Home | History | Annotate | Line # | Download | only in netinet
ip_mroute.c revision 1.158
      1 /*	$NetBSD: ip_mroute.c,v 1.158 2018/05/07 19:34:03 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.158 2018/05/07 19:34:03 maxv Exp $");
     97 
     98 #ifdef _KERNEL_OPT
     99 #include "opt_inet.h"
    100 #include "opt_ipsec.h"
    101 #include "opt_pim.h"
    102 #endif
    103 
    104 #ifdef PIM
    105 #define _PIM_VT 1
    106 #endif
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/socket.h>
    113 #include <sys/socketvar.h>
    114 #include <sys/errno.h>
    115 #include <sys/time.h>
    116 #include <sys/kernel.h>
    117 #include <sys/kmem.h>
    118 #include <sys/ioctl.h>
    119 #include <sys/syslog.h>
    120 
    121 #include <net/if.h>
    122 #include <net/raw_cb.h>
    123 
    124 #include <netinet/in.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/ip_var.h>
    129 #include <netinet/in_pcb.h>
    130 #include <netinet/udp.h>
    131 #include <netinet/igmp.h>
    132 #include <netinet/igmp_var.h>
    133 #include <netinet/ip_mroute.h>
    134 #ifdef PIM
    135 #include <netinet/pim.h>
    136 #include <netinet/pim_var.h>
    137 #endif
    138 #include <netinet/ip_encap.h>
    139 
    140 #ifdef IPSEC
    141 #include <netipsec/ipsec.h>
    142 #include <netipsec/key.h>
    143 #endif
    144 
    145 #define IP_MULTICASTOPTS 0
    146 #define	M_PULLUP(m, len)						 \
    147 	do {								 \
    148 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    149 			(m) = m_pullup((m), (len));			 \
    150 	} while (/*CONSTCOND*/ 0)
    151 
    152 /*
    153  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    154  * except for netstat or debugging purposes.
    155  */
    156 struct socket  *ip_mrouter  = NULL;
    157 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    158 
    159 #define	MFCHASH(a, g)							\
    160 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    161 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    162 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    163 u_long	mfchash;
    164 
    165 u_char		nexpire[MFCTBLSIZ];
    166 struct vif	viftable[MAXVIFS];
    167 struct mrtstat	mrtstat;
    168 u_int		mrtdebug = 0;	/* debug level */
    169 #define		DEBUG_MFC	0x02
    170 #define		DEBUG_FORWARD	0x04
    171 #define		DEBUG_EXPIRE	0x08
    172 #define		DEBUG_XMIT	0x10
    173 #define		DEBUG_PIM	0x20
    174 
    175 #define		VIFI_INVALID	((vifi_t) -1)
    176 
    177 u_int tbfdebug = 0;	/* tbf debug level */
    178 
    179 /* vif attachment using sys/netinet/ip_encap.c */
    180 static void vif_input(struct mbuf *, int, int, void *);
    181 static int vif_encapcheck(struct mbuf *, int, int, void *);
    182 
    183 static const struct encapsw vif_encapsw = {
    184 	.encapsw4 = {
    185 		.pr_input	= vif_input,
    186 		.pr_ctlinput	= NULL,
    187 	}
    188 };
    189 
    190 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    191 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    192 
    193 /*
    194  * Define the token bucket filter structures
    195  */
    196 
    197 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    198 
    199 static int get_sg_cnt(struct sioc_sg_req *);
    200 static int get_vif_cnt(struct sioc_vif_req *);
    201 static int ip_mrouter_init(struct socket *, int);
    202 static int set_assert(int);
    203 static int add_vif(struct vifctl *);
    204 static int del_vif(vifi_t *);
    205 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
    206 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
    207 static void expire_mfc(struct mfc *);
    208 static int add_mfc(struct sockopt *);
    209 #ifdef UPCALL_TIMING
    210 static void collate(struct timeval *);
    211 #endif
    212 static int del_mfc(struct sockopt *);
    213 static int set_api_config(struct sockopt *); /* chose API capabilities */
    214 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
    215 static void expire_upcalls(void *);
    216 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
    217 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
    218 static void encap_send(struct ip *, struct vif *, struct mbuf *);
    219 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
    220 static void tbf_queue(struct vif *, struct mbuf *);
    221 static void tbf_process_q(struct vif *);
    222 static void tbf_reprocess_q(void *);
    223 static int tbf_dq_sel(struct vif *, struct ip *);
    224 static void tbf_send_packet(struct vif *, struct mbuf *);
    225 static void tbf_update_tokens(struct vif *);
    226 static int priority(struct vif *, struct ip *);
    227 
    228 /*
    229  * Bandwidth monitoring
    230  */
    231 static void free_bw_list(struct bw_meter *);
    232 static int add_bw_upcall(struct bw_upcall *);
    233 static int del_bw_upcall(struct bw_upcall *);
    234 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
    235 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
    236 static void bw_upcalls_send(void);
    237 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
    238 static void unschedule_bw_meter(struct bw_meter *);
    239 static void bw_meter_process(void);
    240 static void expire_bw_upcalls_send(void *);
    241 static void expire_bw_meter_process(void *);
    242 
    243 #ifdef PIM
    244 static int pim_register_send(struct ip *, struct vif *,
    245     struct mbuf *, struct mfc *);
    246 static int pim_register_send_rp(struct ip *, struct vif *,
    247     struct mbuf *, struct mfc *);
    248 static int pim_register_send_upcall(struct ip *, struct vif *,
    249     struct mbuf *, struct mfc *);
    250 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
    251 #endif
    252 
    253 #define	ENCAP_TTL	64
    254 #define	ENCAP_PROTO	IPPROTO_IPIP
    255 
    256 /* prototype IP hdr for encapsulated packets */
    257 static const struct ip multicast_encap_iphdr = {
    258 	.ip_hl = sizeof(struct ip) >> 2,
    259 	.ip_v = IPVERSION,
    260 	.ip_len = sizeof(struct ip),
    261 	.ip_ttl = ENCAP_TTL,
    262 	.ip_p = ENCAP_PROTO,
    263 };
    264 
    265 /*
    266  * Bandwidth meter variables and constants
    267  */
    268 
    269 /*
    270  * Pending timeouts are stored in a hash table, the key being the
    271  * expiration time. Periodically, the entries are analysed and processed.
    272  */
    273 #define BW_METER_BUCKETS	1024
    274 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    275 struct callout bw_meter_ch;
    276 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    277 
    278 /*
    279  * Pending upcalls are stored in a vector which is flushed when
    280  * full, or periodically
    281  */
    282 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    283 static u_int	bw_upcalls_n; /* # of pending upcalls */
    284 struct callout	bw_upcalls_ch;
    285 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    286 
    287 #ifdef PIM
    288 struct pimstat pimstat;
    289 
    290 /*
    291  * Note: the PIM Register encapsulation adds the following in front of a
    292  * data packet:
    293  *
    294  * struct pim_encap_hdr {
    295  *     struct ip ip;
    296  *     struct pim_encap_pimhdr  pim;
    297  * }
    298  */
    299 
    300 struct pim_encap_pimhdr {
    301 	struct pim pim;
    302 	uint32_t   flags;
    303 };
    304 
    305 static struct ip pim_encap_iphdr = {
    306 	.ip_v = IPVERSION,
    307 	.ip_hl = sizeof(struct ip) >> 2,
    308 	.ip_len = sizeof(struct ip),
    309 	.ip_ttl = ENCAP_TTL,
    310 	.ip_p = IPPROTO_PIM,
    311 };
    312 
    313 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    314     {
    315 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    316 	0,			/* reserved */
    317 	0,			/* checksum */
    318     },
    319     0				/* flags */
    320 };
    321 
    322 static struct ifnet multicast_register_if;
    323 static vifi_t reg_vif_num = VIFI_INVALID;
    324 #endif /* PIM */
    325 
    326 
    327 /*
    328  * Private variables.
    329  */
    330 static vifi_t	   numvifs = 0;
    331 
    332 static struct callout expire_upcalls_ch;
    333 
    334 /*
    335  * whether or not special PIM assert processing is enabled.
    336  */
    337 static int pim_assert;
    338 /*
    339  * Rate limit for assert notification messages, in usec
    340  */
    341 #define ASSERT_MSG_TIME		3000000
    342 
    343 /*
    344  * Kernel multicast routing API capabilities and setup.
    345  * If more API capabilities are added to the kernel, they should be
    346  * recorded in `mrt_api_support'.
    347  */
    348 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    349 					  MRT_MFC_FLAGS_BORDER_VIF |
    350 					  MRT_MFC_RP |
    351 					  MRT_MFC_BW_UPCALL);
    352 static u_int32_t mrt_api_config = 0;
    353 
    354 /*
    355  * Find a route for a given origin IP address and Multicast group address
    356  * Type of service parameter to be added in the future!!!
    357  * Statistics are updated by the caller if needed
    358  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    359  */
    360 static struct mfc *
    361 mfc_find(struct in_addr *o, struct in_addr *g)
    362 {
    363 	struct mfc *rt;
    364 
    365 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    366 		if (in_hosteq(rt->mfc_origin, *o) &&
    367 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    368 		    (rt->mfc_stall == NULL))
    369 			break;
    370 	}
    371 
    372 	return rt;
    373 }
    374 
    375 /*
    376  * Macros to compute elapsed time efficiently
    377  * Borrowed from Van Jacobson's scheduling code
    378  */
    379 #define TV_DELTA(a, b, delta) do {					\
    380 	int xxs;							\
    381 	delta = (a).tv_usec - (b).tv_usec;				\
    382 	xxs = (a).tv_sec - (b).tv_sec;					\
    383 	switch (xxs) {							\
    384 	case 2:								\
    385 		delta += 1000000;					\
    386 		/* fall through */					\
    387 	case 1:								\
    388 		delta += 1000000;					\
    389 		/* fall through */					\
    390 	case 0:								\
    391 		break;							\
    392 	default:							\
    393 		delta += (1000000 * xxs);				\
    394 		break;							\
    395 	}								\
    396 } while (/*CONSTCOND*/ 0)
    397 
    398 #ifdef UPCALL_TIMING
    399 u_int32_t upcall_data[51];
    400 #endif /* UPCALL_TIMING */
    401 
    402 /*
    403  * Handle MRT setsockopt commands to modify the multicast routing tables.
    404  */
    405 int
    406 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
    407 {
    408 	int error;
    409 	int optval;
    410 	struct vifctl vifc;
    411 	vifi_t vifi;
    412 	struct bw_upcall bwuc;
    413 
    414 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
    415 		error = ENOPROTOOPT;
    416 	else {
    417 		switch (sopt->sopt_name) {
    418 		case MRT_INIT:
    419 			error = sockopt_getint(sopt, &optval);
    420 			if (error)
    421 				break;
    422 
    423 			error = ip_mrouter_init(so, optval);
    424 			break;
    425 		case MRT_DONE:
    426 			error = ip_mrouter_done();
    427 			break;
    428 		case MRT_ADD_VIF:
    429 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
    430 			if (error)
    431 				break;
    432 			error = add_vif(&vifc);
    433 			break;
    434 		case MRT_DEL_VIF:
    435 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
    436 			if (error)
    437 				break;
    438 			error = del_vif(&vifi);
    439 			break;
    440 		case MRT_ADD_MFC:
    441 			error = add_mfc(sopt);
    442 			break;
    443 		case MRT_DEL_MFC:
    444 			error = del_mfc(sopt);
    445 			break;
    446 		case MRT_ASSERT:
    447 			error = sockopt_getint(sopt, &optval);
    448 			if (error)
    449 				break;
    450 			error = set_assert(optval);
    451 			break;
    452 		case MRT_API_CONFIG:
    453 			error = set_api_config(sopt);
    454 			break;
    455 		case MRT_ADD_BW_UPCALL:
    456 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    457 			if (error)
    458 				break;
    459 			error = add_bw_upcall(&bwuc);
    460 			break;
    461 		case MRT_DEL_BW_UPCALL:
    462 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    463 			if (error)
    464 				break;
    465 			error = del_bw_upcall(&bwuc);
    466 			break;
    467 		default:
    468 			error = ENOPROTOOPT;
    469 			break;
    470 		}
    471 	}
    472 	return error;
    473 }
    474 
    475 /*
    476  * Handle MRT getsockopt commands
    477  */
    478 int
    479 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
    480 {
    481 	int error;
    482 
    483 	if (so != ip_mrouter)
    484 		error = ENOPROTOOPT;
    485 	else {
    486 		switch (sopt->sopt_name) {
    487 		case MRT_VERSION:
    488 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
    489 			break;
    490 		case MRT_ASSERT:
    491 			error = sockopt_setint(sopt, pim_assert);
    492 			break;
    493 		case MRT_API_SUPPORT:
    494 			error = sockopt_set(sopt, &mrt_api_support,
    495 			    sizeof(mrt_api_support));
    496 			break;
    497 		case MRT_API_CONFIG:
    498 			error = sockopt_set(sopt, &mrt_api_config,
    499 			    sizeof(mrt_api_config));
    500 			break;
    501 		default:
    502 			error = ENOPROTOOPT;
    503 			break;
    504 		}
    505 	}
    506 	return error;
    507 }
    508 
    509 /*
    510  * Handle ioctl commands to obtain information from the cache
    511  */
    512 int
    513 mrt_ioctl(struct socket *so, u_long cmd, void *data)
    514 {
    515 	int error;
    516 
    517 	if (so != ip_mrouter)
    518 		error = EINVAL;
    519 	else
    520 		switch (cmd) {
    521 		case SIOCGETVIFCNT:
    522 			error = get_vif_cnt((struct sioc_vif_req *)data);
    523 			break;
    524 		case SIOCGETSGCNT:
    525 			error = get_sg_cnt((struct sioc_sg_req *)data);
    526 			break;
    527 		default:
    528 			error = EINVAL;
    529 			break;
    530 		}
    531 
    532 	return error;
    533 }
    534 
    535 /*
    536  * returns the packet, byte, rpf-failure count for the source group provided
    537  */
    538 static int
    539 get_sg_cnt(struct sioc_sg_req *req)
    540 {
    541 	int s;
    542 	struct mfc *rt;
    543 
    544 	s = splsoftnet();
    545 	rt = mfc_find(&req->src, &req->grp);
    546 	if (rt == NULL) {
    547 		splx(s);
    548 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    549 		return EADDRNOTAVAIL;
    550 	}
    551 	req->pktcnt = rt->mfc_pkt_cnt;
    552 	req->bytecnt = rt->mfc_byte_cnt;
    553 	req->wrong_if = rt->mfc_wrong_if;
    554 	splx(s);
    555 
    556 	return 0;
    557 }
    558 
    559 /*
    560  * returns the input and output packet and byte counts on the vif provided
    561  */
    562 static int
    563 get_vif_cnt(struct sioc_vif_req *req)
    564 {
    565 	vifi_t vifi = req->vifi;
    566 
    567 	if (vifi >= numvifs)
    568 		return EINVAL;
    569 
    570 	req->icount = viftable[vifi].v_pkt_in;
    571 	req->ocount = viftable[vifi].v_pkt_out;
    572 	req->ibytes = viftable[vifi].v_bytes_in;
    573 	req->obytes = viftable[vifi].v_bytes_out;
    574 
    575 	return 0;
    576 }
    577 
    578 /*
    579  * Enable multicast routing
    580  */
    581 static int
    582 ip_mrouter_init(struct socket *so, int v)
    583 {
    584 	if (mrtdebug)
    585 		log(LOG_DEBUG,
    586 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    587 		    so->so_type, so->so_proto->pr_protocol);
    588 
    589 	if (so->so_type != SOCK_RAW ||
    590 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    591 		return EOPNOTSUPP;
    592 
    593 	if (v != 1)
    594 		return EINVAL;
    595 
    596 	if (ip_mrouter != NULL)
    597 		return EADDRINUSE;
    598 
    599 	ip_mrouter = so;
    600 
    601 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
    602 	memset((void *)nexpire, 0, sizeof(nexpire));
    603 
    604 	pim_assert = 0;
    605 
    606 	callout_init(&expire_upcalls_ch, 0);
    607 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    608 		      expire_upcalls, NULL);
    609 
    610 	callout_init(&bw_upcalls_ch, 0);
    611 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    612 		      expire_bw_upcalls_send, NULL);
    613 
    614 	callout_init(&bw_meter_ch, 0);
    615 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    616 		      expire_bw_meter_process, NULL);
    617 
    618 	if (mrtdebug)
    619 		log(LOG_DEBUG, "ip_mrouter_init\n");
    620 
    621 	return 0;
    622 }
    623 
    624 /*
    625  * Disable multicast routing
    626  */
    627 int
    628 ip_mrouter_done(void)
    629 {
    630 	vifi_t vifi;
    631 	struct vif *vifp;
    632 	int i;
    633 	int s;
    634 
    635 	s = splsoftnet();
    636 
    637 	/* Clear out all the vifs currently in use. */
    638 	for (vifi = 0; vifi < numvifs; vifi++) {
    639 		vifp = &viftable[vifi];
    640 		if (!in_nullhost(vifp->v_lcl_addr))
    641 			reset_vif(vifp);
    642 	}
    643 
    644 	numvifs = 0;
    645 	pim_assert = 0;
    646 	mrt_api_config = 0;
    647 
    648 	callout_stop(&expire_upcalls_ch);
    649 	callout_stop(&bw_upcalls_ch);
    650 	callout_stop(&bw_meter_ch);
    651 
    652 	/*
    653 	 * Free all multicast forwarding cache entries.
    654 	 */
    655 	for (i = 0; i < MFCTBLSIZ; i++) {
    656 		struct mfc *rt, *nrt;
    657 
    658 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    659 			nrt = LIST_NEXT(rt, mfc_hash);
    660 
    661 			expire_mfc(rt);
    662 		}
    663 	}
    664 
    665 	memset((void *)nexpire, 0, sizeof(nexpire));
    666 	hashdone(mfchashtbl, HASH_LIST, mfchash);
    667 	mfchashtbl = NULL;
    668 
    669 	bw_upcalls_n = 0;
    670 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
    671 
    672 	/* Reset de-encapsulation cache. */
    673 
    674 	ip_mrouter = NULL;
    675 
    676 	splx(s);
    677 
    678 	if (mrtdebug)
    679 		log(LOG_DEBUG, "ip_mrouter_done\n");
    680 
    681 	return 0;
    682 }
    683 
    684 void
    685 ip_mrouter_detach(struct ifnet *ifp)
    686 {
    687 	int vifi, i;
    688 	struct vif *vifp;
    689 	struct mfc *rt;
    690 	struct rtdetq *rte;
    691 
    692 	/* XXX not sure about side effect to userland routing daemon */
    693 	for (vifi = 0; vifi < numvifs; vifi++) {
    694 		vifp = &viftable[vifi];
    695 		if (vifp->v_ifp == ifp)
    696 			reset_vif(vifp);
    697 	}
    698 	for (i = 0; i < MFCTBLSIZ; i++) {
    699 		if (nexpire[i] == 0)
    700 			continue;
    701 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    702 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    703 				if (rte->ifp == ifp)
    704 					rte->ifp = NULL;
    705 			}
    706 		}
    707 	}
    708 }
    709 
    710 /*
    711  * Set PIM assert processing global
    712  */
    713 static int
    714 set_assert(int i)
    715 {
    716 	pim_assert = !!i;
    717 	return 0;
    718 }
    719 
    720 /*
    721  * Configure API capabilities
    722  */
    723 static int
    724 set_api_config(struct sockopt *sopt)
    725 {
    726 	u_int32_t apival;
    727 	int i, error;
    728 
    729 	/*
    730 	 * We can set the API capabilities only if it is the first operation
    731 	 * after MRT_INIT. I.e.:
    732 	 *  - there are no vifs installed
    733 	 *  - pim_assert is not enabled
    734 	 *  - the MFC table is empty
    735 	 */
    736 	error = sockopt_get(sopt, &apival, sizeof(apival));
    737 	if (error)
    738 		return error;
    739 	if (numvifs > 0)
    740 		return EPERM;
    741 	if (pim_assert)
    742 		return EPERM;
    743 	for (i = 0; i < MFCTBLSIZ; i++) {
    744 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
    745 			return EPERM;
    746 	}
    747 
    748 	mrt_api_config = apival & mrt_api_support;
    749 	return 0;
    750 }
    751 
    752 /*
    753  * Add a vif to the vif table
    754  */
    755 static int
    756 add_vif(struct vifctl *vifcp)
    757 {
    758 	struct vif *vifp;
    759 	struct ifnet *ifp;
    760 	int error, s;
    761 	struct sockaddr_in sin;
    762 
    763 	if (vifcp->vifc_vifi >= MAXVIFS)
    764 		return EINVAL;
    765 	if (in_nullhost(vifcp->vifc_lcl_addr))
    766 		return EADDRNOTAVAIL;
    767 
    768 	vifp = &viftable[vifcp->vifc_vifi];
    769 	if (!in_nullhost(vifp->v_lcl_addr))
    770 		return EADDRINUSE;
    771 
    772 	/* Find the interface with an address in AF_INET family. */
    773 #ifdef PIM
    774 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    775 		/*
    776 		 * XXX: Because VIFF_REGISTER does not really need a valid
    777 		 * local interface (e.g. it could be 127.0.0.2), we don't
    778 		 * check its address.
    779 		 */
    780 		ifp = NULL;
    781 	} else
    782 #endif
    783 	{
    784 		struct ifaddr *ifa;
    785 
    786 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
    787 		s = pserialize_read_enter();
    788 		ifa = ifa_ifwithaddr(sintosa(&sin));
    789 		if (ifa == NULL) {
    790 			pserialize_read_exit(s);
    791 			return EADDRNOTAVAIL;
    792 		}
    793 		ifp = ifa->ifa_ifp;
    794 		/* FIXME NOMPSAFE */
    795 		pserialize_read_exit(s);
    796 	}
    797 
    798 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    799 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    800 			log(LOG_ERR, "source routed tunnels not supported\n");
    801 			return EOPNOTSUPP;
    802 		}
    803 
    804 		/* attach this vif to decapsulator dispatch table */
    805 		/*
    806 		 * XXX Use addresses in registration so that matching
    807 		 * can be done with radix tree in decapsulator.  But,
    808 		 * we need to check inner header for multicast, so
    809 		 * this requires both radix tree lookup and then a
    810 		 * function to check, and this is not supported yet.
    811 		 */
    812 		error = encap_lock_enter();
    813 		if (error)
    814 			return error;
    815 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    816 		    vif_encapcheck, &vif_encapsw, vifp);
    817 		encap_lock_exit();
    818 		if (!vifp->v_encap_cookie)
    819 			return EINVAL;
    820 
    821 		/* Create a fake encapsulation interface. */
    822 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
    823 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    824 			 "mdecap%d", vifcp->vifc_vifi);
    825 
    826 		/* Prepare cached route entry. */
    827 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    828 #ifdef PIM
    829 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    830 		ifp = &multicast_register_if;
    831 		if (mrtdebug)
    832 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    833 			    (void *)ifp);
    834 		if (reg_vif_num == VIFI_INVALID) {
    835 			memset(ifp, 0, sizeof(*ifp));
    836 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    837 				 "register_vif");
    838 			ifp->if_flags = IFF_LOOPBACK;
    839 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    840 			reg_vif_num = vifcp->vifc_vifi;
    841 		}
    842 #endif
    843 	} else {
    844 		/* Make sure the interface supports multicast. */
    845 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    846 			return EOPNOTSUPP;
    847 
    848 		/* Enable promiscuous reception of all IP multicasts. */
    849 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    850 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
    851 		if (error)
    852 			return error;
    853 	}
    854 
    855 	s = splsoftnet();
    856 
    857 	/* Define parameters for the tbf structure. */
    858 	vifp->tbf_q = NULL;
    859 	vifp->tbf_t = &vifp->tbf_q;
    860 	microtime(&vifp->tbf_last_pkt_t);
    861 	vifp->tbf_n_tok = 0;
    862 	vifp->tbf_q_len = 0;
    863 	vifp->tbf_max_q_len = MAXQSIZE;
    864 
    865 	vifp->v_flags = vifcp->vifc_flags;
    866 	vifp->v_threshold = vifcp->vifc_threshold;
    867 	/* scaling up here allows division by 1024 in critical code */
    868 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
    869 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
    870 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
    871 	vifp->v_ifp = ifp;
    872 	/* Initialize per vif pkt counters. */
    873 	vifp->v_pkt_in = 0;
    874 	vifp->v_pkt_out = 0;
    875 	vifp->v_bytes_in = 0;
    876 	vifp->v_bytes_out = 0;
    877 
    878 	callout_init(&vifp->v_repq_ch, 0);
    879 
    880 	splx(s);
    881 
    882 	/* Adjust numvifs up if the vifi is higher than numvifs. */
    883 	if (numvifs <= vifcp->vifc_vifi)
    884 		numvifs = vifcp->vifc_vifi + 1;
    885 
    886 	if (mrtdebug)
    887 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
    888 		    vifcp->vifc_vifi,
    889 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
    890 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
    891 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
    892 		    vifcp->vifc_threshold,
    893 		    vifcp->vifc_rate_limit);
    894 
    895 	return 0;
    896 }
    897 
    898 void
    899 reset_vif(struct vif *vifp)
    900 {
    901 	struct mbuf *m, *n;
    902 	struct ifnet *ifp;
    903 	struct sockaddr_in sin;
    904 
    905 	callout_stop(&vifp->v_repq_ch);
    906 
    907 	/* detach this vif from decapsulator dispatch table */
    908 	encap_lock_enter();
    909 	encap_detach(vifp->v_encap_cookie);
    910 	encap_lock_exit();
    911 	vifp->v_encap_cookie = NULL;
    912 
    913 	/*
    914 	 * Free packets queued at the interface
    915 	 */
    916 	for (m = vifp->tbf_q; m != NULL; m = n) {
    917 		n = m->m_nextpkt;
    918 		m_freem(m);
    919 	}
    920 
    921 	if (vifp->v_flags & VIFF_TUNNEL)
    922 		free(vifp->v_ifp, M_MRTABLE);
    923 	else if (vifp->v_flags & VIFF_REGISTER) {
    924 #ifdef PIM
    925 		reg_vif_num = VIFI_INVALID;
    926 #endif
    927 	} else {
    928 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    929 		ifp = vifp->v_ifp;
    930 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
    931 	}
    932 	memset((void *)vifp, 0, sizeof(*vifp));
    933 }
    934 
    935 /*
    936  * Delete a vif from the vif table
    937  */
    938 static int
    939 del_vif(vifi_t *vifip)
    940 {
    941 	struct vif *vifp;
    942 	vifi_t vifi;
    943 	int s;
    944 
    945 	if (*vifip >= numvifs)
    946 		return EINVAL;
    947 
    948 	vifp = &viftable[*vifip];
    949 	if (in_nullhost(vifp->v_lcl_addr))
    950 		return EADDRNOTAVAIL;
    951 
    952 	s = splsoftnet();
    953 
    954 	reset_vif(vifp);
    955 
    956 	/* Adjust numvifs down */
    957 	for (vifi = numvifs; vifi > 0; vifi--)
    958 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
    959 			break;
    960 	numvifs = vifi;
    961 
    962 	splx(s);
    963 
    964 	if (mrtdebug)
    965 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
    966 
    967 	return 0;
    968 }
    969 
    970 /*
    971  * update an mfc entry without resetting counters and S,G addresses.
    972  */
    973 static void
    974 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    975 {
    976 	int i;
    977 
    978 	rt->mfc_parent = mfccp->mfcc_parent;
    979 	for (i = 0; i < numvifs; i++) {
    980 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
    981 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
    982 			MRT_MFC_FLAGS_ALL;
    983 	}
    984 	/* set the RP address */
    985 	if (mrt_api_config & MRT_MFC_RP)
    986 		rt->mfc_rp = mfccp->mfcc_rp;
    987 	else
    988 		rt->mfc_rp = zeroin_addr;
    989 }
    990 
    991 /*
    992  * fully initialize an mfc entry from the parameter.
    993  */
    994 static void
    995 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    996 {
    997 	rt->mfc_origin     = mfccp->mfcc_origin;
    998 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
    999 
   1000 	update_mfc_params(rt, mfccp);
   1001 
   1002 	/* initialize pkt counters per src-grp */
   1003 	rt->mfc_pkt_cnt    = 0;
   1004 	rt->mfc_byte_cnt   = 0;
   1005 	rt->mfc_wrong_if   = 0;
   1006 	timerclear(&rt->mfc_last_assert);
   1007 }
   1008 
   1009 static void
   1010 expire_mfc(struct mfc *rt)
   1011 {
   1012 	struct rtdetq *rte, *nrte;
   1013 
   1014 	free_bw_list(rt->mfc_bw_meter);
   1015 
   1016 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1017 		nrte = rte->next;
   1018 		m_freem(rte->m);
   1019 		free(rte, M_MRTABLE);
   1020 	}
   1021 
   1022 	LIST_REMOVE(rt, mfc_hash);
   1023 	free(rt, M_MRTABLE);
   1024 }
   1025 
   1026 /*
   1027  * Add an mfc entry
   1028  */
   1029 static int
   1030 add_mfc(struct sockopt *sopt)
   1031 {
   1032 	struct mfcctl2 mfcctl2;
   1033 	struct mfcctl2 *mfccp;
   1034 	struct mfc *rt;
   1035 	u_int32_t hash = 0;
   1036 	struct rtdetq *rte, *nrte;
   1037 	u_short nstl;
   1038 	int s;
   1039 	int error;
   1040 
   1041 	/*
   1042 	 * select data size depending on API version.
   1043 	 */
   1044 	mfccp = &mfcctl2;
   1045 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1046 
   1047 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1048 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1049 	else
   1050 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1051 
   1052 	if (error)
   1053 		return error;
   1054 
   1055 	s = splsoftnet();
   1056 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1057 
   1058 	/* If an entry already exists, just update the fields */
   1059 	if (rt) {
   1060 		if (mrtdebug & DEBUG_MFC)
   1061 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1062 			    ntohl(mfccp->mfcc_origin.s_addr),
   1063 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1064 			    mfccp->mfcc_parent);
   1065 
   1066 		update_mfc_params(rt, mfccp);
   1067 
   1068 		splx(s);
   1069 		return 0;
   1070 	}
   1071 
   1072 	/*
   1073 	 * Find the entry for which the upcall was made and update
   1074 	 */
   1075 	nstl = 0;
   1076 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1077 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1078 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1079 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1080 		    rt->mfc_stall != NULL) {
   1081 			if (nstl++)
   1082 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1083 				    "multiple kernel entries",
   1084 				    ntohl(mfccp->mfcc_origin.s_addr),
   1085 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1086 				    mfccp->mfcc_parent, rt->mfc_stall);
   1087 
   1088 			if (mrtdebug & DEBUG_MFC)
   1089 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1090 				    ntohl(mfccp->mfcc_origin.s_addr),
   1091 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1092 				    mfccp->mfcc_parent, rt->mfc_stall);
   1093 
   1094 			rte = rt->mfc_stall;
   1095 			init_mfc_params(rt, mfccp);
   1096 			rt->mfc_stall = NULL;
   1097 
   1098 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1099 			nexpire[hash]--;
   1100 
   1101 			/* free packets Qed at the end of this entry */
   1102 			for (; rte != NULL; rte = nrte) {
   1103 				nrte = rte->next;
   1104 				if (rte->ifp) {
   1105 					ip_mdq(rte->m, rte->ifp, rt);
   1106 				}
   1107 				m_freem(rte->m);
   1108 #ifdef UPCALL_TIMING
   1109 				collate(&rte->t);
   1110 #endif /* UPCALL_TIMING */
   1111 				free(rte, M_MRTABLE);
   1112 			}
   1113 		}
   1114 	}
   1115 
   1116 	/*
   1117 	 * It is possible that an entry is being inserted without an upcall
   1118 	 */
   1119 	if (nstl == 0) {
   1120 		/*
   1121 		 * No mfc; make a new one
   1122 		 */
   1123 		if (mrtdebug & DEBUG_MFC)
   1124 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1125 			    ntohl(mfccp->mfcc_origin.s_addr),
   1126 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1127 			    mfccp->mfcc_parent);
   1128 
   1129 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1130 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1131 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1132 				init_mfc_params(rt, mfccp);
   1133 				if (rt->mfc_expire)
   1134 					nexpire[hash]--;
   1135 				rt->mfc_expire = 0;
   1136 				break; /* XXX */
   1137 			}
   1138 		}
   1139 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1140 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
   1141 			if (rt == NULL) {
   1142 				splx(s);
   1143 				return ENOBUFS;
   1144 			}
   1145 
   1146 			init_mfc_params(rt, mfccp);
   1147 			rt->mfc_expire	= 0;
   1148 			rt->mfc_stall	= NULL;
   1149 			rt->mfc_bw_meter = NULL;
   1150 
   1151 			/* insert new entry at head of hash chain */
   1152 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1153 		}
   1154 	}
   1155 
   1156 	splx(s);
   1157 	return 0;
   1158 }
   1159 
   1160 #ifdef UPCALL_TIMING
   1161 /*
   1162  * collect delay statistics on the upcalls
   1163  */
   1164 static void
   1165 collate(struct timeval *t)
   1166 {
   1167 	u_int32_t d;
   1168 	struct timeval tp;
   1169 	u_int32_t delta;
   1170 
   1171 	microtime(&tp);
   1172 
   1173 	if (timercmp(t, &tp, <)) {
   1174 		TV_DELTA(tp, *t, delta);
   1175 
   1176 		d = delta >> 10;
   1177 		if (d > 50)
   1178 			d = 50;
   1179 
   1180 		++upcall_data[d];
   1181 	}
   1182 }
   1183 #endif /* UPCALL_TIMING */
   1184 
   1185 /*
   1186  * Delete an mfc entry
   1187  */
   1188 static int
   1189 del_mfc(struct sockopt *sopt)
   1190 {
   1191 	struct mfcctl2 mfcctl2;
   1192 	struct mfcctl2 *mfccp;
   1193 	struct mfc *rt;
   1194 	int s;
   1195 	int error;
   1196 
   1197 	/*
   1198 	 * XXX: for deleting MFC entries the information in entries
   1199 	 * of size "struct mfcctl" is sufficient.
   1200 	 */
   1201 
   1202 	mfccp = &mfcctl2;
   1203 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1204 
   1205 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1206 	if (error) {
   1207 		/* Try with the size of mfcctl2. */
   1208 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1209 		if (error)
   1210 			return error;
   1211 	}
   1212 
   1213 	if (mrtdebug & DEBUG_MFC)
   1214 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1215 		    ntohl(mfccp->mfcc_origin.s_addr),
   1216 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1217 
   1218 	s = splsoftnet();
   1219 
   1220 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1221 	if (rt == NULL) {
   1222 		splx(s);
   1223 		return EADDRNOTAVAIL;
   1224 	}
   1225 
   1226 	/*
   1227 	 * free the bw_meter entries
   1228 	 */
   1229 	free_bw_list(rt->mfc_bw_meter);
   1230 	rt->mfc_bw_meter = NULL;
   1231 
   1232 	LIST_REMOVE(rt, mfc_hash);
   1233 	free(rt, M_MRTABLE);
   1234 
   1235 	splx(s);
   1236 	return 0;
   1237 }
   1238 
   1239 static int
   1240 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
   1241 {
   1242 	if (s) {
   1243 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
   1244 			sorwakeup(s);
   1245 			return 0;
   1246 		}
   1247 		soroverflow(s);
   1248 	}
   1249 	m_freem(mm);
   1250 	return -1;
   1251 }
   1252 
   1253 /*
   1254  * IP multicast forwarding function. This function assumes that the packet
   1255  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1256  * pointed to by "ifp", and the packet is to be relayed to other networks
   1257  * that have members of the packet's destination IP multicast group.
   1258  *
   1259  * The packet is returned unscathed to the caller, unless it is
   1260  * erroneous, in which case a non-zero return value tells the caller to
   1261  * discard it.
   1262  */
   1263 
   1264 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1265 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1266 
   1267 int
   1268 ip_mforward(struct mbuf *m, struct ifnet *ifp)
   1269 {
   1270 	struct ip *ip = mtod(m, struct ip *);
   1271 	struct mfc *rt;
   1272 	static int srctun = 0;
   1273 	struct mbuf *mm;
   1274 	struct sockaddr_in sin;
   1275 	int s;
   1276 	vifi_t vifi;
   1277 
   1278 	if (mrtdebug & DEBUG_FORWARD)
   1279 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1280 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1281 
   1282 	/*
   1283 	 * XXX XXX: Why do we check [1] against IPOPT_LSRR? Because we
   1284 	 * expect [0] to be IPOPT_NOP, maybe? In all cases that doesn't
   1285 	 * make a lot of sense, a forged packet can just put two IPOPT_NOPs
   1286 	 * followed by one IPOPT_LSRR, and bypass the check.
   1287 	 */
   1288 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1289 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1290 		/*
   1291 		 * Packet arrived via a physical interface or
   1292 		 * an encapsulated tunnel or a register_vif.
   1293 		 */
   1294 	} else {
   1295 		/*
   1296 		 * Packet arrived through a source-route tunnel.
   1297 		 * Source-route tunnels are no longer supported.
   1298 		 */
   1299 		if ((srctun++ % 1000) == 0)
   1300 			log(LOG_ERR,
   1301 			    "ip_mforward: received source-routed packet from %x\n",
   1302 			    ntohl(ip->ip_src.s_addr));
   1303 		return EOPNOTSUPP;
   1304 	}
   1305 
   1306 	/*
   1307 	 * Clear any in-bound checksum flags for this packet.
   1308 	 */
   1309 	m->m_pkthdr.csum_flags = 0;
   1310 
   1311 	/*
   1312 	 * Don't forward a packet with time-to-live of zero or one,
   1313 	 * or a packet destined to a local-only group.
   1314 	 */
   1315 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1316 		return 0;
   1317 
   1318 	/*
   1319 	 * Determine forwarding vifs from the forwarding cache table
   1320 	 */
   1321 	s = splsoftnet();
   1322 	++mrtstat.mrts_mfc_lookups;
   1323 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1324 
   1325 	/* Entry exists, so forward if necessary */
   1326 	if (rt != NULL) {
   1327 		splx(s);
   1328 		return ip_mdq(m, ifp, rt);
   1329 	} else {
   1330 		/*
   1331 		 * If we don't have a route for packet's origin, make a copy
   1332 		 * of the packet and send message to routing daemon.
   1333 		 */
   1334 
   1335 		struct mbuf *mb0;
   1336 		struct rtdetq *rte;
   1337 		u_int32_t hash;
   1338 		const int hlen = ip->ip_hl << 2;
   1339 #ifdef UPCALL_TIMING
   1340 		struct timeval tp;
   1341 		microtime(&tp);
   1342 #endif
   1343 
   1344 		++mrtstat.mrts_mfc_misses;
   1345 
   1346 		mrtstat.mrts_no_route++;
   1347 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1348 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1349 			    ntohl(ip->ip_src.s_addr),
   1350 			    ntohl(ip->ip_dst.s_addr));
   1351 
   1352 		/*
   1353 		 * Allocate mbufs early so that we don't do extra work if we are
   1354 		 * just going to fail anyway.  Make sure to pullup the header so
   1355 		 * that other people can't step on it.
   1356 		 */
   1357 		rte = malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
   1358 		if (rte == NULL) {
   1359 			splx(s);
   1360 			return ENOBUFS;
   1361 		}
   1362 		mb0 = m_copypacket(m, M_DONTWAIT);
   1363 		M_PULLUP(mb0, hlen);
   1364 		if (mb0 == NULL) {
   1365 			free(rte, M_MRTABLE);
   1366 			splx(s);
   1367 			return ENOBUFS;
   1368 		}
   1369 
   1370 		/* is there an upcall waiting for this flow? */
   1371 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1372 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1373 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1374 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1375 			    rt->mfc_stall != NULL)
   1376 				break;
   1377 		}
   1378 
   1379 		if (rt == NULL) {
   1380 			int i;
   1381 			struct igmpmsg *im;
   1382 
   1383 			/*
   1384 			 * Locate the vifi for the incoming interface for
   1385 			 * this packet.
   1386 			 * If none found, drop packet.
   1387 			 */
   1388 			for (vifi = 0; vifi < numvifs &&
   1389 				 viftable[vifi].v_ifp != ifp; vifi++)
   1390 				;
   1391 			if (vifi >= numvifs) /* vif not found, drop packet */
   1392 				goto non_fatal;
   1393 
   1394 			/* no upcall, so make a new entry */
   1395 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
   1396 			if (rt == NULL)
   1397 				goto fail;
   1398 
   1399 			/*
   1400 			 * Make a copy of the header to send to the user level
   1401 			 * process
   1402 			 */
   1403 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
   1404 			M_PULLUP(mm, hlen);
   1405 			if (mm == NULL)
   1406 				goto fail1;
   1407 
   1408 			/*
   1409 			 * Send message to routing daemon to install
   1410 			 * a route into the kernel table
   1411 			 */
   1412 
   1413 			im = mtod(mm, struct igmpmsg *);
   1414 			im->im_msgtype = IGMPMSG_NOCACHE;
   1415 			im->im_mbz = 0;
   1416 			im->im_vif = vifi;
   1417 
   1418 			mrtstat.mrts_upcalls++;
   1419 
   1420 			sockaddr_in_init(&sin, &ip->ip_src, 0);
   1421 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1422 				log(LOG_WARNING,
   1423 				    "ip_mforward: ip_mrouter socket queue full\n");
   1424 				++mrtstat.mrts_upq_sockfull;
   1425 			fail1:
   1426 				free(rt, M_MRTABLE);
   1427 			fail:
   1428 				free(rte, M_MRTABLE);
   1429 				m_freem(mb0);
   1430 				splx(s);
   1431 				return ENOBUFS;
   1432 			}
   1433 
   1434 			/* insert new entry at head of hash chain */
   1435 			rt->mfc_origin = ip->ip_src;
   1436 			rt->mfc_mcastgrp = ip->ip_dst;
   1437 			rt->mfc_pkt_cnt = 0;
   1438 			rt->mfc_byte_cnt = 0;
   1439 			rt->mfc_wrong_if = 0;
   1440 			rt->mfc_expire = UPCALL_EXPIRE;
   1441 			nexpire[hash]++;
   1442 			for (i = 0; i < numvifs; i++) {
   1443 				rt->mfc_ttls[i] = 0;
   1444 				rt->mfc_flags[i] = 0;
   1445 			}
   1446 			rt->mfc_parent = -1;
   1447 
   1448 			/* clear the RP address */
   1449 			rt->mfc_rp = zeroin_addr;
   1450 
   1451 			rt->mfc_bw_meter = NULL;
   1452 
   1453 			/* link into table */
   1454 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1455 			/* Add this entry to the end of the queue */
   1456 			rt->mfc_stall = rte;
   1457 		} else {
   1458 			/* determine if q has overflowed */
   1459 			struct rtdetq **p;
   1460 			int npkts = 0;
   1461 
   1462 			/*
   1463 			 * XXX ouch! we need to append to the list, but we
   1464 			 * only have a pointer to the front, so we have to
   1465 			 * scan the entire list every time.
   1466 			 */
   1467 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1468 				if (++npkts > MAX_UPQ) {
   1469 					mrtstat.mrts_upq_ovflw++;
   1470 				non_fatal:
   1471 					free(rte, M_MRTABLE);
   1472 					m_freem(mb0);
   1473 					splx(s);
   1474 					return 0;
   1475 				}
   1476 
   1477 			/* Add this entry to the end of the queue */
   1478 			*p = rte;
   1479 		}
   1480 
   1481 		rte->next = NULL;
   1482 		rte->m = mb0;
   1483 		rte->ifp = ifp;
   1484 #ifdef UPCALL_TIMING
   1485 		rte->t = tp;
   1486 #endif
   1487 
   1488 		splx(s);
   1489 
   1490 		return 0;
   1491 	}
   1492 }
   1493 
   1494 /*ARGSUSED*/
   1495 static void
   1496 expire_upcalls(void *v)
   1497 {
   1498 	int i;
   1499 
   1500 	/* XXX NOMPSAFE still need softnet_lock */
   1501 	mutex_enter(softnet_lock);
   1502 	KERNEL_LOCK(1, NULL);
   1503 
   1504 	for (i = 0; i < MFCTBLSIZ; i++) {
   1505 		struct mfc *rt, *nrt;
   1506 
   1507 		if (nexpire[i] == 0)
   1508 			continue;
   1509 
   1510 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1511 			nrt = LIST_NEXT(rt, mfc_hash);
   1512 
   1513 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1514 				continue;
   1515 			nexpire[i]--;
   1516 
   1517 			/*
   1518 			 * free the bw_meter entries
   1519 			 */
   1520 			while (rt->mfc_bw_meter != NULL) {
   1521 				struct bw_meter *x = rt->mfc_bw_meter;
   1522 
   1523 				rt->mfc_bw_meter = x->bm_mfc_next;
   1524 				kmem_intr_free(x, sizeof(*x));
   1525 			}
   1526 
   1527 			++mrtstat.mrts_cache_cleanups;
   1528 			if (mrtdebug & DEBUG_EXPIRE)
   1529 				log(LOG_DEBUG,
   1530 				    "expire_upcalls: expiring (%x %x)\n",
   1531 				    ntohl(rt->mfc_origin.s_addr),
   1532 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1533 
   1534 			expire_mfc(rt);
   1535 		}
   1536 	}
   1537 
   1538 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1539 	    expire_upcalls, NULL);
   1540 
   1541 	KERNEL_UNLOCK_ONE(NULL);
   1542 	mutex_exit(softnet_lock);
   1543 }
   1544 
   1545 /*
   1546  * Macro to send packet on vif.
   1547  */
   1548 #define MC_SEND(ip, vifp, m) do {					\
   1549 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1550 		encap_send((ip), (vifp), (m));				\
   1551 	else								\
   1552 		phyint_send((ip), (vifp), (m));				\
   1553 } while (/*CONSTCOND*/ 0)
   1554 
   1555 /*
   1556  * Packet forwarding routine once entry in the cache is made
   1557  */
   1558 static int
   1559 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
   1560 {
   1561 	struct ip *ip = mtod(m, struct ip *);
   1562 	vifi_t vifi;
   1563 	struct vif *vifp;
   1564 	struct sockaddr_in sin;
   1565 	const int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1566 
   1567 	/*
   1568 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1569 	 */
   1570 	vifi = rt->mfc_parent;
   1571 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1572 		/* came in the wrong interface */
   1573 		if (mrtdebug & DEBUG_FORWARD)
   1574 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1575 			    ifp, vifi,
   1576 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1577 		++mrtstat.mrts_wrong_if;
   1578 		++rt->mfc_wrong_if;
   1579 
   1580 		/*
   1581 		 * If we are doing PIM assert processing, send a message
   1582 		 * to the routing daemon.
   1583 		 *
   1584 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1585 		 * can complete the SPT switch, regardless of the type
   1586 		 * of the iif (broadcast media, GRE tunnel, etc).
   1587 		 */
   1588 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1589 			struct timeval now;
   1590 			u_int32_t delta;
   1591 
   1592 #ifdef PIM
   1593 			if (ifp == &multicast_register_if)
   1594 				pimstat.pims_rcv_registers_wrongiif++;
   1595 #endif
   1596 
   1597 			/* Get vifi for the incoming packet */
   1598 			for (vifi = 0;
   1599 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1600 			     vifi++)
   1601 			    ;
   1602 			if (vifi >= numvifs) {
   1603 				/* The iif is not found: ignore the packet. */
   1604 				return 0;
   1605 			}
   1606 
   1607 			if (rt->mfc_flags[vifi] &
   1608 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1609 				/* WRONGVIF disabled: ignore the packet */
   1610 				return 0;
   1611 			}
   1612 
   1613 			microtime(&now);
   1614 
   1615 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1616 
   1617 			if (delta > ASSERT_MSG_TIME) {
   1618 				struct igmpmsg *im;
   1619 				const int hlen = ip->ip_hl << 2;
   1620 				struct mbuf *mm =
   1621 				    m_copym(m, 0, hlen, M_DONTWAIT);
   1622 
   1623 				M_PULLUP(mm, hlen);
   1624 				if (mm == NULL)
   1625 					return ENOBUFS;
   1626 
   1627 				rt->mfc_last_assert = now;
   1628 
   1629 				im = mtod(mm, struct igmpmsg *);
   1630 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1631 				im->im_mbz	= 0;
   1632 				im->im_vif	= vifi;
   1633 
   1634 				mrtstat.mrts_upcalls++;
   1635 
   1636 				sockaddr_in_init(&sin, &im->im_src, 0);
   1637 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1638 					log(LOG_WARNING,
   1639 					    "ip_mforward: ip_mrouter socket queue full\n");
   1640 					++mrtstat.mrts_upq_sockfull;
   1641 					return ENOBUFS;
   1642 				}
   1643 			}
   1644 		}
   1645 		return 0;
   1646 	}
   1647 
   1648 	/* If I sourced this packet, it counts as output, else it was input. */
   1649 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1650 		viftable[vifi].v_pkt_out++;
   1651 		viftable[vifi].v_bytes_out += plen;
   1652 	} else {
   1653 		viftable[vifi].v_pkt_in++;
   1654 		viftable[vifi].v_bytes_in += plen;
   1655 	}
   1656 	rt->mfc_pkt_cnt++;
   1657 	rt->mfc_byte_cnt += plen;
   1658 
   1659 	/*
   1660 	 * For each vif, decide if a copy of the packet should be forwarded.
   1661 	 * Forward if:
   1662 	 *  - the ttl exceeds the vif's threshold
   1663 	 *  - there are group members downstream on interface
   1664 	 */
   1665 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
   1666 		if ((rt->mfc_ttls[vifi] > 0) &&
   1667 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1668 			vifp->v_pkt_out++;
   1669 			vifp->v_bytes_out += plen;
   1670 #ifdef PIM
   1671 			if (vifp->v_flags & VIFF_REGISTER)
   1672 				pim_register_send(ip, vifp, m, rt);
   1673 			else
   1674 #endif
   1675 			MC_SEND(ip, vifp, m);
   1676 		}
   1677 	}
   1678 
   1679 	/*
   1680 	 * Perform upcall-related bw measuring.
   1681 	 */
   1682 	if (rt->mfc_bw_meter != NULL) {
   1683 		struct bw_meter *x;
   1684 		struct timeval now;
   1685 
   1686 		microtime(&now);
   1687 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1688 			bw_meter_receive_packet(x, plen, &now);
   1689 	}
   1690 
   1691 	return 0;
   1692 }
   1693 
   1694 static void
   1695 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1696 {
   1697 	struct mbuf *mb_copy;
   1698 	const int hlen = ip->ip_hl << 2;
   1699 
   1700 	/*
   1701 	 * Make a new reference to the packet; make sure that
   1702 	 * the IP header is actually copied, not just referenced,
   1703 	 * so that ip_output() only scribbles on the copy.
   1704 	 */
   1705 	mb_copy = m_copypacket(m, M_DONTWAIT);
   1706 	M_PULLUP(mb_copy, hlen);
   1707 	if (mb_copy == NULL)
   1708 		return;
   1709 
   1710 	if (vifp->v_rate_limit <= 0)
   1711 		tbf_send_packet(vifp, mb_copy);
   1712 	else
   1713 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1714 		    ntohs(ip->ip_len));
   1715 }
   1716 
   1717 static void
   1718 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1719 {
   1720 	struct mbuf *mb_copy;
   1721 	struct ip *ip_copy;
   1722 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1723 
   1724 	/* Take care of delayed checksums */
   1725 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1726 		in_delayed_cksum(m);
   1727 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1728 	}
   1729 
   1730 	/*
   1731 	 * copy the old packet & pullup its IP header into the
   1732 	 * new mbuf so we can modify it.  Try to fill the new
   1733 	 * mbuf since if we don't the ethernet driver will.
   1734 	 */
   1735 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1736 	if (mb_copy == NULL)
   1737 		return;
   1738 	mb_copy->m_data += max_linkhdr;
   1739 	mb_copy->m_pkthdr.len = len;
   1740 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1741 
   1742 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
   1743 		m_freem(mb_copy);
   1744 		return;
   1745 	}
   1746 	i = MHLEN - max_linkhdr;
   1747 	if (i > len)
   1748 		i = len;
   1749 	mb_copy = m_pullup(mb_copy, i);
   1750 	if (mb_copy == NULL)
   1751 		return;
   1752 
   1753 	/*
   1754 	 * fill in the encapsulating IP header.
   1755 	 */
   1756 	ip_copy = mtod(mb_copy, struct ip *);
   1757 	*ip_copy = multicast_encap_iphdr;
   1758 	if (len < IP_MINFRAGSIZE)
   1759 		ip_copy->ip_id = 0;
   1760 	else
   1761 		ip_copy->ip_id = ip_newid(NULL);
   1762 	ip_copy->ip_len = htons(len);
   1763 	ip_copy->ip_src = vifp->v_lcl_addr;
   1764 	ip_copy->ip_dst = vifp->v_rmt_addr;
   1765 
   1766 	/*
   1767 	 * turn the encapsulated IP header back into a valid one.
   1768 	 */
   1769 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
   1770 	--ip->ip_ttl;
   1771 	ip->ip_sum = 0;
   1772 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   1773 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   1774 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   1775 
   1776 	if (vifp->v_rate_limit <= 0)
   1777 		tbf_send_packet(vifp, mb_copy);
   1778 	else
   1779 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   1780 }
   1781 
   1782 /*
   1783  * De-encapsulate a packet and feed it back through ip input.
   1784  */
   1785 static void
   1786 vif_input(struct mbuf *m, int off, int proto, void *eparg)
   1787 {
   1788 	struct vif *vifp = eparg;
   1789 
   1790 	KASSERT(vifp != NULL);
   1791 
   1792 	if (proto != ENCAP_PROTO) {
   1793 		m_freem(m);
   1794 		mrtstat.mrts_bad_tunnel++;
   1795 		return;
   1796 	}
   1797 
   1798 	m_adj(m, off);
   1799 	m_set_rcvif(m, vifp->v_ifp);
   1800 
   1801 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
   1802 		m_freem(m);
   1803 	}
   1804 }
   1805 
   1806 /*
   1807  * Check if the packet should be received on the vif denoted by arg.
   1808  * (The encap selection code will call this once per vif since each is
   1809  * registered separately.)
   1810  */
   1811 static int
   1812 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
   1813 {
   1814 	struct vif *vifp;
   1815 	struct ip ip;
   1816 
   1817 #ifdef DIAGNOSTIC
   1818 	if (!arg || proto != IPPROTO_IPV4)
   1819 		panic("unexpected arg in vif_encapcheck");
   1820 #endif
   1821 
   1822 	/*
   1823 	 * Accept the packet only if the inner heaader is multicast
   1824 	 * and the outer header matches a tunnel-mode vif.  Order
   1825 	 * checks in the hope that common non-matching packets will be
   1826 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
   1827 	 * parallel tunnel (e.g. gif(4)) is unlikely.
   1828 	 */
   1829 
   1830 	/* Obtain the outer IP header and the vif pointer. */
   1831 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (void *)&ip);
   1832 	vifp = (struct vif *)arg;
   1833 
   1834 	/*
   1835 	 * The outer source must match the vif's remote peer address.
   1836 	 * For a multicast router with several tunnels, this is the
   1837 	 * only check that will fail on packets in other tunnels,
   1838 	 * assuming the local address is the same.
   1839 	 */
   1840 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   1841 		return 0;
   1842 
   1843 	/* The outer destination must match the vif's local address. */
   1844 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
   1845 		return 0;
   1846 
   1847 	/* The vif must be of tunnel type. */
   1848 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
   1849 		return 0;
   1850 
   1851 	/* Check that the inner destination is multicast. */
   1852 	m_copydata((struct mbuf *)m, off, sizeof(ip), (void *)&ip);
   1853 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   1854 		return 0;
   1855 
   1856 	/*
   1857 	 * We have checked that both the outer src and dst addresses
   1858 	 * match the vif, and that the inner destination is multicast
   1859 	 * (224/5).  By claiming more than 64, we intend to
   1860 	 * preferentially take packets that also match a parallel
   1861 	 * gif(4).
   1862 	 */
   1863 	return 32 + 32 + 5;
   1864 }
   1865 
   1866 /*
   1867  * Token bucket filter module
   1868  */
   1869 static void
   1870 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
   1871 {
   1872 
   1873 	if (len > MAX_BKT_SIZE) {
   1874 		/* drop if packet is too large */
   1875 		mrtstat.mrts_pkt2large++;
   1876 		m_freem(m);
   1877 		return;
   1878 	}
   1879 
   1880 	tbf_update_tokens(vifp);
   1881 
   1882 	/*
   1883 	 * If there are enough tokens, and the queue is empty, send this packet
   1884 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   1885 	 */
   1886 	if (vifp->tbf_q_len == 0) {
   1887 		if (len <= vifp->tbf_n_tok) {
   1888 			vifp->tbf_n_tok -= len;
   1889 			tbf_send_packet(vifp, m);
   1890 		} else {
   1891 			/* queue packet and timeout till later */
   1892 			tbf_queue(vifp, m);
   1893 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1894 			    tbf_reprocess_q, vifp);
   1895 		}
   1896 	} else {
   1897 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   1898 		    !tbf_dq_sel(vifp, ip)) {
   1899 			/* queue full, and couldn't make room */
   1900 			mrtstat.mrts_q_overflow++;
   1901 			m_freem(m);
   1902 		} else {
   1903 			/* queue length low enough, or made room */
   1904 			tbf_queue(vifp, m);
   1905 			tbf_process_q(vifp);
   1906 		}
   1907 	}
   1908 }
   1909 
   1910 /*
   1911  * adds a packet to the queue at the interface
   1912  */
   1913 static void
   1914 tbf_queue(struct vif *vifp, struct mbuf *m)
   1915 {
   1916 	int s = splsoftnet();
   1917 
   1918 	/* insert at tail */
   1919 	*vifp->tbf_t = m;
   1920 	vifp->tbf_t = &m->m_nextpkt;
   1921 	vifp->tbf_q_len++;
   1922 
   1923 	splx(s);
   1924 }
   1925 
   1926 /*
   1927  * processes the queue at the interface
   1928  */
   1929 static void
   1930 tbf_process_q(struct vif *vifp)
   1931 {
   1932 	struct mbuf *m;
   1933 	int len;
   1934 	int s = splsoftnet();
   1935 
   1936 	/*
   1937 	 * Loop through the queue at the interface and send as many packets
   1938 	 * as possible.
   1939 	 */
   1940 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   1941 		len = ntohs(mtod(m, struct ip *)->ip_len);
   1942 
   1943 		/* determine if the packet can be sent */
   1944 		if (len <= vifp->tbf_n_tok) {
   1945 			/* if so,
   1946 			 * reduce no of tokens, dequeue the packet,
   1947 			 * send the packet.
   1948 			 */
   1949 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   1950 				vifp->tbf_t = &vifp->tbf_q;
   1951 			--vifp->tbf_q_len;
   1952 
   1953 			m->m_nextpkt = NULL;
   1954 			vifp->tbf_n_tok -= len;
   1955 			tbf_send_packet(vifp, m);
   1956 		} else
   1957 			break;
   1958 	}
   1959 	splx(s);
   1960 }
   1961 
   1962 static void
   1963 tbf_reprocess_q(void *arg)
   1964 {
   1965 	struct vif *vifp = arg;
   1966 
   1967 	if (ip_mrouter == NULL)
   1968 		return;
   1969 
   1970 	tbf_update_tokens(vifp);
   1971 	tbf_process_q(vifp);
   1972 
   1973 	if (vifp->tbf_q_len != 0)
   1974 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1975 		    tbf_reprocess_q, vifp);
   1976 }
   1977 
   1978 /* function that will selectively discard a member of the queue
   1979  * based on the precedence value and the priority
   1980  */
   1981 static int
   1982 tbf_dq_sel(struct vif *vifp, struct ip *ip)
   1983 {
   1984 	u_int p;
   1985 	struct mbuf **mp, *m;
   1986 	int s = splsoftnet();
   1987 
   1988 	p = priority(vifp, ip);
   1989 
   1990 	for (mp = &vifp->tbf_q, m = *mp;
   1991 	    m != NULL;
   1992 	    mp = &m->m_nextpkt, m = *mp) {
   1993 		if (p > priority(vifp, mtod(m, struct ip *))) {
   1994 			if ((*mp = m->m_nextpkt) == NULL)
   1995 				vifp->tbf_t = mp;
   1996 			--vifp->tbf_q_len;
   1997 
   1998 			m_freem(m);
   1999 			mrtstat.mrts_drop_sel++;
   2000 			splx(s);
   2001 			return 1;
   2002 		}
   2003 	}
   2004 	splx(s);
   2005 	return 0;
   2006 }
   2007 
   2008 static void
   2009 tbf_send_packet(struct vif *vifp, struct mbuf *m)
   2010 {
   2011 	int error;
   2012 	int s = splsoftnet();
   2013 
   2014 	if (vifp->v_flags & VIFF_TUNNEL) {
   2015 		/* If tunnel options */
   2016 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
   2017 	} else {
   2018 		/* if physical interface option, extract the options and then send */
   2019 		struct ip_moptions imo;
   2020 
   2021 		imo.imo_multicast_if_index = if_get_index(vifp->v_ifp);
   2022 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2023 		imo.imo_multicast_loop = 1;
   2024 
   2025 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
   2026 		    &imo, NULL);
   2027 
   2028 		if (mrtdebug & DEBUG_XMIT)
   2029 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2030 			    (long)(vifp - viftable), error);
   2031 	}
   2032 	splx(s);
   2033 }
   2034 
   2035 /* determine the current time and then
   2036  * the elapsed time (between the last time and time now)
   2037  * in milliseconds & update the no. of tokens in the bucket
   2038  */
   2039 static void
   2040 tbf_update_tokens(struct vif *vifp)
   2041 {
   2042 	struct timeval tp;
   2043 	u_int32_t tm;
   2044 	int s = splsoftnet();
   2045 
   2046 	microtime(&tp);
   2047 
   2048 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2049 
   2050 	/*
   2051 	 * This formula is actually
   2052 	 * "time in seconds" * "bytes/second".
   2053 	 *
   2054 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2055 	 *
   2056 	 * The (1000/1024) was introduced in add_vif to optimize
   2057 	 * this divide into a shift.
   2058 	 */
   2059 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2060 	vifp->tbf_last_pkt_t = tp;
   2061 
   2062 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2063 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2064 
   2065 	splx(s);
   2066 }
   2067 
   2068 static int
   2069 priority(struct vif *vifp, struct ip *ip)
   2070 {
   2071 	int prio = 50;	/* the lowest priority -- default case */
   2072 
   2073 	/* temporary hack; may add general packet classifier some day */
   2074 
   2075 	/*
   2076 	 * XXX XXX: We're reading the UDP header, but we didn't ensure
   2077 	 * it was present in the packet.
   2078 	 */
   2079 
   2080 	/*
   2081 	 * The UDP port space is divided up into four priority ranges:
   2082 	 * [0, 16384)     : unclassified - lowest priority
   2083 	 * [16384, 32768) : audio - highest priority
   2084 	 * [32768, 49152) : whiteboard - medium priority
   2085 	 * [49152, 65536) : video - low priority
   2086 	 */
   2087 	if (ip->ip_p == IPPROTO_UDP) {
   2088 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2089 
   2090 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2091 		case 0x4000:
   2092 			prio = 70;
   2093 			break;
   2094 		case 0x8000:
   2095 			prio = 60;
   2096 			break;
   2097 		case 0xc000:
   2098 			prio = 55;
   2099 			break;
   2100 		}
   2101 
   2102 		if (tbfdebug > 1)
   2103 			log(LOG_DEBUG, "port %x prio %d\n",
   2104 			    ntohs(udp->uh_dport), prio);
   2105 	}
   2106 
   2107 	return prio;
   2108 }
   2109 
   2110 /*
   2111  * Code for bandwidth monitors
   2112  */
   2113 
   2114 /*
   2115  * Define common interface for timeval-related methods
   2116  */
   2117 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2118 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2119 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2120 
   2121 static uint32_t
   2122 compute_bw_meter_flags(struct bw_upcall *req)
   2123 {
   2124 	uint32_t flags = 0;
   2125 
   2126 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2127 		flags |= BW_METER_UNIT_PACKETS;
   2128 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2129 		flags |= BW_METER_UNIT_BYTES;
   2130 	if (req->bu_flags & BW_UPCALL_GEQ)
   2131 		flags |= BW_METER_GEQ;
   2132 	if (req->bu_flags & BW_UPCALL_LEQ)
   2133 		flags |= BW_METER_LEQ;
   2134 
   2135 	return flags;
   2136 }
   2137 
   2138 /*
   2139  * Add a bw_meter entry
   2140  */
   2141 static int
   2142 add_bw_upcall(struct bw_upcall *req)
   2143 {
   2144 	int s;
   2145 	struct mfc *mfc;
   2146 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2147 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2148 	struct timeval now;
   2149 	struct bw_meter *x;
   2150 	uint32_t flags;
   2151 
   2152 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2153 		return EOPNOTSUPP;
   2154 
   2155 	/* Test if the flags are valid */
   2156 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2157 		return EINVAL;
   2158 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2159 		return EINVAL;
   2160 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2161 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2162 		return EINVAL;
   2163 
   2164 	/* Test if the threshold time interval is valid */
   2165 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2166 		return EINVAL;
   2167 
   2168 	flags = compute_bw_meter_flags(req);
   2169 
   2170 	/*
   2171 	 * Find if we have already same bw_meter entry
   2172 	 */
   2173 	s = splsoftnet();
   2174 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2175 	if (mfc == NULL) {
   2176 		splx(s);
   2177 		return EADDRNOTAVAIL;
   2178 	}
   2179 	for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2180 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2181 		    &req->bu_threshold.b_time, ==)) &&
   2182 		    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2183 		    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2184 		    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2185 			splx(s);
   2186 			return 0;		/* XXX Already installed */
   2187 		}
   2188 	}
   2189 
   2190 	/* Allocate the new bw_meter entry */
   2191 	x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
   2192 	if (x == NULL) {
   2193 		splx(s);
   2194 		return ENOBUFS;
   2195 	}
   2196 
   2197 	/* Set the new bw_meter entry */
   2198 	x->bm_threshold.b_time = req->bu_threshold.b_time;
   2199 	microtime(&now);
   2200 	x->bm_start_time = now;
   2201 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2202 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2203 	x->bm_measured.b_packets = 0;
   2204 	x->bm_measured.b_bytes = 0;
   2205 	x->bm_flags = flags;
   2206 	x->bm_time_next = NULL;
   2207 	x->bm_time_hash = BW_METER_BUCKETS;
   2208 
   2209 	/* Add the new bw_meter entry to the front of entries for this MFC */
   2210 	x->bm_mfc = mfc;
   2211 	x->bm_mfc_next = mfc->mfc_bw_meter;
   2212 	mfc->mfc_bw_meter = x;
   2213 	schedule_bw_meter(x, &now);
   2214 	splx(s);
   2215 
   2216 	return 0;
   2217 }
   2218 
   2219 static void
   2220 free_bw_list(struct bw_meter *list)
   2221 {
   2222 	while (list != NULL) {
   2223 		struct bw_meter *x = list;
   2224 
   2225 		list = list->bm_mfc_next;
   2226 		unschedule_bw_meter(x);
   2227 		kmem_intr_free(x, sizeof(*x));
   2228 	}
   2229 }
   2230 
   2231 /*
   2232  * Delete one or multiple bw_meter entries
   2233  */
   2234 static int
   2235 del_bw_upcall(struct bw_upcall *req)
   2236 {
   2237 	int s;
   2238 	struct mfc *mfc;
   2239 	struct bw_meter *x;
   2240 
   2241 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2242 		return EOPNOTSUPP;
   2243 
   2244 	s = splsoftnet();
   2245 	/* Find the corresponding MFC entry */
   2246 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2247 	if (mfc == NULL) {
   2248 		splx(s);
   2249 		return EADDRNOTAVAIL;
   2250 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2251 		/*
   2252 		 * Delete all bw_meter entries for this mfc
   2253 		 */
   2254 		struct bw_meter *list;
   2255 
   2256 		list = mfc->mfc_bw_meter;
   2257 		mfc->mfc_bw_meter = NULL;
   2258 		free_bw_list(list);
   2259 		splx(s);
   2260 		return 0;
   2261 	} else {			/* Delete a single bw_meter entry */
   2262 		struct bw_meter *prev;
   2263 		uint32_t flags = 0;
   2264 
   2265 		flags = compute_bw_meter_flags(req);
   2266 
   2267 		/* Find the bw_meter entry to delete */
   2268 		for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2269 		     prev = x, x = x->bm_mfc_next) {
   2270 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2271 			    &req->bu_threshold.b_time, ==)) &&
   2272 			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2273 			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2274 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2275 				break;
   2276 		}
   2277 		if (x != NULL) { /* Delete entry from the list for this MFC */
   2278 			if (prev != NULL)
   2279 				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2280 			else
   2281 				x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2282 
   2283 			unschedule_bw_meter(x);
   2284 			splx(s);
   2285 			/* Free the bw_meter entry */
   2286 			kmem_intr_free(x, sizeof(*x));
   2287 			return 0;
   2288 		} else {
   2289 			splx(s);
   2290 			return EINVAL;
   2291 		}
   2292 	}
   2293 	/* NOTREACHED */
   2294 }
   2295 
   2296 /*
   2297  * Perform bandwidth measurement processing that may result in an upcall
   2298  */
   2299 static void
   2300 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2301 {
   2302 	struct timeval delta;
   2303 
   2304 	delta = *nowp;
   2305 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2306 
   2307 	if (x->bm_flags & BW_METER_GEQ) {
   2308 		/*
   2309 		 * Processing for ">=" type of bw_meter entry
   2310 		 */
   2311 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2312 			/* Reset the bw_meter entry */
   2313 			x->bm_start_time = *nowp;
   2314 			x->bm_measured.b_packets = 0;
   2315 			x->bm_measured.b_bytes = 0;
   2316 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2317 		}
   2318 
   2319 		/* Record that a packet is received */
   2320 		x->bm_measured.b_packets++;
   2321 		x->bm_measured.b_bytes += plen;
   2322 
   2323 		/*
   2324 		 * Test if we should deliver an upcall
   2325 		 */
   2326 		if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2327 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2328 				 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2329 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2330 				 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2331 				/* Prepare an upcall for delivery */
   2332 				bw_meter_prepare_upcall(x, nowp);
   2333 				x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2334 			}
   2335 		}
   2336 	} else if (x->bm_flags & BW_METER_LEQ) {
   2337 		/*
   2338 		 * Processing for "<=" type of bw_meter entry
   2339 		 */
   2340 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2341 			/*
   2342 			 * We are behind time with the multicast forwarding table
   2343 			 * scanning for "<=" type of bw_meter entries, so test now
   2344 			 * if we should deliver an upcall.
   2345 			 */
   2346 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2347 				 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2348 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2349 				 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2350 				/* Prepare an upcall for delivery */
   2351 				bw_meter_prepare_upcall(x, nowp);
   2352 			}
   2353 			/* Reschedule the bw_meter entry */
   2354 			unschedule_bw_meter(x);
   2355 			schedule_bw_meter(x, nowp);
   2356 		}
   2357 
   2358 		/* Record that a packet is received */
   2359 		x->bm_measured.b_packets++;
   2360 		x->bm_measured.b_bytes += plen;
   2361 
   2362 		/*
   2363 		 * Test if we should restart the measuring interval
   2364 		 */
   2365 		if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2366 		     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2367 		    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2368 		     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2369 			/* Don't restart the measuring interval */
   2370 		} else {
   2371 			/* Do restart the measuring interval */
   2372 			/*
   2373 			 * XXX: note that we don't unschedule and schedule, because this
   2374 			 * might be too much overhead per packet. Instead, when we process
   2375 			 * all entries for a given timer hash bin, we check whether it is
   2376 			 * really a timeout. If not, we reschedule at that time.
   2377 			 */
   2378 			x->bm_start_time = *nowp;
   2379 			x->bm_measured.b_packets = 0;
   2380 			x->bm_measured.b_bytes = 0;
   2381 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2382 		}
   2383 	}
   2384 }
   2385 
   2386 /*
   2387  * Prepare a bandwidth-related upcall
   2388  */
   2389 static void
   2390 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2391 {
   2392 	struct timeval delta;
   2393 	struct bw_upcall *u;
   2394 
   2395 	/*
   2396 	 * Compute the measured time interval
   2397 	 */
   2398 	delta = *nowp;
   2399 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2400 
   2401 	/*
   2402 	 * If there are too many pending upcalls, deliver them now
   2403 	 */
   2404 	if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2405 		bw_upcalls_send();
   2406 
   2407 	/*
   2408 	 * Set the bw_upcall entry
   2409 	 */
   2410 	u = &bw_upcalls[bw_upcalls_n++];
   2411 	u->bu_src = x->bm_mfc->mfc_origin;
   2412 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2413 	u->bu_threshold.b_time = x->bm_threshold.b_time;
   2414 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2415 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2416 	u->bu_measured.b_time = delta;
   2417 	u->bu_measured.b_packets = x->bm_measured.b_packets;
   2418 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2419 	u->bu_flags = 0;
   2420 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2421 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2422 	if (x->bm_flags & BW_METER_UNIT_BYTES)
   2423 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2424 	if (x->bm_flags & BW_METER_GEQ)
   2425 		u->bu_flags |= BW_UPCALL_GEQ;
   2426 	if (x->bm_flags & BW_METER_LEQ)
   2427 		u->bu_flags |= BW_UPCALL_LEQ;
   2428 }
   2429 
   2430 /*
   2431  * Send the pending bandwidth-related upcalls
   2432  */
   2433 static void
   2434 bw_upcalls_send(void)
   2435 {
   2436 	struct mbuf *m;
   2437 	int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2438 	struct sockaddr_in k_igmpsrc = {
   2439 		.sin_len = sizeof(k_igmpsrc),
   2440 		.sin_family = AF_INET,
   2441 	};
   2442 	static struct igmpmsg igmpmsg = {
   2443 		0,		/* unused1 */
   2444 		0,		/* unused2 */
   2445 		IGMPMSG_BW_UPCALL,/* im_msgtype */
   2446 		0,		/* im_mbz */
   2447 		0,		/* im_vif */
   2448 		0,		/* unused3 */
   2449 		{ 0 },		/* im_src */
   2450 		{ 0 }		/* im_dst */
   2451 	};
   2452 
   2453 	if (bw_upcalls_n == 0)
   2454 		return;			/* No pending upcalls */
   2455 
   2456 	bw_upcalls_n = 0;
   2457 
   2458 	/*
   2459 	 * Allocate a new mbuf, initialize it with the header and
   2460 	 * the payload for the pending calls.
   2461 	 */
   2462 	MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2463 	if (m == NULL) {
   2464 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2465 		return;
   2466 	}
   2467 
   2468 	m->m_len = m->m_pkthdr.len = 0;
   2469 	m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
   2470 	m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
   2471 
   2472 	/*
   2473 	 * Send the upcalls
   2474 	 * XXX do we need to set the address in k_igmpsrc ?
   2475 	 */
   2476 	mrtstat.mrts_upcalls++;
   2477 	if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2478 		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2479 		++mrtstat.mrts_upq_sockfull;
   2480 	}
   2481 }
   2482 
   2483 /*
   2484  * Compute the timeout hash value for the bw_meter entries
   2485  */
   2486 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2487     do {								\
   2488 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2489 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time);	\
   2490 	(hash) = next_timeval.tv_sec;					\
   2491 	if (next_timeval.tv_usec)					\
   2492 		(hash)++; /* XXX: make sure we don't timeout early */	\
   2493 	(hash) %= BW_METER_BUCKETS;					\
   2494     } while (/*CONSTCOND*/ 0)
   2495 
   2496 /*
   2497  * Schedule a timer to process periodically bw_meter entry of type "<="
   2498  * by linking the entry in the proper hash bucket.
   2499  */
   2500 static void
   2501 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   2502 {
   2503 	int time_hash;
   2504 
   2505 	if (!(x->bm_flags & BW_METER_LEQ))
   2506 		return;		/* XXX: we schedule timers only for "<=" entries */
   2507 
   2508 	/*
   2509 	 * Reset the bw_meter entry
   2510 	 */
   2511 	x->bm_start_time = *nowp;
   2512 	x->bm_measured.b_packets = 0;
   2513 	x->bm_measured.b_bytes = 0;
   2514 	x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2515 
   2516 	/*
   2517 	 * Compute the timeout hash value and insert the entry
   2518 	 */
   2519 	BW_METER_TIMEHASH(x, time_hash);
   2520 	x->bm_time_next = bw_meter_timers[time_hash];
   2521 	bw_meter_timers[time_hash] = x;
   2522 	x->bm_time_hash = time_hash;
   2523 }
   2524 
   2525 /*
   2526  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   2527  * by removing the entry from the proper hash bucket.
   2528  */
   2529 static void
   2530 unschedule_bw_meter(struct bw_meter *x)
   2531 {
   2532 	int time_hash;
   2533 	struct bw_meter *prev, *tmp;
   2534 
   2535 	if (!(x->bm_flags & BW_METER_LEQ))
   2536 		return;		/* XXX: we schedule timers only for "<=" entries */
   2537 
   2538 	/*
   2539 	 * Compute the timeout hash value and delete the entry
   2540 	 */
   2541 	time_hash = x->bm_time_hash;
   2542 	if (time_hash >= BW_METER_BUCKETS)
   2543 		return;		/* Entry was not scheduled */
   2544 
   2545 	for (prev = NULL, tmp = bw_meter_timers[time_hash];
   2546 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   2547 		if (tmp == x)
   2548 			break;
   2549 
   2550 	if (tmp == NULL)
   2551 		panic("unschedule_bw_meter: bw_meter entry not found");
   2552 
   2553 	if (prev != NULL)
   2554 		prev->bm_time_next = x->bm_time_next;
   2555 	else
   2556 		bw_meter_timers[time_hash] = x->bm_time_next;
   2557 
   2558 	x->bm_time_next = NULL;
   2559 	x->bm_time_hash = BW_METER_BUCKETS;
   2560 }
   2561 
   2562 /*
   2563  * Process all "<=" type of bw_meter that should be processed now,
   2564  * and for each entry prepare an upcall if necessary. Each processed
   2565  * entry is rescheduled again for the (periodic) processing.
   2566  *
   2567  * This is run periodically (once per second normally). On each round,
   2568  * all the potentially matching entries are in the hash slot that we are
   2569  * looking at.
   2570  */
   2571 static void
   2572 bw_meter_process(void)
   2573 {
   2574 	int s;
   2575 	static uint32_t last_tv_sec;	/* last time we processed this */
   2576 
   2577 	uint32_t loops;
   2578 	int i;
   2579 	struct timeval now, process_endtime;
   2580 
   2581 	microtime(&now);
   2582 	if (last_tv_sec == now.tv_sec)
   2583 		return;		/* nothing to do */
   2584 
   2585 	loops = now.tv_sec - last_tv_sec;
   2586 	last_tv_sec = now.tv_sec;
   2587 	if (loops > BW_METER_BUCKETS)
   2588 		loops = BW_METER_BUCKETS;
   2589 
   2590 	s = splsoftnet();
   2591 	/*
   2592 	 * Process all bins of bw_meter entries from the one after the last
   2593 	 * processed to the current one. On entry, i points to the last bucket
   2594 	 * visited, so we need to increment i at the beginning of the loop.
   2595 	 */
   2596 	for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   2597 		struct bw_meter *x, *tmp_list;
   2598 
   2599 		if (++i >= BW_METER_BUCKETS)
   2600 			i = 0;
   2601 
   2602 		/* Disconnect the list of bw_meter entries from the bin */
   2603 		tmp_list = bw_meter_timers[i];
   2604 		bw_meter_timers[i] = NULL;
   2605 
   2606 		/* Process the list of bw_meter entries */
   2607 		while (tmp_list != NULL) {
   2608 			x = tmp_list;
   2609 			tmp_list = tmp_list->bm_time_next;
   2610 
   2611 			/* Test if the time interval is over */
   2612 			process_endtime = x->bm_start_time;
   2613 			BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   2614 			if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   2615 				/* Not yet: reschedule, but don't reset */
   2616 				int time_hash;
   2617 
   2618 				BW_METER_TIMEHASH(x, time_hash);
   2619 				if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   2620 					/*
   2621 					 * XXX: somehow the bin processing is a bit ahead of time.
   2622 					 * Put the entry in the next bin.
   2623 					 */
   2624 					if (++time_hash >= BW_METER_BUCKETS)
   2625 						time_hash = 0;
   2626 				}
   2627 				x->bm_time_next = bw_meter_timers[time_hash];
   2628 				bw_meter_timers[time_hash] = x;
   2629 				x->bm_time_hash = time_hash;
   2630 
   2631 				continue;
   2632 			}
   2633 
   2634 			/*
   2635 			 * Test if we should deliver an upcall
   2636 			 */
   2637 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2638 			    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2639 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2640 			    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2641 				/* Prepare an upcall for delivery */
   2642 				bw_meter_prepare_upcall(x, &now);
   2643 			}
   2644 
   2645 			/*
   2646 			  * Reschedule for next processing
   2647 			 */
   2648 			schedule_bw_meter(x, &now);
   2649 		}
   2650 	}
   2651 
   2652 	/* Send all upcalls that are pending delivery */
   2653 	bw_upcalls_send();
   2654 
   2655 	splx(s);
   2656 }
   2657 
   2658 /*
   2659  * A periodic function for sending all upcalls that are pending delivery
   2660  */
   2661 static void
   2662 expire_bw_upcalls_send(void *unused)
   2663 {
   2664 	int s;
   2665 
   2666 	s = splsoftnet();
   2667 	bw_upcalls_send();
   2668 	splx(s);
   2669 
   2670 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   2671 	    expire_bw_upcalls_send, NULL);
   2672 }
   2673 
   2674 /*
   2675  * A periodic function for periodic scanning of the multicast forwarding
   2676  * table for processing all "<=" bw_meter entries.
   2677  */
   2678 static void
   2679 expire_bw_meter_process(void *unused)
   2680 {
   2681 	if (mrt_api_config & MRT_MFC_BW_UPCALL)
   2682 		bw_meter_process();
   2683 
   2684 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   2685 	    expire_bw_meter_process, NULL);
   2686 }
   2687 
   2688 /*
   2689  * End of bandwidth monitoring code
   2690  */
   2691 
   2692 #ifdef PIM
   2693 /*
   2694  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   2695  */
   2696 static int
   2697 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
   2698     struct mfc *rt)
   2699 {
   2700 	struct mbuf *mb_copy, *mm;
   2701 
   2702 	if (mrtdebug & DEBUG_PIM)
   2703 		log(LOG_DEBUG, "pim_register_send: \n");
   2704 
   2705 	mb_copy = pim_register_prepare(ip, m);
   2706 	if (mb_copy == NULL)
   2707 		return ENOBUFS;
   2708 
   2709 	/*
   2710 	 * Send all the fragments. Note that the mbuf for each fragment
   2711 	 * is freed by the sending machinery.
   2712 	 */
   2713 	for (mm = mb_copy; mm; mm = mb_copy) {
   2714 		mb_copy = mm->m_nextpkt;
   2715 		mm->m_nextpkt = NULL;
   2716 		mm = m_pullup(mm, sizeof(struct ip));
   2717 		if (mm != NULL) {
   2718 			ip = mtod(mm, struct ip *);
   2719 			if ((mrt_api_config & MRT_MFC_RP) &&
   2720 			    !in_nullhost(rt->mfc_rp)) {
   2721 				pim_register_send_rp(ip, vifp, mm, rt);
   2722 			} else {
   2723 				pim_register_send_upcall(ip, vifp, mm, rt);
   2724 			}
   2725 		}
   2726 	}
   2727 
   2728 	return 0;
   2729 }
   2730 
   2731 /*
   2732  * Return a copy of the data packet that is ready for PIM Register
   2733  * encapsulation.
   2734  * XXX: Note that in the returned copy the IP header is a valid one.
   2735  */
   2736 static struct mbuf *
   2737 pim_register_prepare(struct ip *ip, struct mbuf *m)
   2738 {
   2739 	struct mbuf *mb_copy = NULL;
   2740 	int mtu;
   2741 
   2742 	/* Take care of delayed checksums */
   2743 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2744 		in_delayed_cksum(m);
   2745 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   2746 	}
   2747 
   2748 	/*
   2749 	 * Copy the old packet & pullup its IP header into the
   2750 	 * new mbuf so we can modify it.
   2751 	 */
   2752 	mb_copy = m_copypacket(m, M_DONTWAIT);
   2753 	if (mb_copy == NULL)
   2754 		return NULL;
   2755 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   2756 	if (mb_copy == NULL)
   2757 		return NULL;
   2758 
   2759 	/* take care of the TTL */
   2760 	ip = mtod(mb_copy, struct ip *);
   2761 	--ip->ip_ttl;
   2762 
   2763 	/* Compute the MTU after the PIM Register encapsulation */
   2764 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   2765 
   2766 	if (ntohs(ip->ip_len) <= mtu) {
   2767 		/* Turn the IP header into a valid one */
   2768 		ip->ip_sum = 0;
   2769 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   2770 	} else {
   2771 		/* Fragment the packet */
   2772 		if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   2773 			/* XXX: mb_copy was freed by ip_fragment() */
   2774 			return NULL;
   2775 		}
   2776 	}
   2777 	return mb_copy;
   2778 }
   2779 
   2780 /*
   2781  * Send an upcall with the data packet to the user-level process.
   2782  */
   2783 static int
   2784 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   2785     struct mbuf *mb_copy, struct mfc *rt)
   2786 {
   2787 	struct mbuf *mb_first;
   2788 	int len = ntohs(ip->ip_len);
   2789 	struct igmpmsg *im;
   2790 	struct sockaddr_in k_igmpsrc = {
   2791 		.sin_len = sizeof(k_igmpsrc),
   2792 		.sin_family = AF_INET,
   2793 	};
   2794 
   2795 	/*
   2796 	 * Add a new mbuf with an upcall header
   2797 	 */
   2798 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   2799 	if (mb_first == NULL) {
   2800 		m_freem(mb_copy);
   2801 		return ENOBUFS;
   2802 	}
   2803 	mb_first->m_data += max_linkhdr;
   2804 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   2805 	mb_first->m_len = sizeof(struct igmpmsg);
   2806 	mb_first->m_next = mb_copy;
   2807 
   2808 	/* Send message to routing daemon */
   2809 	im = mtod(mb_first, struct igmpmsg *);
   2810 	im->im_msgtype	= IGMPMSG_WHOLEPKT;
   2811 	im->im_mbz	= 0;
   2812 	im->im_vif	= vifp - viftable;
   2813 	im->im_src	= ip->ip_src;
   2814 	im->im_dst	= ip->ip_dst;
   2815 
   2816 	k_igmpsrc.sin_addr	= ip->ip_src;
   2817 
   2818 	mrtstat.mrts_upcalls++;
   2819 
   2820 	if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   2821 		if (mrtdebug & DEBUG_PIM)
   2822 			log(LOG_WARNING,
   2823 			    "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
   2824 		++mrtstat.mrts_upq_sockfull;
   2825 		return ENOBUFS;
   2826 	}
   2827 
   2828 	/* Keep statistics */
   2829 	pimstat.pims_snd_registers_msgs++;
   2830 	pimstat.pims_snd_registers_bytes += len;
   2831 
   2832 	return 0;
   2833 }
   2834 
   2835 /*
   2836  * Encapsulate the data packet in PIM Register message and send it to the RP.
   2837  */
   2838 static int
   2839 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   2840     struct mbuf *mb_copy, struct mfc *rt)
   2841 {
   2842 	struct mbuf *mb_first;
   2843 	struct ip *ip_outer;
   2844 	struct pim_encap_pimhdr *pimhdr;
   2845 	int len = ntohs(ip->ip_len);
   2846 	vifi_t vifi = rt->mfc_parent;
   2847 
   2848 	if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   2849 		m_freem(mb_copy);
   2850 		return EADDRNOTAVAIL;		/* The iif vif is invalid */
   2851 	}
   2852 
   2853 	/*
   2854 	 * Add a new mbuf with the encapsulating header
   2855 	 */
   2856 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   2857 	if (mb_first == NULL) {
   2858 		m_freem(mb_copy);
   2859 		return ENOBUFS;
   2860 	}
   2861 	mb_first->m_data += max_linkhdr;
   2862 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   2863 	mb_first->m_next = mb_copy;
   2864 
   2865 	mb_first->m_pkthdr.len = len + mb_first->m_len;
   2866 
   2867 	/*
   2868 	 * Fill in the encapsulating IP and PIM header
   2869 	 */
   2870 	ip_outer = mtod(mb_first, struct ip *);
   2871 	*ip_outer = pim_encap_iphdr;
   2872 	if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
   2873 		ip_outer->ip_id = 0;
   2874 	else
   2875 		ip_outer->ip_id = ip_newid(NULL);
   2876 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   2877 	    sizeof(pim_encap_pimhdr));
   2878 	ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   2879 	ip_outer->ip_dst = rt->mfc_rp;
   2880 	/*
   2881 	 * Copy the inner header TOS to the outer header, and take care of the
   2882 	 * IP_DF bit.
   2883 	 */
   2884 	ip_outer->ip_tos = ip->ip_tos;
   2885 	if (ntohs(ip->ip_off) & IP_DF)
   2886 		ip_outer->ip_off |= htons(IP_DF);
   2887 	pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
   2888 	    + sizeof(pim_encap_iphdr));
   2889 	*pimhdr = pim_encap_pimhdr;
   2890 	/* If the iif crosses a border, set the Border-bit */
   2891 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   2892 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   2893 
   2894 	mb_first->m_data += sizeof(pim_encap_iphdr);
   2895 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   2896 	mb_first->m_data -= sizeof(pim_encap_iphdr);
   2897 
   2898 	if (vifp->v_rate_limit == 0)
   2899 		tbf_send_packet(vifp, mb_first);
   2900 	else
   2901 		tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   2902 
   2903 	/* Keep statistics */
   2904 	pimstat.pims_snd_registers_msgs++;
   2905 	pimstat.pims_snd_registers_bytes += len;
   2906 
   2907 	return 0;
   2908 }
   2909 
   2910 /*
   2911  * PIM-SMv2 and PIM-DM messages processing.
   2912  * Receives and verifies the PIM control messages, and passes them
   2913  * up to the listening socket, using rip_input().
   2914  * The only message with special processing is the PIM_REGISTER message
   2915  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   2916  * is passed to if_simloop().
   2917  */
   2918 void
   2919 pim_input(struct mbuf *m, ...)
   2920 {
   2921 	struct ip *ip = mtod(m, struct ip *);
   2922 	struct pim *pim;
   2923 	int minlen;
   2924 	int datalen;
   2925 	int ip_tos;
   2926 	int proto;
   2927 	int iphlen;
   2928 	va_list ap;
   2929 
   2930 	va_start(ap, m);
   2931 	iphlen = va_arg(ap, int);
   2932 	proto = va_arg(ap, int);
   2933 	va_end(ap);
   2934 
   2935 	datalen = ntohs(ip->ip_len) - iphlen;
   2936 
   2937 	/* Keep statistics */
   2938 	pimstat.pims_rcv_total_msgs++;
   2939 	pimstat.pims_rcv_total_bytes += datalen;
   2940 
   2941 	/*
   2942 	 * Validate lengths
   2943 	 */
   2944 	if (datalen < PIM_MINLEN) {
   2945 		pimstat.pims_rcv_tooshort++;
   2946 		log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   2947 		    datalen, (u_long)ip->ip_src.s_addr);
   2948 		m_freem(m);
   2949 		return;
   2950 	}
   2951 
   2952 	/*
   2953 	 * If the packet is at least as big as a REGISTER, go ahead
   2954 	 * and grab the PIM REGISTER header size, to avoid another
   2955 	 * possible m_pullup() later.
   2956 	 *
   2957 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   2958 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   2959 	 */
   2960 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   2961 
   2962 	/*
   2963 	 * Get the IP and PIM headers in contiguous memory, and
   2964 	 * possibly the PIM REGISTER header.
   2965 	 */
   2966 	if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   2967 	    (m = m_pullup(m, minlen)) == NULL) {
   2968 		log(LOG_ERR, "pim_input: m_pullup failure\n");
   2969 		return;
   2970 	}
   2971 	ip = mtod(m, struct ip *);
   2972 	ip_tos = ip->ip_tos;
   2973 
   2974 	/* adjust mbuf to point to the PIM header */
   2975 	m->m_data += iphlen;
   2976 	m->m_len  -= iphlen;
   2977 	pim = mtod(m, struct pim *);
   2978 
   2979 	/*
   2980 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
   2981 	 *
   2982 	 * XXX: some older PIMv2 implementations don't make this distinction,
   2983 	 * so for compatibility reason perform the checksum over part of the
   2984 	 * message, and if error, then over the whole message.
   2985 	 */
   2986 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   2987 		/* do nothing, checksum okay */
   2988 	} else if (in_cksum(m, datalen)) {
   2989 		pimstat.pims_rcv_badsum++;
   2990 		if (mrtdebug & DEBUG_PIM)
   2991 			log(LOG_DEBUG, "pim_input: invalid checksum\n");
   2992 		m_freem(m);
   2993 		return;
   2994 	}
   2995 
   2996 	/* PIM version check */
   2997 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   2998 		pimstat.pims_rcv_badversion++;
   2999 		log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3000 		    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3001 		m_freem(m);
   3002 		return;
   3003 	}
   3004 
   3005 	/* restore mbuf back to the outer IP */
   3006 	m->m_data -= iphlen;
   3007 	m->m_len  += iphlen;
   3008 
   3009 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3010 		/*
   3011 		 * Since this is a REGISTER, we'll make a copy of the register
   3012 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3013 		 * routing daemon.
   3014 		 */
   3015 		int s;
   3016 		struct sockaddr_in dst = {
   3017 			.sin_len = sizeof(dst),
   3018 			.sin_family = AF_INET,
   3019 		};
   3020 		struct mbuf *mcp;
   3021 		struct ip *encap_ip;
   3022 		u_int32_t *reghdr;
   3023 		struct ifnet *vifp;
   3024 
   3025 		s = splsoftnet();
   3026 		if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3027 			splx(s);
   3028 			if (mrtdebug & DEBUG_PIM)
   3029 				log(LOG_DEBUG,
   3030 				    "pim_input: register vif not set: %d\n", reg_vif_num);
   3031 			m_freem(m);
   3032 			return;
   3033 		}
   3034 		/* XXX need refcnt? */
   3035 		vifp = viftable[reg_vif_num].v_ifp;
   3036 		splx(s);
   3037 
   3038 		/*
   3039 		 * Validate length
   3040 		 */
   3041 		if (datalen < PIM_REG_MINLEN) {
   3042 			pimstat.pims_rcv_tooshort++;
   3043 			pimstat.pims_rcv_badregisters++;
   3044 			log(LOG_ERR,
   3045 			    "pim_input: register packet size too small %d from %lx\n",
   3046 			    datalen, (u_long)ip->ip_src.s_addr);
   3047 			m_freem(m);
   3048 			return;
   3049 		}
   3050 
   3051 		reghdr = (u_int32_t *)(pim + 1);
   3052 		encap_ip = (struct ip *)(reghdr + 1);
   3053 
   3054 		if (mrtdebug & DEBUG_PIM) {
   3055 			log(LOG_DEBUG,
   3056 			    "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3057 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
   3058 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
   3059 			    ntohs(encap_ip->ip_len));
   3060 		}
   3061 
   3062 		/* verify the version number of the inner packet */
   3063 		if (encap_ip->ip_v != IPVERSION) {
   3064 			pimstat.pims_rcv_badregisters++;
   3065 			if (mrtdebug & DEBUG_PIM) {
   3066 				log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3067 				    "of the inner packet\n", encap_ip->ip_v);
   3068 			}
   3069 			m_freem(m);
   3070 			return;
   3071 		}
   3072 
   3073 		/* verify the inner packet doesn't have options */
   3074 		if (encap_ip->ip_hl != (sizeof(struct ip) >> 2)) {
   3075 			pimstat.pims_rcv_badregisters++;
   3076 			m_freem(m);
   3077 			return;
   3078 		}
   3079 
   3080 		/* verify the inner packet is destined to a mcast group */
   3081 		if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3082 			pimstat.pims_rcv_badregisters++;
   3083 			 if (mrtdebug & DEBUG_PIM)
   3084 				log(LOG_DEBUG,
   3085 				    "pim_input: inner packet of register is not "
   3086 				    "multicast %lx\n",
   3087 				    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3088 			m_freem(m);
   3089 			return;
   3090 		}
   3091 
   3092 		/* If a NULL_REGISTER, pass it to the daemon */
   3093 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3094 			goto pim_input_to_daemon;
   3095 
   3096 		/*
   3097 		 * Copy the TOS from the outer IP header to the inner IP header.
   3098 		 */
   3099 		if (encap_ip->ip_tos != ip_tos) {
   3100 			/* Outer TOS -> inner TOS */
   3101 			encap_ip->ip_tos = ip_tos;
   3102 			/* Recompute the inner header checksum. Sigh... */
   3103 
   3104 			/* adjust mbuf to point to the inner IP header */
   3105 			m->m_data += (iphlen + PIM_MINLEN);
   3106 			m->m_len  -= (iphlen + PIM_MINLEN);
   3107 
   3108 			encap_ip->ip_sum = 0;
   3109 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3110 
   3111 			/* restore mbuf to point back to the outer IP header */
   3112 			m->m_data -= (iphlen + PIM_MINLEN);
   3113 			m->m_len  += (iphlen + PIM_MINLEN);
   3114 		}
   3115 
   3116 		/*
   3117 		 * Decapsulate the inner IP packet and loopback to forward it
   3118 		 * as a normal multicast packet. Also, make a copy of the
   3119 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3120 		 * to pass to the daemon later, so it can take the appropriate
   3121 		 * actions (e.g., send back PIM_REGISTER_STOP).
   3122 		 * XXX: here m->m_data points to the outer IP header.
   3123 		 */
   3124 		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
   3125 		if (mcp == NULL) {
   3126 			log(LOG_ERR,
   3127 			    "pim_input: pim register: could not copy register head\n");
   3128 			m_freem(m);
   3129 			return;
   3130 		}
   3131 
   3132 		/* Keep statistics */
   3133 		/* XXX: registers_bytes include only the encap. mcast pkt */
   3134 		pimstat.pims_rcv_registers_msgs++;
   3135 		pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3136 
   3137 		/*
   3138 		 * forward the inner ip packet; point m_data at the inner ip.
   3139 		 */
   3140 		m_adj(m, iphlen + PIM_MINLEN);
   3141 
   3142 		if (mrtdebug & DEBUG_PIM) {
   3143 			log(LOG_DEBUG,
   3144 			    "pim_input: forwarding decapsulated register: "
   3145 			    "src %lx, dst %lx, vif %d\n",
   3146 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
   3147 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
   3148 			    reg_vif_num);
   3149 		}
   3150 		/* NB: vifp was collected above; can it change on us? */
   3151 		looutput(vifp, m, (struct sockaddr *)&dst, NULL);
   3152 
   3153 		/* prepare the register head to send to the mrouting daemon */
   3154 		m = mcp;
   3155 	}
   3156 
   3157 pim_input_to_daemon:
   3158 	/*
   3159 	 * Pass the PIM message up to the daemon; if it is a Register message,
   3160 	 * pass the 'head' only up to the daemon. This includes the
   3161 	 * outer IP header, PIM header, PIM-Register header and the
   3162 	 * inner IP header.
   3163 	 * XXX: the outer IP header pkt size of a Register is not adjust to
   3164 	 * reflect the fact that the inner multicast data is truncated.
   3165 	 */
   3166 	rip_input(m, iphlen, proto);
   3167 
   3168 	return;
   3169 }
   3170 #endif /* PIM */
   3171