ip_mroute.c revision 1.16 1 /* $NetBSD: ip_mroute.c,v 1.16 1995/06/01 21:36:32 mycroft Exp $ */
2
3 /*
4 * IP multicast forwarding procedures
5 *
6 * Written by David Waitzman, BBN Labs, August 1988.
7 * Modified by Steve Deering, Stanford, February 1989.
8 * Modified by Mark J. Steiglitz, Stanford, May, 1991
9 * Modified by Van Jacobson, LBL, January 1993
10 * Modified by Ajit Thyagarajan, PARC, August 1993
11 * Modified by Bill Fenner, PARC, April 1994
12 * Modified by Charles M. Hannum, NetBSD, May 1995.
13 *
14 * MROUTING Revision: 1.2
15 */
16
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/errno.h>
24 #include <sys/time.h>
25 #include <sys/kernel.h>
26 #include <sys/ioctl.h>
27 #include <sys/syslog.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <net/raw_cb.h>
31 #include <netinet/in.h>
32 #include <netinet/in_var.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_pcb.h>
37 #include <netinet/udp.h>
38 #include <netinet/igmp.h>
39 #include <netinet/igmp_var.h>
40 #include <netinet/ip_mroute.h>
41
42 #define IP_MULTICASTOPTS 0
43 #define M_PULLUP(m, len) \
44 do { \
45 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
46 (m) = m_pullup((m), (len)); \
47 } while (0)
48
49 #define satosin(sa) ((struct sockaddr_in *)(sa))
50
51 static int ip_mdq();
52 static void phyint_send();
53 static void encap_send();
54
55 /*
56 * Globals. All but ip_mrouter and ip_mrtproto could be static,
57 * except for netstat or debugging purposes.
58 */
59 struct socket *ip_mrouter = NULL;
60 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
61
62 #define NO_RTE_FOUND 0x1
63 #define RTE_FOUND 0x2
64
65 #define MFCHASH(a, g) \
66 ((((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
67 ((g) >> 20) ^ ((g) >> 10) ^ (g)) & mfchash)
68 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
69 u_long mfchash;
70
71 u_char nexpire[MFCTBLSIZ];
72 struct vif viftable[MAXVIFS];
73 struct mrtstat mrtstat;
74 u_int mrtdebug = 0; /* debug level */
75 #define DEBUG_MFC 0x02
76 #define DEBUG_FORWARD 0x04
77 #define DEBUG_EXPIRE 0x08
78 #define DEBUG_XMIT 0x10
79 u_int tbfdebug = 0; /* tbf debug level */
80 #ifdef RSVP_ISI
81 u_int rsvpdebug = 0; /* rsvp debug level */
82 extern struct socket *ip_rsvpd;
83 extern int rsvp_on;
84 #endif /* RSVP_ISI */
85
86 static void expire_upcalls();
87 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
88 #define UPCALL_EXPIRE 6 /* number of timeouts */
89
90 /*
91 * Define the token bucket filter structures
92 * qtable -> each interface has an associated queue of pkts
93 */
94
95 struct pkt_queue qtable[MAXVIFS][MAXQSIZE];
96
97 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
98 u_int32_t));
99 static void tbf_queue __P((struct vif *, struct mbuf *, struct ip *));
100 static void tbf_dequeue __P((struct vif *, int));
101 static void tbf_process_q __P((struct vif *));
102 static void tbf_reprocess_q __P((struct vif *));
103 static int tbf_dq_sel __P((struct vif *, struct ip *));
104 static void tbf_send_packet __P((struct vif *, struct mbuf *));
105 static void tbf_update_tokens __P((struct vif *));
106 static int priority __P((struct vif *, struct ip *));
107
108 /*
109 * 'Interfaces' associated with decapsulator (so we can tell
110 * packets that went through it from ones that get reflected
111 * by a broken gateway). These interfaces are never linked into
112 * the system ifnet list & no routes point to them. I.e., packets
113 * can't be sent this way. They only exist as a placeholder for
114 * multicast source verification.
115 */
116 struct ifnet multicast_decap_if[MAXVIFS];
117
118 #define ENCAP_TTL 64
119 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
120
121 /* prototype IP hdr for encapsulated packets */
122 struct ip multicast_encap_iphdr = {
123 #if BYTE_ORDER == LITTLE_ENDIAN
124 sizeof(struct ip) >> 2, IPVERSION,
125 #else
126 IPVERSION, sizeof(struct ip) >> 2,
127 #endif
128 0, /* tos */
129 sizeof(struct ip), /* total length */
130 0, /* id */
131 0, /* frag offset */
132 ENCAP_TTL, ENCAP_PROTO,
133 0, /* checksum */
134 };
135
136 /*
137 * Private variables.
138 */
139 static vifi_t numvifs = 0;
140 static int have_encap_tunnel = 0;
141
142 /*
143 * one-back cache used by ipip_input to locate a tunnel's vif
144 * given a datagram's src ip address.
145 */
146 static u_int32_t last_encap_src;
147 static struct vif *last_encap_vif;
148
149 /*
150 * whether or not special PIM assert processing is enabled.
151 */
152 static int pim_assert;
153 /*
154 * Rate limit for assert notification messages, in usec
155 */
156 #define ASSERT_MSG_TIME 3000000
157
158 /*
159 * Find a route for a given origin IP address and Multicast group address
160 * Type of service parameter to be added in the future!!!
161 */
162
163 #define MFCFIND(o, g, rt) { \
164 register struct mfc *_rt; \
165 (rt) = NULL; \
166 ++mrtstat.mrts_mfc_lookups; \
167 for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
168 _rt; _rt = _rt->mfc_hash.le_next) { \
169 if (_rt->mfc_origin.s_addr == (o) && \
170 _rt->mfc_mcastgrp.s_addr == (g) && \
171 _rt->mfc_stall == NULL) { \
172 (rt) = _rt; \
173 break; \
174 } \
175 } \
176 if ((rt) == NULL) \
177 ++mrtstat.mrts_mfc_misses; \
178 }
179
180 /*
181 * Macros to compute elapsed time efficiently
182 * Borrowed from Van Jacobson's scheduling code
183 */
184 #define TV_DELTA(a, b, delta) { \
185 register int xxs; \
186 delta = (a).tv_usec - (b).tv_usec; \
187 xxs = (a).tv_sec - (b).tv_sec; \
188 switch (xxs) { \
189 case 2: \
190 delta += 1000000; \
191 /* fall through */ \
192 case 1: \
193 delta += 1000000; \
194 /* fall through */ \
195 case 0: \
196 break; \
197 default: \
198 delta += (1000000 * xxs); \
199 break; \
200 } \
201 }
202
203 #ifdef UPCALL_TIMING
204 u_int32_t upcall_data[51];
205 static void collate __P((struct timeval *));
206 #endif /* UPCALL_TIMING */
207
208 static int get_sg_cnt __P((struct sioc_sg_req *));
209 static int get_vif_cnt __P((struct sioc_vif_req *));
210 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
211 static int get_version __P((struct mbuf *));
212 static int set_assert __P((struct mbuf *));
213 static int get_assert __P((struct mbuf *));
214 static int add_vif __P((struct mbuf *));
215 static int del_vif __P((struct mbuf *));
216 static void update_mfc __P((struct mfcctl *, struct mfc *));
217 static void expire_mfc __P((struct mfc *));
218 static int add_mfc __P((struct mbuf *));
219 static int del_mfc __P((struct mbuf *));
220
221 /*
222 * Handle MRT setsockopt commands to modify the multicast routing tables.
223 */
224 int
225 ip_mrouter_set(cmd, so, m)
226 int cmd;
227 struct socket *so;
228 struct mbuf **m;
229 {
230 int error;
231
232 if (cmd != MRT_INIT && so != ip_mrouter)
233 error = EACCES;
234 else
235 switch (cmd) {
236 case MRT_INIT:
237 error = ip_mrouter_init(so, *m);
238 break;
239 case MRT_DONE:
240 error = ip_mrouter_done();
241 break;
242 case MRT_ADD_VIF:
243 error = add_vif(*m);
244 break;
245 case MRT_DEL_VIF:
246 error = del_vif(*m);
247 break;
248 case MRT_ADD_MFC:
249 error = add_mfc(*m);
250 break;
251 case MRT_DEL_MFC:
252 error = del_mfc(*m);
253 break;
254 case MRT_ASSERT:
255 error = set_assert(*m);
256 break;
257 default:
258 error = EOPNOTSUPP;
259 break;
260 }
261
262 if (*m)
263 m_free(*m);
264 return (error);
265 }
266
267 /*
268 * Handle MRT getsockopt commands
269 */
270 int
271 ip_mrouter_get(cmd, so, m)
272 int cmd;
273 struct socket *so;
274 struct mbuf **m;
275 {
276 struct mbuf *mb;
277 int error;
278
279 if (so != ip_mrouter)
280 error = EACCES;
281 else {
282 *m = mb = m_get(M_WAIT, MT_SOOPTS);
283
284 switch (cmd) {
285 case MRT_VERSION:
286 error = get_version(mb);
287 break;
288 case MRT_ASSERT:
289 error = get_assert(mb);
290 break;
291 default:
292 error = EOPNOTSUPP;
293 break;
294 }
295
296 if (error)
297 m_free(mb);
298 }
299
300 return (error);
301 }
302
303 /*
304 * Handle ioctl commands to obtain information from the cache
305 */
306 int
307 mrt_ioctl(cmd, data)
308 u_long cmd;
309 caddr_t data;
310 {
311 int error;
312
313 switch (cmd) {
314 case SIOCGETVIFCNT:
315 error = get_vif_cnt((struct sioc_vif_req *)data);
316 break;
317 case SIOCGETSGCNT:
318 error = get_sg_cnt((struct sioc_sg_req *)data);
319 break;
320 default:
321 error = EINVAL;
322 break;
323 }
324
325 return (error);
326 }
327
328 /*
329 * returns the packet, byte, rpf-failure count for the source group provided
330 */
331 static int
332 get_sg_cnt(req)
333 register struct sioc_sg_req *req;
334 {
335 register struct mfc *rt;
336 int s;
337
338 s = splnet();
339 MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
340 splx(s);
341 if (rt != NULL) {
342 req->pktcnt = rt->mfc_pkt_cnt;
343 req->bytecnt = rt->mfc_byte_cnt;
344 req->wrong_if = rt->mfc_wrong_if;
345 } else
346 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
347
348 return (0);
349 }
350
351 /*
352 * returns the input and output packet and byte counts on the vif provided
353 */
354 static int
355 get_vif_cnt(req)
356 register struct sioc_vif_req *req;
357 {
358 register vifi_t vifi = req->vifi;
359
360 if (vifi >= numvifs)
361 return (EINVAL);
362
363 req->icount = viftable[vifi].v_pkt_in;
364 req->ocount = viftable[vifi].v_pkt_out;
365 req->ibytes = viftable[vifi].v_bytes_in;
366 req->obytes = viftable[vifi].v_bytes_out;
367
368 return (0);
369 }
370
371 /*
372 * Enable multicast routing
373 */
374 static int
375 ip_mrouter_init(so, m)
376 struct socket *so;
377 struct mbuf *m;
378 {
379 int *v;
380
381 if (mrtdebug)
382 log(LOG_DEBUG,
383 "ip_mrouter_init: so_type = %d, pr_protocol = %d",
384 so->so_type, so->so_proto->pr_protocol);
385
386 if (so->so_type != SOCK_RAW ||
387 so->so_proto->pr_protocol != IPPROTO_IGMP)
388 return (EOPNOTSUPP);
389
390 if (m == 0 || m->m_len < sizeof(int))
391 return (EINVAL);
392
393 v = mtod(m, int *);
394 if (*v != 1)
395 return (EINVAL);
396
397 if (ip_mrouter != NULL)
398 return (EADDRINUSE);
399
400 ip_mrouter = so;
401
402 mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, &mfchash);
403 bzero((caddr_t)nexpire, sizeof(nexpire));
404
405 pim_assert = 0;
406
407 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
408
409 if (mrtdebug)
410 log(LOG_DEBUG, "ip_mrouter_init");
411
412 return (0);
413 }
414
415 /*
416 * Disable multicast routing
417 */
418 int
419 ip_mrouter_done()
420 {
421 vifi_t vifi;
422 register struct vif *vifp;
423 struct ifnet *ifp;
424 struct ifreq ifr;
425 int i;
426 int s;
427
428 s = splnet();
429
430 /*
431 * For each phyint in use, disable promiscuous reception of all IP
432 * multicasts.
433 */
434 for (vifi = 0; vifi < numvifs; vifi++) {
435 vifp = &viftable[vifi];
436 if (vifp->v_lcl_addr.s_addr != 0 &&
437 !(vifp->v_flags & VIFF_TUNNEL)) {
438 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
439 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
440 ifp = vifp->v_ifp;
441 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
442 }
443 }
444 bzero((caddr_t)qtable, sizeof(qtable));
445 bzero((caddr_t)viftable, sizeof(viftable));
446 numvifs = 0;
447 pim_assert = 0;
448
449 untimeout(expire_upcalls, (caddr_t)NULL);
450
451 /*
452 * Free all multicast forwarding cache entries.
453 */
454 for (i = 0; i < MFCTBLSIZ; i++) {
455 register struct mfc *rt, *nrt;
456
457 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
458 nrt = rt->mfc_hash.le_next;
459
460 expire_mfc(rt);
461 }
462 }
463 free(mfchashtbl, M_MRTABLE);
464
465 /*
466 * Reset de-encapsulation cache
467 */
468 last_encap_src = NULL;
469 last_encap_vif = NULL;
470 have_encap_tunnel = 0;
471
472 ip_mrouter = NULL;
473
474 splx(s);
475
476 if (mrtdebug)
477 log(LOG_DEBUG, "ip_mrouter_done");
478
479 return (0);
480 }
481
482 static int
483 get_version(m)
484 struct mbuf *m;
485 {
486 int *v = mtod(m, int *);
487
488 *v = 0x0305; /* XXX !!!! */
489 m->m_len = sizeof(int);
490 return (0);
491 }
492
493 /*
494 * Set PIM assert processing global
495 */
496 static int
497 set_assert(m)
498 struct mbuf *m;
499 {
500 int *i;
501
502 if (m == 0 || m->m_len < sizeof(int))
503 return (EINVAL);
504
505 i = mtod(m, int *);
506 pim_assert = !!*i;
507 return (0);
508 }
509
510 /*
511 * Get PIM assert processing global
512 */
513 static int
514 get_assert(m)
515 struct mbuf *m;
516 {
517 int *i = mtod(m, int *);
518
519 *i = pim_assert;
520 m->m_len = sizeof(int);
521 return (0);
522 }
523
524 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
525
526 /*
527 * Add a vif to the vif table
528 */
529 static int
530 add_vif(m)
531 struct mbuf *m;
532 {
533 register struct vifctl *vifcp;
534 register struct vif *vifp;
535 struct ifaddr *ifa;
536 struct ifnet *ifp;
537 struct ifreq ifr;
538 int error, s;
539
540 if (m == 0 || m->m_len < sizeof(struct vifctl))
541 return (EINVAL);
542
543 vifcp = mtod(m, struct vifctl *);
544 if (vifcp->vifc_vifi >= MAXVIFS)
545 return (EINVAL);
546
547 vifp = &viftable[vifcp->vifc_vifi];
548 if (vifp->v_lcl_addr.s_addr != 0)
549 return (EADDRINUSE);
550
551 /* Find the interface with an address in AF_INET family. */
552 sin.sin_addr = vifcp->vifc_lcl_addr;
553 ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
554 if (ifa == 0)
555 return (EADDRNOTAVAIL);
556 ifp = ifa->ifa_ifp;
557
558 if (vifcp->vifc_flags & VIFF_TUNNEL) {
559 if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
560 /*
561 * An encapsulating tunnel is wanted. Tell
562 * ipip_input() to start paying attention to
563 * encapsulated packets.
564 */
565 have_encap_tunnel = 1;
566 /*
567 * Set interface to fake encapsulator interface.
568 */
569 ifp = &multicast_decap_if[vifcp->vifc_vifi];
570 ifp->if_name = "mdecap";
571 ifp->if_unit = vifcp->vifc_vifi;
572 /*
573 * Prepare cached route entry.
574 */
575 bzero(&vifp->v_route, sizeof(vifp->v_route));
576 } else {
577 log(LOG_ERR, "Source routed tunnels not supported.");
578 return (EOPNOTSUPP);
579 }
580 } else {
581 /* Make sure the interface supports multicast. */
582 if ((ifp->if_flags & IFF_MULTICAST) == 0)
583 return (EOPNOTSUPP);
584
585 /* Enable promiscuous reception of all IP multicasts. */
586 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
587 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
588 s = splnet();
589 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
590 splx(s);
591 if (error)
592 return (error);
593 }
594
595 s = splnet();
596 /* Define parameters for the tbf structure. */
597 vifp->v_tbf.q_len = 0;
598 vifp->v_tbf.n_tok = 0;
599 vifp->v_tbf.last_pkt_t = 0;
600
601 vifp->v_flags = vifcp->vifc_flags;
602 vifp->v_threshold = vifcp->vifc_threshold;
603 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
604 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
605 vifp->v_ifp = ifp;
606 vifp->v_rate_limit = vifcp->vifc_rate_limit;
607 #ifdef RSVP_ISI
608 vifp->v_rsvp_on = 0;
609 vifp->v_rsvpd = NULL;
610 #endif /* RSVP_ISI */
611 /* Initialize per vif pkt counters. */
612 vifp->v_pkt_in = 0;
613 vifp->v_pkt_out = 0;
614 vifp->v_bytes_in = 0;
615 vifp->v_bytes_out = 0;
616 splx(s);
617
618 /* Adjust numvifs up if the vifi is higher than numvifs. */
619 if (numvifs <= vifcp->vifc_vifi)
620 numvifs = vifcp->vifc_vifi + 1;
621
622 if (mrtdebug)
623 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d",
624 vifcp->vifc_vifi,
625 ntohl(vifcp->vifc_lcl_addr.s_addr),
626 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
627 ntohl(vifcp->vifc_rmt_addr.s_addr),
628 vifcp->vifc_threshold,
629 vifcp->vifc_rate_limit);
630
631 return (0);
632 }
633
634 /*
635 * Delete a vif from the vif table
636 */
637 static int
638 del_vif(m)
639 struct mbuf *m;
640 {
641 vifi_t *vifip;
642 register struct vif *vifp;
643 register vifi_t vifi;
644 struct ifnet *ifp;
645 struct ifreq ifr;
646 int s;
647
648 if (m == 0 || m->m_len < sizeof(vifi_t))
649 return (EINVAL);
650
651 vifip = mtod(m, vifi_t *);
652 if (*vifip >= numvifs)
653 return (EINVAL);
654
655 vifp = &viftable[*vifip];
656 if (vifp->v_lcl_addr.s_addr == 0)
657 return (EADDRNOTAVAIL);
658
659 s = splnet();
660
661 if (!(vifp->v_flags & VIFF_TUNNEL)) {
662 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
663 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
664 ifp = vifp->v_ifp;
665 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
666 }
667
668 if (vifp == last_encap_vif) {
669 last_encap_vif = 0;
670 last_encap_src = 0;
671 }
672
673 bzero((caddr_t)qtable[*vifip], sizeof(qtable[*vifip]));
674 bzero((caddr_t)&vifp->v_tbf, sizeof(vifp->v_tbf));
675 bzero((caddr_t)vifp, sizeof(*vifp));
676
677 /* Adjust numvifs down */
678 for (vifi = numvifs; vifi > 0; vifi--)
679 if (viftable[vifi-1].v_lcl_addr.s_addr != 0)
680 break;
681 numvifs = vifi;
682
683 splx(s);
684
685 if (mrtdebug)
686 log(LOG_DEBUG, "del_vif %d, numvifs %d", *vifip, numvifs);
687
688 return (0);
689 }
690
691 static void
692 update_mfc(mfccp, rt)
693 struct mfcctl *mfccp;
694 struct mfc *rt;
695 {
696 vifi_t vifi;
697
698 rt->mfc_parent = mfccp->mfcc_parent;
699 for (vifi = 0; vifi < numvifs; vifi++)
700 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
701 rt->mfc_expire = 0;
702 rt->mfc_stall = 0;
703 }
704
705 static void
706 expire_mfc(rt)
707 struct mfc *rt;
708 {
709 struct rtdetq *rte, *nrte;
710
711 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
712 nrte = rte->next;
713 m_freem(rte->m);
714 free(rte, M_MRTABLE);
715 }
716
717 LIST_REMOVE(rt, mfc_hash);
718 free(rt, M_MRTABLE);
719 }
720
721 /*
722 * Add an mfc entry
723 */
724 static int
725 add_mfc(m)
726 struct mbuf *m;
727 {
728 struct mfcctl *mfccp;
729 struct mfc *rt, *rt1;
730 u_int32_t hash;
731 vifi_t vifi;
732 struct rtdetq *rte, *nrte;
733 register u_short nstl;
734 int s;
735
736 if (m == 0 || m->m_len < sizeof(struct mfcctl))
737 return (EINVAL);
738
739 mfccp = mtod(m, struct mfcctl *);
740
741 s = splnet();
742 MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
743
744 /* If an entry already exists, just update the fields */
745 if (rt) {
746 if (mrtdebug & DEBUG_MFC)
747 log(LOG_DEBUG,"add_mfc update o %x g %x p %x",
748 ntohl(mfccp->mfcc_origin.s_addr),
749 ntohl(mfccp->mfcc_mcastgrp.s_addr),
750 mfccp->mfcc_parent);
751
752 if (rt->mfc_expire)
753 nexpire[hash]--;
754
755 update_mfc(mfccp, rt);
756
757 splx(s);
758 return (0);
759 }
760
761 /*
762 * Find the entry for which the upcall was made and update
763 */
764 nstl = 0;
765 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
766 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
767 if (rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr &&
768 rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr &&
769 rt->mfc_stall != NULL) {
770 if (nstl++)
771 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x",
772 "multiple kernel entries",
773 ntohl(mfccp->mfcc_origin.s_addr),
774 ntohl(mfccp->mfcc_mcastgrp.s_addr),
775 mfccp->mfcc_parent, rt->mfc_stall);
776
777 if (mrtdebug & DEBUG_MFC)
778 log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x",
779 ntohl(mfccp->mfcc_origin.s_addr),
780 ntohl(mfccp->mfcc_mcastgrp.s_addr),
781 mfccp->mfcc_parent, rt->mfc_stall);
782
783 if (rt->mfc_expire)
784 nexpire[hash]--;
785
786 /* free packets Qed at the end of this entry */
787 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
788 nrte = rte->next;
789 #ifdef RSVP_ISI
790 ip_mdq(rte->m, rte->ifp, rt, -1);
791 #else
792 ip_mdq(rte->m, rte->ifp, rt);
793 #endif /* RSVP_ISI */
794 m_freem(rte->m);
795 #ifdef UPCALL_TIMING
796 collate(&rte->t);
797 #endif /* UPCALL_TIMING */
798 free(rte, M_MRTABLE);
799 }
800
801 update_mfc(mfccp, rt);
802 }
803 }
804
805 if (nstl == 0) {
806 /*
807 * No mfc; make a new one
808 */
809 if (mrtdebug & DEBUG_MFC)
810 log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x",
811 ntohl(mfccp->mfcc_origin.s_addr),
812 ntohl(mfccp->mfcc_mcastgrp.s_addr),
813 mfccp->mfcc_parent);
814
815 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
816 if (rt == NULL) {
817 splx(s);
818 return (ENOBUFS);
819 }
820
821 rt->mfc_origin = mfccp->mfcc_origin;
822 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
823 /* initialize pkt counters per src-grp */
824 rt->mfc_pkt_cnt = 0;
825 rt->mfc_byte_cnt = 0;
826 rt->mfc_wrong_if = 0;
827 timerclear(&rt->mfc_last_assert);
828 update_mfc(mfccp, rt);
829
830 /* insert new entry at head of hash chain */
831 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
832 }
833
834 splx(s);
835 return (0);
836 }
837
838 #ifdef UPCALL_TIMING
839 /*
840 * collect delay statistics on the upcalls
841 */
842 static void collate(t)
843 register struct timeval *t;
844 {
845 register u_int32_t d;
846 register struct timeval tp;
847 register u_int32_t delta;
848
849 microtime(&tp);
850
851 if (timercmp(t, &tp, <)) {
852 TV_DELTA(tp, *t, delta);
853
854 d = delta >> 10;
855 if (d > 50)
856 d = 50;
857
858 ++upcall_data[d];
859 }
860 }
861 #endif /* UPCALL_TIMING */
862
863 /*
864 * Delete an mfc entry
865 */
866 static int
867 del_mfc(m)
868 struct mbuf *m;
869 {
870 struct mfcctl *mfccp;
871 struct mfc *rt;
872 int s;
873
874 if (m == 0 || m->m_len < sizeof(struct mfcctl))
875 return (EINVAL);
876
877 mfccp = mtod(m, struct mfcctl *);
878
879 if (mrtdebug & DEBUG_MFC)
880 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x",
881 ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr));
882
883 s = splnet();
884
885 MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
886 if (rt == NULL) {
887 splx(s);
888 return (EADDRNOTAVAIL);
889 }
890
891 LIST_REMOVE(rt, mfc_hash);
892 free(rt, M_MRTABLE);
893
894 splx(s);
895 return (0);
896 }
897
898 static int
899 socket_send(s, mm, src)
900 struct socket *s;
901 struct mbuf *mm;
902 struct sockaddr_in *src;
903 {
904 if (s) {
905 if (sbappendaddr(&s->so_rcv,
906 (struct sockaddr *)src,
907 mm, (struct mbuf *)0) != 0) {
908 sorwakeup(s);
909 return (0);
910 }
911 }
912 m_freem(mm);
913 return (-1);
914 }
915
916 /*
917 * IP multicast forwarding function. This function assumes that the packet
918 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
919 * pointed to by "ifp", and the packet is to be relayed to other networks
920 * that have members of the packet's destination IP multicast group.
921 *
922 * The packet is returned unscathed to the caller, unless it is
923 * erroneous, in which case a non-zero return value tells the caller to
924 * discard it.
925 */
926
927 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
928 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
929
930 int
931 #ifdef RSVP_ISI
932 ip_mforward(m, ifp, imo)
933 #else
934 ip_mforward(m, ifp)
935 #endif /* RSVP_ISI */
936 struct mbuf *m;
937 struct ifnet *ifp;
938 #ifdef RSVP_ISI
939 struct ip_moptions *imo;
940 #endif /* RSVP_ISI */
941 {
942 register struct ip *ip = mtod(m, struct ip *);
943 register struct mfc *rt;
944 register struct vif *vifp;
945 register u_char *ipoptions;
946 static struct sockproto k_igmpproto = { AF_INET, IPPROTO_IGMP };
947 static int srctun = 0;
948 register struct mbuf *mm, *mn;
949 int s;
950 #ifdef RSVP_ISI
951 vifi_t vifi;
952 #endif /* RSVP_ISI */
953
954 if (mrtdebug & DEBUG_FORWARD)
955 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x",
956 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
957
958 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
959 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
960 /*
961 * Packet arrived via a physical interface or
962 * an encapuslated tunnel.
963 */
964 } else {
965 /*
966 * Packet arrived through a source-route tunnel.
967 * Source-route tunnels are no longer supported.
968 */
969 if ((srctun++ % 1000) == 0)
970 log(LOG_ERR, "ip_mforward: received source-routed packet from %x",
971 ntohl(ip->ip_src.s_addr));
972
973 return (1);
974 }
975
976 #ifdef RSVP_ISI
977 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
978 if (ip->ip_ttl < 255)
979 ip->ip_ttl++; /* compensate for -1 in *_send routines */
980 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
981 vifp = viftable + vifi;
982 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s%d)\n",
983 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
984 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
985 vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
986 }
987 return (ip_mdq(m, ifp, rt, vifi));
988 }
989 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
990 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
991 ntohl(ip->ip_src), ntohl(ip->ip_dst));
992 }
993 #endif /* RSVP_ISI */
994
995 /*
996 * Don't forward a packet with time-to-live of zero or one,
997 * or a packet destined to a local-only group.
998 */
999 if (ip->ip_ttl <= 1 ||
1000 IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1001 return (0);
1002
1003 /*
1004 * Determine forwarding vifs from the forwarding cache table
1005 */
1006 s = splnet();
1007 MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1008
1009 /* Entry exists, so forward if necessary */
1010 if (rt != NULL) {
1011 splx(s);
1012 #ifdef RSVP_ISI
1013 return (ip_mdq(m, ifp, rt, -1));
1014 #else
1015 return (ip_mdq(m, ifp, rt));
1016 #endif /* RSVP_ISI */
1017 } else {
1018 /*
1019 * If we don't have a route for packet's origin,
1020 * Make a copy of the packet &
1021 * send message to routing daemon
1022 */
1023
1024 register struct mbuf *mb0;
1025 register struct rtdetq *rte;
1026 register u_int32_t hash;
1027 #ifdef UPCALL_TIMING
1028 struct timeval tp;
1029
1030 microtime(&tp);
1031 #endif /* UPCALL_TIMING */
1032
1033 mrtstat.mrts_no_route++;
1034 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1035 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x",
1036 ntohl(ip->ip_src.s_addr),
1037 ntohl(ip->ip_dst.s_addr));
1038
1039 /*
1040 * Allocate mbufs early so that we don't do extra work if we are
1041 * just going to fail anyway.
1042 */
1043 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1044 if (rte == NULL) {
1045 splx(s);
1046 return (ENOBUFS);
1047 }
1048 mb0 = m_copy(m, 0, M_COPYALL);
1049 if (mb0 == NULL) {
1050 free(rte, M_MRTABLE);
1051 splx(s);
1052 return (ENOBUFS);
1053 }
1054
1055 /* is there an upcall waiting for this packet? */
1056 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1057 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
1058 if (ip->ip_src.s_addr == rt->mfc_origin.s_addr &&
1059 ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr &&
1060 rt->mfc_stall != NULL)
1061 break;
1062 }
1063
1064 if (rt == NULL) {
1065 int hlen = ip->ip_hl << 2;
1066 int i;
1067 struct igmpmsg *im;
1068
1069 /* no upcall, so make a new entry */
1070 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1071 if (rt == NULL) {
1072 free(rte, M_MRTABLE);
1073 m_free(mb0);
1074 splx(s);
1075 return (ENOBUFS);
1076 }
1077 /* Make a copy of the header to send to the user level process */
1078 mm = m_copy(m, 0, hlen);
1079 M_PULLUP(mm, hlen);
1080 if (mm == NULL) {
1081 free(rte, M_MRTABLE);
1082 m_free(mb0);
1083 free(rt, M_MRTABLE);
1084 splx(s);
1085 return (ENOBUFS);
1086 }
1087
1088 /*
1089 * Send message to routing daemon to install
1090 * a route into the kernel table
1091 */
1092 sin.sin_addr = ip->ip_src;
1093
1094 im = mtod(mm, struct igmpmsg *);
1095 im->im_msgtype = IGMPMSG_NOCACHE;
1096 im->im_mbz = 0;
1097
1098 mrtstat.mrts_upcalls++;
1099
1100 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1101 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full");
1102 ++mrtstat.mrts_upq_sockfull;
1103 free(rte, M_MRTABLE);
1104 m_free(mb0);
1105 free(rt, M_MRTABLE);
1106 splx(s);
1107 return (ENOBUFS);
1108 }
1109
1110 /* insert new entry at head of hash chain */
1111 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1112 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1113 rt->mfc_expire = UPCALL_EXPIRE;
1114 nexpire[hash]++;
1115 for (i = 0; i < numvifs; i++)
1116 rt->mfc_ttls[i] = 0;
1117 rt->mfc_parent = -1;
1118
1119 /* link into table */
1120 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1121 /* Add this entry to the end of the queue */
1122 rt->mfc_stall = rte;
1123 } else {
1124 /* determine if q has overflowed */
1125 struct rtdetq **p;
1126 register int npkts = 0;
1127
1128 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1129 if (++npkts > MAX_UPQ) {
1130 mrtstat.mrts_upq_ovflw++;
1131 free(rte, M_MRTABLE);
1132 m_free(mb0);
1133 splx(s);
1134 return (0);
1135 }
1136
1137 /* Add this entry to the end of the queue */
1138 *p = rte;
1139 }
1140
1141 rte->next = NULL;
1142 rte->m = mb0;
1143 rte->ifp = ifp;
1144 #ifdef UPCALL_TIMING
1145 rte->t = tp;
1146 #endif /* UPCALL_TIMING */
1147
1148
1149 splx(s);
1150
1151 return (0);
1152 }
1153 }
1154
1155
1156 static void
1157 expire_upcalls()
1158 {
1159 int i;
1160 int s;
1161
1162 s = splnet();
1163
1164 for (i = 0; i < MFCTBLSIZ; i++) {
1165 register struct mfc *rt, *nrt;
1166
1167 if (nexpire[i] == 0)
1168 continue;
1169
1170 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
1171 nrt = rt->mfc_hash.le_next;
1172
1173 if (rt->mfc_expire == 0 ||
1174 --rt->mfc_expire > 0)
1175 continue;
1176 nexpire[i]--;
1177
1178 ++mrtstat.mrts_cache_cleanups;
1179 if (mrtdebug & DEBUG_EXPIRE)
1180 log(LOG_DEBUG,
1181 "expire_upcalls: expiring (%x %x)",
1182 ntohl(rt->mfc_origin.s_addr),
1183 ntohl(rt->mfc_mcastgrp.s_addr));
1184
1185 expire_mfc(rt);
1186 }
1187 }
1188
1189 splx(s);
1190 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
1191 }
1192
1193 /*
1194 * Packet forwarding routine once entry in the cache is made
1195 */
1196 static int
1197 #ifdef RSVP_ISI
1198 ip_mdq(m, ifp, rt, xmt_vif)
1199 #else
1200 ip_mdq(m, ifp, rt)
1201 #endif /* RSVP_ISI */
1202 register struct mbuf *m;
1203 register struct ifnet *ifp;
1204 register struct mfc *rt;
1205 #ifdef RSVP_ISI
1206 register vifi_t xmt_vif;
1207 #endif /* RSVP_ISI */
1208 {
1209 register struct ip *ip = mtod(m, struct ip *);
1210 register vifi_t vifi;
1211 register struct vif *vifp;
1212 register struct mbuf *tmp;
1213 register int plen = ntohs(ip->ip_len);
1214
1215 /*
1216 * Macro to send packet on vif. Since RSVP packets don't get counted on
1217 * input, they shouldn't get counted on output, so statistics keeping is
1218 * seperate.
1219 */
1220 #define MC_SEND(ip,vifp,m) { \
1221 if ((vifp)->v_flags & VIFF_TUNNEL) \
1222 encap_send((ip), (vifp), (m)); \
1223 else \
1224 phyint_send((ip), (vifp), (m)); \
1225 }
1226
1227 #ifdef RSVP_ISI
1228 /*
1229 * If xmt_vif is not -1, send on only the requested vif.
1230 *
1231 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1232 */
1233 if (xmt_vif < numvifs) {
1234 MC_SEND(ip, viftable + xmt_vif, m);
1235 return (1);
1236 }
1237 #endif /* RSVP_ISI */
1238
1239 /*
1240 * Don't forward if it didn't arrive from the parent vif for its origin.
1241 */
1242 vifi = rt->mfc_parent;
1243 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1244 /* came in the wrong interface */
1245 if (mrtdebug & DEBUG_FORWARD)
1246 log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x",
1247 ifp, vifi, viftable[vifi].v_ifp);
1248 ++mrtstat.mrts_wrong_if;
1249 ++rt->mfc_wrong_if;
1250 /*
1251 * If we are doing PIM assert processing, and we are forwarding
1252 * packets on this interface, and it is a broadcast medium
1253 * interface (and not a tunnel), send a message to the routing daemon.
1254 */
1255 if (pim_assert && rt->mfc_ttls[vifi] &&
1256 (ifp->if_flags & IFF_BROADCAST) &&
1257 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1258 struct mbuf *mm;
1259 struct igmpmsg *im;
1260 int hlen = ip->ip_hl << 2;
1261 struct timeval now;
1262 register u_int32_t delta;
1263
1264 microtime(&now);
1265
1266 TV_DELTA(rt->mfc_last_assert, now, delta);
1267
1268 if (delta > ASSERT_MSG_TIME) {
1269 mm = m_copy(m, 0, hlen);
1270 M_PULLUP(mm, hlen);
1271 if (mm == NULL) {
1272 return (ENOBUFS);
1273 }
1274
1275 rt->mfc_last_assert = now;
1276
1277 im = mtod(mm, struct igmpmsg *);
1278 im->im_msgtype = IGMPMSG_WRONGVIF;
1279 im->im_mbz = 0;
1280 im->im_vif = vifi;
1281
1282 sin.sin_addr = im->im_src;
1283
1284 socket_send(ip_mrouter, m, &sin);
1285 }
1286 }
1287 return (0);
1288 }
1289
1290 /* If I sourced this packet, it counts as output, else it was input. */
1291 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1292 viftable[vifi].v_pkt_out++;
1293 viftable[vifi].v_bytes_out += plen;
1294 } else {
1295 viftable[vifi].v_pkt_in++;
1296 viftable[vifi].v_bytes_in += plen;
1297 }
1298 rt->mfc_pkt_cnt++;
1299 rt->mfc_byte_cnt += plen;
1300
1301 /*
1302 * For each vif, decide if a copy of the packet should be forwarded.
1303 * Forward if:
1304 * - the ttl exceeds the vif's threshold
1305 * - there are group members downstream on interface
1306 */
1307 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1308 if ((rt->mfc_ttls[vifi] > 0) &&
1309 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1310 vifp->v_pkt_out++;
1311 vifp->v_bytes_out += plen;
1312 MC_SEND(ip, vifp, m);
1313 }
1314
1315 return (0);
1316 }
1317
1318 #ifdef RSVP_ISI
1319 /*
1320 * check if a vif number is legal/ok. This is used by ip_output, to export
1321 * numvifs there,
1322 */
1323 int
1324 legal_vif_num(vif)
1325 int vif;
1326 {
1327 if (vif >= 0 && vif < numvifs)
1328 return (1);
1329 else
1330 return (0);
1331 }
1332 #endif /* RSVP_ISI */
1333
1334 static void
1335 phyint_send(ip, vifp, m)
1336 struct ip *ip;
1337 struct vif *vifp;
1338 struct mbuf *m;
1339 {
1340 register struct mbuf *mb_copy;
1341 register int hlen = ip->ip_hl << 2;
1342
1343 /*
1344 * Make a new reference to the packet; make sure that
1345 * the IP header is actually copied, not just referenced,
1346 * so that ip_output() only scribbles on the copy.
1347 */
1348 mb_copy = m_copy(m, 0, M_COPYALL);
1349 M_PULLUP(mb_copy, hlen);
1350 if (mb_copy == NULL)
1351 return;
1352
1353 if (vifp->v_rate_limit <= 0)
1354 tbf_send_packet(vifp, mb_copy);
1355 else
1356 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1357 }
1358
1359 static void
1360 encap_send(ip, vifp, m)
1361 register struct ip *ip;
1362 register struct vif *vifp;
1363 register struct mbuf *m;
1364 {
1365 register struct mbuf *mb_copy;
1366 register struct ip *ip_copy;
1367 register int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
1368
1369 /*
1370 * copy the old packet & pullup it's IP header into the
1371 * new mbuf so we can modify it. Try to fill the new
1372 * mbuf since if we don't the ethernet driver will.
1373 */
1374 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1375 if (mb_copy == NULL)
1376 return;
1377 mb_copy->m_data += max_linkhdr;
1378 mb_copy->m_pkthdr.len = len;
1379 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1380
1381 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1382 m_freem(mb_copy);
1383 return;
1384 }
1385 i = MHLEN - max_linkhdr;
1386 if (i > len)
1387 i = len;
1388 mb_copy = m_pullup(mb_copy, i);
1389 if (mb_copy == NULL)
1390 return;
1391
1392 /*
1393 * fill in the encapsulating IP header.
1394 */
1395 ip_copy = mtod(mb_copy, struct ip *);
1396 *ip_copy = multicast_encap_iphdr;
1397 ip_copy->ip_id = htons(ip_id++);
1398 ip_copy->ip_len = len;
1399 ip_copy->ip_src = vifp->v_lcl_addr;
1400 ip_copy->ip_dst = vifp->v_rmt_addr;
1401
1402 /*
1403 * turn the encapsulated IP header back into a valid one.
1404 */
1405 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1406 --ip->ip_ttl;
1407 HTONS(ip->ip_len);
1408 HTONS(ip->ip_off);
1409 ip->ip_sum = 0;
1410 #if defined(LBL) && !defined(ultrix) && !defined(i386)
1411 ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1412 #else
1413 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1414 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1415 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1416 #endif
1417
1418 if (vifp->v_rate_limit <= 0)
1419 tbf_send_packet(vifp, mb_copy);
1420 else
1421 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1422 }
1423
1424 /*
1425 * De-encapsulate a packet and feed it back through ip input (this
1426 * routine is called whenever IP gets a packet with proto type
1427 * ENCAP_PROTO and a local destination address).
1428 */
1429 void
1430 ipip_input(m, hlen)
1431 register struct mbuf *m;
1432 register int hlen;
1433 {
1434 register struct ip *ip = mtod(m, struct ip *);
1435 register int s;
1436 register struct ifqueue *ifq;
1437 register struct vif *vifp;
1438
1439 if (!have_encap_tunnel) {
1440 rip_input(m);
1441 return;
1442 }
1443 /*
1444 * dump the packet if it's not to a multicast destination or if
1445 * we don't have an encapsulating tunnel with the source.
1446 * Note: This code assumes that the remote site IP address
1447 * uniquely identifies the tunnel (i.e., that this site has
1448 * at most one tunnel with the remote site).
1449 */
1450 if (!IN_MULTICAST(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr)) {
1451 ++mrtstat.mrts_bad_tunnel;
1452 m_freem(m);
1453 return;
1454 }
1455 if (ip->ip_src.s_addr != last_encap_src) {
1456 register struct vif *vife;
1457
1458 vifp = viftable;
1459 vife = vifp + numvifs;
1460 last_encap_src = ip->ip_src.s_addr;
1461 last_encap_vif = 0;
1462 for ( ; vifp < vife; ++vifp)
1463 if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1464 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1465 == VIFF_TUNNEL)
1466 last_encap_vif = vifp;
1467 break;
1468 }
1469 }
1470 if ((vifp = last_encap_vif) == 0) {
1471 last_encap_src = 0;
1472 mrtstat.mrts_cant_tunnel++; /*XXX*/
1473 m_freem(m);
1474 if (mrtdebug)
1475 log(LOG_DEBUG, "ip_mforward: no tunnel with %x",
1476 ntohl(ip->ip_src.s_addr));
1477 return;
1478 }
1479 m->m_data += hlen;
1480 m->m_len -= hlen;
1481 m->m_pkthdr.len -= hlen;
1482 m->m_pkthdr.rcvif = vifp->v_ifp;
1483 ifq = &ipintrq;
1484 s = splimp();
1485 if (IF_QFULL(ifq)) {
1486 IF_DROP(ifq);
1487 m_freem(m);
1488 } else {
1489 IF_ENQUEUE(ifq, m);
1490 /*
1491 * normally we would need a "schednetisr(NETISR_IP)"
1492 * here but we were called by ip_input and it is going
1493 * to loop back & try to dequeue the packet we just
1494 * queued as soon as we return so we avoid the
1495 * unnecessary software interrrupt.
1496 */
1497 }
1498 splx(s);
1499 }
1500
1501 /*
1502 * Token bucket filter module
1503 */
1504 static void
1505 tbf_control(vifp, m, ip, p_len)
1506 register struct vif *vifp;
1507 register struct mbuf *m;
1508 register struct ip *ip;
1509 register u_int32_t p_len;
1510 {
1511 tbf_update_tokens(vifp);
1512
1513 /* if there are enough tokens,
1514 * and the queue is empty,
1515 * send this packet out
1516 */
1517
1518 if (vifp->v_tbf.q_len == 0) {
1519 if (p_len <= vifp->v_tbf.n_tok) {
1520 vifp->v_tbf.n_tok -= p_len;
1521 tbf_send_packet(vifp, m);
1522 } else if (p_len > MAX_BKT_SIZE) {
1523 /* drop if packet is too large */
1524 mrtstat.mrts_pkt2large++;
1525 m_freem(m);
1526 return;
1527 } else {
1528 /* queue packet and timeout till later */
1529 tbf_queue(vifp, m, ip);
1530 timeout(tbf_reprocess_q, (caddr_t)vifp, 1);
1531 }
1532 } else if (vifp->v_tbf.q_len < MAXQSIZE) {
1533 /* finite queue length, so queue pkts and process queue */
1534 tbf_queue(vifp, m, ip);
1535 tbf_process_q(vifp);
1536 } else {
1537 /* queue length too much, try to dq and queue and process */
1538 if (!tbf_dq_sel(vifp, ip)) {
1539 mrtstat.mrts_q_overflow++;
1540 m_freem(m);
1541 return;
1542 } else {
1543 tbf_queue(vifp, m, ip);
1544 tbf_process_q(vifp);
1545 }
1546 }
1547 return;
1548 }
1549
1550 /*
1551 * adds a packet to the queue at the interface
1552 */
1553 static void
1554 tbf_queue(vifp, m, ip)
1555 register struct vif *vifp;
1556 register struct mbuf *m;
1557 register struct ip *ip;
1558 {
1559 register u_int32_t ql;
1560 register int index = (vifp - viftable);
1561 register int s = splnet();
1562
1563 ql = vifp->v_tbf.q_len;
1564
1565 qtable[index][ql].pkt_m = m;
1566 qtable[index][ql].pkt_len = (mtod(m, struct ip *))->ip_len;
1567 qtable[index][ql].pkt_ip = ip;
1568
1569 vifp->v_tbf.q_len++;
1570 splx(s);
1571 }
1572
1573
1574 /*
1575 * processes the queue at the interface
1576 */
1577 static void
1578 tbf_process_q(vifp)
1579 register struct vif *vifp;
1580 {
1581 register struct mbuf *m;
1582 register struct pkt_queue pkt_1;
1583 register int index = (vifp - viftable);
1584 register int s = splnet();
1585
1586 /* loop through the queue at the interface and send as many packets
1587 * as possible
1588 */
1589 while (vifp->v_tbf.q_len > 0) {
1590 /* locate the first packet */
1591 pkt_1 = qtable[index][0];
1592
1593 /* determine if the packet can be sent */
1594 if (pkt_1.pkt_len <= vifp->v_tbf.n_tok) {
1595 /* if so,
1596 * reduce no of tokens, dequeue the queue,
1597 * send the packet.
1598 */
1599 vifp->v_tbf.n_tok -= pkt_1.pkt_len;
1600
1601 tbf_dequeue(vifp, 0);
1602 tbf_send_packet(vifp, pkt_1.pkt_m);
1603 } else
1604 break;
1605 }
1606 splx(s);
1607 }
1608
1609 /*
1610 * removes the jth packet from the queue at the interface
1611 */
1612 static void
1613 tbf_dequeue(vifp, j)
1614 register struct vif *vifp;
1615 register int j;
1616 {
1617 register u_int32_t index = vifp - viftable;
1618 register int i;
1619
1620 for (i=j+1; i <= vifp->v_tbf.q_len - 1; i++) {
1621 qtable[index][i-1] = qtable[index][i];
1622 }
1623 qtable[index][i-1].pkt_m = NULL;
1624 qtable[index][i-1].pkt_len = NULL;
1625 qtable[index][i-1].pkt_ip = NULL;
1626
1627 vifp->v_tbf.q_len--;
1628
1629 if (tbfdebug > 1)
1630 log(LOG_DEBUG, "tbf_dequeue: vif# %d qlen %d",vifp-viftable, i-1);
1631 }
1632
1633 static void
1634 tbf_reprocess_q(vifp)
1635 register struct vif *vifp;
1636 {
1637 if (ip_mrouter == NULL)
1638 return;
1639
1640 tbf_update_tokens(vifp);
1641
1642 tbf_process_q(vifp);
1643
1644 if (vifp->v_tbf.q_len)
1645 timeout(tbf_reprocess_q, (caddr_t)vifp, 1);
1646 }
1647
1648 /* function that will selectively discard a member of the queue
1649 * based on the precedence value and the priority obtained through
1650 * a lookup table - not yet implemented accurately!
1651 */
1652 static int
1653 tbf_dq_sel(vifp, ip)
1654 register struct vif *vifp;
1655 register struct ip *ip;
1656 {
1657 register int i;
1658 register int s = splnet();
1659 register u_int p;
1660
1661 p = priority(vifp, ip);
1662
1663 for(i=vifp->v_tbf.q_len-1;i >= 0;i--) {
1664 if (p > priority(vifp, qtable[vifp-viftable][i].pkt_ip)) {
1665 m_freem(qtable[vifp-viftable][i].pkt_m);
1666 tbf_dequeue(vifp, i);
1667 splx(s);
1668 mrtstat.mrts_drop_sel++;
1669 return (1);
1670 }
1671 }
1672 splx(s);
1673 return (0);
1674 }
1675
1676 static void
1677 tbf_send_packet(vifp,m)
1678 register struct vif *vifp;
1679 register struct mbuf *m;
1680 {
1681 register struct mbuf *mcp;
1682 int error;
1683 int s = splnet();
1684
1685 if (vifp->v_flags & VIFF_TUNNEL) {
1686 /* If tunnel options */
1687 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1688 IP_FORWARDING, NULL);
1689 } else {
1690 /* if physical interface option, extract the options and then send */
1691 struct ip *ip = mtod(m, struct ip *);
1692 struct ip_moptions imo;
1693 imo.imo_multicast_ifp = vifp->v_ifp;
1694 imo.imo_multicast_ttl = ip->ip_ttl - 1;
1695 imo.imo_multicast_loop = 1;
1696 #ifdef RSVP_ISI
1697 imo.imo_multicast_vif = -1;
1698 #endif
1699
1700 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1701 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1702 if (mrtdebug & DEBUG_XMIT)
1703 log(LOG_DEBUG, "phyint_send on vif %d err %d", vifp-viftable, error);
1704 }
1705 splx(s);
1706 }
1707
1708 /* determine the current time and then
1709 * the elapsed time (between the last time and time now)
1710 * in milliseconds & update the no. of tokens in the bucket
1711 */
1712 static void
1713 tbf_update_tokens(vifp)
1714 register struct vif *vifp;
1715 {
1716 struct timeval tp;
1717 register u_int32_t t;
1718 register u_int32_t elapsed;
1719 register int s = splnet();
1720
1721 microtime(&tp);
1722
1723 t = tp.tv_sec*1000 + tp.tv_usec/1000;
1724
1725 elapsed = (t - vifp->v_tbf.last_pkt_t) * vifp->v_rate_limit /8;
1726 vifp->v_tbf.n_tok += elapsed;
1727 vifp->v_tbf.last_pkt_t = t;
1728
1729 if (vifp->v_tbf.n_tok > MAX_BKT_SIZE)
1730 vifp->v_tbf.n_tok = MAX_BKT_SIZE;
1731
1732 splx(s);
1733 }
1734
1735 static int
1736 priority(vifp, ip)
1737 register struct vif *vifp;
1738 register struct ip *ip;
1739 {
1740 register u_short port;
1741 register int prio;
1742
1743 /* temporary hack; may add general packet classifier some day */
1744
1745 /*
1746 * The UDP port space is divided up into four priority ranges:
1747 * [0, 16384) : unclassified - lowest priority
1748 * [16384, 32768) : audio - highest priority
1749 * [32768, 49152) : whiteboard - medium priority
1750 * [49152, 65536) : video - low priority
1751 */
1752 if (ip->ip_p == IPPROTO_UDP) {
1753 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1754
1755 switch (ntohs(udp->uh_dport) & 0xc000) {
1756 case 0x4000:
1757 prio = 70;
1758 break;
1759 case 0x8000:
1760 prio = 60;
1761 break;
1762 case 0xc000:
1763 prio = 55;
1764 break;
1765 default:
1766 prio = 50;
1767 break;
1768 }
1769
1770 if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio %d", ntohs(udp->uh_dport), prio);
1771 } else
1772 prio = 50;
1773
1774
1775 return (prio);
1776 }
1777
1778 /*
1779 * End of token bucket filter modifications
1780 */
1781
1782 #ifdef RSVP_ISI
1783
1784 int
1785 ip_rsvp_vif_init(so, m)
1786 struct socket *so;
1787 struct mbuf *m;
1788 {
1789 int i;
1790 register int s;
1791
1792 if (rsvpdebug)
1793 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1794 so->so_type, so->so_proto->pr_protocol);
1795
1796 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1797 return (EOPNOTSUPP);
1798
1799 /* Check mbuf. */
1800 if (m == NULL || m->m_len != sizeof(int)) {
1801 return (EINVAL);
1802 }
1803 i = *(mtod(m, int *));
1804
1805 if (rsvpdebug)
1806 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1807
1808 s = splnet();
1809
1810 /* Check vif. */
1811 if (!legal_vif_num(i)) {
1812 splx(s);
1813 return (EADDRNOTAVAIL);
1814 }
1815
1816 /* Check if socket is available. */
1817 if (viftable[i].v_rsvpd != NULL) {
1818 splx(s);
1819 return (EADDRINUSE);
1820 }
1821
1822 viftable[i].v_rsvpd = so;
1823 /* This may seem silly, but we need to be sure we don't over-increment
1824 * the RSVP counter, in case something slips up.
1825 */
1826 if (!viftable[i].v_rsvp_on) {
1827 viftable[i].v_rsvp_on = 1;
1828 rsvp_on++;
1829 }
1830
1831 splx(s);
1832 return (0);
1833 }
1834
1835 int
1836 ip_rsvp_vif_done(so, m)
1837 struct socket *so;
1838 struct mbuf *m;
1839 {
1840 int i;
1841 register int s;
1842
1843 if (rsvpdebug)
1844 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1845 so->so_type, so->so_proto->pr_protocol);
1846
1847 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1848 return (EOPNOTSUPP);
1849
1850 /* Check mbuf. */
1851 if (m == NULL || m->m_len != sizeof(int)) {
1852 return (EINVAL);
1853 }
1854 i = *(mtod(m, int *));
1855
1856 s = splnet();
1857
1858 /* Check vif. */
1859 if (!legal_vif_num(i)) {
1860 splx(s);
1861 return (EADDRNOTAVAIL);
1862 }
1863
1864 if (rsvpdebug)
1865 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1866 viftable[i].v_rsvpd, so);
1867
1868 viftable[i].v_rsvpd = NULL;
1869 /* This may seem silly, but we need to be sure we don't over-decrement
1870 * the RSVP counter, in case something slips up.
1871 */
1872 if (viftable[i].v_rsvp_on) {
1873 viftable[i].v_rsvp_on = 0;
1874 rsvp_on--;
1875 }
1876
1877 splx(s);
1878 return (0);
1879 }
1880
1881 ip_rsvp_force_done(so)
1882 struct socket *so;
1883 {
1884 int vifi;
1885 register int s;
1886
1887 /* Don't bother if it is not the right type of socket. */
1888 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1889 return;
1890
1891 s = splnet();
1892
1893 /* The socket may be attached to more than one vif...this
1894 * is perfectly legal.
1895 */
1896 for (vifi = 0; vifi < numvifs; vifi++) {
1897 if (viftable[vifi].v_rsvpd == so) {
1898 viftable[vifi].v_rsvpd = NULL;
1899 /* This may seem silly, but we need to be sure we don't
1900 * over-decrement the RSVP counter, in case something slips up.
1901 */
1902 if (viftable[vifi].v_rsvp_on) {
1903 viftable[vifi].v_rsvp_on = 0;
1904 rsvp_on--;
1905 }
1906 }
1907 }
1908
1909 splx(s);
1910 return;
1911 }
1912
1913 rsvp_input(m, ifp)
1914 struct mbuf *m;
1915 struct ifnet *ifp;
1916 {
1917 int vifi;
1918 register struct ip *ip = mtod(m, struct ip *);
1919 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
1920 register int s;
1921
1922 if (rsvpdebug)
1923 printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1924
1925 /* Can still get packets with rsvp_on = 0 if there is a local member
1926 * of the group to which the RSVP packet is addressed. But in this
1927 * case we want to throw the packet away.
1928 */
1929 if (!rsvp_on) {
1930 m_freem(m);
1931 return;
1932 }
1933
1934 /* If the old-style non-vif-associated socket is set, then use
1935 * it and ignore the new ones.
1936 */
1937 if (ip_rsvpd != NULL) {
1938 if (rsvpdebug)
1939 printf("rsvp_input: Sending packet up old-style socket\n");
1940 rip_input(m);
1941 return;
1942 }
1943
1944 s = splnet();
1945
1946 if (rsvpdebug)
1947 printf("rsvp_input: check vifs\n");
1948
1949 /* Find which vif the packet arrived on. */
1950 for (vifi = 0; vifi < numvifs; vifi++) {
1951 if (viftable[vifi].v_ifp == ifp)
1952 break;
1953 }
1954
1955 if (vifi == numvifs) {
1956 /* Can't find vif packet arrived on. Drop packet. */
1957 if (rsvpdebug)
1958 printf("rsvp_input: Can't find vif for packet...dropping it.\n");
1959 m_freem(m);
1960 splx(s);
1961 return;
1962 }
1963
1964 if (rsvpdebug)
1965 printf("rsvp_input: check socket\n");
1966
1967 if (viftable[vifi].v_rsvpd == NULL) {
1968 /* drop packet, since there is no specific socket for this
1969 * interface */
1970 if (rsvpdebug)
1971 printf("rsvp_input: No socket defined for vif %d\n",vifi);
1972 m_freem(m);
1973 splx(s);
1974 return;
1975 }
1976
1977 rsvp_src.sin_addr = ip->ip_src;
1978
1979 if (rsvpdebug && m)
1980 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
1981 m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
1982
1983 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
1984 if (rsvpdebug)
1985 printf("rsvp_input: Failed to append to socket\n");
1986 else
1987 if (rsvpdebug)
1988 printf("rsvp_input: send packet up\n");
1989
1990 splx(s);
1991 }
1992 #endif /* RSVP_ISI */
1993