ip_mroute.c revision 1.25 1 /* $NetBSD: ip_mroute.c,v 1.25 1996/02/13 23:42:46 christos Exp $ */
2
3 /*
4 * IP multicast forwarding procedures
5 *
6 * Written by David Waitzman, BBN Labs, August 1988.
7 * Modified by Steve Deering, Stanford, February 1989.
8 * Modified by Mark J. Steiglitz, Stanford, May, 1991
9 * Modified by Van Jacobson, LBL, January 1993
10 * Modified by Ajit Thyagarajan, PARC, August 1993
11 * Modified by Bill Fenner, PARC, April 1994
12 * Modified by Charles M. Hannum, NetBSD, May 1995.
13 *
14 * MROUTING Revision: 1.2
15 */
16
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/errno.h>
24 #include <sys/time.h>
25 #include <sys/kernel.h>
26 #include <sys/ioctl.h>
27 #include <sys/syslog.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <net/raw_cb.h>
31 #include <netinet/in.h>
32 #include <netinet/in_var.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_pcb.h>
37 #include <netinet/udp.h>
38 #include <netinet/igmp.h>
39 #include <netinet/igmp_var.h>
40 #include <netinet/ip_mroute.h>
41
42 #include <machine/stdarg.h>
43
44 #define IP_MULTICASTOPTS 0
45 #define M_PULLUP(m, len) \
46 do { \
47 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
48 (m) = m_pullup((m), (len)); \
49 } while (0)
50
51 /*
52 * Globals. All but ip_mrouter and ip_mrtproto could be static,
53 * except for netstat or debugging purposes.
54 */
55 struct socket *ip_mrouter = NULL;
56 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
57
58 #define NO_RTE_FOUND 0x1
59 #define RTE_FOUND 0x2
60
61 #define MFCHASH(a, g) \
62 ((((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
63 ((g) >> 20) ^ ((g) >> 10) ^ (g)) & mfchash)
64 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
65 u_long mfchash;
66
67 u_char nexpire[MFCTBLSIZ];
68 struct vif viftable[MAXVIFS];
69 struct mrtstat mrtstat;
70 u_int mrtdebug = 0; /* debug level */
71 #define DEBUG_MFC 0x02
72 #define DEBUG_FORWARD 0x04
73 #define DEBUG_EXPIRE 0x08
74 #define DEBUG_XMIT 0x10
75 u_int tbfdebug = 0; /* tbf debug level */
76 #ifdef RSVP_ISI
77 u_int rsvpdebug = 0; /* rsvp debug level */
78 extern struct socket *ip_rsvpd;
79 extern int rsvp_on;
80 #endif /* RSVP_ISI */
81
82 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
83 #define UPCALL_EXPIRE 6 /* number of timeouts */
84
85 /*
86 * Define the token bucket filter structures
87 * qtable -> each interface has an associated queue of pkts
88 */
89
90 struct pkt_queue qtable[MAXVIFS][MAXQSIZE];
91
92 static int get_sg_cnt __P((struct sioc_sg_req *));
93 static int get_vif_cnt __P((struct sioc_vif_req *));
94 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
95 static int get_version __P((struct mbuf *));
96 static int set_assert __P((struct mbuf *));
97 static int get_assert __P((struct mbuf *));
98 static int add_vif __P((struct mbuf *));
99 static int del_vif __P((struct mbuf *));
100 static void update_mfc __P((struct mfcctl *, struct mfc *));
101 static void expire_mfc __P((struct mfc *));
102 static int add_mfc __P((struct mbuf *));
103 #ifdef UPCALL_TIMING
104 static void collate __P((struct timeval *));
105 #endif
106 static int del_mfc __P((struct mbuf *));
107 static int socket_send __P((struct socket *, struct mbuf *,
108 struct sockaddr_in *));
109 static void expire_upcalls __P((void *));
110 #ifdef RSVP_ISI
111 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
112 #else
113 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
114 #endif
115 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
116 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
117 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
118 u_int32_t));
119 static void tbf_queue __P((struct vif *, struct mbuf *, struct ip *));
120 static void tbf_process_q __P((struct vif *));
121 static void tbf_dequeue __P((struct vif *, int));
122 static void tbf_reprocess_q __P((void *));
123 static int tbf_dq_sel __P((struct vif *, struct ip *));
124 static void tbf_send_packet __P((struct vif *, struct mbuf *));
125 static void tbf_update_tokens __P((struct vif *));
126 static int priority __P((struct vif *, struct ip *));
127
128 /*
129 * 'Interfaces' associated with decapsulator (so we can tell
130 * packets that went through it from ones that get reflected
131 * by a broken gateway). These interfaces are never linked into
132 * the system ifnet list & no routes point to them. I.e., packets
133 * can't be sent this way. They only exist as a placeholder for
134 * multicast source verification.
135 */
136 #if 0
137 struct ifnet multicast_decap_if[MAXVIFS];
138 #endif
139
140 #define ENCAP_TTL 64
141 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
142
143 /* prototype IP hdr for encapsulated packets */
144 struct ip multicast_encap_iphdr = {
145 #if BYTE_ORDER == LITTLE_ENDIAN
146 sizeof(struct ip) >> 2, IPVERSION,
147 #else
148 IPVERSION, sizeof(struct ip) >> 2,
149 #endif
150 0, /* tos */
151 sizeof(struct ip), /* total length */
152 0, /* id */
153 0, /* frag offset */
154 ENCAP_TTL, ENCAP_PROTO,
155 0, /* checksum */
156 };
157
158 /*
159 * Private variables.
160 */
161 static vifi_t numvifs = 0;
162 static int have_encap_tunnel = 0;
163
164 /*
165 * one-back cache used by ipip_input to locate a tunnel's vif
166 * given a datagram's src ip address.
167 */
168 static u_int32_t last_encap_src;
169 static struct vif *last_encap_vif;
170
171 /*
172 * whether or not special PIM assert processing is enabled.
173 */
174 static int pim_assert;
175 /*
176 * Rate limit for assert notification messages, in usec
177 */
178 #define ASSERT_MSG_TIME 3000000
179
180 /*
181 * Find a route for a given origin IP address and Multicast group address
182 * Type of service parameter to be added in the future!!!
183 */
184
185 #define MFCFIND(o, g, rt) { \
186 register struct mfc *_rt; \
187 (rt) = NULL; \
188 ++mrtstat.mrts_mfc_lookups; \
189 for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
190 _rt; _rt = _rt->mfc_hash.le_next) { \
191 if (_rt->mfc_origin.s_addr == (o) && \
192 _rt->mfc_mcastgrp.s_addr == (g) && \
193 _rt->mfc_stall == NULL) { \
194 (rt) = _rt; \
195 break; \
196 } \
197 } \
198 if ((rt) == NULL) \
199 ++mrtstat.mrts_mfc_misses; \
200 }
201
202 /*
203 * Macros to compute elapsed time efficiently
204 * Borrowed from Van Jacobson's scheduling code
205 */
206 #define TV_DELTA(a, b, delta) { \
207 register int xxs; \
208 delta = (a).tv_usec - (b).tv_usec; \
209 xxs = (a).tv_sec - (b).tv_sec; \
210 switch (xxs) { \
211 case 2: \
212 delta += 1000000; \
213 /* fall through */ \
214 case 1: \
215 delta += 1000000; \
216 /* fall through */ \
217 case 0: \
218 break; \
219 default: \
220 delta += (1000000 * xxs); \
221 break; \
222 } \
223 }
224
225 #ifdef UPCALL_TIMING
226 u_int32_t upcall_data[51];
227 #endif /* UPCALL_TIMING */
228
229 /*
230 * Handle MRT setsockopt commands to modify the multicast routing tables.
231 */
232 int
233 ip_mrouter_set(cmd, so, m)
234 int cmd;
235 struct socket *so;
236 struct mbuf **m;
237 {
238 int error;
239
240 if (cmd != MRT_INIT && so != ip_mrouter)
241 error = EACCES;
242 else
243 switch (cmd) {
244 case MRT_INIT:
245 error = ip_mrouter_init(so, *m);
246 break;
247 case MRT_DONE:
248 error = ip_mrouter_done();
249 break;
250 case MRT_ADD_VIF:
251 error = add_vif(*m);
252 break;
253 case MRT_DEL_VIF:
254 error = del_vif(*m);
255 break;
256 case MRT_ADD_MFC:
257 error = add_mfc(*m);
258 break;
259 case MRT_DEL_MFC:
260 error = del_mfc(*m);
261 break;
262 case MRT_ASSERT:
263 error = set_assert(*m);
264 break;
265 default:
266 error = EOPNOTSUPP;
267 break;
268 }
269
270 if (*m)
271 m_free(*m);
272 return (error);
273 }
274
275 /*
276 * Handle MRT getsockopt commands
277 */
278 int
279 ip_mrouter_get(cmd, so, m)
280 int cmd;
281 struct socket *so;
282 struct mbuf **m;
283 {
284 struct mbuf *mb;
285 int error;
286
287 if (so != ip_mrouter)
288 error = EACCES;
289 else {
290 *m = mb = m_get(M_WAIT, MT_SOOPTS);
291
292 switch (cmd) {
293 case MRT_VERSION:
294 error = get_version(mb);
295 break;
296 case MRT_ASSERT:
297 error = get_assert(mb);
298 break;
299 default:
300 error = EOPNOTSUPP;
301 break;
302 }
303
304 if (error)
305 m_free(mb);
306 }
307
308 return (error);
309 }
310
311 /*
312 * Handle ioctl commands to obtain information from the cache
313 */
314 int
315 mrt_ioctl(cmd, data)
316 u_long cmd;
317 caddr_t data;
318 {
319 int error;
320
321 switch (cmd) {
322 case SIOCGETVIFCNT:
323 error = get_vif_cnt((struct sioc_vif_req *)data);
324 break;
325 case SIOCGETSGCNT:
326 error = get_sg_cnt((struct sioc_sg_req *)data);
327 break;
328 default:
329 error = EINVAL;
330 break;
331 }
332
333 return (error);
334 }
335
336 /*
337 * returns the packet, byte, rpf-failure count for the source group provided
338 */
339 static int
340 get_sg_cnt(req)
341 register struct sioc_sg_req *req;
342 {
343 register struct mfc *rt;
344 int s;
345
346 s = splsoftnet();
347 MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
348 splx(s);
349 if (rt != NULL) {
350 req->pktcnt = rt->mfc_pkt_cnt;
351 req->bytecnt = rt->mfc_byte_cnt;
352 req->wrong_if = rt->mfc_wrong_if;
353 } else
354 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
355
356 return (0);
357 }
358
359 /*
360 * returns the input and output packet and byte counts on the vif provided
361 */
362 static int
363 get_vif_cnt(req)
364 register struct sioc_vif_req *req;
365 {
366 register vifi_t vifi = req->vifi;
367
368 if (vifi >= numvifs)
369 return (EINVAL);
370
371 req->icount = viftable[vifi].v_pkt_in;
372 req->ocount = viftable[vifi].v_pkt_out;
373 req->ibytes = viftable[vifi].v_bytes_in;
374 req->obytes = viftable[vifi].v_bytes_out;
375
376 return (0);
377 }
378
379 /*
380 * Enable multicast routing
381 */
382 static int
383 ip_mrouter_init(so, m)
384 struct socket *so;
385 struct mbuf *m;
386 {
387 int *v;
388
389 if (mrtdebug)
390 log(LOG_DEBUG,
391 "ip_mrouter_init: so_type = %d, pr_protocol = %d",
392 so->so_type, so->so_proto->pr_protocol);
393
394 if (so->so_type != SOCK_RAW ||
395 so->so_proto->pr_protocol != IPPROTO_IGMP)
396 return (EOPNOTSUPP);
397
398 if (m == 0 || m->m_len < sizeof(int))
399 return (EINVAL);
400
401 v = mtod(m, int *);
402 if (*v != 1)
403 return (EINVAL);
404
405 if (ip_mrouter != NULL)
406 return (EADDRINUSE);
407
408 ip_mrouter = so;
409
410 mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, &mfchash);
411 bzero((caddr_t)nexpire, sizeof(nexpire));
412
413 pim_assert = 0;
414
415 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
416
417 if (mrtdebug)
418 log(LOG_DEBUG, "ip_mrouter_init");
419
420 return (0);
421 }
422
423 /*
424 * Disable multicast routing
425 */
426 int
427 ip_mrouter_done()
428 {
429 vifi_t vifi;
430 register struct vif *vifp;
431 int i;
432 int s;
433
434 s = splsoftnet();
435
436 /* Clear out all the vifs currently in use. */
437 for (vifi = 0; vifi < numvifs; vifi++) {
438 vifp = &viftable[vifi];
439 if (vifp->v_lcl_addr.s_addr != 0)
440 reset_vif(vifp);
441 }
442
443 bzero((caddr_t)qtable, sizeof(qtable));
444 numvifs = 0;
445 pim_assert = 0;
446
447 untimeout(expire_upcalls, (caddr_t)NULL);
448
449 /*
450 * Free all multicast forwarding cache entries.
451 */
452 for (i = 0; i < MFCTBLSIZ; i++) {
453 register struct mfc *rt, *nrt;
454
455 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
456 nrt = rt->mfc_hash.le_next;
457
458 expire_mfc(rt);
459 }
460 }
461 free(mfchashtbl, M_MRTABLE);
462
463 /* Reset de-encapsulation cache. */
464 have_encap_tunnel = 0;
465
466 ip_mrouter = NULL;
467
468 splx(s);
469
470 if (mrtdebug)
471 log(LOG_DEBUG, "ip_mrouter_done");
472
473 return (0);
474 }
475
476 static int
477 get_version(m)
478 struct mbuf *m;
479 {
480 int *v = mtod(m, int *);
481
482 *v = 0x0305; /* XXX !!!! */
483 m->m_len = sizeof(int);
484 return (0);
485 }
486
487 /*
488 * Set PIM assert processing global
489 */
490 static int
491 set_assert(m)
492 struct mbuf *m;
493 {
494 int *i;
495
496 if (m == 0 || m->m_len < sizeof(int))
497 return (EINVAL);
498
499 i = mtod(m, int *);
500 pim_assert = !!*i;
501 return (0);
502 }
503
504 /*
505 * Get PIM assert processing global
506 */
507 static int
508 get_assert(m)
509 struct mbuf *m;
510 {
511 int *i = mtod(m, int *);
512
513 *i = pim_assert;
514 m->m_len = sizeof(int);
515 return (0);
516 }
517
518 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
519
520 /*
521 * Add a vif to the vif table
522 */
523 static int
524 add_vif(m)
525 struct mbuf *m;
526 {
527 register struct vifctl *vifcp;
528 register struct vif *vifp;
529 struct ifaddr *ifa;
530 struct ifnet *ifp;
531 struct ifreq ifr;
532 int error, s;
533
534 if (m == 0 || m->m_len < sizeof(struct vifctl))
535 return (EINVAL);
536
537 vifcp = mtod(m, struct vifctl *);
538 if (vifcp->vifc_vifi >= MAXVIFS)
539 return (EINVAL);
540
541 vifp = &viftable[vifcp->vifc_vifi];
542 if (vifp->v_lcl_addr.s_addr != 0)
543 return (EADDRINUSE);
544
545 /* Find the interface with an address in AF_INET family. */
546 sin.sin_addr = vifcp->vifc_lcl_addr;
547 ifa = ifa_ifwithaddr(sintosa(&sin));
548 if (ifa == 0)
549 return (EADDRNOTAVAIL);
550
551 if (vifcp->vifc_flags & VIFF_TUNNEL) {
552 if (vifcp->vifc_flags & VIFF_SRCRT) {
553 log(LOG_ERR, "Source routed tunnels not supported.");
554 return (EOPNOTSUPP);
555 }
556
557 /* Create a fake encapsulation interface. */
558 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
559 bzero(ifp, sizeof(*ifp));
560 ifp->if_name = "mdecap";
561 ifp->if_unit = vifcp->vifc_vifi;
562
563 /* Prepare cached route entry. */
564 bzero(&vifp->v_route, sizeof(vifp->v_route));
565
566 /* Tell ipip_input() to start looking at encapsulated packets. */
567 have_encap_tunnel = 1;
568 } else {
569 /* Use the physical interface associated with the address. */
570 ifp = ifa->ifa_ifp;
571
572 /* Make sure the interface supports multicast. */
573 if ((ifp->if_flags & IFF_MULTICAST) == 0)
574 return (EOPNOTSUPP);
575
576 /* Enable promiscuous reception of all IP multicasts. */
577 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
578 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
579 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
580 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
581 if (error)
582 return (error);
583 }
584
585 s = splsoftnet();
586 /* Define parameters for the tbf structure. */
587 vifp->v_tbf.q_len = 0;
588 vifp->v_tbf.n_tok = 0;
589 vifp->v_tbf.last_pkt_t = 0;
590
591 vifp->v_flags = vifcp->vifc_flags;
592 vifp->v_threshold = vifcp->vifc_threshold;
593 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
594 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
595 vifp->v_ifp = ifp;
596 vifp->v_rate_limit = vifcp->vifc_rate_limit;
597 #ifdef RSVP_ISI
598 vifp->v_rsvp_on = 0;
599 vifp->v_rsvpd = NULL;
600 #endif /* RSVP_ISI */
601 /* Initialize per vif pkt counters. */
602 vifp->v_pkt_in = 0;
603 vifp->v_pkt_out = 0;
604 vifp->v_bytes_in = 0;
605 vifp->v_bytes_out = 0;
606 splx(s);
607
608 /* Adjust numvifs up if the vifi is higher than numvifs. */
609 if (numvifs <= vifcp->vifc_vifi)
610 numvifs = vifcp->vifc_vifi + 1;
611
612 if (mrtdebug)
613 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d",
614 vifcp->vifc_vifi,
615 ntohl(vifcp->vifc_lcl_addr.s_addr),
616 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
617 ntohl(vifcp->vifc_rmt_addr.s_addr),
618 vifcp->vifc_threshold,
619 vifcp->vifc_rate_limit);
620
621 return (0);
622 }
623
624 void
625 reset_vif(vifp)
626 register struct vif *vifp;
627 {
628 struct ifnet *ifp;
629 struct ifreq ifr;
630
631 if (vifp->v_flags & VIFF_TUNNEL) {
632 free(vifp->v_ifp, M_MRTABLE);
633 if (vifp == last_encap_vif) {
634 last_encap_vif = 0;
635 last_encap_src = 0;
636 }
637 } else {
638 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
639 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
640 satosin(&ifr.ifr_addr)->sin_addr.s_addr = INADDR_ANY;
641 ifp = vifp->v_ifp;
642 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
643 }
644 bzero((caddr_t)vifp, sizeof(*vifp));
645 }
646
647 /*
648 * Delete a vif from the vif table
649 */
650 static int
651 del_vif(m)
652 struct mbuf *m;
653 {
654 vifi_t *vifip;
655 register struct vif *vifp;
656 register vifi_t vifi;
657 int s;
658
659 if (m == 0 || m->m_len < sizeof(vifi_t))
660 return (EINVAL);
661
662 vifip = mtod(m, vifi_t *);
663 if (*vifip >= numvifs)
664 return (EINVAL);
665
666 vifp = &viftable[*vifip];
667 if (vifp->v_lcl_addr.s_addr == 0)
668 return (EADDRNOTAVAIL);
669
670 s = splsoftnet();
671
672 reset_vif(vifp);
673
674 bzero((caddr_t)qtable[*vifip], sizeof(qtable[*vifip]));
675
676 /* Adjust numvifs down */
677 for (vifi = numvifs; vifi > 0; vifi--)
678 if (viftable[vifi-1].v_lcl_addr.s_addr != 0)
679 break;
680 numvifs = vifi;
681
682 splx(s);
683
684 if (mrtdebug)
685 log(LOG_DEBUG, "del_vif %d, numvifs %d", *vifip, numvifs);
686
687 return (0);
688 }
689
690 static void
691 update_mfc(mfccp, rt)
692 struct mfcctl *mfccp;
693 struct mfc *rt;
694 {
695 vifi_t vifi;
696
697 rt->mfc_parent = mfccp->mfcc_parent;
698 for (vifi = 0; vifi < numvifs; vifi++)
699 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
700 rt->mfc_expire = 0;
701 rt->mfc_stall = 0;
702 }
703
704 static void
705 expire_mfc(rt)
706 struct mfc *rt;
707 {
708 struct rtdetq *rte, *nrte;
709
710 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
711 nrte = rte->next;
712 m_freem(rte->m);
713 free(rte, M_MRTABLE);
714 }
715
716 LIST_REMOVE(rt, mfc_hash);
717 free(rt, M_MRTABLE);
718 }
719
720 /*
721 * Add an mfc entry
722 */
723 static int
724 add_mfc(m)
725 struct mbuf *m;
726 {
727 struct mfcctl *mfccp;
728 struct mfc *rt;
729 u_int32_t hash = 0;
730 struct rtdetq *rte, *nrte;
731 register u_short nstl;
732 int s;
733
734 if (m == 0 || m->m_len < sizeof(struct mfcctl))
735 return (EINVAL);
736
737 mfccp = mtod(m, struct mfcctl *);
738
739 s = splsoftnet();
740 MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
741
742 /* If an entry already exists, just update the fields */
743 if (rt) {
744 if (mrtdebug & DEBUG_MFC)
745 log(LOG_DEBUG,"add_mfc update o %x g %x p %x",
746 ntohl(mfccp->mfcc_origin.s_addr),
747 ntohl(mfccp->mfcc_mcastgrp.s_addr),
748 mfccp->mfcc_parent);
749
750 if (rt->mfc_expire)
751 nexpire[hash]--;
752
753 update_mfc(mfccp, rt);
754
755 splx(s);
756 return (0);
757 }
758
759 /*
760 * Find the entry for which the upcall was made and update
761 */
762 nstl = 0;
763 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
764 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
765 if (rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr &&
766 rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr &&
767 rt->mfc_stall != NULL) {
768 if (nstl++)
769 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x",
770 "multiple kernel entries",
771 ntohl(mfccp->mfcc_origin.s_addr),
772 ntohl(mfccp->mfcc_mcastgrp.s_addr),
773 mfccp->mfcc_parent, rt->mfc_stall);
774
775 if (mrtdebug & DEBUG_MFC)
776 log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x",
777 ntohl(mfccp->mfcc_origin.s_addr),
778 ntohl(mfccp->mfcc_mcastgrp.s_addr),
779 mfccp->mfcc_parent, rt->mfc_stall);
780
781 if (rt->mfc_expire)
782 nexpire[hash]--;
783
784 /* free packets Qed at the end of this entry */
785 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
786 nrte = rte->next;
787 #ifdef RSVP_ISI
788 ip_mdq(rte->m, rte->ifp, rt, -1);
789 #else
790 ip_mdq(rte->m, rte->ifp, rt);
791 #endif /* RSVP_ISI */
792 m_freem(rte->m);
793 #ifdef UPCALL_TIMING
794 collate(&rte->t);
795 #endif /* UPCALL_TIMING */
796 free(rte, M_MRTABLE);
797 }
798
799 update_mfc(mfccp, rt);
800 }
801 }
802
803 if (nstl == 0) {
804 /*
805 * No mfc; make a new one
806 */
807 if (mrtdebug & DEBUG_MFC)
808 log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x",
809 ntohl(mfccp->mfcc_origin.s_addr),
810 ntohl(mfccp->mfcc_mcastgrp.s_addr),
811 mfccp->mfcc_parent);
812
813 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
814 if (rt == NULL) {
815 splx(s);
816 return (ENOBUFS);
817 }
818
819 rt->mfc_origin = mfccp->mfcc_origin;
820 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
821 /* initialize pkt counters per src-grp */
822 rt->mfc_pkt_cnt = 0;
823 rt->mfc_byte_cnt = 0;
824 rt->mfc_wrong_if = 0;
825 timerclear(&rt->mfc_last_assert);
826 update_mfc(mfccp, rt);
827
828 /* insert new entry at head of hash chain */
829 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
830 }
831
832 splx(s);
833 return (0);
834 }
835
836 #ifdef UPCALL_TIMING
837 /*
838 * collect delay statistics on the upcalls
839 */
840 static void collate(t)
841 register struct timeval *t;
842 {
843 register u_int32_t d;
844 register struct timeval tp;
845 register u_int32_t delta;
846
847 microtime(&tp);
848
849 if (timercmp(t, &tp, <)) {
850 TV_DELTA(tp, *t, delta);
851
852 d = delta >> 10;
853 if (d > 50)
854 d = 50;
855
856 ++upcall_data[d];
857 }
858 }
859 #endif /* UPCALL_TIMING */
860
861 /*
862 * Delete an mfc entry
863 */
864 static int
865 del_mfc(m)
866 struct mbuf *m;
867 {
868 struct mfcctl *mfccp;
869 struct mfc *rt;
870 int s;
871
872 if (m == 0 || m->m_len < sizeof(struct mfcctl))
873 return (EINVAL);
874
875 mfccp = mtod(m, struct mfcctl *);
876
877 if (mrtdebug & DEBUG_MFC)
878 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x",
879 ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr));
880
881 s = splsoftnet();
882
883 MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
884 if (rt == NULL) {
885 splx(s);
886 return (EADDRNOTAVAIL);
887 }
888
889 LIST_REMOVE(rt, mfc_hash);
890 free(rt, M_MRTABLE);
891
892 splx(s);
893 return (0);
894 }
895
896 static int
897 socket_send(s, mm, src)
898 struct socket *s;
899 struct mbuf *mm;
900 struct sockaddr_in *src;
901 {
902 if (s) {
903 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
904 sorwakeup(s);
905 return (0);
906 }
907 }
908 m_freem(mm);
909 return (-1);
910 }
911
912 /*
913 * IP multicast forwarding function. This function assumes that the packet
914 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
915 * pointed to by "ifp", and the packet is to be relayed to other networks
916 * that have members of the packet's destination IP multicast group.
917 *
918 * The packet is returned unscathed to the caller, unless it is
919 * erroneous, in which case a non-zero return value tells the caller to
920 * discard it.
921 */
922
923 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
924 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
925
926 int
927 #ifdef RSVP_ISI
928 ip_mforward(m, ifp, imo)
929 #else
930 ip_mforward(m, ifp)
931 #endif /* RSVP_ISI */
932 struct mbuf *m;
933 struct ifnet *ifp;
934 #ifdef RSVP_ISI
935 struct ip_moptions *imo;
936 #endif /* RSVP_ISI */
937 {
938 register struct ip *ip = mtod(m, struct ip *);
939 register struct mfc *rt;
940 register u_char *ipoptions;
941 static int srctun = 0;
942 register struct mbuf *mm;
943 int s;
944 #ifdef RSVP_ISI
945 register struct vif *vifp;
946 vifi_t vifi;
947 #endif /* RSVP_ISI */
948
949 if (mrtdebug & DEBUG_FORWARD)
950 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x",
951 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
952
953 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
954 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
955 /*
956 * Packet arrived via a physical interface or
957 * an encapuslated tunnel.
958 */
959 } else {
960 /*
961 * Packet arrived through a source-route tunnel.
962 * Source-route tunnels are no longer supported.
963 */
964 if ((srctun++ % 1000) == 0)
965 log(LOG_ERR, "ip_mforward: received source-routed packet from %x",
966 ntohl(ip->ip_src.s_addr));
967
968 return (1);
969 }
970
971 #ifdef RSVP_ISI
972 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
973 if (ip->ip_ttl < 255)
974 ip->ip_ttl++; /* compensate for -1 in *_send routines */
975 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
976 vifp = viftable + vifi;
977 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s%d)\n",
978 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
979 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
980 vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
981 }
982 return (ip_mdq(m, ifp, rt, vifi));
983 }
984 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
985 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
986 ntohl(ip->ip_src), ntohl(ip->ip_dst));
987 }
988 #endif /* RSVP_ISI */
989
990 /*
991 * Don't forward a packet with time-to-live of zero or one,
992 * or a packet destined to a local-only group.
993 */
994 if (ip->ip_ttl <= 1 ||
995 IN_LOCAL_GROUP(ip->ip_dst.s_addr))
996 return (0);
997
998 /*
999 * Determine forwarding vifs from the forwarding cache table
1000 */
1001 s = splsoftnet();
1002 MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1003
1004 /* Entry exists, so forward if necessary */
1005 if (rt != NULL) {
1006 splx(s);
1007 #ifdef RSVP_ISI
1008 return (ip_mdq(m, ifp, rt, -1));
1009 #else
1010 return (ip_mdq(m, ifp, rt));
1011 #endif /* RSVP_ISI */
1012 } else {
1013 /*
1014 * If we don't have a route for packet's origin,
1015 * Make a copy of the packet &
1016 * send message to routing daemon
1017 */
1018
1019 register struct mbuf *mb0;
1020 register struct rtdetq *rte;
1021 register u_int32_t hash;
1022 #ifdef UPCALL_TIMING
1023 struct timeval tp;
1024
1025 microtime(&tp);
1026 #endif /* UPCALL_TIMING */
1027
1028 mrtstat.mrts_no_route++;
1029 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1030 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x",
1031 ntohl(ip->ip_src.s_addr),
1032 ntohl(ip->ip_dst.s_addr));
1033
1034 /*
1035 * Allocate mbufs early so that we don't do extra work if we are
1036 * just going to fail anyway.
1037 */
1038 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1039 if (rte == NULL) {
1040 splx(s);
1041 return (ENOBUFS);
1042 }
1043 mb0 = m_copy(m, 0, M_COPYALL);
1044 if (mb0 == NULL) {
1045 free(rte, M_MRTABLE);
1046 splx(s);
1047 return (ENOBUFS);
1048 }
1049
1050 /* is there an upcall waiting for this packet? */
1051 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1052 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
1053 if (ip->ip_src.s_addr == rt->mfc_origin.s_addr &&
1054 ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr &&
1055 rt->mfc_stall != NULL)
1056 break;
1057 }
1058
1059 if (rt == NULL) {
1060 int hlen = ip->ip_hl << 2;
1061 int i;
1062 struct igmpmsg *im;
1063
1064 /* no upcall, so make a new entry */
1065 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1066 if (rt == NULL) {
1067 free(rte, M_MRTABLE);
1068 m_free(mb0);
1069 splx(s);
1070 return (ENOBUFS);
1071 }
1072 /* Make a copy of the header to send to the user level process */
1073 mm = m_copy(m, 0, hlen);
1074 M_PULLUP(mm, hlen);
1075 if (mm == NULL) {
1076 free(rte, M_MRTABLE);
1077 m_free(mb0);
1078 free(rt, M_MRTABLE);
1079 splx(s);
1080 return (ENOBUFS);
1081 }
1082
1083 /*
1084 * Send message to routing daemon to install
1085 * a route into the kernel table
1086 */
1087 sin.sin_addr = ip->ip_src;
1088
1089 im = mtod(mm, struct igmpmsg *);
1090 im->im_msgtype = IGMPMSG_NOCACHE;
1091 im->im_mbz = 0;
1092
1093 mrtstat.mrts_upcalls++;
1094
1095 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1096 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full");
1097 ++mrtstat.mrts_upq_sockfull;
1098 free(rte, M_MRTABLE);
1099 m_free(mb0);
1100 free(rt, M_MRTABLE);
1101 splx(s);
1102 return (ENOBUFS);
1103 }
1104
1105 /* insert new entry at head of hash chain */
1106 rt->mfc_origin = ip->ip_src;
1107 rt->mfc_mcastgrp = ip->ip_dst;
1108 rt->mfc_pkt_cnt = 0;
1109 rt->mfc_byte_cnt = 0;
1110 rt->mfc_wrong_if = 0;
1111 rt->mfc_expire = UPCALL_EXPIRE;
1112 nexpire[hash]++;
1113 for (i = 0; i < numvifs; i++)
1114 rt->mfc_ttls[i] = 0;
1115 rt->mfc_parent = -1;
1116
1117 /* link into table */
1118 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1119 /* Add this entry to the end of the queue */
1120 rt->mfc_stall = rte;
1121 } else {
1122 /* determine if q has overflowed */
1123 struct rtdetq **p;
1124 register int npkts = 0;
1125
1126 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1127 if (++npkts > MAX_UPQ) {
1128 mrtstat.mrts_upq_ovflw++;
1129 free(rte, M_MRTABLE);
1130 m_free(mb0);
1131 splx(s);
1132 return (0);
1133 }
1134
1135 /* Add this entry to the end of the queue */
1136 *p = rte;
1137 }
1138
1139 rte->next = NULL;
1140 rte->m = mb0;
1141 rte->ifp = ifp;
1142 #ifdef UPCALL_TIMING
1143 rte->t = tp;
1144 #endif /* UPCALL_TIMING */
1145
1146
1147 splx(s);
1148
1149 return (0);
1150 }
1151 }
1152
1153
1154 /*ARGSUSED*/
1155 static void
1156 expire_upcalls(v)
1157 void *v;
1158 {
1159 int i;
1160 int s;
1161
1162 s = splsoftnet();
1163
1164 for (i = 0; i < MFCTBLSIZ; i++) {
1165 register struct mfc *rt, *nrt;
1166
1167 if (nexpire[i] == 0)
1168 continue;
1169
1170 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
1171 nrt = rt->mfc_hash.le_next;
1172
1173 if (rt->mfc_expire == 0 ||
1174 --rt->mfc_expire > 0)
1175 continue;
1176 nexpire[i]--;
1177
1178 ++mrtstat.mrts_cache_cleanups;
1179 if (mrtdebug & DEBUG_EXPIRE)
1180 log(LOG_DEBUG,
1181 "expire_upcalls: expiring (%x %x)",
1182 ntohl(rt->mfc_origin.s_addr),
1183 ntohl(rt->mfc_mcastgrp.s_addr));
1184
1185 expire_mfc(rt);
1186 }
1187 }
1188
1189 splx(s);
1190 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
1191 }
1192
1193 /*
1194 * Packet forwarding routine once entry in the cache is made
1195 */
1196 static int
1197 #ifdef RSVP_ISI
1198 ip_mdq(m, ifp, rt, xmt_vif)
1199 #else
1200 ip_mdq(m, ifp, rt)
1201 #endif /* RSVP_ISI */
1202 register struct mbuf *m;
1203 register struct ifnet *ifp;
1204 register struct mfc *rt;
1205 #ifdef RSVP_ISI
1206 register vifi_t xmt_vif;
1207 #endif /* RSVP_ISI */
1208 {
1209 register struct ip *ip = mtod(m, struct ip *);
1210 register vifi_t vifi;
1211 register struct vif *vifp;
1212 register int plen = ntohs(ip->ip_len);
1213
1214 /*
1215 * Macro to send packet on vif. Since RSVP packets don't get counted on
1216 * input, they shouldn't get counted on output, so statistics keeping is
1217 * seperate.
1218 */
1219 #define MC_SEND(ip,vifp,m) { \
1220 if ((vifp)->v_flags & VIFF_TUNNEL) \
1221 encap_send((ip), (vifp), (m)); \
1222 else \
1223 phyint_send((ip), (vifp), (m)); \
1224 }
1225
1226 #ifdef RSVP_ISI
1227 /*
1228 * If xmt_vif is not -1, send on only the requested vif.
1229 *
1230 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1231 */
1232 if (xmt_vif < numvifs) {
1233 MC_SEND(ip, viftable + xmt_vif, m);
1234 return (1);
1235 }
1236 #endif /* RSVP_ISI */
1237
1238 /*
1239 * Don't forward if it didn't arrive from the parent vif for its origin.
1240 */
1241 vifi = rt->mfc_parent;
1242 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1243 /* came in the wrong interface */
1244 if (mrtdebug & DEBUG_FORWARD)
1245 log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x",
1246 ifp, vifi, viftable[vifi].v_ifp);
1247 ++mrtstat.mrts_wrong_if;
1248 ++rt->mfc_wrong_if;
1249 /*
1250 * If we are doing PIM assert processing, and we are forwarding
1251 * packets on this interface, and it is a broadcast medium
1252 * interface (and not a tunnel), send a message to the routing daemon.
1253 */
1254 if (pim_assert && rt->mfc_ttls[vifi] &&
1255 (ifp->if_flags & IFF_BROADCAST) &&
1256 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1257 struct mbuf *mm;
1258 struct igmpmsg *im;
1259 int hlen = ip->ip_hl << 2;
1260 struct timeval now;
1261 register u_int32_t delta;
1262
1263 microtime(&now);
1264
1265 TV_DELTA(rt->mfc_last_assert, now, delta);
1266
1267 if (delta > ASSERT_MSG_TIME) {
1268 mm = m_copy(m, 0, hlen);
1269 M_PULLUP(mm, hlen);
1270 if (mm == NULL) {
1271 return (ENOBUFS);
1272 }
1273
1274 rt->mfc_last_assert = now;
1275
1276 im = mtod(mm, struct igmpmsg *);
1277 im->im_msgtype = IGMPMSG_WRONGVIF;
1278 im->im_mbz = 0;
1279 im->im_vif = vifi;
1280
1281 sin.sin_addr = im->im_src;
1282
1283 socket_send(ip_mrouter, m, &sin);
1284 }
1285 }
1286 return (0);
1287 }
1288
1289 /* If I sourced this packet, it counts as output, else it was input. */
1290 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1291 viftable[vifi].v_pkt_out++;
1292 viftable[vifi].v_bytes_out += plen;
1293 } else {
1294 viftable[vifi].v_pkt_in++;
1295 viftable[vifi].v_bytes_in += plen;
1296 }
1297 rt->mfc_pkt_cnt++;
1298 rt->mfc_byte_cnt += plen;
1299
1300 /*
1301 * For each vif, decide if a copy of the packet should be forwarded.
1302 * Forward if:
1303 * - the ttl exceeds the vif's threshold
1304 * - there are group members downstream on interface
1305 */
1306 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1307 if ((rt->mfc_ttls[vifi] > 0) &&
1308 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1309 vifp->v_pkt_out++;
1310 vifp->v_bytes_out += plen;
1311 MC_SEND(ip, vifp, m);
1312 }
1313
1314 return (0);
1315 }
1316
1317 #ifdef RSVP_ISI
1318 /*
1319 * check if a vif number is legal/ok. This is used by ip_output, to export
1320 * numvifs there,
1321 */
1322 int
1323 legal_vif_num(vif)
1324 int vif;
1325 {
1326 if (vif >= 0 && vif < numvifs)
1327 return (1);
1328 else
1329 return (0);
1330 }
1331 #endif /* RSVP_ISI */
1332
1333 static void
1334 phyint_send(ip, vifp, m)
1335 struct ip *ip;
1336 struct vif *vifp;
1337 struct mbuf *m;
1338 {
1339 register struct mbuf *mb_copy;
1340 register int hlen = ip->ip_hl << 2;
1341
1342 /*
1343 * Make a new reference to the packet; make sure that
1344 * the IP header is actually copied, not just referenced,
1345 * so that ip_output() only scribbles on the copy.
1346 */
1347 mb_copy = m_copy(m, 0, M_COPYALL);
1348 M_PULLUP(mb_copy, hlen);
1349 if (mb_copy == NULL)
1350 return;
1351
1352 if (vifp->v_rate_limit <= 0)
1353 tbf_send_packet(vifp, mb_copy);
1354 else
1355 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1356 }
1357
1358 static void
1359 encap_send(ip, vifp, m)
1360 register struct ip *ip;
1361 register struct vif *vifp;
1362 register struct mbuf *m;
1363 {
1364 register struct mbuf *mb_copy;
1365 register struct ip *ip_copy;
1366 register int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
1367
1368 /*
1369 * copy the old packet & pullup it's IP header into the
1370 * new mbuf so we can modify it. Try to fill the new
1371 * mbuf since if we don't the ethernet driver will.
1372 */
1373 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1374 if (mb_copy == NULL)
1375 return;
1376 mb_copy->m_data += max_linkhdr;
1377 mb_copy->m_pkthdr.len = len;
1378 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1379
1380 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1381 m_freem(mb_copy);
1382 return;
1383 }
1384 i = MHLEN - max_linkhdr;
1385 if (i > len)
1386 i = len;
1387 mb_copy = m_pullup(mb_copy, i);
1388 if (mb_copy == NULL)
1389 return;
1390
1391 /*
1392 * fill in the encapsulating IP header.
1393 */
1394 ip_copy = mtod(mb_copy, struct ip *);
1395 *ip_copy = multicast_encap_iphdr;
1396 ip_copy->ip_id = htons(ip_id++);
1397 ip_copy->ip_len = len;
1398 ip_copy->ip_src = vifp->v_lcl_addr;
1399 ip_copy->ip_dst = vifp->v_rmt_addr;
1400
1401 /*
1402 * turn the encapsulated IP header back into a valid one.
1403 */
1404 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1405 --ip->ip_ttl;
1406 HTONS(ip->ip_len);
1407 HTONS(ip->ip_off);
1408 ip->ip_sum = 0;
1409 #if defined(LBL) && !defined(ultrix) && !defined(i386)
1410 ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1411 #else
1412 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1413 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1414 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1415 #endif
1416
1417 if (vifp->v_rate_limit <= 0)
1418 tbf_send_packet(vifp, mb_copy);
1419 else
1420 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1421 }
1422
1423 /*
1424 * De-encapsulate a packet and feed it back through ip input (this
1425 * routine is called whenever IP gets a packet with proto type
1426 * ENCAP_PROTO and a local destination address).
1427 */
1428 void
1429 #if __STDC__
1430 ipip_input(struct mbuf *m, ...)
1431 #else
1432 ipip_input(m, va_alist)
1433 struct mbuf *m;
1434 va_dcl
1435 #endif
1436 {
1437 register int hlen;
1438 register struct ip *ip = mtod(m, struct ip *);
1439 register int s;
1440 register struct ifqueue *ifq;
1441 register struct vif *vifp;
1442 va_list ap;
1443
1444 va_start(ap, m);
1445 hlen = va_arg(ap, int);
1446 va_end(ap);
1447
1448 if (!have_encap_tunnel) {
1449 rip_input(m);
1450 return;
1451 }
1452
1453 /*
1454 * dump the packet if it's not to a multicast destination or if
1455 * we don't have an encapsulating tunnel with the source.
1456 * Note: This code assumes that the remote site IP address
1457 * uniquely identifies the tunnel (i.e., that this site has
1458 * at most one tunnel with the remote site).
1459 */
1460 if (!IN_MULTICAST(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr)) {
1461 ++mrtstat.mrts_bad_tunnel;
1462 m_freem(m);
1463 return;
1464 }
1465
1466 if (ip->ip_src.s_addr != last_encap_src) {
1467 register struct vif *vife;
1468
1469 vifp = viftable;
1470 vife = vifp + numvifs;
1471 for (; vifp < vife; vifp++)
1472 if (vifp->v_flags & VIFF_TUNNEL &&
1473 vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr)
1474 break;
1475 if (vifp == vife) {
1476 mrtstat.mrts_cant_tunnel++; /*XXX*/
1477 m_freem(m);
1478 if (mrtdebug)
1479 log(LOG_DEBUG, "ip_mforward: no tunnel with %x",
1480 ntohl(ip->ip_src.s_addr));
1481 return;
1482 }
1483 last_encap_vif = vifp;
1484 last_encap_src = ip->ip_src.s_addr;
1485 } else
1486 vifp = last_encap_vif;
1487
1488 m->m_data += hlen;
1489 m->m_len -= hlen;
1490 m->m_pkthdr.len -= hlen;
1491 m->m_pkthdr.rcvif = vifp->v_ifp;
1492 ifq = &ipintrq;
1493 s = splimp();
1494 if (IF_QFULL(ifq)) {
1495 IF_DROP(ifq);
1496 m_freem(m);
1497 } else {
1498 IF_ENQUEUE(ifq, m);
1499 /*
1500 * normally we would need a "schednetisr(NETISR_IP)"
1501 * here but we were called by ip_input and it is going
1502 * to loop back & try to dequeue the packet we just
1503 * queued as soon as we return so we avoid the
1504 * unnecessary software interrrupt.
1505 */
1506 }
1507 splx(s);
1508 }
1509
1510 /*
1511 * Token bucket filter module
1512 */
1513 static void
1514 tbf_control(vifp, m, ip, p_len)
1515 register struct vif *vifp;
1516 register struct mbuf *m;
1517 register struct ip *ip;
1518 register u_int32_t p_len;
1519 {
1520
1521 tbf_update_tokens(vifp);
1522
1523 /*
1524 * If there are enough tokens, and the queue is empty, send this packet
1525 * out immediately. Otherwise, try to insert it on this vif's queue.
1526 */
1527 if (vifp->v_tbf.q_len == 0) {
1528 if (p_len <= vifp->v_tbf.n_tok) {
1529 vifp->v_tbf.n_tok -= p_len;
1530 tbf_send_packet(vifp, m);
1531 } else if (p_len > MAX_BKT_SIZE) {
1532 /* drop if packet is too large */
1533 mrtstat.mrts_pkt2large++;
1534 m_freem(m);
1535 } else {
1536 /* queue packet and timeout till later */
1537 tbf_queue(vifp, m, ip);
1538 timeout(tbf_reprocess_q, vifp, 1);
1539 }
1540 } else {
1541 if (vifp->v_tbf.q_len >= MAXQSIZE &&
1542 !tbf_dq_sel(vifp, ip)) {
1543 /* queue length too much, and couldn't make room */
1544 mrtstat.mrts_q_overflow++;
1545 m_freem(m);
1546 } else {
1547 /* queue length low enough, or made room */
1548 tbf_queue(vifp, m, ip);
1549 tbf_process_q(vifp);
1550 }
1551 }
1552 }
1553
1554 /*
1555 * adds a packet to the queue at the interface
1556 */
1557 static void
1558 tbf_queue(vifp, m, ip)
1559 register struct vif *vifp;
1560 register struct mbuf *m;
1561 register struct ip *ip;
1562 {
1563 register u_int32_t ql;
1564 register int index = (vifp - viftable);
1565 register int s = splsoftnet();
1566
1567 ql = vifp->v_tbf.q_len;
1568
1569 qtable[index][ql].pkt_m = m;
1570 qtable[index][ql].pkt_len = (mtod(m, struct ip *))->ip_len;
1571 qtable[index][ql].pkt_ip = ip;
1572
1573 vifp->v_tbf.q_len++;
1574 splx(s);
1575 }
1576
1577
1578 /*
1579 * processes the queue at the interface
1580 */
1581 static void
1582 tbf_process_q(vifp)
1583 register struct vif *vifp;
1584 {
1585 register struct pkt_queue pkt_1;
1586 register int index = (vifp - viftable);
1587 register int s = splsoftnet();
1588
1589 /* loop through the queue at the interface and send as many packets
1590 * as possible
1591 */
1592 while (vifp->v_tbf.q_len > 0) {
1593 /* locate the first packet */
1594 pkt_1 = qtable[index][0];
1595
1596 /* determine if the packet can be sent */
1597 if (pkt_1.pkt_len <= vifp->v_tbf.n_tok) {
1598 /* if so,
1599 * reduce no of tokens, dequeue the queue,
1600 * send the packet.
1601 */
1602 vifp->v_tbf.n_tok -= pkt_1.pkt_len;
1603
1604 tbf_dequeue(vifp, 0);
1605 tbf_send_packet(vifp, pkt_1.pkt_m);
1606 } else
1607 break;
1608 }
1609 splx(s);
1610 }
1611
1612 /*
1613 * removes the jth packet from the queue at the interface
1614 */
1615 static void
1616 tbf_dequeue(vifp, j)
1617 register struct vif *vifp;
1618 register int j;
1619 {
1620 register u_int32_t index = vifp - viftable;
1621 register int i;
1622
1623 for (i=j+1; i <= vifp->v_tbf.q_len - 1; i++) {
1624 qtable[index][i-1] = qtable[index][i];
1625 }
1626 qtable[index][i-1].pkt_m = NULL;
1627 qtable[index][i-1].pkt_len = NULL;
1628 qtable[index][i-1].pkt_ip = NULL;
1629
1630 vifp->v_tbf.q_len--;
1631
1632 if (tbfdebug > 1)
1633 log(LOG_DEBUG, "tbf_dequeue: vif# %d qlen %d",vifp-viftable, i-1);
1634 }
1635
1636 static void
1637 tbf_reprocess_q(arg)
1638 void *arg;
1639 {
1640 register struct vif *vifp = arg;
1641
1642 if (ip_mrouter == NULL)
1643 return;
1644
1645 tbf_update_tokens(vifp);
1646 tbf_process_q(vifp);
1647
1648 if (vifp->v_tbf.q_len)
1649 timeout(tbf_reprocess_q, vifp, 1);
1650 }
1651
1652 /* function that will selectively discard a member of the queue
1653 * based on the precedence value and the priority obtained through
1654 * a lookup table - not yet implemented accurately!
1655 */
1656 static int
1657 tbf_dq_sel(vifp, ip)
1658 register struct vif *vifp;
1659 register struct ip *ip;
1660 {
1661 register int i;
1662 register int s = splsoftnet();
1663 register u_int p;
1664
1665 p = priority(vifp, ip);
1666
1667 for(i=vifp->v_tbf.q_len-1;i >= 0;i--) {
1668 if (p > priority(vifp, qtable[vifp-viftable][i].pkt_ip)) {
1669 m_freem(qtable[vifp-viftable][i].pkt_m);
1670 tbf_dequeue(vifp, i);
1671 splx(s);
1672 mrtstat.mrts_drop_sel++;
1673 return (1);
1674 }
1675 }
1676 splx(s);
1677 return (0);
1678 }
1679
1680 static void
1681 tbf_send_packet(vifp,m)
1682 register struct vif *vifp;
1683 register struct mbuf *m;
1684 {
1685 int error;
1686 int s = splsoftnet();
1687
1688 if (vifp->v_flags & VIFF_TUNNEL) {
1689 /* If tunnel options */
1690 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1691 IP_FORWARDING, NULL);
1692 } else {
1693 /* if physical interface option, extract the options and then send */
1694 struct ip *ip = mtod(m, struct ip *);
1695 struct ip_moptions imo;
1696 imo.imo_multicast_ifp = vifp->v_ifp;
1697 imo.imo_multicast_ttl = ip->ip_ttl - 1;
1698 imo.imo_multicast_loop = 1;
1699 #ifdef RSVP_ISI
1700 imo.imo_multicast_vif = -1;
1701 #endif
1702
1703 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1704 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1705 if (mrtdebug & DEBUG_XMIT)
1706 log(LOG_DEBUG, "phyint_send on vif %d err %d", vifp-viftable, error);
1707 }
1708 splx(s);
1709 }
1710
1711 /* determine the current time and then
1712 * the elapsed time (between the last time and time now)
1713 * in milliseconds & update the no. of tokens in the bucket
1714 */
1715 static void
1716 tbf_update_tokens(vifp)
1717 register struct vif *vifp;
1718 {
1719 struct timeval tp;
1720 register u_int32_t t;
1721 register u_int32_t elapsed;
1722 register int s = splsoftnet();
1723
1724 microtime(&tp);
1725
1726 t = tp.tv_sec*1000 + tp.tv_usec/1000;
1727
1728 elapsed = (t - vifp->v_tbf.last_pkt_t) * vifp->v_rate_limit /8;
1729 vifp->v_tbf.n_tok += elapsed;
1730 vifp->v_tbf.last_pkt_t = t;
1731
1732 if (vifp->v_tbf.n_tok > MAX_BKT_SIZE)
1733 vifp->v_tbf.n_tok = MAX_BKT_SIZE;
1734
1735 splx(s);
1736 }
1737
1738 static int
1739 priority(vifp, ip)
1740 register struct vif *vifp;
1741 register struct ip *ip;
1742 {
1743 register int prio;
1744
1745 /* temporary hack; may add general packet classifier some day */
1746
1747 /*
1748 * The UDP port space is divided up into four priority ranges:
1749 * [0, 16384) : unclassified - lowest priority
1750 * [16384, 32768) : audio - highest priority
1751 * [32768, 49152) : whiteboard - medium priority
1752 * [49152, 65536) : video - low priority
1753 */
1754 if (ip->ip_p == IPPROTO_UDP) {
1755 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1756
1757 switch (ntohs(udp->uh_dport) & 0xc000) {
1758 case 0x4000:
1759 prio = 70;
1760 break;
1761 case 0x8000:
1762 prio = 60;
1763 break;
1764 case 0xc000:
1765 prio = 55;
1766 break;
1767 default:
1768 prio = 50;
1769 break;
1770 }
1771
1772 if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio %d", ntohs(udp->uh_dport), prio);
1773 } else
1774 prio = 50;
1775
1776
1777 return (prio);
1778 }
1779
1780 /*
1781 * End of token bucket filter modifications
1782 */
1783
1784 #ifdef RSVP_ISI
1785
1786 int
1787 ip_rsvp_vif_init(so, m)
1788 struct socket *so;
1789 struct mbuf *m;
1790 {
1791 int i;
1792 register int s;
1793
1794 if (rsvpdebug)
1795 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1796 so->so_type, so->so_proto->pr_protocol);
1797
1798 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1799 return (EOPNOTSUPP);
1800
1801 /* Check mbuf. */
1802 if (m == NULL || m->m_len != sizeof(int)) {
1803 return (EINVAL);
1804 }
1805 i = *(mtod(m, int *));
1806
1807 if (rsvpdebug)
1808 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1809
1810 s = splsoftnet();
1811
1812 /* Check vif. */
1813 if (!legal_vif_num(i)) {
1814 splx(s);
1815 return (EADDRNOTAVAIL);
1816 }
1817
1818 /* Check if socket is available. */
1819 if (viftable[i].v_rsvpd != NULL) {
1820 splx(s);
1821 return (EADDRINUSE);
1822 }
1823
1824 viftable[i].v_rsvpd = so;
1825 /* This may seem silly, but we need to be sure we don't over-increment
1826 * the RSVP counter, in case something slips up.
1827 */
1828 if (!viftable[i].v_rsvp_on) {
1829 viftable[i].v_rsvp_on = 1;
1830 rsvp_on++;
1831 }
1832
1833 splx(s);
1834 return (0);
1835 }
1836
1837 int
1838 ip_rsvp_vif_done(so, m)
1839 struct socket *so;
1840 struct mbuf *m;
1841 {
1842 int i;
1843 register int s;
1844
1845 if (rsvpdebug)
1846 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1847 so->so_type, so->so_proto->pr_protocol);
1848
1849 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1850 return (EOPNOTSUPP);
1851
1852 /* Check mbuf. */
1853 if (m == NULL || m->m_len != sizeof(int)) {
1854 return (EINVAL);
1855 }
1856 i = *(mtod(m, int *));
1857
1858 s = splsoftnet();
1859
1860 /* Check vif. */
1861 if (!legal_vif_num(i)) {
1862 splx(s);
1863 return (EADDRNOTAVAIL);
1864 }
1865
1866 if (rsvpdebug)
1867 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1868 viftable[i].v_rsvpd, so);
1869
1870 viftable[i].v_rsvpd = NULL;
1871 /* This may seem silly, but we need to be sure we don't over-decrement
1872 * the RSVP counter, in case something slips up.
1873 */
1874 if (viftable[i].v_rsvp_on) {
1875 viftable[i].v_rsvp_on = 0;
1876 rsvp_on--;
1877 }
1878
1879 splx(s);
1880 return (0);
1881 }
1882
1883 void
1884 ip_rsvp_force_done(so)
1885 struct socket *so;
1886 {
1887 int vifi;
1888 register int s;
1889
1890 /* Don't bother if it is not the right type of socket. */
1891 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1892 return;
1893
1894 s = splsoftnet();
1895
1896 /* The socket may be attached to more than one vif...this
1897 * is perfectly legal.
1898 */
1899 for (vifi = 0; vifi < numvifs; vifi++) {
1900 if (viftable[vifi].v_rsvpd == so) {
1901 viftable[vifi].v_rsvpd = NULL;
1902 /* This may seem silly, but we need to be sure we don't
1903 * over-decrement the RSVP counter, in case something slips up.
1904 */
1905 if (viftable[vifi].v_rsvp_on) {
1906 viftable[vifi].v_rsvp_on = 0;
1907 rsvp_on--;
1908 }
1909 }
1910 }
1911
1912 splx(s);
1913 return;
1914 }
1915
1916 void
1917 rsvp_input(m, ifp)
1918 struct mbuf *m;
1919 struct ifnet *ifp;
1920 {
1921 int vifi;
1922 register struct ip *ip = mtod(m, struct ip *);
1923 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
1924 register int s;
1925
1926 if (rsvpdebug)
1927 printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1928
1929 /* Can still get packets with rsvp_on = 0 if there is a local member
1930 * of the group to which the RSVP packet is addressed. But in this
1931 * case we want to throw the packet away.
1932 */
1933 if (!rsvp_on) {
1934 m_freem(m);
1935 return;
1936 }
1937
1938 /* If the old-style non-vif-associated socket is set, then use
1939 * it and ignore the new ones.
1940 */
1941 if (ip_rsvpd != NULL) {
1942 if (rsvpdebug)
1943 printf("rsvp_input: Sending packet up old-style socket\n");
1944 rip_input(m);
1945 return;
1946 }
1947
1948 s = splsoftnet();
1949
1950 if (rsvpdebug)
1951 printf("rsvp_input: check vifs\n");
1952
1953 /* Find which vif the packet arrived on. */
1954 for (vifi = 0; vifi < numvifs; vifi++) {
1955 if (viftable[vifi].v_ifp == ifp)
1956 break;
1957 }
1958
1959 if (vifi == numvifs) {
1960 /* Can't find vif packet arrived on. Drop packet. */
1961 if (rsvpdebug)
1962 printf("rsvp_input: Can't find vif for packet...dropping it.\n");
1963 m_freem(m);
1964 splx(s);
1965 return;
1966 }
1967
1968 if (rsvpdebug)
1969 printf("rsvp_input: check socket\n");
1970
1971 if (viftable[vifi].v_rsvpd == NULL) {
1972 /* drop packet, since there is no specific socket for this
1973 * interface */
1974 if (rsvpdebug)
1975 printf("rsvp_input: No socket defined for vif %d\n",vifi);
1976 m_freem(m);
1977 splx(s);
1978 return;
1979 }
1980
1981 rsvp_src.sin_addr = ip->ip_src;
1982
1983 if (rsvpdebug && m)
1984 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
1985 m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
1986
1987 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
1988 if (rsvpdebug)
1989 printf("rsvp_input: Failed to append to socket\n");
1990 else
1991 if (rsvpdebug)
1992 printf("rsvp_input: send packet up\n");
1993
1994 splx(s);
1995 }
1996 #endif /* RSVP_ISI */
1997