Home | History | Annotate | Line # | Download | only in netinet
ip_mroute.c revision 1.162
      1 /*	$NetBSD: ip_mroute.c,v 1.162 2018/07/11 12:48:42 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.162 2018/07/11 12:48:42 martin Exp $");
     97 
     98 #ifdef _KERNEL_OPT
     99 #include "opt_inet.h"
    100 #include "opt_ipsec.h"
    101 #include "opt_pim.h"
    102 #endif
    103 
    104 #ifdef PIM
    105 #define _PIM_VT 1
    106 #endif
    107 
    108 #include <sys/param.h>
    109 #include <sys/systm.h>
    110 #include <sys/callout.h>
    111 #include <sys/mbuf.h>
    112 #include <sys/socket.h>
    113 #include <sys/socketvar.h>
    114 #include <sys/errno.h>
    115 #include <sys/time.h>
    116 #include <sys/kernel.h>
    117 #include <sys/kmem.h>
    118 #include <sys/ioctl.h>
    119 #include <sys/syslog.h>
    120 
    121 #include <net/if.h>
    122 #include <net/raw_cb.h>
    123 
    124 #include <netinet/in.h>
    125 #include <netinet/in_var.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/in_offload.h>
    128 #include <netinet/ip.h>
    129 #include <netinet/ip_var.h>
    130 #include <netinet/in_pcb.h>
    131 #include <netinet/udp.h>
    132 #include <netinet/igmp.h>
    133 #include <netinet/igmp_var.h>
    134 #include <netinet/ip_mroute.h>
    135 #ifdef PIM
    136 #include <netinet/pim.h>
    137 #include <netinet/pim_var.h>
    138 #endif
    139 #include <netinet/ip_encap.h>
    140 
    141 #ifdef IPSEC
    142 #include <netipsec/ipsec.h>
    143 #include <netipsec/key.h>
    144 #endif
    145 
    146 #define IP_MULTICASTOPTS 0
    147 #define	M_PULLUP(m, len)						 \
    148 	do {								 \
    149 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    150 			(m) = m_pullup((m), (len));			 \
    151 	} while (/*CONSTCOND*/ 0)
    152 
    153 /*
    154  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    155  * except for netstat or debugging purposes.
    156  */
    157 struct socket  *ip_mrouter  = NULL;
    158 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    159 
    160 #define	MFCHASH(a, g)							\
    161 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    162 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    163 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    164 u_long	mfchash;
    165 
    166 u_char		nexpire[MFCTBLSIZ];
    167 struct vif	viftable[MAXVIFS];
    168 struct mrtstat	mrtstat;
    169 u_int		mrtdebug = 0;	/* debug level */
    170 #define		DEBUG_MFC	0x02
    171 #define		DEBUG_FORWARD	0x04
    172 #define		DEBUG_EXPIRE	0x08
    173 #define		DEBUG_XMIT	0x10
    174 #define		DEBUG_PIM	0x20
    175 
    176 #define		VIFI_INVALID	((vifi_t) -1)
    177 
    178 u_int tbfdebug = 0;	/* tbf debug level */
    179 
    180 /* vif attachment using sys/netinet/ip_encap.c */
    181 static void vif_input(struct mbuf *, int, int, void *);
    182 static int vif_encapcheck(struct mbuf *, int, int, void *);
    183 
    184 static const struct encapsw vif_encapsw = {
    185 	.encapsw4 = {
    186 		.pr_input	= vif_input,
    187 		.pr_ctlinput	= NULL,
    188 	}
    189 };
    190 
    191 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    192 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    193 
    194 /*
    195  * Define the token bucket filter structures
    196  */
    197 
    198 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    199 
    200 static int get_sg_cnt(struct sioc_sg_req *);
    201 static int get_vif_cnt(struct sioc_vif_req *);
    202 static int ip_mrouter_init(struct socket *, int);
    203 static int set_assert(int);
    204 static int add_vif(struct vifctl *);
    205 static int del_vif(vifi_t *);
    206 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
    207 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
    208 static void expire_mfc(struct mfc *);
    209 static int add_mfc(struct sockopt *);
    210 #ifdef UPCALL_TIMING
    211 static void collate(struct timeval *);
    212 #endif
    213 static int del_mfc(struct sockopt *);
    214 static int set_api_config(struct sockopt *); /* chose API capabilities */
    215 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
    216 static void expire_upcalls(void *);
    217 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
    218 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
    219 static void encap_send(struct ip *, struct vif *, struct mbuf *);
    220 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
    221 static void tbf_queue(struct vif *, struct mbuf *);
    222 static void tbf_process_q(struct vif *);
    223 static void tbf_reprocess_q(void *);
    224 static int tbf_dq_sel(struct vif *, struct ip *);
    225 static void tbf_send_packet(struct vif *, struct mbuf *);
    226 static void tbf_update_tokens(struct vif *);
    227 static int priority(struct vif *, struct ip *);
    228 
    229 /*
    230  * Bandwidth monitoring
    231  */
    232 static void free_bw_list(struct bw_meter *);
    233 static int add_bw_upcall(struct bw_upcall *);
    234 static int del_bw_upcall(struct bw_upcall *);
    235 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
    236 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
    237 static void bw_upcalls_send(void);
    238 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
    239 static void unschedule_bw_meter(struct bw_meter *);
    240 static void bw_meter_process(void);
    241 static void expire_bw_upcalls_send(void *);
    242 static void expire_bw_meter_process(void *);
    243 
    244 #ifdef PIM
    245 static int pim_register_send(struct ip *, struct vif *,
    246     struct mbuf *, struct mfc *);
    247 static int pim_register_send_rp(struct ip *, struct vif *,
    248     struct mbuf *, struct mfc *);
    249 static int pim_register_send_upcall(struct ip *, struct vif *,
    250     struct mbuf *, struct mfc *);
    251 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
    252 #endif
    253 
    254 #define	ENCAP_TTL	64
    255 #define	ENCAP_PROTO	IPPROTO_IPIP
    256 
    257 /* prototype IP hdr for encapsulated packets */
    258 static const struct ip multicast_encap_iphdr = {
    259 	.ip_hl = sizeof(struct ip) >> 2,
    260 	.ip_v = IPVERSION,
    261 	.ip_len = sizeof(struct ip),
    262 	.ip_ttl = ENCAP_TTL,
    263 	.ip_p = ENCAP_PROTO,
    264 };
    265 
    266 /*
    267  * Bandwidth meter variables and constants
    268  */
    269 
    270 /*
    271  * Pending timeouts are stored in a hash table, the key being the
    272  * expiration time. Periodically, the entries are analysed and processed.
    273  */
    274 #define BW_METER_BUCKETS	1024
    275 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    276 struct callout bw_meter_ch;
    277 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    278 
    279 /*
    280  * Pending upcalls are stored in a vector which is flushed when
    281  * full, or periodically
    282  */
    283 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    284 static u_int	bw_upcalls_n; /* # of pending upcalls */
    285 struct callout	bw_upcalls_ch;
    286 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    287 
    288 #ifdef PIM
    289 struct pimstat pimstat;
    290 
    291 /*
    292  * Note: the PIM Register encapsulation adds the following in front of a
    293  * data packet:
    294  *
    295  * struct pim_encap_hdr {
    296  *     struct ip ip;
    297  *     struct pim_encap_pimhdr  pim;
    298  * }
    299  */
    300 
    301 struct pim_encap_pimhdr {
    302 	struct pim pim;
    303 	uint32_t   flags;
    304 };
    305 
    306 static struct ip pim_encap_iphdr = {
    307 	.ip_v = IPVERSION,
    308 	.ip_hl = sizeof(struct ip) >> 2,
    309 	.ip_len = sizeof(struct ip),
    310 	.ip_ttl = ENCAP_TTL,
    311 	.ip_p = IPPROTO_PIM,
    312 };
    313 
    314 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    315     {
    316 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    317 	0,			/* reserved */
    318 	0,			/* checksum */
    319     },
    320     0				/* flags */
    321 };
    322 
    323 static struct ifnet multicast_register_if;
    324 static vifi_t reg_vif_num = VIFI_INVALID;
    325 #endif /* PIM */
    326 
    327 
    328 /*
    329  * Private variables.
    330  */
    331 static vifi_t	   numvifs = 0;
    332 
    333 static struct callout expire_upcalls_ch;
    334 
    335 /*
    336  * whether or not special PIM assert processing is enabled.
    337  */
    338 static int pim_assert;
    339 /*
    340  * Rate limit for assert notification messages, in usec
    341  */
    342 #define ASSERT_MSG_TIME		3000000
    343 
    344 /*
    345  * Kernel multicast routing API capabilities and setup.
    346  * If more API capabilities are added to the kernel, they should be
    347  * recorded in `mrt_api_support'.
    348  */
    349 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    350 					  MRT_MFC_FLAGS_BORDER_VIF |
    351 					  MRT_MFC_RP |
    352 					  MRT_MFC_BW_UPCALL);
    353 static u_int32_t mrt_api_config = 0;
    354 
    355 /*
    356  * Find a route for a given origin IP address and Multicast group address
    357  * Type of service parameter to be added in the future!!!
    358  * Statistics are updated by the caller if needed
    359  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    360  */
    361 static struct mfc *
    362 mfc_find(struct in_addr *o, struct in_addr *g)
    363 {
    364 	struct mfc *rt;
    365 
    366 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    367 		if (in_hosteq(rt->mfc_origin, *o) &&
    368 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    369 		    (rt->mfc_stall == NULL))
    370 			break;
    371 	}
    372 
    373 	return rt;
    374 }
    375 
    376 /*
    377  * Macros to compute elapsed time efficiently
    378  * Borrowed from Van Jacobson's scheduling code
    379  */
    380 #define TV_DELTA(a, b, delta) do {					\
    381 	int xxs;							\
    382 	delta = (a).tv_usec - (b).tv_usec;				\
    383 	xxs = (a).tv_sec - (b).tv_sec;					\
    384 	switch (xxs) {							\
    385 	case 2:								\
    386 		delta += 1000000;					\
    387 		/* fall through */					\
    388 	case 1:								\
    389 		delta += 1000000;					\
    390 		/* fall through */					\
    391 	case 0:								\
    392 		break;							\
    393 	default:							\
    394 		delta += (1000000 * xxs);				\
    395 		break;							\
    396 	}								\
    397 } while (/*CONSTCOND*/ 0)
    398 
    399 #ifdef UPCALL_TIMING
    400 u_int32_t upcall_data[51];
    401 #endif /* UPCALL_TIMING */
    402 
    403 /*
    404  * Handle MRT setsockopt commands to modify the multicast routing tables.
    405  */
    406 int
    407 ip_mrouter_set(struct socket *so, struct sockopt *sopt)
    408 {
    409 	int error;
    410 	int optval;
    411 	struct vifctl vifc;
    412 	vifi_t vifi;
    413 	struct bw_upcall bwuc;
    414 
    415 	if (sopt->sopt_name != MRT_INIT && so != ip_mrouter)
    416 		error = ENOPROTOOPT;
    417 	else {
    418 		switch (sopt->sopt_name) {
    419 		case MRT_INIT:
    420 			error = sockopt_getint(sopt, &optval);
    421 			if (error)
    422 				break;
    423 
    424 			error = ip_mrouter_init(so, optval);
    425 			break;
    426 		case MRT_DONE:
    427 			error = ip_mrouter_done();
    428 			break;
    429 		case MRT_ADD_VIF:
    430 			error = sockopt_get(sopt, &vifc, sizeof(vifc));
    431 			if (error)
    432 				break;
    433 			error = add_vif(&vifc);
    434 			break;
    435 		case MRT_DEL_VIF:
    436 			error = sockopt_get(sopt, &vifi, sizeof(vifi));
    437 			if (error)
    438 				break;
    439 			error = del_vif(&vifi);
    440 			break;
    441 		case MRT_ADD_MFC:
    442 			error = add_mfc(sopt);
    443 			break;
    444 		case MRT_DEL_MFC:
    445 			error = del_mfc(sopt);
    446 			break;
    447 		case MRT_ASSERT:
    448 			error = sockopt_getint(sopt, &optval);
    449 			if (error)
    450 				break;
    451 			error = set_assert(optval);
    452 			break;
    453 		case MRT_API_CONFIG:
    454 			error = set_api_config(sopt);
    455 			break;
    456 		case MRT_ADD_BW_UPCALL:
    457 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    458 			if (error)
    459 				break;
    460 			error = add_bw_upcall(&bwuc);
    461 			break;
    462 		case MRT_DEL_BW_UPCALL:
    463 			error = sockopt_get(sopt, &bwuc, sizeof(bwuc));
    464 			if (error)
    465 				break;
    466 			error = del_bw_upcall(&bwuc);
    467 			break;
    468 		default:
    469 			error = ENOPROTOOPT;
    470 			break;
    471 		}
    472 	}
    473 	return error;
    474 }
    475 
    476 /*
    477  * Handle MRT getsockopt commands
    478  */
    479 int
    480 ip_mrouter_get(struct socket *so, struct sockopt *sopt)
    481 {
    482 	int error;
    483 
    484 	if (so != ip_mrouter)
    485 		error = ENOPROTOOPT;
    486 	else {
    487 		switch (sopt->sopt_name) {
    488 		case MRT_VERSION:
    489 			error = sockopt_setint(sopt, 0x0305); /* XXX !!!! */
    490 			break;
    491 		case MRT_ASSERT:
    492 			error = sockopt_setint(sopt, pim_assert);
    493 			break;
    494 		case MRT_API_SUPPORT:
    495 			error = sockopt_set(sopt, &mrt_api_support,
    496 			    sizeof(mrt_api_support));
    497 			break;
    498 		case MRT_API_CONFIG:
    499 			error = sockopt_set(sopt, &mrt_api_config,
    500 			    sizeof(mrt_api_config));
    501 			break;
    502 		default:
    503 			error = ENOPROTOOPT;
    504 			break;
    505 		}
    506 	}
    507 	return error;
    508 }
    509 
    510 /*
    511  * Handle ioctl commands to obtain information from the cache
    512  */
    513 int
    514 mrt_ioctl(struct socket *so, u_long cmd, void *data)
    515 {
    516 	int error;
    517 
    518 	if (so != ip_mrouter)
    519 		error = EINVAL;
    520 	else
    521 		switch (cmd) {
    522 		case SIOCGETVIFCNT:
    523 			error = get_vif_cnt((struct sioc_vif_req *)data);
    524 			break;
    525 		case SIOCGETSGCNT:
    526 			error = get_sg_cnt((struct sioc_sg_req *)data);
    527 			break;
    528 		default:
    529 			error = EINVAL;
    530 			break;
    531 		}
    532 
    533 	return error;
    534 }
    535 
    536 /*
    537  * returns the packet, byte, rpf-failure count for the source group provided
    538  */
    539 static int
    540 get_sg_cnt(struct sioc_sg_req *req)
    541 {
    542 	int s;
    543 	struct mfc *rt;
    544 
    545 	s = splsoftnet();
    546 	rt = mfc_find(&req->src, &req->grp);
    547 	if (rt == NULL) {
    548 		splx(s);
    549 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    550 		return EADDRNOTAVAIL;
    551 	}
    552 	req->pktcnt = rt->mfc_pkt_cnt;
    553 	req->bytecnt = rt->mfc_byte_cnt;
    554 	req->wrong_if = rt->mfc_wrong_if;
    555 	splx(s);
    556 
    557 	return 0;
    558 }
    559 
    560 /*
    561  * returns the input and output packet and byte counts on the vif provided
    562  */
    563 static int
    564 get_vif_cnt(struct sioc_vif_req *req)
    565 {
    566 	vifi_t vifi = req->vifi;
    567 
    568 	if (vifi >= numvifs)
    569 		return EINVAL;
    570 
    571 	req->icount = viftable[vifi].v_pkt_in;
    572 	req->ocount = viftable[vifi].v_pkt_out;
    573 	req->ibytes = viftable[vifi].v_bytes_in;
    574 	req->obytes = viftable[vifi].v_bytes_out;
    575 
    576 	return 0;
    577 }
    578 
    579 /*
    580  * Enable multicast routing
    581  */
    582 static int
    583 ip_mrouter_init(struct socket *so, int v)
    584 {
    585 	if (mrtdebug)
    586 		log(LOG_DEBUG,
    587 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    588 		    so->so_type, so->so_proto->pr_protocol);
    589 
    590 	if (so->so_type != SOCK_RAW ||
    591 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    592 		return EOPNOTSUPP;
    593 
    594 	if (v != 1)
    595 		return EINVAL;
    596 
    597 	if (ip_mrouter != NULL)
    598 		return EADDRINUSE;
    599 
    600 	ip_mrouter = so;
    601 
    602 	mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, true, &mfchash);
    603 	memset((void *)nexpire, 0, sizeof(nexpire));
    604 
    605 	pim_assert = 0;
    606 
    607 	callout_init(&expire_upcalls_ch, 0);
    608 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    609 		      expire_upcalls, NULL);
    610 
    611 	callout_init(&bw_upcalls_ch, 0);
    612 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    613 		      expire_bw_upcalls_send, NULL);
    614 
    615 	callout_init(&bw_meter_ch, 0);
    616 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    617 		      expire_bw_meter_process, NULL);
    618 
    619 	if (mrtdebug)
    620 		log(LOG_DEBUG, "ip_mrouter_init\n");
    621 
    622 	return 0;
    623 }
    624 
    625 /*
    626  * Disable multicast routing
    627  */
    628 int
    629 ip_mrouter_done(void)
    630 {
    631 	vifi_t vifi;
    632 	struct vif *vifp;
    633 	int i;
    634 	int s;
    635 
    636 	s = splsoftnet();
    637 
    638 	/* Clear out all the vifs currently in use. */
    639 	for (vifi = 0; vifi < numvifs; vifi++) {
    640 		vifp = &viftable[vifi];
    641 		if (!in_nullhost(vifp->v_lcl_addr))
    642 			reset_vif(vifp);
    643 	}
    644 
    645 	numvifs = 0;
    646 	pim_assert = 0;
    647 	mrt_api_config = 0;
    648 
    649 	callout_stop(&expire_upcalls_ch);
    650 	callout_stop(&bw_upcalls_ch);
    651 	callout_stop(&bw_meter_ch);
    652 
    653 	/*
    654 	 * Free all multicast forwarding cache entries.
    655 	 */
    656 	for (i = 0; i < MFCTBLSIZ; i++) {
    657 		struct mfc *rt, *nrt;
    658 
    659 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    660 			nrt = LIST_NEXT(rt, mfc_hash);
    661 
    662 			expire_mfc(rt);
    663 		}
    664 	}
    665 
    666 	memset((void *)nexpire, 0, sizeof(nexpire));
    667 	hashdone(mfchashtbl, HASH_LIST, mfchash);
    668 	mfchashtbl = NULL;
    669 
    670 	bw_upcalls_n = 0;
    671 	memset(bw_meter_timers, 0, sizeof(bw_meter_timers));
    672 
    673 	/* Reset de-encapsulation cache. */
    674 
    675 	ip_mrouter = NULL;
    676 
    677 	splx(s);
    678 
    679 	if (mrtdebug)
    680 		log(LOG_DEBUG, "ip_mrouter_done\n");
    681 
    682 	return 0;
    683 }
    684 
    685 void
    686 ip_mrouter_detach(struct ifnet *ifp)
    687 {
    688 	int vifi, i;
    689 	struct vif *vifp;
    690 	struct mfc *rt;
    691 	struct rtdetq *rte;
    692 
    693 	/* XXX not sure about side effect to userland routing daemon */
    694 	for (vifi = 0; vifi < numvifs; vifi++) {
    695 		vifp = &viftable[vifi];
    696 		if (vifp->v_ifp == ifp)
    697 			reset_vif(vifp);
    698 	}
    699 	for (i = 0; i < MFCTBLSIZ; i++) {
    700 		if (nexpire[i] == 0)
    701 			continue;
    702 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    703 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    704 				if (rte->ifp == ifp)
    705 					rte->ifp = NULL;
    706 			}
    707 		}
    708 	}
    709 }
    710 
    711 /*
    712  * Set PIM assert processing global
    713  */
    714 static int
    715 set_assert(int i)
    716 {
    717 	pim_assert = !!i;
    718 	return 0;
    719 }
    720 
    721 /*
    722  * Configure API capabilities
    723  */
    724 static int
    725 set_api_config(struct sockopt *sopt)
    726 {
    727 	u_int32_t apival;
    728 	int i, error;
    729 
    730 	/*
    731 	 * We can set the API capabilities only if it is the first operation
    732 	 * after MRT_INIT. I.e.:
    733 	 *  - there are no vifs installed
    734 	 *  - pim_assert is not enabled
    735 	 *  - the MFC table is empty
    736 	 */
    737 	error = sockopt_get(sopt, &apival, sizeof(apival));
    738 	if (error)
    739 		return error;
    740 	if (numvifs > 0)
    741 		return EPERM;
    742 	if (pim_assert)
    743 		return EPERM;
    744 	for (i = 0; i < MFCTBLSIZ; i++) {
    745 		if (LIST_FIRST(&mfchashtbl[i]) != NULL)
    746 			return EPERM;
    747 	}
    748 
    749 	mrt_api_config = apival & mrt_api_support;
    750 	return 0;
    751 }
    752 
    753 /*
    754  * Add a vif to the vif table
    755  */
    756 static int
    757 add_vif(struct vifctl *vifcp)
    758 {
    759 	struct vif *vifp;
    760 	struct ifnet *ifp;
    761 	int error, s;
    762 	struct sockaddr_in sin;
    763 
    764 	if (vifcp->vifc_vifi >= MAXVIFS)
    765 		return EINVAL;
    766 	if (in_nullhost(vifcp->vifc_lcl_addr))
    767 		return EADDRNOTAVAIL;
    768 
    769 	vifp = &viftable[vifcp->vifc_vifi];
    770 	if (!in_nullhost(vifp->v_lcl_addr))
    771 		return EADDRINUSE;
    772 
    773 	/* Find the interface with an address in AF_INET family. */
    774 #ifdef PIM
    775 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    776 		/*
    777 		 * XXX: Because VIFF_REGISTER does not really need a valid
    778 		 * local interface (e.g. it could be 127.0.0.2), we don't
    779 		 * check its address.
    780 		 */
    781 		ifp = NULL;
    782 	} else
    783 #endif
    784 	{
    785 		struct ifaddr *ifa;
    786 
    787 		sockaddr_in_init(&sin, &vifcp->vifc_lcl_addr, 0);
    788 		s = pserialize_read_enter();
    789 		ifa = ifa_ifwithaddr(sintosa(&sin));
    790 		if (ifa == NULL) {
    791 			pserialize_read_exit(s);
    792 			return EADDRNOTAVAIL;
    793 		}
    794 		ifp = ifa->ifa_ifp;
    795 		/* FIXME NOMPSAFE */
    796 		pserialize_read_exit(s);
    797 	}
    798 
    799 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    800 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    801 			log(LOG_ERR, "source routed tunnels not supported\n");
    802 			return EOPNOTSUPP;
    803 		}
    804 
    805 		/* attach this vif to decapsulator dispatch table */
    806 		/*
    807 		 * XXX Use addresses in registration so that matching
    808 		 * can be done with radix tree in decapsulator.  But,
    809 		 * we need to check inner header for multicast, so
    810 		 * this requires both radix tree lookup and then a
    811 		 * function to check, and this is not supported yet.
    812 		 */
    813 		error = encap_lock_enter();
    814 		if (error)
    815 			return error;
    816 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    817 		    vif_encapcheck, &vif_encapsw, vifp);
    818 		encap_lock_exit();
    819 		if (!vifp->v_encap_cookie)
    820 			return EINVAL;
    821 
    822 		/* Create a fake encapsulation interface. */
    823 		ifp = malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK|M_ZERO);
    824 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    825 			 "mdecap%d", vifcp->vifc_vifi);
    826 
    827 		/* Prepare cached route entry. */
    828 		memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    829 #ifdef PIM
    830 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    831 		ifp = &multicast_register_if;
    832 		if (mrtdebug)
    833 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    834 			    (void *)ifp);
    835 		if (reg_vif_num == VIFI_INVALID) {
    836 			memset(ifp, 0, sizeof(*ifp));
    837 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    838 				 "register_vif");
    839 			ifp->if_flags = IFF_LOOPBACK;
    840 			memset(&vifp->v_route, 0, sizeof(vifp->v_route));
    841 			reg_vif_num = vifcp->vifc_vifi;
    842 		}
    843 #endif
    844 	} else {
    845 		/* Make sure the interface supports multicast. */
    846 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    847 			return EOPNOTSUPP;
    848 
    849 		/* Enable promiscuous reception of all IP multicasts. */
    850 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    851 		error = if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin));
    852 		if (error)
    853 			return error;
    854 	}
    855 
    856 	s = splsoftnet();
    857 
    858 	/* Define parameters for the tbf structure. */
    859 	vifp->tbf_q = NULL;
    860 	vifp->tbf_t = &vifp->tbf_q;
    861 	microtime(&vifp->tbf_last_pkt_t);
    862 	vifp->tbf_n_tok = 0;
    863 	vifp->tbf_q_len = 0;
    864 	vifp->tbf_max_q_len = MAXQSIZE;
    865 
    866 	vifp->v_flags = vifcp->vifc_flags;
    867 	vifp->v_threshold = vifcp->vifc_threshold;
    868 	/* scaling up here allows division by 1024 in critical code */
    869 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
    870 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
    871 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
    872 	vifp->v_ifp = ifp;
    873 	/* Initialize per vif pkt counters. */
    874 	vifp->v_pkt_in = 0;
    875 	vifp->v_pkt_out = 0;
    876 	vifp->v_bytes_in = 0;
    877 	vifp->v_bytes_out = 0;
    878 
    879 	callout_init(&vifp->v_repq_ch, 0);
    880 
    881 	splx(s);
    882 
    883 	/* Adjust numvifs up if the vifi is higher than numvifs. */
    884 	if (numvifs <= vifcp->vifc_vifi)
    885 		numvifs = vifcp->vifc_vifi + 1;
    886 
    887 	if (mrtdebug)
    888 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
    889 		    vifcp->vifc_vifi,
    890 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
    891 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
    892 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
    893 		    vifcp->vifc_threshold,
    894 		    vifcp->vifc_rate_limit);
    895 
    896 	return 0;
    897 }
    898 
    899 void
    900 reset_vif(struct vif *vifp)
    901 {
    902 	struct mbuf *m, *n;
    903 	struct ifnet *ifp;
    904 	struct sockaddr_in sin;
    905 
    906 	callout_stop(&vifp->v_repq_ch);
    907 
    908 	/* detach this vif from decapsulator dispatch table */
    909 	encap_lock_enter();
    910 	encap_detach(vifp->v_encap_cookie);
    911 	encap_lock_exit();
    912 	vifp->v_encap_cookie = NULL;
    913 
    914 	/*
    915 	 * Free packets queued at the interface
    916 	 */
    917 	for (m = vifp->tbf_q; m != NULL; m = n) {
    918 		n = m->m_nextpkt;
    919 		m_freem(m);
    920 	}
    921 
    922 	if (vifp->v_flags & VIFF_TUNNEL)
    923 		free(vifp->v_ifp, M_MRTABLE);
    924 	else if (vifp->v_flags & VIFF_REGISTER) {
    925 #ifdef PIM
    926 		reg_vif_num = VIFI_INVALID;
    927 #endif
    928 	} else {
    929 		sockaddr_in_init(&sin, &zeroin_addr, 0);
    930 		ifp = vifp->v_ifp;
    931 		if_mcast_op(ifp, SIOCDELMULTI, sintosa(&sin));
    932 	}
    933 	memset((void *)vifp, 0, sizeof(*vifp));
    934 }
    935 
    936 /*
    937  * Delete a vif from the vif table
    938  */
    939 static int
    940 del_vif(vifi_t *vifip)
    941 {
    942 	struct vif *vifp;
    943 	vifi_t vifi;
    944 	int s;
    945 
    946 	if (*vifip >= numvifs)
    947 		return EINVAL;
    948 
    949 	vifp = &viftable[*vifip];
    950 	if (in_nullhost(vifp->v_lcl_addr))
    951 		return EADDRNOTAVAIL;
    952 
    953 	s = splsoftnet();
    954 
    955 	reset_vif(vifp);
    956 
    957 	/* Adjust numvifs down */
    958 	for (vifi = numvifs; vifi > 0; vifi--)
    959 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
    960 			break;
    961 	numvifs = vifi;
    962 
    963 	splx(s);
    964 
    965 	if (mrtdebug)
    966 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
    967 
    968 	return 0;
    969 }
    970 
    971 /*
    972  * update an mfc entry without resetting counters and S,G addresses.
    973  */
    974 static void
    975 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    976 {
    977 	int i;
    978 
    979 	rt->mfc_parent = mfccp->mfcc_parent;
    980 	for (i = 0; i < numvifs; i++) {
    981 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
    982 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
    983 			MRT_MFC_FLAGS_ALL;
    984 	}
    985 	/* set the RP address */
    986 	if (mrt_api_config & MRT_MFC_RP)
    987 		rt->mfc_rp = mfccp->mfcc_rp;
    988 	else
    989 		rt->mfc_rp = zeroin_addr;
    990 }
    991 
    992 /*
    993  * fully initialize an mfc entry from the parameter.
    994  */
    995 static void
    996 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
    997 {
    998 	rt->mfc_origin     = mfccp->mfcc_origin;
    999 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
   1000 
   1001 	update_mfc_params(rt, mfccp);
   1002 
   1003 	/* initialize pkt counters per src-grp */
   1004 	rt->mfc_pkt_cnt    = 0;
   1005 	rt->mfc_byte_cnt   = 0;
   1006 	rt->mfc_wrong_if   = 0;
   1007 	timerclear(&rt->mfc_last_assert);
   1008 }
   1009 
   1010 static void
   1011 expire_mfc(struct mfc *rt)
   1012 {
   1013 	struct rtdetq *rte, *nrte;
   1014 
   1015 	free_bw_list(rt->mfc_bw_meter);
   1016 
   1017 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1018 		nrte = rte->next;
   1019 		m_freem(rte->m);
   1020 		free(rte, M_MRTABLE);
   1021 	}
   1022 
   1023 	LIST_REMOVE(rt, mfc_hash);
   1024 	free(rt, M_MRTABLE);
   1025 }
   1026 
   1027 /*
   1028  * Add an mfc entry
   1029  */
   1030 static int
   1031 add_mfc(struct sockopt *sopt)
   1032 {
   1033 	struct mfcctl2 mfcctl2;
   1034 	struct mfcctl2 *mfccp;
   1035 	struct mfc *rt;
   1036 	u_int32_t hash = 0;
   1037 	struct rtdetq *rte, *nrte;
   1038 	u_short nstl;
   1039 	int s;
   1040 	int error;
   1041 
   1042 	/*
   1043 	 * select data size depending on API version.
   1044 	 */
   1045 	mfccp = &mfcctl2;
   1046 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1047 
   1048 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1049 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1050 	else
   1051 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1052 
   1053 	if (error)
   1054 		return error;
   1055 
   1056 	s = splsoftnet();
   1057 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1058 
   1059 	/* If an entry already exists, just update the fields */
   1060 	if (rt) {
   1061 		if (mrtdebug & DEBUG_MFC)
   1062 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1063 			    ntohl(mfccp->mfcc_origin.s_addr),
   1064 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1065 			    mfccp->mfcc_parent);
   1066 
   1067 		update_mfc_params(rt, mfccp);
   1068 
   1069 		splx(s);
   1070 		return 0;
   1071 	}
   1072 
   1073 	/*
   1074 	 * Find the entry for which the upcall was made and update
   1075 	 */
   1076 	nstl = 0;
   1077 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1078 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1079 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1080 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1081 		    rt->mfc_stall != NULL) {
   1082 			if (nstl++)
   1083 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1084 				    "multiple kernel entries",
   1085 				    ntohl(mfccp->mfcc_origin.s_addr),
   1086 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1087 				    mfccp->mfcc_parent, rt->mfc_stall);
   1088 
   1089 			if (mrtdebug & DEBUG_MFC)
   1090 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1091 				    ntohl(mfccp->mfcc_origin.s_addr),
   1092 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1093 				    mfccp->mfcc_parent, rt->mfc_stall);
   1094 
   1095 			rte = rt->mfc_stall;
   1096 			init_mfc_params(rt, mfccp);
   1097 			rt->mfc_stall = NULL;
   1098 
   1099 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1100 			nexpire[hash]--;
   1101 
   1102 			/* free packets Qed at the end of this entry */
   1103 			for (; rte != NULL; rte = nrte) {
   1104 				nrte = rte->next;
   1105 				if (rte->ifp) {
   1106 					ip_mdq(rte->m, rte->ifp, rt);
   1107 				}
   1108 				m_freem(rte->m);
   1109 #ifdef UPCALL_TIMING
   1110 				collate(&rte->t);
   1111 #endif /* UPCALL_TIMING */
   1112 				free(rte, M_MRTABLE);
   1113 			}
   1114 		}
   1115 	}
   1116 
   1117 	/*
   1118 	 * It is possible that an entry is being inserted without an upcall
   1119 	 */
   1120 	if (nstl == 0) {
   1121 		/*
   1122 		 * No mfc; make a new one
   1123 		 */
   1124 		if (mrtdebug & DEBUG_MFC)
   1125 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1126 			    ntohl(mfccp->mfcc_origin.s_addr),
   1127 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1128 			    mfccp->mfcc_parent);
   1129 
   1130 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1131 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1132 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1133 				init_mfc_params(rt, mfccp);
   1134 				if (rt->mfc_expire)
   1135 					nexpire[hash]--;
   1136 				rt->mfc_expire = 0;
   1137 				break; /* XXX */
   1138 			}
   1139 		}
   1140 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1141 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
   1142 			if (rt == NULL) {
   1143 				splx(s);
   1144 				return ENOBUFS;
   1145 			}
   1146 
   1147 			init_mfc_params(rt, mfccp);
   1148 			rt->mfc_expire	= 0;
   1149 			rt->mfc_stall	= NULL;
   1150 			rt->mfc_bw_meter = NULL;
   1151 
   1152 			/* insert new entry at head of hash chain */
   1153 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1154 		}
   1155 	}
   1156 
   1157 	splx(s);
   1158 	return 0;
   1159 }
   1160 
   1161 #ifdef UPCALL_TIMING
   1162 /*
   1163  * collect delay statistics on the upcalls
   1164  */
   1165 static void
   1166 collate(struct timeval *t)
   1167 {
   1168 	u_int32_t d;
   1169 	struct timeval tp;
   1170 	u_int32_t delta;
   1171 
   1172 	microtime(&tp);
   1173 
   1174 	if (timercmp(t, &tp, <)) {
   1175 		TV_DELTA(tp, *t, delta);
   1176 
   1177 		d = delta >> 10;
   1178 		if (d > 50)
   1179 			d = 50;
   1180 
   1181 		++upcall_data[d];
   1182 	}
   1183 }
   1184 #endif /* UPCALL_TIMING */
   1185 
   1186 /*
   1187  * Delete an mfc entry
   1188  */
   1189 static int
   1190 del_mfc(struct sockopt *sopt)
   1191 {
   1192 	struct mfcctl2 mfcctl2;
   1193 	struct mfcctl2 *mfccp;
   1194 	struct mfc *rt;
   1195 	int s;
   1196 	int error;
   1197 
   1198 	/*
   1199 	 * XXX: for deleting MFC entries the information in entries
   1200 	 * of size "struct mfcctl" is sufficient.
   1201 	 */
   1202 
   1203 	mfccp = &mfcctl2;
   1204 	memset(&mfcctl2, 0, sizeof(mfcctl2));
   1205 
   1206 	error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl));
   1207 	if (error) {
   1208 		/* Try with the size of mfcctl2. */
   1209 		error = sockopt_get(sopt, mfccp, sizeof(struct mfcctl2));
   1210 		if (error)
   1211 			return error;
   1212 	}
   1213 
   1214 	if (mrtdebug & DEBUG_MFC)
   1215 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1216 		    ntohl(mfccp->mfcc_origin.s_addr),
   1217 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1218 
   1219 	s = splsoftnet();
   1220 
   1221 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1222 	if (rt == NULL) {
   1223 		splx(s);
   1224 		return EADDRNOTAVAIL;
   1225 	}
   1226 
   1227 	/*
   1228 	 * free the bw_meter entries
   1229 	 */
   1230 	free_bw_list(rt->mfc_bw_meter);
   1231 	rt->mfc_bw_meter = NULL;
   1232 
   1233 	LIST_REMOVE(rt, mfc_hash);
   1234 	free(rt, M_MRTABLE);
   1235 
   1236 	splx(s);
   1237 	return 0;
   1238 }
   1239 
   1240 static int
   1241 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
   1242 {
   1243 	if (s) {
   1244 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm, NULL) != 0) {
   1245 			sorwakeup(s);
   1246 			return 0;
   1247 		}
   1248 		soroverflow(s);
   1249 	}
   1250 	m_freem(mm);
   1251 	return -1;
   1252 }
   1253 
   1254 /*
   1255  * IP multicast forwarding function. This function assumes that the packet
   1256  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1257  * pointed to by "ifp", and the packet is to be relayed to other networks
   1258  * that have members of the packet's destination IP multicast group.
   1259  *
   1260  * The packet is returned unscathed to the caller, unless it is
   1261  * erroneous, in which case a non-zero return value tells the caller to
   1262  * discard it.
   1263  */
   1264 
   1265 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1266 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1267 
   1268 int
   1269 ip_mforward(struct mbuf *m, struct ifnet *ifp)
   1270 {
   1271 	struct ip *ip = mtod(m, struct ip *);
   1272 	struct mfc *rt;
   1273 	static int srctun = 0;
   1274 	struct mbuf *mm;
   1275 	struct sockaddr_in sin;
   1276 	int s;
   1277 	vifi_t vifi;
   1278 
   1279 	if (mrtdebug & DEBUG_FORWARD)
   1280 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1281 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1282 
   1283 	/*
   1284 	 * XXX XXX: Why do we check [1] against IPOPT_LSRR? Because we
   1285 	 * expect [0] to be IPOPT_NOP, maybe? In all cases that doesn't
   1286 	 * make a lot of sense, a forged packet can just put two IPOPT_NOPs
   1287 	 * followed by one IPOPT_LSRR, and bypass the check.
   1288 	 */
   1289 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1290 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1291 		/*
   1292 		 * Packet arrived via a physical interface or
   1293 		 * an encapsulated tunnel or a register_vif.
   1294 		 */
   1295 	} else {
   1296 		/*
   1297 		 * Packet arrived through a source-route tunnel.
   1298 		 * Source-route tunnels are no longer supported.
   1299 		 */
   1300 		if ((srctun++ % 1000) == 0)
   1301 			log(LOG_ERR,
   1302 			    "ip_mforward: received source-routed packet from %x\n",
   1303 			    ntohl(ip->ip_src.s_addr));
   1304 		return EOPNOTSUPP;
   1305 	}
   1306 
   1307 	/*
   1308 	 * Clear any in-bound checksum flags for this packet.
   1309 	 */
   1310 	m->m_pkthdr.csum_flags = 0;
   1311 
   1312 	/*
   1313 	 * Don't forward a packet with time-to-live of zero or one,
   1314 	 * or a packet destined to a local-only group.
   1315 	 */
   1316 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1317 		return 0;
   1318 
   1319 	/*
   1320 	 * Determine forwarding vifs from the forwarding cache table
   1321 	 */
   1322 	s = splsoftnet();
   1323 	++mrtstat.mrts_mfc_lookups;
   1324 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1325 
   1326 	/* Entry exists, so forward if necessary */
   1327 	if (rt != NULL) {
   1328 		splx(s);
   1329 		return ip_mdq(m, ifp, rt);
   1330 	} else {
   1331 		/*
   1332 		 * If we don't have a route for packet's origin, make a copy
   1333 		 * of the packet and send message to routing daemon.
   1334 		 */
   1335 
   1336 		struct mbuf *mb0;
   1337 		struct rtdetq *rte;
   1338 		u_int32_t hash;
   1339 		const int hlen = ip->ip_hl << 2;
   1340 #ifdef UPCALL_TIMING
   1341 		struct timeval tp;
   1342 		microtime(&tp);
   1343 #endif
   1344 
   1345 		++mrtstat.mrts_mfc_misses;
   1346 
   1347 		mrtstat.mrts_no_route++;
   1348 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1349 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1350 			    ntohl(ip->ip_src.s_addr),
   1351 			    ntohl(ip->ip_dst.s_addr));
   1352 
   1353 		/*
   1354 		 * Allocate mbufs early so that we don't do extra work if we are
   1355 		 * just going to fail anyway.  Make sure to pullup the header so
   1356 		 * that other people can't step on it.
   1357 		 */
   1358 		rte = malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
   1359 		if (rte == NULL) {
   1360 			splx(s);
   1361 			return ENOBUFS;
   1362 		}
   1363 		mb0 = m_copypacket(m, M_DONTWAIT);
   1364 		M_PULLUP(mb0, hlen);
   1365 		if (mb0 == NULL) {
   1366 			free(rte, M_MRTABLE);
   1367 			splx(s);
   1368 			return ENOBUFS;
   1369 		}
   1370 
   1371 		/* is there an upcall waiting for this flow? */
   1372 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1373 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1374 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1375 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1376 			    rt->mfc_stall != NULL)
   1377 				break;
   1378 		}
   1379 
   1380 		if (rt == NULL) {
   1381 			int i;
   1382 			struct igmpmsg *im;
   1383 
   1384 			/*
   1385 			 * Locate the vifi for the incoming interface for
   1386 			 * this packet.
   1387 			 * If none found, drop packet.
   1388 			 */
   1389 			for (vifi = 0; vifi < numvifs &&
   1390 				 viftable[vifi].v_ifp != ifp; vifi++)
   1391 				;
   1392 			if (vifi >= numvifs) /* vif not found, drop packet */
   1393 				goto non_fatal;
   1394 
   1395 			/* no upcall, so make a new entry */
   1396 			rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
   1397 			if (rt == NULL)
   1398 				goto fail;
   1399 
   1400 			/*
   1401 			 * Make a copy of the header to send to the user level
   1402 			 * process
   1403 			 */
   1404 			mm = m_copym(m, 0, hlen, M_DONTWAIT);
   1405 			M_PULLUP(mm, hlen);
   1406 			if (mm == NULL)
   1407 				goto fail1;
   1408 
   1409 			/*
   1410 			 * Send message to routing daemon to install
   1411 			 * a route into the kernel table
   1412 			 */
   1413 
   1414 			im = mtod(mm, struct igmpmsg *);
   1415 			im->im_msgtype = IGMPMSG_NOCACHE;
   1416 			im->im_mbz = 0;
   1417 			im->im_vif = vifi;
   1418 
   1419 			mrtstat.mrts_upcalls++;
   1420 
   1421 			sockaddr_in_init(&sin, &ip->ip_src, 0);
   1422 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1423 				log(LOG_WARNING,
   1424 				    "ip_mforward: ip_mrouter socket queue full\n");
   1425 				++mrtstat.mrts_upq_sockfull;
   1426 			fail1:
   1427 				free(rt, M_MRTABLE);
   1428 			fail:
   1429 				free(rte, M_MRTABLE);
   1430 				m_freem(mb0);
   1431 				splx(s);
   1432 				return ENOBUFS;
   1433 			}
   1434 
   1435 			/* insert new entry at head of hash chain */
   1436 			rt->mfc_origin = ip->ip_src;
   1437 			rt->mfc_mcastgrp = ip->ip_dst;
   1438 			rt->mfc_pkt_cnt = 0;
   1439 			rt->mfc_byte_cnt = 0;
   1440 			rt->mfc_wrong_if = 0;
   1441 			rt->mfc_expire = UPCALL_EXPIRE;
   1442 			nexpire[hash]++;
   1443 			for (i = 0; i < numvifs; i++) {
   1444 				rt->mfc_ttls[i] = 0;
   1445 				rt->mfc_flags[i] = 0;
   1446 			}
   1447 			rt->mfc_parent = -1;
   1448 
   1449 			/* clear the RP address */
   1450 			rt->mfc_rp = zeroin_addr;
   1451 
   1452 			rt->mfc_bw_meter = NULL;
   1453 
   1454 			/* link into table */
   1455 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1456 			/* Add this entry to the end of the queue */
   1457 			rt->mfc_stall = rte;
   1458 		} else {
   1459 			/* determine if q has overflowed */
   1460 			struct rtdetq **p;
   1461 			int npkts = 0;
   1462 
   1463 			/*
   1464 			 * XXX ouch! we need to append to the list, but we
   1465 			 * only have a pointer to the front, so we have to
   1466 			 * scan the entire list every time.
   1467 			 */
   1468 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1469 				if (++npkts > MAX_UPQ) {
   1470 					mrtstat.mrts_upq_ovflw++;
   1471 				non_fatal:
   1472 					free(rte, M_MRTABLE);
   1473 					m_freem(mb0);
   1474 					splx(s);
   1475 					return 0;
   1476 				}
   1477 
   1478 			/* Add this entry to the end of the queue */
   1479 			*p = rte;
   1480 		}
   1481 
   1482 		rte->next = NULL;
   1483 		rte->m = mb0;
   1484 		rte->ifp = ifp;
   1485 #ifdef UPCALL_TIMING
   1486 		rte->t = tp;
   1487 #endif
   1488 
   1489 		splx(s);
   1490 
   1491 		return 0;
   1492 	}
   1493 }
   1494 
   1495 /*ARGSUSED*/
   1496 static void
   1497 expire_upcalls(void *v)
   1498 {
   1499 	int i;
   1500 
   1501 	/* XXX NOMPSAFE still need softnet_lock */
   1502 	mutex_enter(softnet_lock);
   1503 	KERNEL_LOCK(1, NULL);
   1504 
   1505 	for (i = 0; i < MFCTBLSIZ; i++) {
   1506 		struct mfc *rt, *nrt;
   1507 
   1508 		if (nexpire[i] == 0)
   1509 			continue;
   1510 
   1511 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1512 			nrt = LIST_NEXT(rt, mfc_hash);
   1513 
   1514 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1515 				continue;
   1516 			nexpire[i]--;
   1517 
   1518 			/*
   1519 			 * free the bw_meter entries
   1520 			 */
   1521 			while (rt->mfc_bw_meter != NULL) {
   1522 				struct bw_meter *x = rt->mfc_bw_meter;
   1523 
   1524 				rt->mfc_bw_meter = x->bm_mfc_next;
   1525 				kmem_intr_free(x, sizeof(*x));
   1526 			}
   1527 
   1528 			++mrtstat.mrts_cache_cleanups;
   1529 			if (mrtdebug & DEBUG_EXPIRE)
   1530 				log(LOG_DEBUG,
   1531 				    "expire_upcalls: expiring (%x %x)\n",
   1532 				    ntohl(rt->mfc_origin.s_addr),
   1533 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1534 
   1535 			expire_mfc(rt);
   1536 		}
   1537 	}
   1538 
   1539 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1540 	    expire_upcalls, NULL);
   1541 
   1542 	KERNEL_UNLOCK_ONE(NULL);
   1543 	mutex_exit(softnet_lock);
   1544 }
   1545 
   1546 /*
   1547  * Macro to send packet on vif.
   1548  */
   1549 #define MC_SEND(ip, vifp, m) do {					\
   1550 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1551 		encap_send((ip), (vifp), (m));				\
   1552 	else								\
   1553 		phyint_send((ip), (vifp), (m));				\
   1554 } while (/*CONSTCOND*/ 0)
   1555 
   1556 /*
   1557  * Packet forwarding routine once entry in the cache is made
   1558  */
   1559 static int
   1560 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
   1561 {
   1562 	struct ip *ip = mtod(m, struct ip *);
   1563 	vifi_t vifi;
   1564 	struct vif *vifp;
   1565 	struct sockaddr_in sin;
   1566 	const int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1567 
   1568 	/*
   1569 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1570 	 */
   1571 	vifi = rt->mfc_parent;
   1572 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1573 		/* came in the wrong interface */
   1574 		if (mrtdebug & DEBUG_FORWARD)
   1575 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1576 			    ifp, vifi,
   1577 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1578 		++mrtstat.mrts_wrong_if;
   1579 		++rt->mfc_wrong_if;
   1580 
   1581 		/*
   1582 		 * If we are doing PIM assert processing, send a message
   1583 		 * to the routing daemon.
   1584 		 *
   1585 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1586 		 * can complete the SPT switch, regardless of the type
   1587 		 * of the iif (broadcast media, GRE tunnel, etc).
   1588 		 */
   1589 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1590 			struct timeval now;
   1591 			u_int32_t delta;
   1592 
   1593 #ifdef PIM
   1594 			if (ifp == &multicast_register_if)
   1595 				pimstat.pims_rcv_registers_wrongiif++;
   1596 #endif
   1597 
   1598 			/* Get vifi for the incoming packet */
   1599 			for (vifi = 0;
   1600 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1601 			     vifi++)
   1602 			    ;
   1603 			if (vifi >= numvifs) {
   1604 				/* The iif is not found: ignore the packet. */
   1605 				return 0;
   1606 			}
   1607 
   1608 			if (rt->mfc_flags[vifi] &
   1609 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1610 				/* WRONGVIF disabled: ignore the packet */
   1611 				return 0;
   1612 			}
   1613 
   1614 			microtime(&now);
   1615 
   1616 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1617 
   1618 			if (delta > ASSERT_MSG_TIME) {
   1619 				struct igmpmsg *im;
   1620 				const int hlen = ip->ip_hl << 2;
   1621 				struct mbuf *mm =
   1622 				    m_copym(m, 0, hlen, M_DONTWAIT);
   1623 
   1624 				M_PULLUP(mm, hlen);
   1625 				if (mm == NULL)
   1626 					return ENOBUFS;
   1627 
   1628 				rt->mfc_last_assert = now;
   1629 
   1630 				im = mtod(mm, struct igmpmsg *);
   1631 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1632 				im->im_mbz	= 0;
   1633 				im->im_vif	= vifi;
   1634 
   1635 				mrtstat.mrts_upcalls++;
   1636 
   1637 				sockaddr_in_init(&sin, &im->im_src, 0);
   1638 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1639 					log(LOG_WARNING,
   1640 					    "ip_mforward: ip_mrouter socket queue full\n");
   1641 					++mrtstat.mrts_upq_sockfull;
   1642 					return ENOBUFS;
   1643 				}
   1644 			}
   1645 		}
   1646 		return 0;
   1647 	}
   1648 
   1649 	/* If I sourced this packet, it counts as output, else it was input. */
   1650 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1651 		viftable[vifi].v_pkt_out++;
   1652 		viftable[vifi].v_bytes_out += plen;
   1653 	} else {
   1654 		viftable[vifi].v_pkt_in++;
   1655 		viftable[vifi].v_bytes_in += plen;
   1656 	}
   1657 	rt->mfc_pkt_cnt++;
   1658 	rt->mfc_byte_cnt += plen;
   1659 
   1660 	/*
   1661 	 * For each vif, decide if a copy of the packet should be forwarded.
   1662 	 * Forward if:
   1663 	 *  - the ttl exceeds the vif's threshold
   1664 	 *  - there are group members downstream on interface
   1665 	 */
   1666 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) {
   1667 		if ((rt->mfc_ttls[vifi] > 0) &&
   1668 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1669 			vifp->v_pkt_out++;
   1670 			vifp->v_bytes_out += plen;
   1671 #ifdef PIM
   1672 			if (vifp->v_flags & VIFF_REGISTER)
   1673 				pim_register_send(ip, vifp, m, rt);
   1674 			else
   1675 #endif
   1676 			MC_SEND(ip, vifp, m);
   1677 		}
   1678 	}
   1679 
   1680 	/*
   1681 	 * Perform upcall-related bw measuring.
   1682 	 */
   1683 	if (rt->mfc_bw_meter != NULL) {
   1684 		struct bw_meter *x;
   1685 		struct timeval now;
   1686 
   1687 		microtime(&now);
   1688 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1689 			bw_meter_receive_packet(x, plen, &now);
   1690 	}
   1691 
   1692 	return 0;
   1693 }
   1694 
   1695 static void
   1696 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1697 {
   1698 	struct mbuf *mb_copy;
   1699 	const int hlen = ip->ip_hl << 2;
   1700 
   1701 	/*
   1702 	 * Make a new reference to the packet; make sure that
   1703 	 * the IP header is actually copied, not just referenced,
   1704 	 * so that ip_output() only scribbles on the copy.
   1705 	 */
   1706 	mb_copy = m_copypacket(m, M_DONTWAIT);
   1707 	M_PULLUP(mb_copy, hlen);
   1708 	if (mb_copy == NULL)
   1709 		return;
   1710 
   1711 	if (vifp->v_rate_limit <= 0)
   1712 		tbf_send_packet(vifp, mb_copy);
   1713 	else
   1714 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1715 		    ntohs(ip->ip_len));
   1716 }
   1717 
   1718 static void
   1719 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
   1720 {
   1721 	struct mbuf *mb_copy;
   1722 	struct ip *ip_copy;
   1723 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1724 
   1725 	/* Take care of delayed checksums */
   1726 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1727 		in_undefer_cksum_tcpudp(m);
   1728 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1729 	}
   1730 
   1731 	/*
   1732 	 * copy the old packet & pullup its IP header into the
   1733 	 * new mbuf so we can modify it.  Try to fill the new
   1734 	 * mbuf since if we don't the ethernet driver will.
   1735 	 */
   1736 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1737 	if (mb_copy == NULL)
   1738 		return;
   1739 	mb_copy->m_data += max_linkhdr;
   1740 	mb_copy->m_pkthdr.len = len;
   1741 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1742 
   1743 	if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
   1744 		m_freem(mb_copy);
   1745 		return;
   1746 	}
   1747 	i = MHLEN - max_linkhdr;
   1748 	if (i > len)
   1749 		i = len;
   1750 	mb_copy = m_pullup(mb_copy, i);
   1751 	if (mb_copy == NULL)
   1752 		return;
   1753 
   1754 	/*
   1755 	 * fill in the encapsulating IP header.
   1756 	 */
   1757 	ip_copy = mtod(mb_copy, struct ip *);
   1758 	*ip_copy = multicast_encap_iphdr;
   1759 	if (len < IP_MINFRAGSIZE)
   1760 		ip_copy->ip_id = 0;
   1761 	else
   1762 		ip_copy->ip_id = ip_newid(NULL);
   1763 	ip_copy->ip_len = htons(len);
   1764 	ip_copy->ip_src = vifp->v_lcl_addr;
   1765 	ip_copy->ip_dst = vifp->v_rmt_addr;
   1766 
   1767 	/*
   1768 	 * turn the encapsulated IP header back into a valid one.
   1769 	 */
   1770 	ip = (struct ip *)((char *)ip_copy + sizeof(multicast_encap_iphdr));
   1771 	--ip->ip_ttl;
   1772 	ip->ip_sum = 0;
   1773 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   1774 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   1775 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   1776 
   1777 	if (vifp->v_rate_limit <= 0)
   1778 		tbf_send_packet(vifp, mb_copy);
   1779 	else
   1780 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   1781 }
   1782 
   1783 /*
   1784  * De-encapsulate a packet and feed it back through ip input.
   1785  */
   1786 static void
   1787 vif_input(struct mbuf *m, int off, int proto, void *eparg)
   1788 {
   1789 	struct vif *vifp = eparg;
   1790 
   1791 	KASSERT(vifp != NULL);
   1792 
   1793 	if (proto != ENCAP_PROTO) {
   1794 		m_freem(m);
   1795 		mrtstat.mrts_bad_tunnel++;
   1796 		return;
   1797 	}
   1798 
   1799 	m_adj(m, off);
   1800 	m_set_rcvif(m, vifp->v_ifp);
   1801 
   1802 	if (__predict_false(!pktq_enqueue(ip_pktq, m, 0))) {
   1803 		m_freem(m);
   1804 	}
   1805 }
   1806 
   1807 /*
   1808  * Check if the packet should be received on the vif denoted by arg.
   1809  * (The encap selection code will call this once per vif since each is
   1810  * registered separately.)
   1811  */
   1812 static int
   1813 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
   1814 {
   1815 	struct vif *vifp;
   1816 	struct ip ip;
   1817 
   1818 #ifdef DIAGNOSTIC
   1819 	if (!arg || proto != IPPROTO_IPV4)
   1820 		panic("unexpected arg in vif_encapcheck");
   1821 #endif
   1822 
   1823 	/*
   1824 	 * Accept the packet only if the inner heaader is multicast
   1825 	 * and the outer header matches a tunnel-mode vif.  Order
   1826 	 * checks in the hope that common non-matching packets will be
   1827 	 * rejected quickly.  Assume that unicast IPv4 traffic in a
   1828 	 * parallel tunnel (e.g. gif(4)) is unlikely.
   1829 	 */
   1830 
   1831 	/* Obtain the outer IP header and the vif pointer. */
   1832 	m_copydata(m, 0, sizeof(ip), (void *)&ip);
   1833 	vifp = (struct vif *)arg;
   1834 
   1835 	/*
   1836 	 * The outer source must match the vif's remote peer address.
   1837 	 * For a multicast router with several tunnels, this is the
   1838 	 * only check that will fail on packets in other tunnels,
   1839 	 * assuming the local address is the same.
   1840 	 */
   1841 	if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   1842 		return 0;
   1843 
   1844 	/* The outer destination must match the vif's local address. */
   1845 	if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
   1846 		return 0;
   1847 
   1848 	/* The vif must be of tunnel type. */
   1849 	if ((vifp->v_flags & VIFF_TUNNEL) == 0)
   1850 		return 0;
   1851 
   1852 	/* Check that the inner destination is multicast. */
   1853 	if (off + sizeof(ip) > m->m_pkthdr.len)
   1854 		return 0;
   1855 	m_copydata(m, off, sizeof(ip), (void *)&ip);
   1856 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   1857 		return 0;
   1858 
   1859 	/*
   1860 	 * We have checked that both the outer src and dst addresses
   1861 	 * match the vif, and that the inner destination is multicast
   1862 	 * (224/5).  By claiming more than 64, we intend to
   1863 	 * preferentially take packets that also match a parallel
   1864 	 * gif(4).
   1865 	 */
   1866 	return 32 + 32 + 5;
   1867 }
   1868 
   1869 /*
   1870  * Token bucket filter module
   1871  */
   1872 static void
   1873 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
   1874 {
   1875 
   1876 	if (len > MAX_BKT_SIZE) {
   1877 		/* drop if packet is too large */
   1878 		mrtstat.mrts_pkt2large++;
   1879 		m_freem(m);
   1880 		return;
   1881 	}
   1882 
   1883 	tbf_update_tokens(vifp);
   1884 
   1885 	/*
   1886 	 * If there are enough tokens, and the queue is empty, send this packet
   1887 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   1888 	 */
   1889 	if (vifp->tbf_q_len == 0) {
   1890 		if (len <= vifp->tbf_n_tok) {
   1891 			vifp->tbf_n_tok -= len;
   1892 			tbf_send_packet(vifp, m);
   1893 		} else {
   1894 			/* queue packet and timeout till later */
   1895 			tbf_queue(vifp, m);
   1896 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1897 			    tbf_reprocess_q, vifp);
   1898 		}
   1899 	} else {
   1900 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   1901 		    !tbf_dq_sel(vifp, ip)) {
   1902 			/* queue full, and couldn't make room */
   1903 			mrtstat.mrts_q_overflow++;
   1904 			m_freem(m);
   1905 		} else {
   1906 			/* queue length low enough, or made room */
   1907 			tbf_queue(vifp, m);
   1908 			tbf_process_q(vifp);
   1909 		}
   1910 	}
   1911 }
   1912 
   1913 /*
   1914  * adds a packet to the queue at the interface
   1915  */
   1916 static void
   1917 tbf_queue(struct vif *vifp, struct mbuf *m)
   1918 {
   1919 	int s = splsoftnet();
   1920 
   1921 	/* insert at tail */
   1922 	*vifp->tbf_t = m;
   1923 	vifp->tbf_t = &m->m_nextpkt;
   1924 	vifp->tbf_q_len++;
   1925 
   1926 	splx(s);
   1927 }
   1928 
   1929 /*
   1930  * processes the queue at the interface
   1931  */
   1932 static void
   1933 tbf_process_q(struct vif *vifp)
   1934 {
   1935 	struct mbuf *m;
   1936 	int len;
   1937 	int s = splsoftnet();
   1938 
   1939 	/*
   1940 	 * Loop through the queue at the interface and send as many packets
   1941 	 * as possible.
   1942 	 */
   1943 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   1944 		len = ntohs(mtod(m, struct ip *)->ip_len);
   1945 
   1946 		/* determine if the packet can be sent */
   1947 		if (len <= vifp->tbf_n_tok) {
   1948 			/* if so,
   1949 			 * reduce no of tokens, dequeue the packet,
   1950 			 * send the packet.
   1951 			 */
   1952 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   1953 				vifp->tbf_t = &vifp->tbf_q;
   1954 			--vifp->tbf_q_len;
   1955 
   1956 			m->m_nextpkt = NULL;
   1957 			vifp->tbf_n_tok -= len;
   1958 			tbf_send_packet(vifp, m);
   1959 		} else
   1960 			break;
   1961 	}
   1962 	splx(s);
   1963 }
   1964 
   1965 static void
   1966 tbf_reprocess_q(void *arg)
   1967 {
   1968 	struct vif *vifp = arg;
   1969 
   1970 	if (ip_mrouter == NULL)
   1971 		return;
   1972 
   1973 	tbf_update_tokens(vifp);
   1974 	tbf_process_q(vifp);
   1975 
   1976 	if (vifp->tbf_q_len != 0)
   1977 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   1978 		    tbf_reprocess_q, vifp);
   1979 }
   1980 
   1981 /* function that will selectively discard a member of the queue
   1982  * based on the precedence value and the priority
   1983  */
   1984 static int
   1985 tbf_dq_sel(struct vif *vifp, struct ip *ip)
   1986 {
   1987 	u_int p;
   1988 	struct mbuf **mp, *m;
   1989 	int s = splsoftnet();
   1990 
   1991 	p = priority(vifp, ip);
   1992 
   1993 	for (mp = &vifp->tbf_q, m = *mp;
   1994 	    m != NULL;
   1995 	    mp = &m->m_nextpkt, m = *mp) {
   1996 		if (p > priority(vifp, mtod(m, struct ip *))) {
   1997 			if ((*mp = m->m_nextpkt) == NULL)
   1998 				vifp->tbf_t = mp;
   1999 			--vifp->tbf_q_len;
   2000 
   2001 			m_freem(m);
   2002 			mrtstat.mrts_drop_sel++;
   2003 			splx(s);
   2004 			return 1;
   2005 		}
   2006 	}
   2007 	splx(s);
   2008 	return 0;
   2009 }
   2010 
   2011 static void
   2012 tbf_send_packet(struct vif *vifp, struct mbuf *m)
   2013 {
   2014 	int error;
   2015 	int s = splsoftnet();
   2016 
   2017 	if (vifp->v_flags & VIFF_TUNNEL) {
   2018 		/* If tunnel options */
   2019 		ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
   2020 	} else {
   2021 		/* if physical interface option, extract the options and then send */
   2022 		struct ip_moptions imo;
   2023 
   2024 		imo.imo_multicast_if_index = if_get_index(vifp->v_ifp);
   2025 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2026 		imo.imo_multicast_loop = 1;
   2027 
   2028 		error = ip_output(m, NULL, NULL, IP_FORWARDING|IP_MULTICASTOPTS,
   2029 		    &imo, NULL);
   2030 
   2031 		if (mrtdebug & DEBUG_XMIT)
   2032 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2033 			    (long)(vifp - viftable), error);
   2034 	}
   2035 	splx(s);
   2036 }
   2037 
   2038 /* determine the current time and then
   2039  * the elapsed time (between the last time and time now)
   2040  * in milliseconds & update the no. of tokens in the bucket
   2041  */
   2042 static void
   2043 tbf_update_tokens(struct vif *vifp)
   2044 {
   2045 	struct timeval tp;
   2046 	u_int32_t tm;
   2047 	int s = splsoftnet();
   2048 
   2049 	microtime(&tp);
   2050 
   2051 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2052 
   2053 	/*
   2054 	 * This formula is actually
   2055 	 * "time in seconds" * "bytes/second".
   2056 	 *
   2057 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2058 	 *
   2059 	 * The (1000/1024) was introduced in add_vif to optimize
   2060 	 * this divide into a shift.
   2061 	 */
   2062 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2063 	vifp->tbf_last_pkt_t = tp;
   2064 
   2065 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2066 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2067 
   2068 	splx(s);
   2069 }
   2070 
   2071 static int
   2072 priority(struct vif *vifp, struct ip *ip)
   2073 {
   2074 	int prio = 50;	/* the lowest priority -- default case */
   2075 
   2076 	/* temporary hack; may add general packet classifier some day */
   2077 
   2078 	/*
   2079 	 * XXX XXX: We're reading the UDP header, but we didn't ensure
   2080 	 * it was present in the packet.
   2081 	 */
   2082 
   2083 	/*
   2084 	 * The UDP port space is divided up into four priority ranges:
   2085 	 * [0, 16384)     : unclassified - lowest priority
   2086 	 * [16384, 32768) : audio - highest priority
   2087 	 * [32768, 49152) : whiteboard - medium priority
   2088 	 * [49152, 65536) : video - low priority
   2089 	 */
   2090 	if (ip->ip_p == IPPROTO_UDP) {
   2091 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2092 
   2093 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2094 		case 0x4000:
   2095 			prio = 70;
   2096 			break;
   2097 		case 0x8000:
   2098 			prio = 60;
   2099 			break;
   2100 		case 0xc000:
   2101 			prio = 55;
   2102 			break;
   2103 		}
   2104 
   2105 		if (tbfdebug > 1)
   2106 			log(LOG_DEBUG, "port %x prio %d\n",
   2107 			    ntohs(udp->uh_dport), prio);
   2108 	}
   2109 
   2110 	return prio;
   2111 }
   2112 
   2113 /*
   2114  * Code for bandwidth monitors
   2115  */
   2116 
   2117 /*
   2118  * Define common interface for timeval-related methods
   2119  */
   2120 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2121 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2122 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2123 
   2124 static uint32_t
   2125 compute_bw_meter_flags(struct bw_upcall *req)
   2126 {
   2127 	uint32_t flags = 0;
   2128 
   2129 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2130 		flags |= BW_METER_UNIT_PACKETS;
   2131 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2132 		flags |= BW_METER_UNIT_BYTES;
   2133 	if (req->bu_flags & BW_UPCALL_GEQ)
   2134 		flags |= BW_METER_GEQ;
   2135 	if (req->bu_flags & BW_UPCALL_LEQ)
   2136 		flags |= BW_METER_LEQ;
   2137 
   2138 	return flags;
   2139 }
   2140 
   2141 /*
   2142  * Add a bw_meter entry
   2143  */
   2144 static int
   2145 add_bw_upcall(struct bw_upcall *req)
   2146 {
   2147 	int s;
   2148 	struct mfc *mfc;
   2149 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2150 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2151 	struct timeval now;
   2152 	struct bw_meter *x;
   2153 	uint32_t flags;
   2154 
   2155 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2156 		return EOPNOTSUPP;
   2157 
   2158 	/* Test if the flags are valid */
   2159 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2160 		return EINVAL;
   2161 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2162 		return EINVAL;
   2163 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2164 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2165 		return EINVAL;
   2166 
   2167 	/* Test if the threshold time interval is valid */
   2168 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2169 		return EINVAL;
   2170 
   2171 	flags = compute_bw_meter_flags(req);
   2172 
   2173 	/*
   2174 	 * Find if we have already same bw_meter entry
   2175 	 */
   2176 	s = splsoftnet();
   2177 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2178 	if (mfc == NULL) {
   2179 		splx(s);
   2180 		return EADDRNOTAVAIL;
   2181 	}
   2182 	for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2183 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2184 		    &req->bu_threshold.b_time, ==)) &&
   2185 		    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2186 		    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2187 		    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2188 			splx(s);
   2189 			return 0;		/* XXX Already installed */
   2190 		}
   2191 	}
   2192 
   2193 	/* Allocate the new bw_meter entry */
   2194 	x = kmem_intr_alloc(sizeof(*x), KM_NOSLEEP);
   2195 	if (x == NULL) {
   2196 		splx(s);
   2197 		return ENOBUFS;
   2198 	}
   2199 
   2200 	/* Set the new bw_meter entry */
   2201 	x->bm_threshold.b_time = req->bu_threshold.b_time;
   2202 	microtime(&now);
   2203 	x->bm_start_time = now;
   2204 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2205 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2206 	x->bm_measured.b_packets = 0;
   2207 	x->bm_measured.b_bytes = 0;
   2208 	x->bm_flags = flags;
   2209 	x->bm_time_next = NULL;
   2210 	x->bm_time_hash = BW_METER_BUCKETS;
   2211 
   2212 	/* Add the new bw_meter entry to the front of entries for this MFC */
   2213 	x->bm_mfc = mfc;
   2214 	x->bm_mfc_next = mfc->mfc_bw_meter;
   2215 	mfc->mfc_bw_meter = x;
   2216 	schedule_bw_meter(x, &now);
   2217 	splx(s);
   2218 
   2219 	return 0;
   2220 }
   2221 
   2222 static void
   2223 free_bw_list(struct bw_meter *list)
   2224 {
   2225 	while (list != NULL) {
   2226 		struct bw_meter *x = list;
   2227 
   2228 		list = list->bm_mfc_next;
   2229 		unschedule_bw_meter(x);
   2230 		kmem_intr_free(x, sizeof(*x));
   2231 	}
   2232 }
   2233 
   2234 /*
   2235  * Delete one or multiple bw_meter entries
   2236  */
   2237 static int
   2238 del_bw_upcall(struct bw_upcall *req)
   2239 {
   2240 	int s;
   2241 	struct mfc *mfc;
   2242 	struct bw_meter *x;
   2243 
   2244 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2245 		return EOPNOTSUPP;
   2246 
   2247 	s = splsoftnet();
   2248 	/* Find the corresponding MFC entry */
   2249 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2250 	if (mfc == NULL) {
   2251 		splx(s);
   2252 		return EADDRNOTAVAIL;
   2253 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2254 		/*
   2255 		 * Delete all bw_meter entries for this mfc
   2256 		 */
   2257 		struct bw_meter *list;
   2258 
   2259 		list = mfc->mfc_bw_meter;
   2260 		mfc->mfc_bw_meter = NULL;
   2261 		free_bw_list(list);
   2262 		splx(s);
   2263 		return 0;
   2264 	} else {			/* Delete a single bw_meter entry */
   2265 		struct bw_meter *prev;
   2266 		uint32_t flags = 0;
   2267 
   2268 		flags = compute_bw_meter_flags(req);
   2269 
   2270 		/* Find the bw_meter entry to delete */
   2271 		for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2272 		     prev = x, x = x->bm_mfc_next) {
   2273 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2274 			    &req->bu_threshold.b_time, ==)) &&
   2275 			    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2276 			    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2277 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2278 				break;
   2279 		}
   2280 		if (x != NULL) { /* Delete entry from the list for this MFC */
   2281 			if (prev != NULL)
   2282 				prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2283 			else
   2284 				x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2285 
   2286 			unschedule_bw_meter(x);
   2287 			splx(s);
   2288 			/* Free the bw_meter entry */
   2289 			kmem_intr_free(x, sizeof(*x));
   2290 			return 0;
   2291 		} else {
   2292 			splx(s);
   2293 			return EINVAL;
   2294 		}
   2295 	}
   2296 	/* NOTREACHED */
   2297 }
   2298 
   2299 /*
   2300  * Perform bandwidth measurement processing that may result in an upcall
   2301  */
   2302 static void
   2303 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2304 {
   2305 	struct timeval delta;
   2306 
   2307 	delta = *nowp;
   2308 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2309 
   2310 	if (x->bm_flags & BW_METER_GEQ) {
   2311 		/*
   2312 		 * Processing for ">=" type of bw_meter entry
   2313 		 */
   2314 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2315 			/* Reset the bw_meter entry */
   2316 			x->bm_start_time = *nowp;
   2317 			x->bm_measured.b_packets = 0;
   2318 			x->bm_measured.b_bytes = 0;
   2319 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2320 		}
   2321 
   2322 		/* Record that a packet is received */
   2323 		x->bm_measured.b_packets++;
   2324 		x->bm_measured.b_bytes += plen;
   2325 
   2326 		/*
   2327 		 * Test if we should deliver an upcall
   2328 		 */
   2329 		if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2330 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2331 				 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2332 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2333 				 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2334 				/* Prepare an upcall for delivery */
   2335 				bw_meter_prepare_upcall(x, nowp);
   2336 				x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2337 			}
   2338 		}
   2339 	} else if (x->bm_flags & BW_METER_LEQ) {
   2340 		/*
   2341 		 * Processing for "<=" type of bw_meter entry
   2342 		 */
   2343 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2344 			/*
   2345 			 * We are behind time with the multicast forwarding table
   2346 			 * scanning for "<=" type of bw_meter entries, so test now
   2347 			 * if we should deliver an upcall.
   2348 			 */
   2349 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2350 				 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2351 				((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2352 				 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2353 				/* Prepare an upcall for delivery */
   2354 				bw_meter_prepare_upcall(x, nowp);
   2355 			}
   2356 			/* Reschedule the bw_meter entry */
   2357 			unschedule_bw_meter(x);
   2358 			schedule_bw_meter(x, nowp);
   2359 		}
   2360 
   2361 		/* Record that a packet is received */
   2362 		x->bm_measured.b_packets++;
   2363 		x->bm_measured.b_bytes += plen;
   2364 
   2365 		/*
   2366 		 * Test if we should restart the measuring interval
   2367 		 */
   2368 		if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2369 		     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2370 		    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2371 		     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2372 			/* Don't restart the measuring interval */
   2373 		} else {
   2374 			/* Do restart the measuring interval */
   2375 			/*
   2376 			 * XXX: note that we don't unschedule and schedule, because this
   2377 			 * might be too much overhead per packet. Instead, when we process
   2378 			 * all entries for a given timer hash bin, we check whether it is
   2379 			 * really a timeout. If not, we reschedule at that time.
   2380 			 */
   2381 			x->bm_start_time = *nowp;
   2382 			x->bm_measured.b_packets = 0;
   2383 			x->bm_measured.b_bytes = 0;
   2384 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2385 		}
   2386 	}
   2387 }
   2388 
   2389 /*
   2390  * Prepare a bandwidth-related upcall
   2391  */
   2392 static void
   2393 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2394 {
   2395 	struct timeval delta;
   2396 	struct bw_upcall *u;
   2397 
   2398 	/*
   2399 	 * Compute the measured time interval
   2400 	 */
   2401 	delta = *nowp;
   2402 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2403 
   2404 	/*
   2405 	 * If there are too many pending upcalls, deliver them now
   2406 	 */
   2407 	if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2408 		bw_upcalls_send();
   2409 
   2410 	/*
   2411 	 * Set the bw_upcall entry
   2412 	 */
   2413 	u = &bw_upcalls[bw_upcalls_n++];
   2414 	u->bu_src = x->bm_mfc->mfc_origin;
   2415 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2416 	u->bu_threshold.b_time = x->bm_threshold.b_time;
   2417 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2418 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2419 	u->bu_measured.b_time = delta;
   2420 	u->bu_measured.b_packets = x->bm_measured.b_packets;
   2421 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2422 	u->bu_flags = 0;
   2423 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2424 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2425 	if (x->bm_flags & BW_METER_UNIT_BYTES)
   2426 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2427 	if (x->bm_flags & BW_METER_GEQ)
   2428 		u->bu_flags |= BW_UPCALL_GEQ;
   2429 	if (x->bm_flags & BW_METER_LEQ)
   2430 		u->bu_flags |= BW_UPCALL_LEQ;
   2431 }
   2432 
   2433 /*
   2434  * Send the pending bandwidth-related upcalls
   2435  */
   2436 static void
   2437 bw_upcalls_send(void)
   2438 {
   2439 	struct mbuf *m;
   2440 	int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2441 	struct sockaddr_in k_igmpsrc = {
   2442 		.sin_len = sizeof(k_igmpsrc),
   2443 		.sin_family = AF_INET,
   2444 	};
   2445 	static struct igmpmsg igmpmsg = {
   2446 		0,		/* unused1 */
   2447 		0,		/* unused2 */
   2448 		IGMPMSG_BW_UPCALL,/* im_msgtype */
   2449 		0,		/* im_mbz */
   2450 		0,		/* im_vif */
   2451 		0,		/* unused3 */
   2452 		{ 0 },		/* im_src */
   2453 		{ 0 }		/* im_dst */
   2454 	};
   2455 
   2456 	if (bw_upcalls_n == 0)
   2457 		return;			/* No pending upcalls */
   2458 
   2459 	bw_upcalls_n = 0;
   2460 
   2461 	/*
   2462 	 * Allocate a new mbuf, initialize it with the header and
   2463 	 * the payload for the pending calls.
   2464 	 */
   2465 	MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2466 	if (m == NULL) {
   2467 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2468 		return;
   2469 	}
   2470 
   2471 	m->m_len = m->m_pkthdr.len = 0;
   2472 	m_copyback(m, 0, sizeof(struct igmpmsg), (void *)&igmpmsg);
   2473 	m_copyback(m, sizeof(struct igmpmsg), len, (void *)&bw_upcalls[0]);
   2474 
   2475 	/*
   2476 	 * Send the upcalls
   2477 	 * XXX do we need to set the address in k_igmpsrc ?
   2478 	 */
   2479 	mrtstat.mrts_upcalls++;
   2480 	if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2481 		log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2482 		++mrtstat.mrts_upq_sockfull;
   2483 	}
   2484 }
   2485 
   2486 /*
   2487  * Compute the timeout hash value for the bw_meter entries
   2488  */
   2489 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2490     do {								\
   2491 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2492 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time);	\
   2493 	(hash) = next_timeval.tv_sec;					\
   2494 	if (next_timeval.tv_usec)					\
   2495 		(hash)++; /* XXX: make sure we don't timeout early */	\
   2496 	(hash) %= BW_METER_BUCKETS;					\
   2497     } while (/*CONSTCOND*/ 0)
   2498 
   2499 /*
   2500  * Schedule a timer to process periodically bw_meter entry of type "<="
   2501  * by linking the entry in the proper hash bucket.
   2502  */
   2503 static void
   2504 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   2505 {
   2506 	int time_hash;
   2507 
   2508 	if (!(x->bm_flags & BW_METER_LEQ))
   2509 		return;		/* XXX: we schedule timers only for "<=" entries */
   2510 
   2511 	/*
   2512 	 * Reset the bw_meter entry
   2513 	 */
   2514 	x->bm_start_time = *nowp;
   2515 	x->bm_measured.b_packets = 0;
   2516 	x->bm_measured.b_bytes = 0;
   2517 	x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2518 
   2519 	/*
   2520 	 * Compute the timeout hash value and insert the entry
   2521 	 */
   2522 	BW_METER_TIMEHASH(x, time_hash);
   2523 	x->bm_time_next = bw_meter_timers[time_hash];
   2524 	bw_meter_timers[time_hash] = x;
   2525 	x->bm_time_hash = time_hash;
   2526 }
   2527 
   2528 /*
   2529  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   2530  * by removing the entry from the proper hash bucket.
   2531  */
   2532 static void
   2533 unschedule_bw_meter(struct bw_meter *x)
   2534 {
   2535 	int time_hash;
   2536 	struct bw_meter *prev, *tmp;
   2537 
   2538 	if (!(x->bm_flags & BW_METER_LEQ))
   2539 		return;		/* XXX: we schedule timers only for "<=" entries */
   2540 
   2541 	/*
   2542 	 * Compute the timeout hash value and delete the entry
   2543 	 */
   2544 	time_hash = x->bm_time_hash;
   2545 	if (time_hash >= BW_METER_BUCKETS)
   2546 		return;		/* Entry was not scheduled */
   2547 
   2548 	for (prev = NULL, tmp = bw_meter_timers[time_hash];
   2549 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   2550 		if (tmp == x)
   2551 			break;
   2552 
   2553 	if (tmp == NULL)
   2554 		panic("unschedule_bw_meter: bw_meter entry not found");
   2555 
   2556 	if (prev != NULL)
   2557 		prev->bm_time_next = x->bm_time_next;
   2558 	else
   2559 		bw_meter_timers[time_hash] = x->bm_time_next;
   2560 
   2561 	x->bm_time_next = NULL;
   2562 	x->bm_time_hash = BW_METER_BUCKETS;
   2563 }
   2564 
   2565 /*
   2566  * Process all "<=" type of bw_meter that should be processed now,
   2567  * and for each entry prepare an upcall if necessary. Each processed
   2568  * entry is rescheduled again for the (periodic) processing.
   2569  *
   2570  * This is run periodically (once per second normally). On each round,
   2571  * all the potentially matching entries are in the hash slot that we are
   2572  * looking at.
   2573  */
   2574 static void
   2575 bw_meter_process(void)
   2576 {
   2577 	int s;
   2578 	static uint32_t last_tv_sec;	/* last time we processed this */
   2579 
   2580 	uint32_t loops;
   2581 	int i;
   2582 	struct timeval now, process_endtime;
   2583 
   2584 	microtime(&now);
   2585 	if (last_tv_sec == now.tv_sec)
   2586 		return;		/* nothing to do */
   2587 
   2588 	loops = now.tv_sec - last_tv_sec;
   2589 	last_tv_sec = now.tv_sec;
   2590 	if (loops > BW_METER_BUCKETS)
   2591 		loops = BW_METER_BUCKETS;
   2592 
   2593 	s = splsoftnet();
   2594 	/*
   2595 	 * Process all bins of bw_meter entries from the one after the last
   2596 	 * processed to the current one. On entry, i points to the last bucket
   2597 	 * visited, so we need to increment i at the beginning of the loop.
   2598 	 */
   2599 	for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   2600 		struct bw_meter *x, *tmp_list;
   2601 
   2602 		if (++i >= BW_METER_BUCKETS)
   2603 			i = 0;
   2604 
   2605 		/* Disconnect the list of bw_meter entries from the bin */
   2606 		tmp_list = bw_meter_timers[i];
   2607 		bw_meter_timers[i] = NULL;
   2608 
   2609 		/* Process the list of bw_meter entries */
   2610 		while (tmp_list != NULL) {
   2611 			x = tmp_list;
   2612 			tmp_list = tmp_list->bm_time_next;
   2613 
   2614 			/* Test if the time interval is over */
   2615 			process_endtime = x->bm_start_time;
   2616 			BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   2617 			if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   2618 				/* Not yet: reschedule, but don't reset */
   2619 				int time_hash;
   2620 
   2621 				BW_METER_TIMEHASH(x, time_hash);
   2622 				if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   2623 					/*
   2624 					 * XXX: somehow the bin processing is a bit ahead of time.
   2625 					 * Put the entry in the next bin.
   2626 					 */
   2627 					if (++time_hash >= BW_METER_BUCKETS)
   2628 						time_hash = 0;
   2629 				}
   2630 				x->bm_time_next = bw_meter_timers[time_hash];
   2631 				bw_meter_timers[time_hash] = x;
   2632 				x->bm_time_hash = time_hash;
   2633 
   2634 				continue;
   2635 			}
   2636 
   2637 			/*
   2638 			 * Test if we should deliver an upcall
   2639 			 */
   2640 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2641 			    (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2642 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2643 			    (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2644 				/* Prepare an upcall for delivery */
   2645 				bw_meter_prepare_upcall(x, &now);
   2646 			}
   2647 
   2648 			/*
   2649 			  * Reschedule for next processing
   2650 			 */
   2651 			schedule_bw_meter(x, &now);
   2652 		}
   2653 	}
   2654 
   2655 	/* Send all upcalls that are pending delivery */
   2656 	bw_upcalls_send();
   2657 
   2658 	splx(s);
   2659 }
   2660 
   2661 /*
   2662  * A periodic function for sending all upcalls that are pending delivery
   2663  */
   2664 static void
   2665 expire_bw_upcalls_send(void *unused)
   2666 {
   2667 	int s;
   2668 
   2669 	s = splsoftnet();
   2670 	bw_upcalls_send();
   2671 	splx(s);
   2672 
   2673 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   2674 	    expire_bw_upcalls_send, NULL);
   2675 }
   2676 
   2677 /*
   2678  * A periodic function for periodic scanning of the multicast forwarding
   2679  * table for processing all "<=" bw_meter entries.
   2680  */
   2681 static void
   2682 expire_bw_meter_process(void *unused)
   2683 {
   2684 	if (mrt_api_config & MRT_MFC_BW_UPCALL)
   2685 		bw_meter_process();
   2686 
   2687 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   2688 	    expire_bw_meter_process, NULL);
   2689 }
   2690 
   2691 /*
   2692  * End of bandwidth monitoring code
   2693  */
   2694 
   2695 #ifdef PIM
   2696 /*
   2697  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   2698  */
   2699 static int
   2700 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
   2701     struct mfc *rt)
   2702 {
   2703 	struct mbuf *mb_copy, *mm;
   2704 
   2705 	if (mrtdebug & DEBUG_PIM)
   2706 		log(LOG_DEBUG, "pim_register_send: \n");
   2707 
   2708 	mb_copy = pim_register_prepare(ip, m);
   2709 	if (mb_copy == NULL)
   2710 		return ENOBUFS;
   2711 
   2712 	/*
   2713 	 * Send all the fragments. Note that the mbuf for each fragment
   2714 	 * is freed by the sending machinery.
   2715 	 */
   2716 	for (mm = mb_copy; mm; mm = mb_copy) {
   2717 		mb_copy = mm->m_nextpkt;
   2718 		mm->m_nextpkt = NULL;
   2719 		mm = m_pullup(mm, sizeof(struct ip));
   2720 		if (mm != NULL) {
   2721 			ip = mtod(mm, struct ip *);
   2722 			if ((mrt_api_config & MRT_MFC_RP) &&
   2723 			    !in_nullhost(rt->mfc_rp)) {
   2724 				pim_register_send_rp(ip, vifp, mm, rt);
   2725 			} else {
   2726 				pim_register_send_upcall(ip, vifp, mm, rt);
   2727 			}
   2728 		}
   2729 	}
   2730 
   2731 	return 0;
   2732 }
   2733 
   2734 /*
   2735  * Return a copy of the data packet that is ready for PIM Register
   2736  * encapsulation.
   2737  * XXX: Note that in the returned copy the IP header is a valid one.
   2738  */
   2739 static struct mbuf *
   2740 pim_register_prepare(struct ip *ip, struct mbuf *m)
   2741 {
   2742 	struct mbuf *mb_copy = NULL;
   2743 	int mtu;
   2744 
   2745 	/* Take care of delayed checksums */
   2746 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2747 		in_undefer_cksum_tcpudp(m);
   2748 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   2749 	}
   2750 
   2751 	/*
   2752 	 * Copy the old packet & pullup its IP header into the
   2753 	 * new mbuf so we can modify it.
   2754 	 */
   2755 	mb_copy = m_copypacket(m, M_DONTWAIT);
   2756 	if (mb_copy == NULL)
   2757 		return NULL;
   2758 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   2759 	if (mb_copy == NULL)
   2760 		return NULL;
   2761 
   2762 	/* take care of the TTL */
   2763 	ip = mtod(mb_copy, struct ip *);
   2764 	--ip->ip_ttl;
   2765 
   2766 	/* Compute the MTU after the PIM Register encapsulation */
   2767 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   2768 
   2769 	if (ntohs(ip->ip_len) <= mtu) {
   2770 		/* Turn the IP header into a valid one */
   2771 		ip->ip_sum = 0;
   2772 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   2773 	} else {
   2774 		/* Fragment the packet */
   2775 		if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   2776 			/* XXX: mb_copy was freed by ip_fragment() */
   2777 			return NULL;
   2778 		}
   2779 	}
   2780 	return mb_copy;
   2781 }
   2782 
   2783 /*
   2784  * Send an upcall with the data packet to the user-level process.
   2785  */
   2786 static int
   2787 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   2788     struct mbuf *mb_copy, struct mfc *rt)
   2789 {
   2790 	struct mbuf *mb_first;
   2791 	int len = ntohs(ip->ip_len);
   2792 	struct igmpmsg *im;
   2793 	struct sockaddr_in k_igmpsrc = {
   2794 		.sin_len = sizeof(k_igmpsrc),
   2795 		.sin_family = AF_INET,
   2796 	};
   2797 
   2798 	/*
   2799 	 * Add a new mbuf with an upcall header
   2800 	 */
   2801 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   2802 	if (mb_first == NULL) {
   2803 		m_freem(mb_copy);
   2804 		return ENOBUFS;
   2805 	}
   2806 	mb_first->m_data += max_linkhdr;
   2807 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   2808 	mb_first->m_len = sizeof(struct igmpmsg);
   2809 	mb_first->m_next = mb_copy;
   2810 
   2811 	/* Send message to routing daemon */
   2812 	im = mtod(mb_first, struct igmpmsg *);
   2813 	im->im_msgtype	= IGMPMSG_WHOLEPKT;
   2814 	im->im_mbz	= 0;
   2815 	im->im_vif	= vifp - viftable;
   2816 	im->im_src	= ip->ip_src;
   2817 	im->im_dst	= ip->ip_dst;
   2818 
   2819 	k_igmpsrc.sin_addr	= ip->ip_src;
   2820 
   2821 	mrtstat.mrts_upcalls++;
   2822 
   2823 	if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   2824 		if (mrtdebug & DEBUG_PIM)
   2825 			log(LOG_WARNING,
   2826 			    "mcast: pim_register_send_upcall: ip_mrouter socket queue full\n");
   2827 		++mrtstat.mrts_upq_sockfull;
   2828 		return ENOBUFS;
   2829 	}
   2830 
   2831 	/* Keep statistics */
   2832 	pimstat.pims_snd_registers_msgs++;
   2833 	pimstat.pims_snd_registers_bytes += len;
   2834 
   2835 	return 0;
   2836 }
   2837 
   2838 /*
   2839  * Encapsulate the data packet in PIM Register message and send it to the RP.
   2840  */
   2841 static int
   2842 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   2843     struct mbuf *mb_copy, struct mfc *rt)
   2844 {
   2845 	struct mbuf *mb_first;
   2846 	struct ip *ip_outer;
   2847 	struct pim_encap_pimhdr *pimhdr;
   2848 	int len = ntohs(ip->ip_len);
   2849 	vifi_t vifi = rt->mfc_parent;
   2850 
   2851 	if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   2852 		m_freem(mb_copy);
   2853 		return EADDRNOTAVAIL;		/* The iif vif is invalid */
   2854 	}
   2855 
   2856 	/*
   2857 	 * Add a new mbuf with the encapsulating header
   2858 	 */
   2859 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   2860 	if (mb_first == NULL) {
   2861 		m_freem(mb_copy);
   2862 		return ENOBUFS;
   2863 	}
   2864 	mb_first->m_data += max_linkhdr;
   2865 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   2866 	mb_first->m_next = mb_copy;
   2867 
   2868 	mb_first->m_pkthdr.len = len + mb_first->m_len;
   2869 
   2870 	/*
   2871 	 * Fill in the encapsulating IP and PIM header
   2872 	 */
   2873 	ip_outer = mtod(mb_first, struct ip *);
   2874 	*ip_outer = pim_encap_iphdr;
   2875 	if (mb_first->m_pkthdr.len < IP_MINFRAGSIZE)
   2876 		ip_outer->ip_id = 0;
   2877 	else
   2878 		ip_outer->ip_id = ip_newid(NULL);
   2879 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   2880 	    sizeof(pim_encap_pimhdr));
   2881 	ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   2882 	ip_outer->ip_dst = rt->mfc_rp;
   2883 	/*
   2884 	 * Copy the inner header TOS to the outer header, and take care of the
   2885 	 * IP_DF bit.
   2886 	 */
   2887 	ip_outer->ip_tos = ip->ip_tos;
   2888 	if (ntohs(ip->ip_off) & IP_DF)
   2889 		ip_outer->ip_off |= htons(IP_DF);
   2890 	pimhdr = (struct pim_encap_pimhdr *)((char *)ip_outer
   2891 	    + sizeof(pim_encap_iphdr));
   2892 	*pimhdr = pim_encap_pimhdr;
   2893 	/* If the iif crosses a border, set the Border-bit */
   2894 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   2895 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   2896 
   2897 	mb_first->m_data += sizeof(pim_encap_iphdr);
   2898 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   2899 	mb_first->m_data -= sizeof(pim_encap_iphdr);
   2900 
   2901 	if (vifp->v_rate_limit == 0)
   2902 		tbf_send_packet(vifp, mb_first);
   2903 	else
   2904 		tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   2905 
   2906 	/* Keep statistics */
   2907 	pimstat.pims_snd_registers_msgs++;
   2908 	pimstat.pims_snd_registers_bytes += len;
   2909 
   2910 	return 0;
   2911 }
   2912 
   2913 /*
   2914  * PIM-SMv2 and PIM-DM messages processing.
   2915  * Receives and verifies the PIM control messages, and passes them
   2916  * up to the listening socket, using rip_input().
   2917  * The only message with special processing is the PIM_REGISTER message
   2918  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   2919  * is passed to if_simloop().
   2920  */
   2921 void
   2922 pim_input(struct mbuf *m, ...)
   2923 {
   2924 	struct ip *ip = mtod(m, struct ip *);
   2925 	struct pim *pim;
   2926 	int minlen;
   2927 	int datalen;
   2928 	int ip_tos;
   2929 	int proto;
   2930 	int iphlen;
   2931 	va_list ap;
   2932 
   2933 	va_start(ap, m);
   2934 	iphlen = va_arg(ap, int);
   2935 	proto = va_arg(ap, int);
   2936 	va_end(ap);
   2937 
   2938 	datalen = ntohs(ip->ip_len) - iphlen;
   2939 
   2940 	/* Keep statistics */
   2941 	pimstat.pims_rcv_total_msgs++;
   2942 	pimstat.pims_rcv_total_bytes += datalen;
   2943 
   2944 	/*
   2945 	 * Validate lengths
   2946 	 */
   2947 	if (datalen < PIM_MINLEN) {
   2948 		pimstat.pims_rcv_tooshort++;
   2949 		log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   2950 		    datalen, (u_long)ip->ip_src.s_addr);
   2951 		m_freem(m);
   2952 		return;
   2953 	}
   2954 
   2955 	/*
   2956 	 * If the packet is at least as big as a REGISTER, go ahead
   2957 	 * and grab the PIM REGISTER header size, to avoid another
   2958 	 * possible m_pullup() later.
   2959 	 *
   2960 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   2961 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   2962 	 */
   2963 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   2964 
   2965 	/*
   2966 	 * Get the IP and PIM headers in contiguous memory, and
   2967 	 * possibly the PIM REGISTER header.
   2968 	 */
   2969 	if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   2970 	    (m = m_pullup(m, minlen)) == NULL) {
   2971 		log(LOG_ERR, "pim_input: m_pullup failure\n");
   2972 		return;
   2973 	}
   2974 	ip = mtod(m, struct ip *);
   2975 	ip_tos = ip->ip_tos;
   2976 
   2977 	/* adjust mbuf to point to the PIM header */
   2978 	m->m_data += iphlen;
   2979 	m->m_len  -= iphlen;
   2980 	pim = mtod(m, struct pim *);
   2981 
   2982 	/*
   2983 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
   2984 	 *
   2985 	 * XXX: some older PIMv2 implementations don't make this distinction,
   2986 	 * so for compatibility reason perform the checksum over part of the
   2987 	 * message, and if error, then over the whole message.
   2988 	 */
   2989 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   2990 		/* do nothing, checksum okay */
   2991 	} else if (in_cksum(m, datalen)) {
   2992 		pimstat.pims_rcv_badsum++;
   2993 		if (mrtdebug & DEBUG_PIM)
   2994 			log(LOG_DEBUG, "pim_input: invalid checksum\n");
   2995 		m_freem(m);
   2996 		return;
   2997 	}
   2998 
   2999 	/* PIM version check */
   3000 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   3001 		pimstat.pims_rcv_badversion++;
   3002 		log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3003 		    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3004 		m_freem(m);
   3005 		return;
   3006 	}
   3007 
   3008 	/* restore mbuf back to the outer IP */
   3009 	m->m_data -= iphlen;
   3010 	m->m_len  += iphlen;
   3011 
   3012 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3013 		/*
   3014 		 * Since this is a REGISTER, we'll make a copy of the register
   3015 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3016 		 * routing daemon.
   3017 		 */
   3018 		int s;
   3019 		struct sockaddr_in dst = {
   3020 			.sin_len = sizeof(dst),
   3021 			.sin_family = AF_INET,
   3022 		};
   3023 		struct mbuf *mcp;
   3024 		struct ip *encap_ip;
   3025 		u_int32_t *reghdr;
   3026 		struct ifnet *vifp;
   3027 
   3028 		s = splsoftnet();
   3029 		if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3030 			splx(s);
   3031 			if (mrtdebug & DEBUG_PIM)
   3032 				log(LOG_DEBUG,
   3033 				    "pim_input: register vif not set: %d\n", reg_vif_num);
   3034 			m_freem(m);
   3035 			return;
   3036 		}
   3037 		/* XXX need refcnt? */
   3038 		vifp = viftable[reg_vif_num].v_ifp;
   3039 		splx(s);
   3040 
   3041 		/*
   3042 		 * Validate length
   3043 		 */
   3044 		if (datalen < PIM_REG_MINLEN) {
   3045 			pimstat.pims_rcv_tooshort++;
   3046 			pimstat.pims_rcv_badregisters++;
   3047 			log(LOG_ERR,
   3048 			    "pim_input: register packet size too small %d from %lx\n",
   3049 			    datalen, (u_long)ip->ip_src.s_addr);
   3050 			m_freem(m);
   3051 			return;
   3052 		}
   3053 
   3054 		reghdr = (u_int32_t *)(pim + 1);
   3055 		encap_ip = (struct ip *)(reghdr + 1);
   3056 
   3057 		if (mrtdebug & DEBUG_PIM) {
   3058 			log(LOG_DEBUG,
   3059 			    "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3060 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
   3061 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
   3062 			    ntohs(encap_ip->ip_len));
   3063 		}
   3064 
   3065 		/* verify the version number of the inner packet */
   3066 		if (encap_ip->ip_v != IPVERSION) {
   3067 			pimstat.pims_rcv_badregisters++;
   3068 			if (mrtdebug & DEBUG_PIM) {
   3069 				log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3070 				    "of the inner packet\n", encap_ip->ip_v);
   3071 			}
   3072 			m_freem(m);
   3073 			return;
   3074 		}
   3075 
   3076 		/* verify the inner packet doesn't have options */
   3077 		if (encap_ip->ip_hl != (sizeof(struct ip) >> 2)) {
   3078 			pimstat.pims_rcv_badregisters++;
   3079 			m_freem(m);
   3080 			return;
   3081 		}
   3082 
   3083 		/* verify the inner packet is destined to a mcast group */
   3084 		if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3085 			pimstat.pims_rcv_badregisters++;
   3086 			 if (mrtdebug & DEBUG_PIM)
   3087 				log(LOG_DEBUG,
   3088 				    "pim_input: inner packet of register is not "
   3089 				    "multicast %lx\n",
   3090 				    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3091 			m_freem(m);
   3092 			return;
   3093 		}
   3094 
   3095 		/* If a NULL_REGISTER, pass it to the daemon */
   3096 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3097 			goto pim_input_to_daemon;
   3098 
   3099 		/*
   3100 		 * Copy the TOS from the outer IP header to the inner IP header.
   3101 		 */
   3102 		if (encap_ip->ip_tos != ip_tos) {
   3103 			/* Outer TOS -> inner TOS */
   3104 			encap_ip->ip_tos = ip_tos;
   3105 			/* Recompute the inner header checksum. Sigh... */
   3106 
   3107 			/* adjust mbuf to point to the inner IP header */
   3108 			m->m_data += (iphlen + PIM_MINLEN);
   3109 			m->m_len  -= (iphlen + PIM_MINLEN);
   3110 
   3111 			encap_ip->ip_sum = 0;
   3112 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3113 
   3114 			/* restore mbuf to point back to the outer IP header */
   3115 			m->m_data -= (iphlen + PIM_MINLEN);
   3116 			m->m_len  += (iphlen + PIM_MINLEN);
   3117 		}
   3118 
   3119 		/*
   3120 		 * Decapsulate the inner IP packet and loopback to forward it
   3121 		 * as a normal multicast packet. Also, make a copy of the
   3122 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3123 		 * to pass to the daemon later, so it can take the appropriate
   3124 		 * actions (e.g., send back PIM_REGISTER_STOP).
   3125 		 * XXX: here m->m_data points to the outer IP header.
   3126 		 */
   3127 		mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_DONTWAIT);
   3128 		if (mcp == NULL) {
   3129 			log(LOG_ERR,
   3130 			    "pim_input: pim register: could not copy register head\n");
   3131 			m_freem(m);
   3132 			return;
   3133 		}
   3134 
   3135 		/* Keep statistics */
   3136 		/* XXX: registers_bytes include only the encap. mcast pkt */
   3137 		pimstat.pims_rcv_registers_msgs++;
   3138 		pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3139 
   3140 		/*
   3141 		 * forward the inner ip packet; point m_data at the inner ip.
   3142 		 */
   3143 		m_adj(m, iphlen + PIM_MINLEN);
   3144 
   3145 		if (mrtdebug & DEBUG_PIM) {
   3146 			log(LOG_DEBUG,
   3147 			    "pim_input: forwarding decapsulated register: "
   3148 			    "src %lx, dst %lx, vif %d\n",
   3149 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
   3150 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
   3151 			    reg_vif_num);
   3152 		}
   3153 		/* NB: vifp was collected above; can it change on us? */
   3154 		looutput(vifp, m, (struct sockaddr *)&dst, NULL);
   3155 
   3156 		/* prepare the register head to send to the mrouting daemon */
   3157 		m = mcp;
   3158 	}
   3159 
   3160 pim_input_to_daemon:
   3161 	/*
   3162 	 * Pass the PIM message up to the daemon; if it is a Register message,
   3163 	 * pass the 'head' only up to the daemon. This includes the
   3164 	 * outer IP header, PIM header, PIM-Register header and the
   3165 	 * inner IP header.
   3166 	 * XXX: the outer IP header pkt size of a Register is not adjust to
   3167 	 * reflect the fact that the inner multicast data is truncated.
   3168 	 */
   3169 	/*
   3170 	 * Currently, pim_input() is always called holding softnet_lock
   3171 	 * by ipintr()(!NET_MPSAFE) or PR_INPUT_WRAP()(NET_MPSAFE).
   3172 	 */
   3173 	KASSERT(mutex_owned(softnet_lock));
   3174 	rip_input(m, iphlen, proto);
   3175 
   3176 	return;
   3177 }
   3178 #endif /* PIM */
   3179