * The packet is returned unscathed to the caller, unless it is
1286 * erroneous, in which case a non-zero return value tells the caller to
1287 * discard it.
1288 */
1289
1290 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1291 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1292
1293 int
1294 #ifdef RSVP_ISI
1295 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1296 #else
1297 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1298 #endif /* RSVP_ISI */
1299 {
1300 struct ip *ip = mtod(m, struct ip *);
1301 struct mfc *rt;
1302 static int srctun = 0;
1303 struct mbuf *mm;
1304 struct sockaddr_in sin;
1305 int s;
1306 vifi_t vifi;
1307
1308 if (mrtdebug & DEBUG_FORWARD)
1309 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1310 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1311
1312 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1313 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1314 /*
1315 * Packet arrived via a physical interface or
1316 * an encapsulated tunnel or a register_vif.
1317 */
1318 } else {
1319 /*
1320 * Packet arrived through a source-route tunnel.
1321 * Source-route tunnels are no longer supported.
1322 */
1323 if ((srctun++ % 1000) == 0)
1324 log(LOG_ERR,
1325 "ip_mforward: received source-routed packet from %x\n",
1326 ntohl(ip->ip_src.s_addr));
1327
1328 return (1);
1329 }
1330
1331 /*
1332 * Clear any in-bound checksum flags for this packet.
1333 */
1334 m->m_pkthdr.csum_flags = 0;
1335
1336 #ifdef RSVP_ISI
1337 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1338 if (ip->ip_ttl < MAXTTL)
1339 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1340 if (ip->ip_p == IPPROTO_RSVP) {
1341 struct vif *vifp = viftable + vifi;
1342 RSVP_DPRINTF(("%s: Sending IPPROTO_RSVP from %x to %x"
1343 " on vif %d (%s%s)\n", __func__,
1344 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1345 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1346 vifp->v_ifp->if_xname));
1347 }
1348 return (ip_mdq(m, ifp, NULL, vifi));
1349 }
1350 if (ip->ip_p == IPPROTO_RSVP) {
1351 RSVP_DPRINTF(("%s: Warning: IPPROTO_RSVP from %x to %x"
1352 " without vif option\n", __func__,
1353 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1354 }
1355 #endif /* RSVP_ISI */
1356
1357 /*
1358 * Don't forward a packet with time-to-live of zero or one,
1359 * or a packet destined to a local-only group.
1360 */
1361 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1362 return (0);
1363
1364 /*
1365 * Determine forwarding vifs from the forwarding cache table
1366 */
1367 s = splsoftnet();
1368 ++mrtstat.mrts_mfc_lookups;
1369 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1370
1371 /* Entry exists, so forward if necessary */
1372 if (rt != NULL) {
1373 splx(s);
1374 #ifdef RSVP_ISI
1375 return (ip_mdq(m, ifp, rt, -1));
1376 #else
1377 return (ip_mdq(m, ifp, rt));
1378 #endif /* RSVP_ISI */
1379 } else {
1380 /*
1381 * If we don't have a route for packet's origin,
1382 * Make a copy of the packet & send message to routing daemon
1383 */
1384
1385 struct mbuf *mb0;
1386 struct rtdetq *rte;
1387 u_int32_t hash;
1388 int hlen = ip->ip_hl << 2;
1389 #ifdef UPCALL_TIMING
1390 struct timeval tp;
1391
1392 microtime(&tp);
1393 #endif /* UPCALL_TIMING */
1394
1395 ++mrtstat.mrts_mfc_misses;
1396
1397 mrtstat.mrts_no_route++;
1398 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1399 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1400 ntohl(ip->ip_src.s_addr),
1401 ntohl(ip->ip_dst.s_addr));
1402
1403 /*
1404 * Allocate mbufs early so that we don't do extra work if we are
1405 * just going to fail anyway. Make sure to pullup the header so
1406 * that other people can't step on it.
1407 */
1408 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1409 M_NOWAIT);
1410 if (rte == NULL) {
1411 splx(s);
1412 return (ENOBUFS);
1413 }
1414 mb0 = m_copypacket(m, M_DONTWAIT);
1415 M_PULLUP(mb0, hlen);
1416 if (mb0 == NULL) {
1417 free(rte, M_MRTABLE);
1418 splx(s);
1419 return (ENOBUFS);
1420 }
1421
1422 /* is there an upcall waiting for this flow? */
1423 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1424 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1425 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1426 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1427 rt->mfc_stall != NULL)
1428 break;
1429 }
1430
1431 if (rt == NULL) {
1432 int i;
1433 struct igmpmsg *im;
1434
1435 /*
1436 * Locate the vifi for the incoming interface for
1437 * this packet.
1438 * If none found, drop packet.
1439 */
1440 for (vifi = 0; vifi < numvifs &&
1441 viftable[vifi].v_ifp != ifp; vifi++)
1442 ;
1443 if (vifi >= numvifs) /* vif not found, drop packet */
1444 goto non_fatal;
1445
1446 /* no upcall, so make a new entry */
1447 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1448 M_NOWAIT);
1449 if (rt == NULL)
1450 goto fail;
1451
1452 /*
1453 * Make a copy of the header to send to the user level
1454 * process
1455 */
1456 mm = m_copym(m, 0, hlen, M_DONTWAIT);
1457 M_PULLUP(mm, hlen);
1458 if (mm == NULL)
1459 goto fail1;
1460
1461 /*
1462 * Send message to routing daemon to install
1463 * a route into the kernel table
1464 */
1465
1466 im = mtod(mm, struct igmpmsg *);
1467 im->im_msgtype = IGMPMSG_NOCACHE;
1468 im->im_mbz = 0;
1469 im->im_vif = vifi;
1470
1471 mrtstat.mrts_upcalls++;
1472
1473 sockaddr_in_init(&sin, &ip->ip_src, 0);
1474 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1475 log(LOG_WARNING,
1476 "ip_mforward: ip_mrouter socket queue full\n");
1477 ++mrtstat.mrts_upq_sockfull;
1478 fail1:
1479 free(rt, M_MRTABLE);
1480 fail:
1481 free(rte, M_MRTABLE);
1482 m_freem(mb0);
1483 splx(s);
1484 return (ENOBUFS);
1485 }
1486
1487 /* insert new entry at head of hash chain */
1488 rt->mfc_origin = ip->ip_src;
1489 rt->mfc_mcastgrp = ip->ip_dst;
1490 rt->mfc_pkt_cnt = 0;
1491 rt->mfc_byte_cnt = 0;
1492 rt->mfc_wrong_if = 0;
1493 rt->mfc_expire = UPCALL_EXPIRE;
1494 nexpire[hash]++;
1495 for (i = 0; i < numvifs; i++) {
1496 rt->mfc_ttls[i] = 0;
1497 rt->mfc_flags[i] = 0;
1498 }
1499 rt->mfc_parent = -1;
1500
1501 /* clear the RP address */
1502 rt->mfc_rp = zeroin_addr;
1503
1504 rt->mfc_bw_meter = NULL;
1505
1506 /* link into table */
1507 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1508 /* Add this entry to the end of the queue */
1509 rt->mfc_stall = rte;
1510 } else {
1511 /* determine if q has overflowed */
1512 struct rtdetq **p;
1513 int npkts = 0;
1514
1515 /*
1516 * XXX ouch! we need to append to the list, but we
1517 * only have a pointer to the front, so we have to
1518 * scan the entire list every time.
1519 */
1520 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1521 if (++npkts > MAX_UPQ) {
1522 mrtstat.mrts_upq_ovflw++;
1523 non_fatal:
1524 free(rte, M_MRTABLE);
1525 m_freem(mb0);
1526 splx(s);
1527 return (0);
1528 }
1529
1530 /* Add this entry to the end of the queue */
1531 *p = rte;
1532 }
1533
1534 rte->next = NULL;
1535 rte->m = mb0;
1536 rte->ifp = ifp;
1537 #ifdef UPCALL_TIMING
1538 rte->t = tp;
1539 #endif /* UPCALL_TIMING */
1540
1541 splx(s);
1542
1543 return (0);
1544 }
1545 }
1546
1547
1548 /*ARGSUSED*/
1549 static void
1550 expire_upcalls(void *v)
1551 {
1552 int i;
1553 int s;
1554
1555 s = splsoftnet();
1556
1557 for (i = 0; i < MFCTBLSIZ; i++) {
1558 struct mfc *rt, *nrt;
1559
1560 if (nexpire[i] == 0)
1561 continue;
1562
1563 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1564 nrt = LIST_NEXT(rt, mfc_hash);
1565
1566 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1567 continue;
1568 nexpire[i]--;
1569
1570 /*
1571 * free the bw_meter entries
1572 */
1573 while (rt->mfc_bw_meter != NULL) {
1574 struct bw_meter *x = rt->mfc_bw_meter;
1575
1576 rt->mfc_bw_meter = x->bm_mfc_next;
1577 kmem_free(x, sizeof(*x));
1578 }
1579
1580 ++mrtstat.mrts_cache_cleanups;
1581 if (mrtdebug & DEBUG_EXPIRE)
1582 log(LOG_DEBUG,
1583 "expire_upcalls: expiring (%x %x)\n",
1584 ntohl(rt->mfc_origin.s_addr),
1585 ntohl(rt->mfc_mcastgrp.s_addr));
1586
1587 expire_mfc(rt);
1588 }
1589 }
1590
1591 splx(s);
1592 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1593 expire_upcalls, NULL);
1594 }
1595
1596 /*
1597 * Packet forwarding routine once entry in the cache is made
1598 */
1599 static int
1600 #ifdef RSVP_ISI
1601 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1602 #else
1603 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1604 #endif /* RSVP_ISI */
1605 {
1606 struct ip *ip = mtod(m, struct ip *);
1607 vifi_t vifi;
1608 struct vif *vifp;
1609 struct sockaddr_in sin;
1610 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1611
1612 /*
1613 * Macro to send packet on vif. Since RSVP packets don't get counted on
1614 * input, they shouldn't get counted on output, so statistics keeping is
1615 * separate.
1616 */
1617 #define MC_SEND(ip, vifp, m) do { \
1618 if ((vifp)->v_flags & VIFF_TUNNEL) \
1619 encap_send((ip), (vifp), (m)); \
1620 else \
1621 phyint_send((ip), (vifp), (m)); \
1622 } while (/*CONSTCOND*/ 0)
1623
1624 #ifdef RSVP_ISI
1625 /*
1626 * If xmt_vif is not -1, send on only the requested vif.
1627 *
1628 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1629 */
1630 if (xmt_vif < numvifs) {
1631 #ifdef PIM
1632 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1633 pim_register_send(ip, viftable + xmt_vif, m, rt);
1634 else
1635 #endif
1636 MC_SEND(ip, viftable + xmt_vif, m);
1637 return (1);
1638 }
1639 #endif /* RSVP_ISI */
1640
1641 /*
1642 * Don't forward if it didn't arrive from the parent vif for its origin.
1643 */
1644 vifi = rt->mfc_parent;
1645 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1646 /* came in the wrong interface */
1647 if (mrtdebug & DEBUG_FORWARD)
1648 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1649 ifp, vifi,
1650 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1651 ++mrtstat.mrts_wrong_if;
1652 ++rt->mfc_wrong_if;
1653 /*
1654 * If we are doing PIM assert processing, send a message
1655 * to the routing daemon.
1656 *
1657 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1658 * can complete the SPT switch, regardless of the type
1659 * of the iif (broadcast media, GRE tunnel, etc).
1660 */
1661 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1662 struct timeval now;
1663 u_int32_t delta;
1664
1665 #ifdef PIM
1666 if (ifp == &multicast_register_if)
1667 pimstat.pims_rcv_registers_wrongiif++;
1668 #endif
1669
1670 /* Get vifi for the incoming packet */
1671 for (vifi = 0;
1672 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1673 vifi++)
1674 ;
1675 if (vifi >= numvifs) {
1676 /* The iif is not found: ignore the packet. */
1677 return (0);
1678 }
1679
1680 if (rt->mfc_flags[vifi] &
1681 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1682 /* WRONGVIF disabled: ignore the packet */
1683 return (0);
1684 }
1685
1686 microtime(&now);
1687
1688 TV_DELTA(rt->mfc_last_assert, now, delta);
1689
1690 if (delta > ASSERT_MSG_TIME) {
1691 struct igmpmsg *im;
1692 int hlen = ip->ip_hl << 2;
1693 struct mbuf *mm =
1694 m_copym(m, 0, hlen, M_DONTWAIT);
1695
1696 M_PULLUP(mm, hlen);
1697 if (mm == NULL)
1698 return (ENOBUFS);
1699
1700 rt->mfc_last_assert = now;
1701
1702 im = mtod(mm, struct igmpmsg *);
1703 im->im_msgtype = IGMPMSG_WRONGVIF;
1704 im->im_mbz = 0;
1705 im->im_vif = vifi;
1706
1707 mrtstat.mrts_upcalls++;
1708
1709 sockaddr_in_init(&sin, &im->im_src, 0);
1710 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1711 log(LOG_WARNING,
1712 "ip_mforward: ip_mrouter socket queue full\n");
1713 ++mrtstat.mrts_upq_sockfull;
1714 return (ENOBUFS);
1715 }
1716 }
1717 }
1718 return (0);
1719 }
1720
1721 /* If I sourced this packet, it counts as output, else it was input. */
1722 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1723 viftable[vifi].v_pkt_out++;
1724 viftable[vifi].v_bytes_out += plen;
1725 } else {
1726 viftable[vifi].v_pkt_in++;
1727 viftable[vifi].v_bytes_in += plen;
1728 }
1729 rt->mfc_pkt_cnt++;
1730 rt->mfc_byte_cnt += plen;
1731
1732 /*
1733 * For each vif, decide if a copy of the packet should be forwarded.
1734 * Forward if:
1735 * - the ttl exceeds the vif's threshold
1736 * - there are group members downstream on interface
1737 */
1738 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1739 if ((rt->mfc_ttls[vifi] > 0) &&
1740 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1741 vifp->v_pkt_out++;
1742 vifp->v_bytes_out += plen;
1743 #ifdef PIM
1744 if (vifp->v_flags & VIFF_REGISTER)
1745 pim_register_send(ip, vifp, m, rt);
1746 else
1747 #endif
1748 MC_SEND(ip, vifp, m);
1749 }
1750
1751 /*
1752 * Perform upcall-related bw measuring.
1753 */
1754 if (rt->mfc_bw_meter != NULL) {
1755 struct bw_meter *x;
1756 struct timeval now;
1757
1758 microtime(&now);
1759 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1760 bw_meter_receive_packet(x, plen, &now);
1761 }
1762
1763 return (0);
1764 }
1765
1766 #ifdef RSVP_ISI
1767 /*
1768 * check if a vif number is legal/ok. This is used by ip_output.
1769 */
1770 int
1771 legal_vif_num(int vif)
1772 {
1773 if (vif >= 0 && vif < numvifs)
1774 return (1);
1775 else
1776 return (0);
1777 }
1778 #endif /* RSVP_ISI */
1779
1780 static void
1781 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1782 {
1783 struct mbuf *mb_copy;
1784 int hlen = ip->ip_hl << 2;
1785
1786 /*
1787 * Make a new reference to the packet; make sure that
1788 * the IP header is actually copied, not just referenced,
1789 * so that ip_output() only scribbles on the copy.
1790 */
1791 mb_copy = m_copypacket(m, M_DONTWAIT);
1792 M_PULLUP(mb_copy, hlen);
1793 if (mb_copy == NULL)
1794 return;
1795
1796 if (vifp->v_rate_limit <= 0)
1797 tbf_send_packet(vifp, mb_copy);
1798 else
1799 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1800 ntohs(ip->ip_len));
1801 }
1802
1803 static void
1804 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1805 {
1806 struct mbuf *mb_copy;
1807 struct ip *ip_copy;
1808 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1809
1810 /* Take care of delayed checksums */
1811 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1812 in_delayed_cksum(m);
1813 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1814 }
1815
1816 /*
1817 * copy the old packet & pullup its IP header into the
1818 * new mbuf so we can modify it. Try to fill the new
1819 * mbuf since if we don't the ethernet driver will.
1820 */
1821 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1822 if (mb_copy == NULL)
1823 return;
1824 mb_copy->m_data += max_linkhdr;
1825 mb_copy->m_pkthdr.len = len;
1826 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1827
1828 if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
1829 m_freem(mb_copy);
1830 return;
1831 }
1832 i = MHLEN - max_linkhdr;
1833 if (i > len)
1834 i = len;
1835 mb_copy = m_pullup(mb_copy, i);
1836 if (mb_copy == NULL)
1837 return;
1838
1839 /*
1840 * fill in the encapsulating IP header.
1841 */
1842 ip_copy = mtod(mb_copy, struct ip *);
1843 *ip_copy = multicast_encap_iphdr;
1844 if (len < IP_MINFRAGSIZE)
1845 ip_copy->ip_id = 0;
1846 else
1847 ip_copy->ip_id = ip_newid(NULL);
1848 ip_copy->ip_len = htons(len);
1849 ip_copy->ip_src = vifp->v_lcl_addr;
1850 ip_copy->ip_dst = vifp->v_rmt_addr;
1851
1852 /*
1853 * turn the encapsulated IP header back into a valid one.
1854 */
1855 ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
1856 --ip->ip_ttl;
1857 ip->ip_sum = 0;
1858 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1859 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1860 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1861
1862 if (vifp->v_rate_limit <= 0)
1863 tbf_send_packet(vifp, mb_copy);
1864 else
1865 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1866 }
1867
1868 /*
1869 * De-encapsulate a packet and feed it back through ip input.
1870 */
1871 static void
1872 vif_input(struct mbuf *m, int off, int proto)
1873 {
1874 struct vif *vifp;
1875
1876 vifp = (struct vif *)encap_getarg(m);
1877 if (!vifp || proto != ENCAP_PROTO) {
1878 m_freem(m);
1879 mrtstat.mrts_bad_tunnel++;
1880 return;
1881 }
1882
1883 m_adj(m, off);
1884 m_set_rcvif(m, vifp->v_ifp);
1885
1886 if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
1887 m_freem(m);
1888 }
1889 }
1890
1891 /*
1892 * Check if the packet should be received on the vif denoted by arg.
1893 * (The encap selection code will call this once per vif since each is
1894 * registered separately.)
1895 */
1896 static int
1897 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
1898 {
1899 struct vif *vifp;
1900 struct ip ip;
1901
1902 #ifdef DIAGNOSTIC
1903 if (!arg || proto != IPPROTO_IPV4)
1904 panic("unexpected arg in vif_encapcheck");
1905 #endif
1906
1907 /*
1908 * Accept the packet only if the inner heaader is multicast
1909 * and the outer header matches a tunnel-mode vif. Order
1910 * checks in the hope that common non-matching packets will be
1911 * rejected quickly. Assume that unicast IPv4 traffic in a
1912 * parallel tunnel (e.g. gif(4)) is unlikely.
1913 */
1914
1915 /* Obtain the outer IP header and the vif pointer. */
1916 m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
1917 vifp = (struct vif *)arg;
1918
1919 /*
1920 * The outer source must match the vif's remote peer address.
1921 * For a multicast router with several tunnels, this is the
1922 * only check that will fail on packets in other tunnels,
1923 * assuming the local address is the same.
1924 */
1925 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1926 return 0;
1927
1928 /* The outer destination must match the vif's local address. */
1929 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
1930 return 0;
1931
1932 /* The vif must be of tunnel type. */
1933 if ((vifp->v_flags & VIFF_TUNNEL) == 0)
1934 return 0;
1935
1936 /* Check that the inner destination is multicast. */
1937 m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
1938 if (!IN_MULTICAST(ip.ip_dst.s_addr))
1939 return 0;
1940
1941 /*
1942 * We have checked that both the outer src and dst addresses
1943 * match the vif, and that the inner destination is multicast
1944 * (224/5). By claiming more than 64, we intend to
1945 * preferentially take packets that also match a parallel
1946 * gif(4).
1947 */
1948 return 32 + 32 + 5;
1949 }
1950
1951 /*
1952 * Token bucket filter module
1953 */
1954 static void
1955 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
1956 {
1957
1958 if (len > MAX_BKT_SIZE) {
1959 /* drop if packet is too large */
1960 mrtstat.mrts_pkt2large++;
1961 m_freem(m);
1962 return;
1963 }
1964
1965 tbf_update_tokens(vifp);
1966
1967 /*
1968 * If there are enough tokens, and the queue is empty, send this packet
1969 * out immediately. Otherwise, try to insert it on this vif's queue.
1970 */
1971 if (vifp->tbf_q_len == 0) {
1972 if (len <= vifp->tbf_n_tok) {
1973 vifp->tbf_n_tok -= len;
1974 tbf_send_packet(vifp, m);
1975 } else {
1976 /* queue packet and timeout till later */
1977 tbf_queue(vifp, m);
1978 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1979 tbf_reprocess_q, vifp);
1980 }
1981 } else {
1982 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1983 !tbf_dq_sel(vifp, ip)) {
1984 /* queue full, and couldn't make room */
1985 mrtstat.mrts_q_overflow++;
1986 m_freem(m);
1987 } else {
1988 /* queue length low enough, or made room */
1989 tbf_queue(vifp, m);
1990 tbf_process_q(vifp);
1991 }
1992 }
1993 }
1994
1995 /*
1996 * adds a packet to the queue at the interface
1997 */
1998 static void
1999 tbf_queue(struct vif *vifp, struct mbuf *m)
2000 {
2001 int s = splsoftnet();
2002
2003 /* insert at tail */
2004 *vifp->tbf_t = m;
2005 vifp->tbf_t = &m->m_nextpkt;
2006 vifp->tbf_q_len++;
2007
2008 splx(s);
2009 }
2010
2011
2012 /*
2013 * processes the queue at the interface
2014 */
2015 static void
2016 tbf_process_q(struct vif *vifp)
2017 {
2018 struct mbuf *m;
2019 int len;
2020 int s = splsoftnet();
2021
2022 /*
2023 * Loop through the queue at the interface and send as many packets
2024 * as possible.
2025 */
2026 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2027 len = ntohs(mtod(m, struct ip *)->ip_len);
2028
2029 /* determine if the packet can be sent */
2030 if (len <= vifp->tbf_n_tok) {
2031 /* if so,
2032 * reduce no of tokens, dequeue the packet,
2033 * send the packet.
2034 */
2035 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2036 vifp->tbf_t = &vifp->tbf_q;
2037 --vifp->tbf_q_len;
2038
2039 m->m_nextpkt = NULL;
2040 vifp->tbf_n_tok -= len;
2041 tbf_send_packet(vifp, m);
2042 } else
2043 break;
2044 }
2045 splx(s);
2046 }
2047
2048 static void
2049 tbf_reprocess_q(void *arg)
2050 {
2051 struct vif *vifp = arg;
2052
2053 if (ip_mrouter == NULL)
2054 return;
2055
2056 tbf_update_tokens(vifp);
2057 tbf_process_q(vifp);
2058
2059 if (vifp->tbf_q_len != 0)
2060 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2061 tbf_reprocess_q, vifp);
2062 }
2063
2064 /* function that will selectively discard a member of the queue
2065 * based on the precedence value and the priority
2066 */
2067 static int
2068 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2069 {
2070 u_int p;
2071 struct mbuf **mp, *m;
2072 int s = splsoftnet();
2073
2074 p = priority(vifp, ip);
2075
2076 for (mp = &vifp->tbf_q, m = *mp;
2077 m != NULL;
2078 mp = &m->m_nextpkt, m = *mp) {
2079 if (p > priority(vifp, mtod(m, struct ip *))) {
2080 if ((*mp = m->m_nextpkt) == NULL)
2081 vifp->tbf_t = mp;
2082 --vifp->tbf_q_len;
2083
2084 m_freem(m);
2085 mrtstat.mrts_drop_sel++;
2086 splx(s);
2087 return (1);
2088 }
2089 }
2090 splx(s);
2091 return (0);
2092 }
2093
2094 static void
2095 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2096 {
2097 int error;
2098 int s = splsoftnet();
2099
2100 if (vifp->v_flags & VIFF_TUNNEL) {
2101 /* If tunnel options */
2102 ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
2103 } else {
2104 /* if physical interface option, extract the options and then send */
2105 struct ip_moptions imo;
2106
2107 imo.imo_multicast_if_index = if_get_index(vifp->v_ifp);
2108 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2109 imo.imo_multicast_loop = 1;
2110 #ifdef RSVP_ISI
2111 imo.imo_multicast_vif = -1;
2112 #endif
2113
2114 error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
2115 &imo, NULL);
2116
2117 if (mrtdebug & DEBUG_XMIT)
2118 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2119 (long)(vifp - viftable), error);
2120 }
2121 splx(s);
2122 }
2123
2124 /* determine the current time and then
2125 * the elapsed time (between the last time and time now)
2126 * in milliseconds & update the no. of tokens in the bucket
2127 */
2128 static void
2129 tbf_update_tokens(struct vif *vifp)
2130 {
2131 struct timeval tp;
2132 u_int32_t tm;
2133 int s = splsoftnet();
2134
2135 microtime(&tp);
2136
2137 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2138
2139 /*
2140 * This formula is actually
2141 * "time in seconds" * "bytes/second".
2142 *
2143 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2144 *
2145 * The (1000/1024) was introduced in add_vif to optimize
2146 * this divide into a shift.
2147 */
2148 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2149 vifp->tbf_last_pkt_t = tp;
2150
2151 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2152 vifp->tbf_n_tok = MAX_BKT_SIZE;
2153
2154 splx(s);
2155 }
2156
2157 static int
2158 priority(struct vif *vifp, struct ip *ip)
2159 {
2160 int prio = 50; /* the lowest priority -- default case */
2161
2162 /* temporary hack; may add general packet classifier some day */
2163
2164 /*
2165 * The UDP port space is divided up into four priority ranges:
2166 * [0, 16384) : unclassified - lowest priority
2167 * [16384, 32768) : audio - highest priority
2168 * [32768, 49152) : whiteboard - medium priority
2169 * [49152, 65536) : video - low priority
2170 */
2171 if (ip->ip_p == IPPROTO_UDP) {
2172 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2173
2174 switch (ntohs(udp->uh_dport) & 0xc000) {
2175 case 0x4000:
2176 prio = 70;
2177 break;
2178 case 0x8000:
2179 prio = 60;
2180 break;
2181 case 0xc000:
2182 prio = 55;
2183 break;
2184 }
2185
2186 if (tbfdebug > 1)
2187 log(LOG_DEBUG, "port %x prio %d\n",
2188 ntohs(udp->uh_dport), prio);
2189 }
2190
2191 return (prio);
2192 }
2193
2194 /*
2195 * End of token bucket filter modifications
2196 */
2197 #ifdef RSVP_ISI
2198 int
2199 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
2200 {
2201 int vifi, s;
2202
2203 RSVP_DPRINTF(("%s: so_type = %d, pr_protocol = %d\n", __func__
2204 so->so_type, so->so_proto->pr_protocol));
2205
2206 if (so->so_type != SOCK_RAW ||
2207 so->so_proto->pr_protocol != IPPROTO_RSVP)
2208 return (EOPNOTSUPP);
2209
2210 /* Check mbuf. */
2211 if (m == NULL || m->m_len != sizeof(int)) {
2212 return (EINVAL);
2213 }
2214 vifi = *(mtod(m, int *));
2215
2216 RSVP_DPRINTF(("%s: vif = %d rsvp_on = %d\n", __func__, vifi, rsvp_on));
2217
2218 s = splsoftnet();
2219
2220 /* Check vif. */
2221 if (!legal_vif_num(vifi)) {
2222 splx(s);
2223 return (EADDRNOTAVAIL);
2224 }
2225
2226 /* Check if socket is available. */
2227 if (viftable[vifi].v_rsvpd != NULL) {
2228 splx(s);
2229 return (EADDRINUSE);
2230 }
2231
2232 viftable[vifi].v_rsvpd = so;
2233 /*
2234 * This may seem silly, but we need to be sure we don't over-increment
2235 * the RSVP counter, in case something slips up.
2236 */
2237 if (!viftable[vifi].v_rsvp_on) {
2238 viftable[vifi].v_rsvp_on = 1;
2239 rsvp_on++;
2240 }
2241
2242 splx(s);
2243 return (0);
2244 }
2245
2246 int
2247 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
2248 {
2249 int vifi, s;
2250
2251 RSVP_DPRINTF(("%s: so_type = %d, pr_protocol = %d\n", __func__,
2252 so->so_type, so->so_proto->pr_protocol));
2253
2254 if (so->so_type != SOCK_RAW ||
2255 so->so_proto->pr_protocol != IPPROTO_RSVP)
2256 return (EOPNOTSUPP);
2257
2258 /* Check mbuf. */
2259 if (m == NULL || m->m_len != sizeof(int)) {
2260 return (EINVAL);
2261 }
2262 vifi = *(mtod(m, int *));
2263
2264 s = splsoftnet();
2265
2266 /* Check vif. */
2267 if (!legal_vif_num(vifi)) {
2268 splx(s);
2269 return (EADDRNOTAVAIL);
2270 }
2271
2272 RSVP_DPRINTF(("%s: v_rsvpd = %x so = %x\n", __func__,
2273 viftable[vifi].v_rsvpd, so));
2274
2275 viftable[vifi].v_rsvpd = NULL;
2276 /*
2277 * This may seem silly, but we need to be sure we don't over-decrement
2278 * the RSVP counter, in case something slips up.
2279 */
2280 if (viftable[vifi].v_rsvp_on) {
2281 viftable[vifi].v_rsvp_on = 0;
2282 rsvp_on--;
2283 }
2284
2285 splx(s);
2286 return (0);
2287 }
2288
2289 void
2290 ip_rsvp_force_done(struct socket *so)
2291 {
2292 int vifi, s;
2293
2294 /* Don't bother if it is not the right type of socket. */
2295 if (so->so_type != SOCK_RAW ||
2296 so->so_proto->pr_protocol != IPPROTO_RSVP)
2297 return;
2298
2299 s = splsoftnet();
2300
2301 /*
2302 * The socket may be attached to more than one vif...this
2303 * is perfectly legal.
2304 */
2305 for (vifi = 0; vifi < numvifs; vifi++) {
2306 if (viftable[vifi].v_rsvpd == so) {
2307 viftable[vifi].v_rsvpd = NULL;
2308 /*
2309 * This may seem silly, but we need to be sure we don't
2310 * over-decrement the RSVP counter, in case something
2311 * slips up.
2312 */
2313 if (viftable[vifi].v_rsvp_on) {
2314 viftable[vifi].v_rsvp_on = 0;
2315 rsvp_on--;
2316 }
2317 }
2318 }
2319
2320 splx(s);
2321 return;
2322 }
2323
2324 void
2325 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2326 {
2327 int vifi, s;
2328 struct ip *ip = mtod(m, struct ip *);
2329 struct sockaddr_in rsvp_src;
2330
2331 RSVP_DPRINTF(("%s: rsvp_on %d\n", __func__, rsvp_on));
2332
2333 /*
2334 * Can still get packets with rsvp_on = 0 if there is a local member
2335 * of the group to which the RSVP packet is addressed. But in this
2336 * case we want to throw the packet away.
2337 */
2338 if (!rsvp_on) {
2339 m_freem(m);
2340 return;
2341 }
2342
2343 /*
2344 * If the old-style non-vif-associated socket is set, then use
2345 * it and ignore the new ones.
2346 */
2347 if (ip_rsvpd != NULL) {
2348 RSVP_DPRINTF(("%s: Sending packet up old-style socket\n",
2349 __func__));
2350 rip_input(m); /*XXX*/
2351 return;
2352 }
2353
2354 s = splsoftnet();
2355
2356 RSVP_DPRINTF(("%s: check vifs\n", __func__));
2357
2358 /* Find which vif the packet arrived on. */
2359 for (vifi = 0; vifi < numvifs; vifi++) {
2360 if (viftable[vifi].v_ifp == ifp)
2361 break;
2362 }
2363
2364 if (vifi == numvifs) {
2365 /* Can't find vif packet arrived on. Drop packet. */
2366 RSVP_DPRINTF("%s: Can't find vif for packet...dropping it.\n",
2367 __func__));
2368 m_freem(m);
2369 splx(s);
2370 return;
2371 }
2372
2373 RSVP_DPRINTF(("%s: check socket\n", __func__));
2374
2375 if (viftable[vifi].v_rsvpd == NULL) {
2376 /*
2377 * drop packet, since there is no specific socket for this
2378 * interface
2379 */
2380 RSVP_DPRINTF(("%s: No socket defined for vif %d\n", __func__,
2381 vifi));
2382 m_freem(m);
2383 splx(s);
2384 return;
2385 }
2386
2387 sockaddr_in_init(&rsvp_src, &ip->ip_src, 0);
2388
2389 if (m)
2390 RSVP_DPRINTF(("%s: m->m_len = %d, sbspace() = %d\n", __func__,
2391 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)));
2392
2393 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2394 RSVP_DPRINTF(("%s: Failed to append to socket\n", __func__));
2395 else
2396 RSVP_DPRINTF(("%s: send packet up\n", __func__));
2397
2398 splx(s);
2399 }
2400 #endif /* RSVP_ISI */
2401
2402 /*
2403 * Code for bandwidth monitors
2404 */
2405
2406 /*
2407 * Define common interface for timeval-related methods
2408 */
2409 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2410 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2411 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2412
2413 static uint32_t
2414 compute_bw_meter_flags(struct bw_upcall *req)
2415 {
2416 uint32_t flags = 0;
2417
2418 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2419 flags |= BW_METER_UNIT_PACKETS;
2420 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2421 flags |= BW_METER_UNIT_BYTES;
2422 if (req->bu_flags & BW_UPCALL_GEQ)
2423 flags |= BW_METER_GEQ;
2424 if (req->bu_flags & BW_UPCALL_LEQ)
2425 flags |= BW_METER_LEQ;
2426
2427 return flags;
2428 }
2429
2430 /*
2431 * Add a bw_meter entry
2432 */
2433 static int
2434 add_bw_upcall(struct bw_upcall *req)
2435 {
2436 int s;
2437 struct mfc *mfc;
2438 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2439 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2440 struct timeval now;
2441 struct bw_meter *x;
2442 uint32_t flags;
2443
2444 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2445 return EOPNOTSUPP;
2446
2447 /* Test if the flags are valid */
2448 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2449 return EINVAL;
2450 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2451 return EINVAL;
2452 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2453 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2454 return EINVAL;
2455
2456 /* Test if the threshold time interval is valid */
2457 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2458 return EINVAL;
2459
2460 flags = compute_bw_meter_flags(req);
2461
2462 /*
2463 * Find if we have already same bw_meter entry
2464 */
2465 s = splsoftnet();
2466 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2467 if (mfc == NULL) {
2468 splx(s);
2469 return EADDRNOTAVAIL;
2470 }
2471 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2472 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2473 &req->bu_threshold.b_time, ==)) &&
2474 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2475 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2476 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2477 splx(s);
2478 return 0; /* XXX Already installed */
2479 }
2480 }
2481
2482 /* Allocate the new bw_meter entry */
2483 x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
2484 if (x == NULL) {
2485 splx(s);
2486 return ENOBUFS;
2487 }
2488
2489 /* Set the new bw_meter entry */
2490 x->bm_threshold.b_time = req->bu_threshold.b_time;
2491 microtime(&now);
2492 x->bm_start_time = now;
2493 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2494 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2495 x->bm_measured.b_packets = 0;
2496 x->bm_measured.b_bytes = 0;
2497 x->bm_flags = flags;
2498 x->bm_time_next = NULL;
2499 x->bm_time_hash = BW_METER_BUCKETS;
2500
2501 /* Add the new bw_meter entry to the front of entries for this MFC */
2502 x->bm_mfc = mfc;
2503 x->bm_mfc_next = mfc->mfc_bw_meter;
2504 mfc->mfc_bw_meter = x;
2505 schedule_bw_meter(x, &now);
2506 splx(s);
2507
2508 return 0;
2509 }
2510
2511 static void
2512 free_bw_list(struct bw_meter *list)
2513 {
2514 while (list != NULL) {
2515 struct bw_meter *x = list;
2516
2517 list = list->bm_mfc_next;
2518 unschedule_bw_meter(x);
2519 kmem_free(x, sizeof(*x));
2520 }
2521 }
2522
2523 /*
2524 * Delete one or multiple bw_meter entries
2525 */
2526 static int
2527 del_bw_upcall(struct bw_upcall *req)
2528 {
2529 int s;
2530 struct mfc *mfc;
2531 struct bw_meter *x;
2532
2533 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2534 return EOPNOTSUPP;
2535
2536 s = splsoftnet();
2537 /* Find the corresponding MFC entry */
2538 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2539 if (mfc == NULL) {
2540 splx(s);
2541 return EADDRNOTAVAIL;
2542 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2543 /*
2544 * Delete all bw_meter entries for this mfc
2545 */
2546 struct bw_meter *list;
2547
2548 list = mfc->mfc_bw_meter;
2549 mfc->mfc_bw_meter = NULL;
2550 free_bw_list(list);
2551 splx(s);
2552 return 0;
2553 } else { /* Delete a single bw_meter entry */
2554 struct bw_meter *prev;
2555 uint32_t flags = 0;
2556
2557 flags = compute_bw_meter_flags(req);
2558
2559 /* Find the bw_meter entry to delete */
2560 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2561 prev = x, x = x->bm_mfc_next) {
2562 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2563 &req->bu_threshold.b_time, ==)) &&
2564 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2565 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2566 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2567 break;
2568 }
2569 if (x != NULL) { /* Delete entry from the list for this MFC */
2570 if (prev != NULL)
2571 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2572 else
2573 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2574
2575 unschedule_bw_meter(x);
2576 splx(s);
2577 /* Free the bw_meter entry */
2578 kmem_free(x, sizeof(*x));
2579 return 0;
2580 } else {
2581 splx(s);
2582 return EINVAL;
2583 }
2584 }
2585 /* NOTREACHED */
2586 }
2587
2588 /*
2589 * Perform bandwidth measurement processing that may result in an upcall
2590 */
2591 static void
2592 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2593 {
2594 struct timeval delta;
2595
2596 delta = *nowp;
2597 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2598
2599 if (x->bm_flags & BW_METER_GEQ) {
2600 /*
2601 * Processing for ">=" type of bw_meter entry
2602 */
2603 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2604 /* Reset the bw_meter entry */
2605 x->bm_start_time = *nowp;
2606 x->bm_measured.b_packets = 0;
2607 x->bm_measured.b_bytes = 0;
2608 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2609 }
2610
2611 /* Record that a packet is received */
2612 x->bm_measured.b_packets++;
2613 x->bm_measured.b_bytes += plen;
2614
2615 /*
2616 * Test if we should deliver an upcall
2617 */
2618 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2619 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2620 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2621 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2622 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2623 /* Prepare an upcall for delivery */
2624 bw_meter_prepare_upcall(x, nowp);
2625 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2626 }
2627 }
2628 } else if (x->bm_flags & BW_METER_LEQ) {
2629 /*
2630 * Processing for "<=" type of bw_meter entry
2631 */
2632 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2633 /*
2634 * We are behind time with the multicast forwarding table
2635 * scanning for "<=" type of bw_meter entries, so test now
2636 * if we should deliver an upcall.
2637 */
2638 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2639 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2640 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2641 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2642 /* Prepare an upcall for delivery */
2643 bw_meter_prepare_upcall(x, nowp);
2644 }
2645 /* Reschedule the bw_meter entry */
2646 unschedule_bw_meter(x);
2647 schedule_bw_meter(x, nowp);
2648 }
2649
2650 /* Record that a packet is received */
2651 x->bm_measured.b_packets++;
2652 x->bm_measured.b_bytes += plen;
2653
2654 /*
2655 * Test if we should restart the measuring interval
2656 */
2657 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2658 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2659 (x->bm_flags & BW_METER_UNIT_BYTES &&
2660 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2661 /* Don't restart the measuring interval */
2662 } else {
2663 /* Do restart the measuring interval */
2664 /*
2665 * XXX: note that we don't unschedule and schedule, because this
2666 * might be too much overhead per packet. Instead, when we process
2667 * all entries for a given timer hash bin, we check whether it is
2668 * really a timeout. If not, we reschedule at that time.
2669 */
2670 x->bm_start_time = *nowp;
2671 x->bm_measured.b_packets = 0;
2672 x->bm_measured.b_bytes = 0;
2673 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2674 }
2675 }
2676 }
2677
2678 /*
2679 * Prepare a bandwidth-related upcall
2680 */
2681 static void
2682 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2683 {
2684 struct timeval delta;
2685 struct bw_upcall *u;
2686
2687 /*
2688 * Compute the measured time interval
2689 */
2690 delta = *nowp;
2691 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2692
2693 /*
2694 * If there are too many pending upcalls, deliver them now
2695 */
2696 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2697 bw_upcalls_send();
2698
2699 /*
2700 * Set the bw_upcall entry
2701 */
2702 u = &bw_upcalls[bw_upcalls_n++];
2703 u->bu_src = x->bm_mfc->mfc_origin;
2704 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2705 u->bu_threshold.b_time = x->bm_threshold.b_time;
2706 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2707 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2708 u->bu_measured.b_time = delta;
2709 u->bu_measured.b_packets = x->bm_measured.b_packets;
2710 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2711 u->bu_flags = 0;
2712 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2713 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2714 if (x->bm_flags & BW_METER_UNIT_BYTES)
2715 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2716 if (x->bm_flags & BW_METER_GEQ)
2717 u->bu_flags |= BW_UPCALL_GEQ;
2718 if (x->bm_flags & BW_METER_LEQ)
2719 u->bu_flags |= BW_UPCALL_LEQ;
2720 }
2721
2722 /*
2723 * Send the pending bandwidth-related upcalls
2724 */
2725 static void
2726 bw_upcalls_send(void)
2727 {
2728 struct mbuf *m;
2729 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2730 struct sockaddr_in k_igmpsrc = {
2731 .sin_len = sizeof(k_igmpsrc),
2732 .sin_family = AF_INET,
2733 };
2734 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2735 0, /* unused2 */
2736 IGMPMSG_BW_UPCALL,/* im_msgtype */
2737 0, /* im_mbz */
2738 0, /* im_vif */
2739 0, /* unused3 */
2740 { 0 }, /* im_src */
2741 { 0 } }; /* im_dst */
2742
2743 if (bw_upcalls_n == 0)
2744 return; /* No pending upcalls */
2745
2746 bw_upcalls_n = 0;
2747
2748 /*
2749 * Allocate a new mbuf, initialize it with the header and
2750 * the payload for the pending calls.
2751 */
2752 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2753 if (m == NULL) {
2754 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2755 return;
2756 }
2757
2758 m->m_len = m->m_pkthdr.len = 0;
2759 m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
2760 m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
2761
2762 /*
2763 * Send the upcalls
2764 * XXX do we need to set the address in k_igmpsrc ?
2765 */
2766 mrtstat.mrts_upcalls++;
2767 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2768 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2769 ++mrtstat.mrts_upq_sockfull;
2770 }
2771 }
2772
2773 /*
2774 * Compute the timeout hash value for the bw_meter entries
2775 */
2776 #define BW_METER_TIMEHASH(bw_meter, hash) \
2777 do { \
2778 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2779 \
2780 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2781 (hash) = next_timeval.tv_sec; \
2782 if (next_timeval.tv_usec) \
2783 (hash)++; /* XXX: make sure we don't timeout early */ \
2784 (hash) %= BW_METER_BUCKETS; \
2785 } while (/*CONSTCOND*/ 0)
2786
2787 /*
2788 * Schedule a timer to process periodically bw_meter entry of type "<="
2789 * by linking the entry in the proper hash bucket.
2790 */
2791 static void
2792 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2793 {
2794 int time_hash;
2795
2796 if (!(x->bm_flags & BW_METER_LEQ))
2797 return; /* XXX: we schedule timers only for "<=" entries */
2798
2799 /*
2800 * Reset the bw_meter entry
2801 */
2802 x->bm_start_time = *nowp;
2803 x->bm_measured.b_packets = 0;
2804 x->bm_measured.b_bytes = 0;
2805 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2806
2807 /*
2808 * Compute the timeout hash value and insert the entry
2809 */
2810 BW_METER_TIMEHASH(x, time_hash);
2811 x->bm_time_next = bw_meter_timers[time_hash];
2812 bw_meter_timers[time_hash] = x;
2813 x->bm_time_hash = time_hash;
2814 }
2815
2816 /*
2817 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2818 * by removing the entry from the proper hash bucket.
2819 */
2820 static void
2821 unschedule_bw_meter(struct bw_meter *x)
2822 {
2823 int time_hash;
2824 struct bw_meter *prev, *tmp;
2825
2826 if (!(x->bm_flags & BW_METER_LEQ))
2827 return; /* XXX: we schedule timers only for "<=" entries */
2828
2829 /*
2830 * Compute the timeout hash value and delete the entry
2831 */
2832 time_hash = x->bm_time_hash;
2833 if (time_hash >= BW_METER_BUCKETS)
2834 return; /* Entry was not scheduled */
2835
2836 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2837 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2838 if (tmp == x)
2839 break;
2840
2841 if (tmp == NULL)
2842 panic("unschedule_bw_meter: bw_meter entry not found");
2843
2844 if (prev != NULL)
2845 prev->bm_time_next = x->bm_time_next;
2846 else
2847 bw_meter_timers[time_hash] = x->bm_time_next;
2848
2849 x->bm_time_next = NULL;
2850 x->bm_time_hash = BW_METER_BUCKETS;
2851 }
2852
2853 /*
2854 * Process all "<=" type of bw_meter that should be processed now,
2855 * and for each entry prepare an upcall if necessary. Each processed
2856 * entry is rescheduled again for the (periodic) processing.
2857 *
2858 * This is run periodically (once per second normally). On each round,
2859 * all the potentially matching entries are in the hash slot that we are
2860 * looking at.
2861 */
2862 static void
2863 bw_meter_process(void)
2864 {
2865 int s;
2866 static uint32_t last_tv_sec; /* last time we processed this */
2867
2868 uint32_t loops;
2869 int i;
2870 struct timeval now, process_endtime;
2871
2872 microtime(&now);
2873 if (last_tv_sec == now.tv_sec)
2874 return; /* nothing to do */
2875
2876 loops = now.tv_sec - last_tv_sec;
2877 last_tv_sec = now.tv_sec;
2878 if (loops > BW_METER_BUCKETS)
2879 loops = BW_METER_BUCKETS;
2880
2881 s = splsoftnet();
2882 /*
2883 * Process all bins of bw_meter entries from the one after the last
2884 * processed to the current one. On entry, i points to the last bucket
2885 * visited, so we need to increment i at the beginning of the loop.
2886 */
2887 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2888 struct bw_meter *x, *tmp_list;
2889
2890 if (++i >= BW_METER_BUCKETS)
2891 i = 0;
2892
2893 /* Disconnect the list of bw_meter entries from the bin */
2894 tmp_list = bw_meter_timers[i];
2895 bw_meter_timers[i] = NULL;
2896
2897 /* Process the list of bw_meter entries */
2898 while (tmp_list != NULL) {
2899 x = tmp_list;
2900 tmp_list = tmp_list->bm_time_next;
2901
2902 /* Test if the time interval is over */
2903 process_endtime = x->bm_start_time;
2904 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
2905 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2906 /* Not yet: reschedule, but don't reset */
2907 int time_hash;
2908
2909 BW_METER_TIMEHASH(x, time_hash);
2910 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
2911 /*
2912 * XXX: somehow the bin processing is a bit ahead of time.
2913 * Put the entry in the next bin.
2914 */
2915 if (++time_hash >= BW_METER_BUCKETS)
2916 time_hash = 0;
2917 }
2918 x->bm_time_next = bw_meter_timers[time_hash];
2919 bw_meter_timers[time_hash] = x;
2920 x->bm_time_hash = time_hash;
2921
2922 continue;
2923 }
2924
2925 /*
2926 * Test if we should deliver an upcall
2927 */
2928 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2929 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2930 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2931 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2932 /* Prepare an upcall for delivery */
2933 bw_meter_prepare_upcall(x, &now);
2934 }
2935
2936 /*
2937 * Reschedule for next processing
2938 */
2939 schedule_bw_meter(x, &now);
2940 }
2941 }
2942
2943 /* Send all upcalls that are pending delivery */
2944 bw_upcalls_send();
2945
2946 splx(s);
2947 }
2948
2949 /*
2950 * A periodic function for sending all upcalls that are pending delivery
2951 */
2952 static void
2953 expire_bw_upcalls_send(void *unused)
2954 {
2955 int s;
2956
2957 s = splsoftnet();
2958 bw_upcalls_send();
2959 splx(s);
2960
2961 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
2962 expire_bw_upcalls_send, NULL);
2963 }
2964
2965 /*
2966 * A periodic function for periodic scanning of the multicast forwarding
2967 * table for processing all "<=" bw_meter entries.
2968 */
2969 static void
2970 expire_bw_meter_process(void *unused)
2971 {
2972 if (mrt_api_config & MRT_MFC_BW_UPCALL)
2973 bw_meter_process();
2974
2975 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
2976 expire_bw_meter_process, NULL);
2977 }
2978
2979 /*
2980 * End of bandwidth monitoring code
2981 */
2982
2983 #ifdef PIM
2984 /*
2985 * Send the packet up to the user daemon, or eventually do kernel encapsulation
2986 */
2987 static int
2988 pim_register_send(struct ip *ip, struct vif *vifp,
2989 struct mbuf *m, struct mfc *rt)
2990 {
2991 struct mbuf *mb_copy, *mm;
2992
2993 if (mrtdebug & DEBUG_PIM)
2994 log(LOG_DEBUG, "pim_register_send: \n");
2995
2996 mb_copy = pim_register_prepare(ip, m);
2997 if (mb_copy == NULL)
2998 return ENOBUFS;
2999
3000 /*
3001 * Send all the fragments. Note that the mbuf for each fragment
3002 * is freed by the sending machinery.
3003 */
3004 for (mm = mb_copy; mm; mm = mb_copy) {
3005 mb_copy = mm->m_nextpkt;
3006 mm->m_nextpkt = NULL;
3007 mm = m_pullup(mm, sizeof(struct ip));
3008 if (mm != NULL) {
3009 ip = mtod(mm, struct ip *);
3010 if ((mrt_api_config & MRT_MFC_RP) &&
3011 !in_nullhost(rt->mfc_rp)) {
3012 pim_register_send_rp(ip, vifp, mm, rt);
3013 } else {
3014 pim_register_send_upcall(ip, vifp, mm, rt);
3015 }
3016 }
3017 }
3018
3019 return 0;
3020 }
3021
3022 /*
3023 * Return a copy of the data packet that is ready for PIM Register
3024 * encapsulation.
3025 * XXX: Note that in the returned copy the IP header is a valid one.
3026 */
3027 static struct mbuf *
3028 pim_register_prepare(struct ip *ip, struct mbuf *m)
3029 {
3030 struct mbuf *mb_copy = NULL;
3031 int mtu;
3032
3033 /* Take care of delayed checksums */
3034 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3035 in_delayed_cksum(m);
3036 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3037 }
3038
3039 /*
3040 * Copy the old packet & pullup its IP header into the
3041 * new mbuf so we can modify it.
3042 */
3043 mb_copy = m_copypacket(m, M_DONTWAIT);
3044 if (mb_copy == NULL)
3045 return NULL;
3046 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3047 if (mb_copy == NULL)
3048 return NULL;
3049
3050 /* take care of the TTL */
3051 ip = mtod(mb_copy, struct ip *);
3052 --ip->ip_ttl;
3053
3054 /* Compute the MTU after the PIM Register encapsulation */
3055 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3056
3057 if (ntohs(ip->ip_len) <= mtu) {
3058 /* Turn the IP header into a valid one */
3059 ip->ip_sum = 0;
3060 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3061 } else {
3062 /* Fragment the packet */
3063 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3064 /* XXX: mb_copy was freed by ip_fragment() */
3065 return NULL;
3066 }
3067 }
3068 return mb_copy;
3069 }
3070
3071 /*
3072 * Send an upcall with the data packet to the user-level process.
3073 */
3074 static int
3075 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3076 struct mbuf *mb_copy, struct mfc *rt)
3077 {
3078 struct mbuf *mb_first;
3079 int len = ntohs(ip->ip_len);
3080 struct igmpmsg *im;
3081 struct sockaddr_in k_igmpsrc = {
3082 .sin_len = sizeof(k_igmpsrc),
3083 .sin_family = AF_INET,
3084 };
3085
3086 /*
3087 * Add a new mbuf with an upcall header
3088 */
3089 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3090 if (mb_first == NULL) {
3091 m_freem(mb_copy);
3092 return ENOBUFS;
3093 }
3094 mb_first->m_data += max_linkhdr;
3095 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3096 mb_first->m_len = sizeof(struct igmpmsg);
3097 mb_first->m_next = mb_copy;
3098
3099 /* Send message to routing daemon */
3100 im = mtod(mb_first, struct igmpmsg *);
3101 im->im_msgtype = IGMPMSG_WHOLEPKT;
3102 im->im_mbz = 0;
3103 im->im_vif = vifp - viftable;
3104 im->im_src = ip->ip_src;
3105 im->im_dst = ip->ip_dst;
3106
3107 k_igmpsrc.sin_addr = ip->ip_src;
3108
3109 mrtstat.mrts_upcalls++;
3110
3111 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3112 if (mrtdebug & DEBUG_PIM)
3113 log(LOG_WARNING,
3114 "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
3115 ++mrtstat.mrts_upq_sockfull;
3116 return ENOBUFS;
3117 }
3118
3119 /* Keep statistics */
3120 pimstat.pims_snd_registers_msgs++;
3121 pimstat.pims_snd_registers_bytes += len;
3122
3123 return 0;
3124 }
3125
3126 /*
3127 * Encapsulate the data packet in PIM Register message and send it to the RP.
3128 */
3129 static int
3130 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3131 struct mbuf *mb_copy, struct mfc *rt)
3132 {
3133 struct mbuf *mb_first;
3134 struct ip *ip_outer;
3135 struct pim_encap_pimhdr *pimhdr;
3136 int len = ntohs(ip->ip_len);
3137 vifi_t vifi = rt->mfc_parent;
3138
3139 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3140 m_freem(mb_copy);
3141 return EADDRNOTAVAIL; /* The iif vif is invalid */
3142 }
3143
3144 /*
3145 * Add a new mbuf with the encapsulating header
3146 */
3147 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3148 if (mb_first == NULL) {
3149 m_freem(mb_copy);
3150 return ENOBUFS;
3151 }
3152 mb_first->m_data += max_linkhdr;
3153 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3154 mb_first->m_next = mb_copy;
3155
3156 mb_first->m_pkthdr.len = len + mb_first->m_len;
3157
3158 /*
3159 * Fill in the encapsulating IP and PIM header
3160 */
3161 ip_outer = mtod(mb_first, struct ip *);
3162 *ip_outer = pim_encap_iphdr;
3163 if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
3164 ip_outer->ip_id = 0;
3165 else
3166 ip_outer->ip_id = ip_newid(NULL);
3167 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3168 sizeof(pim_encap_pimhdr));
3169 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3170 ip_outer->ip_dst = rt->mfc_rp;
3171 /*
3172 * Copy the inner header TOS to the outer header, and take care of the
3173 * IP_DF bit.
3174 */
3175 ip_outer->ip_tos = ip->ip_tos;
3176 if (ntohs(ip->ip_off) & IP_DF)
3177 ip_outer->ip_off |= htons(IP_DF);
3178 pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
3179 + sizeof(pim_encap_iphdr));
3180 *pimhdr = pim_encap_pimhdr;
3181 /* If the iif crosses a border, set the Border-bit */
3182 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3183 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3184
3185 mb_first->m_data += sizeof(pim_encap_iphdr);
3186 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3187 mb_first->m_data -= sizeof(pim_encap_iphdr);
3188
3189 if (vifp->v_rate_limit == 0)
3190 tbf_send_packet(vifp, mb_first);
3191 else
3192 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3193
3194 /* Keep statistics */
3195 pimstat.pims_snd_registers_msgs++;
3196 pimstat.pims_snd_registers_bytes += len;
3197
3198 return 0;
3199 }
3200
3201 /*
3202 * PIM-SMv2 and PIM-DM messages processing.
3203 * Receives and verifies the PIM control messages, and passes them
3204 * up to the listening socket, using rip_input().
3205 * The only message with special processing is the PIM_REGISTER message
3206 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3207 * is passed to if_simloop().
3208 */
3209 void
3210 pim_input(struct mbuf *m, ...)
3211 {
3212 struct ip *ip = mtod(m, struct ip *);
3213 struct pim *pim;
3214 int minlen;
3215 int datalen;
3216 int ip_tos;
3217 int proto;
3218 int iphlen;
3219 va_list ap;
3220
3221 va_start(ap, m);
3222 iphlen = va_arg(ap, int);
3223 proto = va_arg(ap, int);
3224 va_end(ap);
3225
3226 datalen = ntohs(ip->ip_len) - iphlen;
3227
3228 /* Keep statistics */
3229 pimstat.pims_rcv_total_msgs++;
3230 pimstat.pims_rcv_total_bytes += datalen;
3231
3232 /*
3233 * Validate lengths
3234 */
3235 if (datalen < PIM_MINLEN) {
3236 pimstat.pims_rcv_tooshort++;
3237 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3238 datalen, (u_long)ip->ip_src.s_addr);
3239 m_freem(m);
3240 return;
3241 }
3242
3243 /*
3244 * If the packet is at least as big as a REGISTER, go agead
3245 * and grab the PIM REGISTER header size, to avoid another
3246 * possible m_pullup() later.
3247 *
3248 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3249 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3250 */
3251 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3252 /*
3253 * Get the IP and PIM headers in contiguous memory, and
3254 * possibly the PIM REGISTER header.
3255 */
3256 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3257 (m = m_pullup(m, minlen)) == NULL) {
3258 log(LOG_ERR, "pim_input: m_pullup failure\n");
3259 return;
3260 }
3261 /* m_pullup() may have given us a new mbuf so reset ip. */
3262 ip = mtod(m, struct ip *);
3263 ip_tos = ip->ip_tos;
3264
3265 /* adjust mbuf to point to the PIM header */
3266 m->m_data += iphlen;
3267 m->m_len -= iphlen;
3268 pim = mtod(m, struct pim *);
3269
3270 /*
3271 * Validate checksum. If PIM REGISTER, exclude the data packet.
3272 *
3273 * XXX: some older PIMv2 implementations don't make this distinction,
3274 * so for compatibility reason perform the checksum over part of the
3275 * message, and if error, then over the whole message.
3276 */
3277 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3278 /* do nothing, checksum okay */
3279 } else if (in_cksum(m, datalen)) {
3280 pimstat.pims_rcv_badsum++;
3281 if (mrtdebug & DEBUG_PIM)
3282 log(LOG_DEBUG, "pim_input: invalid checksum\n");
3283 m_freem(m);
3284 return;
3285 }
3286
3287 /* PIM version check */
3288 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3289 pimstat.pims_rcv_badversion++;
3290 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3291 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3292 m_freem(m);
3293 return;
3294 }
3295
3296 /* restore mbuf back to the outer IP */
3297 m->m_data -= iphlen;
3298 m->m_len += iphlen;
3299
3300 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3301 /*
3302 * Since this is a REGISTER, we'll make a copy of the register
3303 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3304 * routing daemon.
3305 */
3306 int s;
3307 struct sockaddr_in dst = {
3308 .sin_len = sizeof(dst),
3309 .sin_family = AF_INET,
3310 };
3311 struct mbuf *mcp;
3312 struct ip *encap_ip;
3313 u_int32_t *reghdr;
3314 struct ifnet *vifp;
3315
3316 s = splsoftnet();
3317 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3318 splx(s);
3319 if (mrtdebug & DEBUG_PIM)
3320 log(LOG_DEBUG,
3321 "pim_input: register vif not set: %d\n", reg_vif_num);
3322 m_freem(m);
3323 return;
3324 }
3325 /* XXX need refcnt? */
3326 vifp = viftable[reg_vif_num].v_ifp;
3327 splx(s);
3328
3329 /*
3330 * Validate length
3331 */
3332 if (datalen < PIM_REG_MINLEN) {
3333 pimstat.pims_rcv_tooshort++;
3334 pimstat.pims_rcv_badregisters++;
3335 log(LOG_ERR,
3336 "pim_input: register packet size too small %d from %lx\n",
3337 datalen, (u_long)ip->ip_src.s_addr);
3338 m_freem(m);
3339 return;
3340 }
3341
3342 reghdr = (u_int32_t *)(pim + 1);
3343 encap_ip = (struct ip *)(reghdr + 1);
3344
3345 if (mrtdebug & DEBUG_PIM) {
3346 log(LOG_DEBUG,
3347 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3348 (u_long)ntohl(encap_ip->ip_src.s_addr),
3349 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3350 ntohs(encap_ip->ip_len));
3351 }
3352
3353 /* verify the version number of the inner packet */
3354 if (encap_ip->ip_v != IPVERSION) {
3355 pimstat.pims_rcv_badregisters++;
3356 if (mrtdebug & DEBUG_PIM) {
3357 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3358 "of the inner packet\n", encap_ip->ip_v);
3359 }
3360 m_freem(m);
3361 return;
3362 }
3363
3364 /* verify the inner packet is destined to a mcast group */
3365 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3366 pimstat.pims_rcv_badregisters++;
3367 if (mrtdebug & DEBUG_PIM)
3368 log(LOG_DEBUG,
3369 "pim_input: inner packet of register is not "
3370 "multicast %lx\n",
3371 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3372 m_freem(m);
3373 return;
3374 }
3375
3376 /* If a NULL_REGISTER, pass it to the daemon */
3377 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3378 goto pim_input_to_daemon;
3379
3380 /*
3381 * Copy the TOS from the outer IP header to the inner IP header.
3382 */
3383 if (encap_ip->ip_tos != ip_tos) {
3384 /* Outer TOS -> inner TOS */
3385 encap_ip->ip_tos = ip_tos;
3386 /* Recompute the inner header checksum. Sigh... */
3387
3388 /* adjust mbuf to point to the inner IP header */
3389 m->m_data += (iphlen + PIM_MINLEN);
3390 m->m_len -= (iphlen + PIM_MINLEN);
3391
3392 encap_ip->ip_sum = 0;
3393 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3394
3395 /* restore mbuf to point back to the outer IP header */
3396 m->m_data -= (iphlen + PIM_MINLEN);
3397 m->m_len += (iphlen + PIM_MINLEN);
3398 }
3399
3400 /*
3401 * Decapsulate the inner IP packet and loopback to forward it
3402 * as a normal multicast packet. Also, make a copy of the
3403 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3404 * to pass to the daemon later, so it can take the appropriate
3405 * actions (e.g., send back PIM_REGISTER_STOP).
3406 * XXX: here m->m_data points to the outer IP header.
3407 */
3408 mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
3409 if (mcp == NULL) {
3410 log(LOG_ERR,
3411 "pim_input: pim register: could not copy register head\n");
3412 m_freem(m);
3413 return;
3414 }
3415
3416 /* Keep statistics */
3417 /* XXX: registers_bytes include only the encap. mcast pkt */
3418 pimstat.pims_rcv_registers_msgs++;
3419 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3420
3421 /*
3422 * forward the inner ip packet; point m_data at the inner ip.
3423 */
3424 m_adj(m, iphlen + PIM_MINLEN);
3425
3426 if (mrtdebug & DEBUG_PIM) {
3427 log(LOG_DEBUG,
3428 "pim_input: forwarding decapsulated register: "
3429 "src %lx, dst %lx, vif %d\n",
3430 (u_long)ntohl(encap_ip->ip_src.s_addr),
3431 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3432 reg_vif_num);
3433 }
3434 /* NB: vifp was collected above; can it change on us? */
3435 looutput(vifp, m, (struct sockaddr *)&dst, NULL);
3436
3437 /* prepare the register head to send to the mrouting daemon */
3438 m = mcp;
3439 }
3440
3441 pim_input_to_daemon:
3442 /*
3443 * Pass the PIM message up to the daemon; if it is a Register message,
3444 * pass the 'head' only up to the daemon. This includes the
3445 * outer IP header, PIM header, PIM-Register header and the
3446 * inner IP header.
3447 * XXX: the outer IP header pkt size of a Register is not adjust to
3448 * reflect the fact that the inner multicast data is truncated.
3449 */
3450 rip_input(m, iphlen, proto);
3451
3452 return;
3453 }
3454 #endif /* PIM */
3455