ip_mroute.c revision 1.29 1 /* $NetBSD: ip_mroute.c,v 1.29 1996/09/09 14:51:17 mycroft Exp $ */
2
3 /*
4 * IP multicast forwarding procedures
5 *
6 * Written by David Waitzman, BBN Labs, August 1988.
7 * Modified by Steve Deering, Stanford, February 1989.
8 * Modified by Mark J. Steiglitz, Stanford, May, 1991
9 * Modified by Van Jacobson, LBL, January 1993
10 * Modified by Ajit Thyagarajan, PARC, August 1993
11 * Modified by Bill Fenner, PARC, April 1994
12 * Modified by Charles M. Hannum, NetBSD, May 1995.
13 *
14 * MROUTING Revision: 1.2
15 */
16
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/errno.h>
24 #include <sys/time.h>
25 #include <sys/kernel.h>
26 #include <sys/ioctl.h>
27 #include <sys/syslog.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <net/raw_cb.h>
31 #include <netinet/in.h>
32 #include <netinet/in_var.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_pcb.h>
37 #include <netinet/udp.h>
38 #include <netinet/igmp.h>
39 #include <netinet/igmp_var.h>
40 #include <netinet/ip_mroute.h>
41
42 #include <machine/stdarg.h>
43
44 #define IP_MULTICASTOPTS 0
45 #define M_PULLUP(m, len) \
46 do { \
47 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
48 (m) = m_pullup((m), (len)); \
49 } while (0)
50
51 /*
52 * Globals. All but ip_mrouter and ip_mrtproto could be static,
53 * except for netstat or debugging purposes.
54 */
55 struct socket *ip_mrouter = NULL;
56 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
57
58 #define NO_RTE_FOUND 0x1
59 #define RTE_FOUND 0x2
60
61 #define MFCHASH(a, g) \
62 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
63 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
64 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
65 u_long mfchash;
66
67 u_char nexpire[MFCTBLSIZ];
68 struct vif viftable[MAXVIFS];
69 struct mrtstat mrtstat;
70 u_int mrtdebug = 0; /* debug level */
71 #define DEBUG_MFC 0x02
72 #define DEBUG_FORWARD 0x04
73 #define DEBUG_EXPIRE 0x08
74 #define DEBUG_XMIT 0x10
75 u_int tbfdebug = 0; /* tbf debug level */
76 #ifdef RSVP_ISI
77 u_int rsvpdebug = 0; /* rsvp debug level */
78 extern struct socket *ip_rsvpd;
79 extern int rsvp_on;
80 #endif /* RSVP_ISI */
81
82 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
83 #define UPCALL_EXPIRE 6 /* number of timeouts */
84
85 /*
86 * Define the token bucket filter structures
87 * qtable -> each interface has an associated queue of pkts
88 */
89
90 struct pkt_queue qtable[MAXVIFS][MAXQSIZE];
91
92 static int get_sg_cnt __P((struct sioc_sg_req *));
93 static int get_vif_cnt __P((struct sioc_vif_req *));
94 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
95 static int get_version __P((struct mbuf *));
96 static int set_assert __P((struct mbuf *));
97 static int get_assert __P((struct mbuf *));
98 static int add_vif __P((struct mbuf *));
99 static int del_vif __P((struct mbuf *));
100 static void update_mfc __P((struct mfcctl *, struct mfc *));
101 static void expire_mfc __P((struct mfc *));
102 static int add_mfc __P((struct mbuf *));
103 #ifdef UPCALL_TIMING
104 static void collate __P((struct timeval *));
105 #endif
106 static int del_mfc __P((struct mbuf *));
107 static int socket_send __P((struct socket *, struct mbuf *,
108 struct sockaddr_in *));
109 static void expire_upcalls __P((void *));
110 #ifdef RSVP_ISI
111 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
112 #else
113 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
114 #endif
115 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
116 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
117 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
118 u_int32_t));
119 static void tbf_queue __P((struct vif *, struct mbuf *, struct ip *));
120 static void tbf_process_q __P((struct vif *));
121 static void tbf_dequeue __P((struct vif *, int));
122 static void tbf_reprocess_q __P((void *));
123 static int tbf_dq_sel __P((struct vif *, struct ip *));
124 static void tbf_send_packet __P((struct vif *, struct mbuf *));
125 static void tbf_update_tokens __P((struct vif *));
126 static int priority __P((struct vif *, struct ip *));
127
128 /*
129 * 'Interfaces' associated with decapsulator (so we can tell
130 * packets that went through it from ones that get reflected
131 * by a broken gateway). These interfaces are never linked into
132 * the system ifnet list & no routes point to them. I.e., packets
133 * can't be sent this way. They only exist as a placeholder for
134 * multicast source verification.
135 */
136 #if 0
137 struct ifnet multicast_decap_if[MAXVIFS];
138 #endif
139
140 #define ENCAP_TTL 64
141 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
142
143 /* prototype IP hdr for encapsulated packets */
144 struct ip multicast_encap_iphdr = {
145 #if BYTE_ORDER == LITTLE_ENDIAN
146 sizeof(struct ip) >> 2, IPVERSION,
147 #else
148 IPVERSION, sizeof(struct ip) >> 2,
149 #endif
150 0, /* tos */
151 sizeof(struct ip), /* total length */
152 0, /* id */
153 0, /* frag offset */
154 ENCAP_TTL, ENCAP_PROTO,
155 0, /* checksum */
156 };
157
158 /*
159 * Private variables.
160 */
161 static vifi_t numvifs = 0;
162 static int have_encap_tunnel = 0;
163
164 /*
165 * one-back cache used by ipip_input to locate a tunnel's vif
166 * given a datagram's src ip address.
167 */
168 static struct in_addr last_encap_src;
169 static struct vif *last_encap_vif;
170
171 /*
172 * whether or not special PIM assert processing is enabled.
173 */
174 static int pim_assert;
175 /*
176 * Rate limit for assert notification messages, in usec
177 */
178 #define ASSERT_MSG_TIME 3000000
179
180 /*
181 * Find a route for a given origin IP address and Multicast group address
182 * Type of service parameter to be added in the future!!!
183 */
184
185 #define MFCFIND(o, g, rt) { \
186 register struct mfc *_rt; \
187 (rt) = NULL; \
188 ++mrtstat.mrts_mfc_lookups; \
189 for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
190 _rt; _rt = _rt->mfc_hash.le_next) { \
191 if (in_hosteq(_rt->mfc_origin, (o)) && \
192 in_hosteq(_rt->mfc_mcastgrp, (g)) && \
193 _rt->mfc_stall == NULL) { \
194 (rt) = _rt; \
195 break; \
196 } \
197 } \
198 if ((rt) == NULL) \
199 ++mrtstat.mrts_mfc_misses; \
200 }
201
202 /*
203 * Macros to compute elapsed time efficiently
204 * Borrowed from Van Jacobson's scheduling code
205 */
206 #define TV_DELTA(a, b, delta) { \
207 register int xxs; \
208 delta = (a).tv_usec - (b).tv_usec; \
209 xxs = (a).tv_sec - (b).tv_sec; \
210 switch (xxs) { \
211 case 2: \
212 delta += 1000000; \
213 /* fall through */ \
214 case 1: \
215 delta += 1000000; \
216 /* fall through */ \
217 case 0: \
218 break; \
219 default: \
220 delta += (1000000 * xxs); \
221 break; \
222 } \
223 }
224
225 #ifdef UPCALL_TIMING
226 u_int32_t upcall_data[51];
227 #endif /* UPCALL_TIMING */
228
229 /*
230 * Handle MRT setsockopt commands to modify the multicast routing tables.
231 */
232 int
233 ip_mrouter_set(so, optname, m)
234 struct socket *so;
235 int optname;
236 struct mbuf **m;
237 {
238 int error;
239
240 if (optname != MRT_INIT && so != ip_mrouter)
241 error = ENOPROTOOPT;
242 else
243 switch (optname) {
244 case MRT_INIT:
245 error = ip_mrouter_init(so, *m);
246 break;
247 case MRT_DONE:
248 error = ip_mrouter_done();
249 break;
250 case MRT_ADD_VIF:
251 error = add_vif(*m);
252 break;
253 case MRT_DEL_VIF:
254 error = del_vif(*m);
255 break;
256 case MRT_ADD_MFC:
257 error = add_mfc(*m);
258 break;
259 case MRT_DEL_MFC:
260 error = del_mfc(*m);
261 break;
262 case MRT_ASSERT:
263 error = set_assert(*m);
264 break;
265 default:
266 error = ENOPROTOOPT;
267 break;
268 }
269
270 if (*m)
271 m_free(*m);
272 return (error);
273 }
274
275 /*
276 * Handle MRT getsockopt commands
277 */
278 int
279 ip_mrouter_get(so, optname, m)
280 struct socket *so;
281 int optname;
282 struct mbuf **m;
283 {
284 int error;
285
286 if (so != ip_mrouter)
287 error = ENOPROTOOPT;
288 else {
289 *m = m_get(M_WAIT, MT_SOOPTS);
290
291 switch (optname) {
292 case MRT_VERSION:
293 error = get_version(*m);
294 break;
295 case MRT_ASSERT:
296 error = get_assert(*m);
297 break;
298 default:
299 error = ENOPROTOOPT;
300 break;
301 }
302
303 if (error)
304 m_free(*m);
305 }
306
307 return (error);
308 }
309
310 /*
311 * Handle ioctl commands to obtain information from the cache
312 */
313 int
314 mrt_ioctl(so, cmd, data)
315 struct socket *so;
316 u_long cmd;
317 caddr_t data;
318 {
319 int error;
320
321 if (so != ip_mrouter)
322 error = EINVAL;
323 else
324 switch (cmd) {
325 case SIOCGETVIFCNT:
326 error = get_vif_cnt((struct sioc_vif_req *)data);
327 break;
328 case SIOCGETSGCNT:
329 error = get_sg_cnt((struct sioc_sg_req *)data);
330 break;
331 default:
332 error = EINVAL;
333 break;
334 }
335
336 return (error);
337 }
338
339 /*
340 * returns the packet, byte, rpf-failure count for the source group provided
341 */
342 static int
343 get_sg_cnt(req)
344 register struct sioc_sg_req *req;
345 {
346 register struct mfc *rt;
347 int s;
348
349 s = splsoftnet();
350 MFCFIND(req->src, req->grp, rt);
351 splx(s);
352 if (rt != NULL) {
353 req->pktcnt = rt->mfc_pkt_cnt;
354 req->bytecnt = rt->mfc_byte_cnt;
355 req->wrong_if = rt->mfc_wrong_if;
356 } else
357 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
358
359 return (0);
360 }
361
362 /*
363 * returns the input and output packet and byte counts on the vif provided
364 */
365 static int
366 get_vif_cnt(req)
367 register struct sioc_vif_req *req;
368 {
369 register vifi_t vifi = req->vifi;
370
371 if (vifi >= numvifs)
372 return (EINVAL);
373
374 req->icount = viftable[vifi].v_pkt_in;
375 req->ocount = viftable[vifi].v_pkt_out;
376 req->ibytes = viftable[vifi].v_bytes_in;
377 req->obytes = viftable[vifi].v_bytes_out;
378
379 return (0);
380 }
381
382 /*
383 * Enable multicast routing
384 */
385 static int
386 ip_mrouter_init(so, m)
387 struct socket *so;
388 struct mbuf *m;
389 {
390 int *v;
391
392 if (mrtdebug)
393 log(LOG_DEBUG,
394 "ip_mrouter_init: so_type = %d, pr_protocol = %d",
395 so->so_type, so->so_proto->pr_protocol);
396
397 if (so->so_type != SOCK_RAW ||
398 so->so_proto->pr_protocol != IPPROTO_IGMP)
399 return (EOPNOTSUPP);
400
401 if (m == 0 || m->m_len < sizeof(int))
402 return (EINVAL);
403
404 v = mtod(m, int *);
405 if (*v != 1)
406 return (EINVAL);
407
408 if (ip_mrouter != NULL)
409 return (EADDRINUSE);
410
411 ip_mrouter = so;
412
413 mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, &mfchash);
414 bzero((caddr_t)nexpire, sizeof(nexpire));
415
416 pim_assert = 0;
417
418 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
419
420 if (mrtdebug)
421 log(LOG_DEBUG, "ip_mrouter_init");
422
423 return (0);
424 }
425
426 /*
427 * Disable multicast routing
428 */
429 int
430 ip_mrouter_done()
431 {
432 vifi_t vifi;
433 register struct vif *vifp;
434 int i;
435 int s;
436
437 s = splsoftnet();
438
439 /* Clear out all the vifs currently in use. */
440 for (vifi = 0; vifi < numvifs; vifi++) {
441 vifp = &viftable[vifi];
442 if (!in_nullhost(vifp->v_lcl_addr))
443 reset_vif(vifp);
444 }
445
446 bzero((caddr_t)qtable, sizeof(qtable));
447 numvifs = 0;
448 pim_assert = 0;
449
450 untimeout(expire_upcalls, (caddr_t)NULL);
451
452 /*
453 * Free all multicast forwarding cache entries.
454 */
455 for (i = 0; i < MFCTBLSIZ; i++) {
456 register struct mfc *rt, *nrt;
457
458 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
459 nrt = rt->mfc_hash.le_next;
460
461 expire_mfc(rt);
462 }
463 }
464 free(mfchashtbl, M_MRTABLE);
465
466 /* Reset de-encapsulation cache. */
467 have_encap_tunnel = 0;
468
469 ip_mrouter = NULL;
470
471 splx(s);
472
473 if (mrtdebug)
474 log(LOG_DEBUG, "ip_mrouter_done");
475
476 return (0);
477 }
478
479 static int
480 get_version(m)
481 struct mbuf *m;
482 {
483 int *v = mtod(m, int *);
484
485 *v = 0x0305; /* XXX !!!! */
486 m->m_len = sizeof(int);
487 return (0);
488 }
489
490 /*
491 * Set PIM assert processing global
492 */
493 static int
494 set_assert(m)
495 struct mbuf *m;
496 {
497 int *i;
498
499 if (m == 0 || m->m_len < sizeof(int))
500 return (EINVAL);
501
502 i = mtod(m, int *);
503 pim_assert = !!*i;
504 return (0);
505 }
506
507 /*
508 * Get PIM assert processing global
509 */
510 static int
511 get_assert(m)
512 struct mbuf *m;
513 {
514 int *i = mtod(m, int *);
515
516 *i = pim_assert;
517 m->m_len = sizeof(int);
518 return (0);
519 }
520
521 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
522
523 /*
524 * Add a vif to the vif table
525 */
526 static int
527 add_vif(m)
528 struct mbuf *m;
529 {
530 register struct vifctl *vifcp;
531 register struct vif *vifp;
532 struct ifaddr *ifa;
533 struct ifnet *ifp;
534 struct ifreq ifr;
535 int error, s;
536
537 if (m == 0 || m->m_len < sizeof(struct vifctl))
538 return (EINVAL);
539
540 vifcp = mtod(m, struct vifctl *);
541 if (vifcp->vifc_vifi >= MAXVIFS)
542 return (EINVAL);
543
544 vifp = &viftable[vifcp->vifc_vifi];
545 if (!in_nullhost(vifp->v_lcl_addr))
546 return (EADDRINUSE);
547
548 /* Find the interface with an address in AF_INET family. */
549 sin.sin_addr = vifcp->vifc_lcl_addr;
550 ifa = ifa_ifwithaddr(sintosa(&sin));
551 if (ifa == 0)
552 return (EADDRNOTAVAIL);
553
554 if (vifcp->vifc_flags & VIFF_TUNNEL) {
555 if (vifcp->vifc_flags & VIFF_SRCRT) {
556 log(LOG_ERR, "Source routed tunnels not supported.");
557 return (EOPNOTSUPP);
558 }
559
560 /* Create a fake encapsulation interface. */
561 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
562 bzero(ifp, sizeof(*ifp));
563 sprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
564
565 /* Prepare cached route entry. */
566 bzero(&vifp->v_route, sizeof(vifp->v_route));
567
568 /* Tell ipip_input() to start looking at encapsulated packets. */
569 have_encap_tunnel = 1;
570 } else {
571 /* Use the physical interface associated with the address. */
572 ifp = ifa->ifa_ifp;
573
574 /* Make sure the interface supports multicast. */
575 if ((ifp->if_flags & IFF_MULTICAST) == 0)
576 return (EOPNOTSUPP);
577
578 /* Enable promiscuous reception of all IP multicasts. */
579 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
580 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
581 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
582 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
583 if (error)
584 return (error);
585 }
586
587 s = splsoftnet();
588 /* Define parameters for the tbf structure. */
589 vifp->v_tbf.q_len = 0;
590 vifp->v_tbf.n_tok = 0;
591 vifp->v_tbf.last_pkt_t = 0;
592
593 vifp->v_flags = vifcp->vifc_flags;
594 vifp->v_threshold = vifcp->vifc_threshold;
595 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
596 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
597 vifp->v_ifp = ifp;
598 vifp->v_rate_limit = vifcp->vifc_rate_limit;
599 #ifdef RSVP_ISI
600 vifp->v_rsvp_on = 0;
601 vifp->v_rsvpd = NULL;
602 #endif /* RSVP_ISI */
603 /* Initialize per vif pkt counters. */
604 vifp->v_pkt_in = 0;
605 vifp->v_pkt_out = 0;
606 vifp->v_bytes_in = 0;
607 vifp->v_bytes_out = 0;
608 splx(s);
609
610 /* Adjust numvifs up if the vifi is higher than numvifs. */
611 if (numvifs <= vifcp->vifc_vifi)
612 numvifs = vifcp->vifc_vifi + 1;
613
614 if (mrtdebug)
615 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d",
616 vifcp->vifc_vifi,
617 ntohl(vifcp->vifc_lcl_addr.s_addr),
618 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
619 ntohl(vifcp->vifc_rmt_addr.s_addr),
620 vifcp->vifc_threshold,
621 vifcp->vifc_rate_limit);
622
623 return (0);
624 }
625
626 void
627 reset_vif(vifp)
628 register struct vif *vifp;
629 {
630 struct ifnet *ifp;
631 struct ifreq ifr;
632
633 if (vifp->v_flags & VIFF_TUNNEL) {
634 free(vifp->v_ifp, M_MRTABLE);
635 if (vifp == last_encap_vif) {
636 last_encap_vif = 0;
637 last_encap_src = zeroin_addr;
638 }
639 } else {
640 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
641 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
642 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
643 ifp = vifp->v_ifp;
644 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
645 }
646 bzero((caddr_t)vifp, sizeof(*vifp));
647 }
648
649 /*
650 * Delete a vif from the vif table
651 */
652 static int
653 del_vif(m)
654 struct mbuf *m;
655 {
656 vifi_t *vifip;
657 register struct vif *vifp;
658 register vifi_t vifi;
659 int s;
660
661 if (m == 0 || m->m_len < sizeof(vifi_t))
662 return (EINVAL);
663
664 vifip = mtod(m, vifi_t *);
665 if (*vifip >= numvifs)
666 return (EINVAL);
667
668 vifp = &viftable[*vifip];
669 if (in_nullhost(vifp->v_lcl_addr))
670 return (EADDRNOTAVAIL);
671
672 s = splsoftnet();
673
674 reset_vif(vifp);
675
676 bzero((caddr_t)qtable[*vifip], sizeof(qtable[*vifip]));
677
678 /* Adjust numvifs down */
679 for (vifi = numvifs; vifi > 0; vifi--)
680 if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
681 break;
682 numvifs = vifi;
683
684 splx(s);
685
686 if (mrtdebug)
687 log(LOG_DEBUG, "del_vif %d, numvifs %d", *vifip, numvifs);
688
689 return (0);
690 }
691
692 static void
693 update_mfc(mfccp, rt)
694 struct mfcctl *mfccp;
695 struct mfc *rt;
696 {
697 vifi_t vifi;
698
699 rt->mfc_parent = mfccp->mfcc_parent;
700 for (vifi = 0; vifi < numvifs; vifi++)
701 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
702 rt->mfc_expire = 0;
703 rt->mfc_stall = 0;
704 }
705
706 static void
707 expire_mfc(rt)
708 struct mfc *rt;
709 {
710 struct rtdetq *rte, *nrte;
711
712 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
713 nrte = rte->next;
714 m_freem(rte->m);
715 free(rte, M_MRTABLE);
716 }
717
718 LIST_REMOVE(rt, mfc_hash);
719 free(rt, M_MRTABLE);
720 }
721
722 /*
723 * Add an mfc entry
724 */
725 static int
726 add_mfc(m)
727 struct mbuf *m;
728 {
729 struct mfcctl *mfccp;
730 struct mfc *rt;
731 u_int32_t hash = 0;
732 struct rtdetq *rte, *nrte;
733 register u_short nstl;
734 int s;
735
736 if (m == 0 || m->m_len < sizeof(struct mfcctl))
737 return (EINVAL);
738
739 mfccp = mtod(m, struct mfcctl *);
740
741 s = splsoftnet();
742 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
743
744 /* If an entry already exists, just update the fields */
745 if (rt) {
746 if (mrtdebug & DEBUG_MFC)
747 log(LOG_DEBUG,"add_mfc update o %x g %x p %x",
748 ntohl(mfccp->mfcc_origin.s_addr),
749 ntohl(mfccp->mfcc_mcastgrp.s_addr),
750 mfccp->mfcc_parent);
751
752 if (rt->mfc_expire)
753 nexpire[hash]--;
754
755 update_mfc(mfccp, rt);
756
757 splx(s);
758 return (0);
759 }
760
761 /*
762 * Find the entry for which the upcall was made and update
763 */
764 nstl = 0;
765 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
766 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
767 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
768 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
769 rt->mfc_stall != NULL) {
770 if (nstl++)
771 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p",
772 "multiple kernel entries",
773 ntohl(mfccp->mfcc_origin.s_addr),
774 ntohl(mfccp->mfcc_mcastgrp.s_addr),
775 mfccp->mfcc_parent, rt->mfc_stall);
776
777 if (mrtdebug & DEBUG_MFC)
778 log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %p",
779 ntohl(mfccp->mfcc_origin.s_addr),
780 ntohl(mfccp->mfcc_mcastgrp.s_addr),
781 mfccp->mfcc_parent, rt->mfc_stall);
782
783 if (rt->mfc_expire)
784 nexpire[hash]--;
785
786 /* free packets Qed at the end of this entry */
787 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
788 nrte = rte->next;
789 #ifdef RSVP_ISI
790 ip_mdq(rte->m, rte->ifp, rt, -1);
791 #else
792 ip_mdq(rte->m, rte->ifp, rt);
793 #endif /* RSVP_ISI */
794 m_freem(rte->m);
795 #ifdef UPCALL_TIMING
796 collate(&rte->t);
797 #endif /* UPCALL_TIMING */
798 free(rte, M_MRTABLE);
799 }
800
801 update_mfc(mfccp, rt);
802 }
803 }
804
805 if (nstl == 0) {
806 /*
807 * No mfc; make a new one
808 */
809 if (mrtdebug & DEBUG_MFC)
810 log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x",
811 ntohl(mfccp->mfcc_origin.s_addr),
812 ntohl(mfccp->mfcc_mcastgrp.s_addr),
813 mfccp->mfcc_parent);
814
815 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
816 if (rt == NULL) {
817 splx(s);
818 return (ENOBUFS);
819 }
820
821 rt->mfc_origin = mfccp->mfcc_origin;
822 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
823 /* initialize pkt counters per src-grp */
824 rt->mfc_pkt_cnt = 0;
825 rt->mfc_byte_cnt = 0;
826 rt->mfc_wrong_if = 0;
827 timerclear(&rt->mfc_last_assert);
828 update_mfc(mfccp, rt);
829
830 /* insert new entry at head of hash chain */
831 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
832 }
833
834 splx(s);
835 return (0);
836 }
837
838 #ifdef UPCALL_TIMING
839 /*
840 * collect delay statistics on the upcalls
841 */
842 static void collate(t)
843 register struct timeval *t;
844 {
845 register u_int32_t d;
846 register struct timeval tp;
847 register u_int32_t delta;
848
849 microtime(&tp);
850
851 if (timercmp(t, &tp, <)) {
852 TV_DELTA(tp, *t, delta);
853
854 d = delta >> 10;
855 if (d > 50)
856 d = 50;
857
858 ++upcall_data[d];
859 }
860 }
861 #endif /* UPCALL_TIMING */
862
863 /*
864 * Delete an mfc entry
865 */
866 static int
867 del_mfc(m)
868 struct mbuf *m;
869 {
870 struct mfcctl *mfccp;
871 struct mfc *rt;
872 int s;
873
874 if (m == 0 || m->m_len < sizeof(struct mfcctl))
875 return (EINVAL);
876
877 mfccp = mtod(m, struct mfcctl *);
878
879 if (mrtdebug & DEBUG_MFC)
880 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x",
881 ntohl(mfccp->mfcc_origin.s_addr),
882 ntohl(mfccp->mfcc_mcastgrp.s_addr));
883
884 s = splsoftnet();
885
886 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
887 if (rt == NULL) {
888 splx(s);
889 return (EADDRNOTAVAIL);
890 }
891
892 LIST_REMOVE(rt, mfc_hash);
893 free(rt, M_MRTABLE);
894
895 splx(s);
896 return (0);
897 }
898
899 static int
900 socket_send(s, mm, src)
901 struct socket *s;
902 struct mbuf *mm;
903 struct sockaddr_in *src;
904 {
905 if (s) {
906 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
907 sorwakeup(s);
908 return (0);
909 }
910 }
911 m_freem(mm);
912 return (-1);
913 }
914
915 /*
916 * IP multicast forwarding function. This function assumes that the packet
917 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
918 * pointed to by "ifp", and the packet is to be relayed to other networks
919 * that have members of the packet's destination IP multicast group.
920 *
921 * The packet is returned unscathed to the caller, unless it is
922 * erroneous, in which case a non-zero return value tells the caller to
923 * discard it.
924 */
925
926 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
927 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
928
929 int
930 #ifdef RSVP_ISI
931 ip_mforward(m, ifp, imo)
932 #else
933 ip_mforward(m, ifp)
934 #endif /* RSVP_ISI */
935 struct mbuf *m;
936 struct ifnet *ifp;
937 #ifdef RSVP_ISI
938 struct ip_moptions *imo;
939 #endif /* RSVP_ISI */
940 {
941 register struct ip *ip = mtod(m, struct ip *);
942 register struct mfc *rt;
943 register u_char *ipoptions;
944 static int srctun = 0;
945 register struct mbuf *mm;
946 int s;
947 #ifdef RSVP_ISI
948 register struct vif *vifp;
949 vifi_t vifi;
950 #endif /* RSVP_ISI */
951
952 if (mrtdebug & DEBUG_FORWARD)
953 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p",
954 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
955
956 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
957 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
958 /*
959 * Packet arrived via a physical interface or
960 * an encapuslated tunnel.
961 */
962 } else {
963 /*
964 * Packet arrived through a source-route tunnel.
965 * Source-route tunnels are no longer supported.
966 */
967 if ((srctun++ % 1000) == 0)
968 log(LOG_ERR, "ip_mforward: received source-routed packet from %x",
969 ntohl(ip->ip_src.s_addr));
970
971 return (1);
972 }
973
974 #ifdef RSVP_ISI
975 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
976 if (ip->ip_ttl < 255)
977 ip->ip_ttl++; /* compensate for -1 in *_send routines */
978 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
979 vifp = viftable + vifi;
980 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
981 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
982 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
983 vifp->v_ifp->if_xname);
984 }
985 return (ip_mdq(m, ifp, rt, vifi));
986 }
987 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
988 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
989 ntohl(ip->ip_src), ntohl(ip->ip_dst));
990 }
991 #endif /* RSVP_ISI */
992
993 /*
994 * Don't forward a packet with time-to-live of zero or one,
995 * or a packet destined to a local-only group.
996 */
997 if (ip->ip_ttl <= 1 ||
998 IN_LOCAL_GROUP(ip->ip_dst.s_addr))
999 return (0);
1000
1001 /*
1002 * Determine forwarding vifs from the forwarding cache table
1003 */
1004 s = splsoftnet();
1005 MFCFIND(ip->ip_src, ip->ip_dst, rt);
1006
1007 /* Entry exists, so forward if necessary */
1008 if (rt != NULL) {
1009 splx(s);
1010 #ifdef RSVP_ISI
1011 return (ip_mdq(m, ifp, rt, -1));
1012 #else
1013 return (ip_mdq(m, ifp, rt));
1014 #endif /* RSVP_ISI */
1015 } else {
1016 /*
1017 * If we don't have a route for packet's origin,
1018 * Make a copy of the packet &
1019 * send message to routing daemon
1020 */
1021
1022 register struct mbuf *mb0;
1023 register struct rtdetq *rte;
1024 register u_int32_t hash;
1025 #ifdef UPCALL_TIMING
1026 struct timeval tp;
1027
1028 microtime(&tp);
1029 #endif /* UPCALL_TIMING */
1030
1031 mrtstat.mrts_no_route++;
1032 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1033 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x",
1034 ntohl(ip->ip_src.s_addr),
1035 ntohl(ip->ip_dst.s_addr));
1036
1037 /*
1038 * Allocate mbufs early so that we don't do extra work if we are
1039 * just going to fail anyway.
1040 */
1041 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1042 if (rte == NULL) {
1043 splx(s);
1044 return (ENOBUFS);
1045 }
1046 mb0 = m_copy(m, 0, M_COPYALL);
1047 if (mb0 == NULL) {
1048 free(rte, M_MRTABLE);
1049 splx(s);
1050 return (ENOBUFS);
1051 }
1052
1053 /* is there an upcall waiting for this packet? */
1054 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1055 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
1056 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1057 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1058 rt->mfc_stall != NULL)
1059 break;
1060 }
1061
1062 if (rt == NULL) {
1063 int hlen = ip->ip_hl << 2;
1064 int i;
1065 struct igmpmsg *im;
1066
1067 /* no upcall, so make a new entry */
1068 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1069 if (rt == NULL) {
1070 free(rte, M_MRTABLE);
1071 m_free(mb0);
1072 splx(s);
1073 return (ENOBUFS);
1074 }
1075 /* Make a copy of the header to send to the user level process */
1076 mm = m_copy(m, 0, hlen);
1077 M_PULLUP(mm, hlen);
1078 if (mm == NULL) {
1079 free(rte, M_MRTABLE);
1080 m_free(mb0);
1081 free(rt, M_MRTABLE);
1082 splx(s);
1083 return (ENOBUFS);
1084 }
1085
1086 /*
1087 * Send message to routing daemon to install
1088 * a route into the kernel table
1089 */
1090 sin.sin_addr = ip->ip_src;
1091
1092 im = mtod(mm, struct igmpmsg *);
1093 im->im_msgtype = IGMPMSG_NOCACHE;
1094 im->im_mbz = 0;
1095
1096 mrtstat.mrts_upcalls++;
1097
1098 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1099 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full");
1100 ++mrtstat.mrts_upq_sockfull;
1101 free(rte, M_MRTABLE);
1102 m_free(mb0);
1103 free(rt, M_MRTABLE);
1104 splx(s);
1105 return (ENOBUFS);
1106 }
1107
1108 /* insert new entry at head of hash chain */
1109 rt->mfc_origin = ip->ip_src;
1110 rt->mfc_mcastgrp = ip->ip_dst;
1111 rt->mfc_pkt_cnt = 0;
1112 rt->mfc_byte_cnt = 0;
1113 rt->mfc_wrong_if = 0;
1114 rt->mfc_expire = UPCALL_EXPIRE;
1115 nexpire[hash]++;
1116 for (i = 0; i < numvifs; i++)
1117 rt->mfc_ttls[i] = 0;
1118 rt->mfc_parent = -1;
1119
1120 /* link into table */
1121 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1122 /* Add this entry to the end of the queue */
1123 rt->mfc_stall = rte;
1124 } else {
1125 /* determine if q has overflowed */
1126 struct rtdetq **p;
1127 register int npkts = 0;
1128
1129 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1130 if (++npkts > MAX_UPQ) {
1131 mrtstat.mrts_upq_ovflw++;
1132 free(rte, M_MRTABLE);
1133 m_free(mb0);
1134 splx(s);
1135 return (0);
1136 }
1137
1138 /* Add this entry to the end of the queue */
1139 *p = rte;
1140 }
1141
1142 rte->next = NULL;
1143 rte->m = mb0;
1144 rte->ifp = ifp;
1145 #ifdef UPCALL_TIMING
1146 rte->t = tp;
1147 #endif /* UPCALL_TIMING */
1148
1149
1150 splx(s);
1151
1152 return (0);
1153 }
1154 }
1155
1156
1157 /*ARGSUSED*/
1158 static void
1159 expire_upcalls(v)
1160 void *v;
1161 {
1162 int i;
1163 int s;
1164
1165 s = splsoftnet();
1166
1167 for (i = 0; i < MFCTBLSIZ; i++) {
1168 register struct mfc *rt, *nrt;
1169
1170 if (nexpire[i] == 0)
1171 continue;
1172
1173 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
1174 nrt = rt->mfc_hash.le_next;
1175
1176 if (rt->mfc_expire == 0 ||
1177 --rt->mfc_expire > 0)
1178 continue;
1179 nexpire[i]--;
1180
1181 ++mrtstat.mrts_cache_cleanups;
1182 if (mrtdebug & DEBUG_EXPIRE)
1183 log(LOG_DEBUG,
1184 "expire_upcalls: expiring (%x %x)",
1185 ntohl(rt->mfc_origin.s_addr),
1186 ntohl(rt->mfc_mcastgrp.s_addr));
1187
1188 expire_mfc(rt);
1189 }
1190 }
1191
1192 splx(s);
1193 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
1194 }
1195
1196 /*
1197 * Packet forwarding routine once entry in the cache is made
1198 */
1199 static int
1200 #ifdef RSVP_ISI
1201 ip_mdq(m, ifp, rt, xmt_vif)
1202 #else
1203 ip_mdq(m, ifp, rt)
1204 #endif /* RSVP_ISI */
1205 register struct mbuf *m;
1206 register struct ifnet *ifp;
1207 register struct mfc *rt;
1208 #ifdef RSVP_ISI
1209 register vifi_t xmt_vif;
1210 #endif /* RSVP_ISI */
1211 {
1212 register struct ip *ip = mtod(m, struct ip *);
1213 register vifi_t vifi;
1214 register struct vif *vifp;
1215 register int plen = ntohs(ip->ip_len);
1216
1217 /*
1218 * Macro to send packet on vif. Since RSVP packets don't get counted on
1219 * input, they shouldn't get counted on output, so statistics keeping is
1220 * seperate.
1221 */
1222 #define MC_SEND(ip,vifp,m) { \
1223 if ((vifp)->v_flags & VIFF_TUNNEL) \
1224 encap_send((ip), (vifp), (m)); \
1225 else \
1226 phyint_send((ip), (vifp), (m)); \
1227 }
1228
1229 #ifdef RSVP_ISI
1230 /*
1231 * If xmt_vif is not -1, send on only the requested vif.
1232 *
1233 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1234 */
1235 if (xmt_vif < numvifs) {
1236 MC_SEND(ip, viftable + xmt_vif, m);
1237 return (1);
1238 }
1239 #endif /* RSVP_ISI */
1240
1241 /*
1242 * Don't forward if it didn't arrive from the parent vif for its origin.
1243 */
1244 vifi = rt->mfc_parent;
1245 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1246 /* came in the wrong interface */
1247 if (mrtdebug & DEBUG_FORWARD)
1248 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p",
1249 ifp, vifi, viftable[vifi].v_ifp);
1250 ++mrtstat.mrts_wrong_if;
1251 ++rt->mfc_wrong_if;
1252 /*
1253 * If we are doing PIM assert processing, and we are forwarding
1254 * packets on this interface, and it is a broadcast medium
1255 * interface (and not a tunnel), send a message to the routing daemon.
1256 */
1257 if (pim_assert && rt->mfc_ttls[vifi] &&
1258 (ifp->if_flags & IFF_BROADCAST) &&
1259 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1260 struct mbuf *mm;
1261 struct igmpmsg *im;
1262 int hlen = ip->ip_hl << 2;
1263 struct timeval now;
1264 register u_int32_t delta;
1265
1266 microtime(&now);
1267
1268 TV_DELTA(rt->mfc_last_assert, now, delta);
1269
1270 if (delta > ASSERT_MSG_TIME) {
1271 mm = m_copy(m, 0, hlen);
1272 M_PULLUP(mm, hlen);
1273 if (mm == NULL) {
1274 return (ENOBUFS);
1275 }
1276
1277 rt->mfc_last_assert = now;
1278
1279 im = mtod(mm, struct igmpmsg *);
1280 im->im_msgtype = IGMPMSG_WRONGVIF;
1281 im->im_mbz = 0;
1282 im->im_vif = vifi;
1283
1284 sin.sin_addr = im->im_src;
1285
1286 socket_send(ip_mrouter, m, &sin);
1287 }
1288 }
1289 return (0);
1290 }
1291
1292 /* If I sourced this packet, it counts as output, else it was input. */
1293 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1294 viftable[vifi].v_pkt_out++;
1295 viftable[vifi].v_bytes_out += plen;
1296 } else {
1297 viftable[vifi].v_pkt_in++;
1298 viftable[vifi].v_bytes_in += plen;
1299 }
1300 rt->mfc_pkt_cnt++;
1301 rt->mfc_byte_cnt += plen;
1302
1303 /*
1304 * For each vif, decide if a copy of the packet should be forwarded.
1305 * Forward if:
1306 * - the ttl exceeds the vif's threshold
1307 * - there are group members downstream on interface
1308 */
1309 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1310 if ((rt->mfc_ttls[vifi] > 0) &&
1311 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1312 vifp->v_pkt_out++;
1313 vifp->v_bytes_out += plen;
1314 MC_SEND(ip, vifp, m);
1315 }
1316
1317 return (0);
1318 }
1319
1320 #ifdef RSVP_ISI
1321 /*
1322 * check if a vif number is legal/ok. This is used by ip_output, to export
1323 * numvifs there,
1324 */
1325 int
1326 legal_vif_num(vif)
1327 int vif;
1328 {
1329 if (vif >= 0 && vif < numvifs)
1330 return (1);
1331 else
1332 return (0);
1333 }
1334 #endif /* RSVP_ISI */
1335
1336 static void
1337 phyint_send(ip, vifp, m)
1338 struct ip *ip;
1339 struct vif *vifp;
1340 struct mbuf *m;
1341 {
1342 register struct mbuf *mb_copy;
1343 register int hlen = ip->ip_hl << 2;
1344
1345 /*
1346 * Make a new reference to the packet; make sure that
1347 * the IP header is actually copied, not just referenced,
1348 * so that ip_output() only scribbles on the copy.
1349 */
1350 mb_copy = m_copy(m, 0, M_COPYALL);
1351 M_PULLUP(mb_copy, hlen);
1352 if (mb_copy == NULL)
1353 return;
1354
1355 if (vifp->v_rate_limit <= 0)
1356 tbf_send_packet(vifp, mb_copy);
1357 else
1358 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1359 }
1360
1361 static void
1362 encap_send(ip, vifp, m)
1363 register struct ip *ip;
1364 register struct vif *vifp;
1365 register struct mbuf *m;
1366 {
1367 register struct mbuf *mb_copy;
1368 register struct ip *ip_copy;
1369 register int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
1370
1371 /*
1372 * copy the old packet & pullup it's IP header into the
1373 * new mbuf so we can modify it. Try to fill the new
1374 * mbuf since if we don't the ethernet driver will.
1375 */
1376 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1377 if (mb_copy == NULL)
1378 return;
1379 mb_copy->m_data += max_linkhdr;
1380 mb_copy->m_pkthdr.len = len;
1381 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1382
1383 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1384 m_freem(mb_copy);
1385 return;
1386 }
1387 i = MHLEN - max_linkhdr;
1388 if (i > len)
1389 i = len;
1390 mb_copy = m_pullup(mb_copy, i);
1391 if (mb_copy == NULL)
1392 return;
1393
1394 /*
1395 * fill in the encapsulating IP header.
1396 */
1397 ip_copy = mtod(mb_copy, struct ip *);
1398 *ip_copy = multicast_encap_iphdr;
1399 ip_copy->ip_id = htons(ip_id++);
1400 ip_copy->ip_len = len;
1401 ip_copy->ip_src = vifp->v_lcl_addr;
1402 ip_copy->ip_dst = vifp->v_rmt_addr;
1403
1404 /*
1405 * turn the encapsulated IP header back into a valid one.
1406 */
1407 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1408 --ip->ip_ttl;
1409 HTONS(ip->ip_len);
1410 HTONS(ip->ip_off);
1411 ip->ip_sum = 0;
1412 #if defined(LBL) && !defined(ultrix) && !defined(i386)
1413 ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1414 #else
1415 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1416 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1417 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1418 #endif
1419
1420 if (vifp->v_rate_limit <= 0)
1421 tbf_send_packet(vifp, mb_copy);
1422 else
1423 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1424 }
1425
1426 /*
1427 * De-encapsulate a packet and feed it back through ip input (this
1428 * routine is called whenever IP gets a packet with proto type
1429 * ENCAP_PROTO and a local destination address).
1430 */
1431 void
1432 #if __STDC__
1433 ipip_input(struct mbuf *m, ...)
1434 #else
1435 ipip_input(m, va_alist)
1436 struct mbuf *m;
1437 va_dcl
1438 #endif
1439 {
1440 register int hlen;
1441 register struct ip *ip = mtod(m, struct ip *);
1442 register int s;
1443 register struct ifqueue *ifq;
1444 register struct vif *vifp;
1445 va_list ap;
1446
1447 va_start(ap, m);
1448 hlen = va_arg(ap, int);
1449 va_end(ap);
1450
1451 if (!have_encap_tunnel) {
1452 rip_input(m);
1453 return;
1454 }
1455
1456 /*
1457 * dump the packet if it's not to a multicast destination or if
1458 * we don't have an encapsulating tunnel with the source.
1459 * Note: This code assumes that the remote site IP address
1460 * uniquely identifies the tunnel (i.e., that this site has
1461 * at most one tunnel with the remote site).
1462 */
1463 if (!IN_MULTICAST(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr)) {
1464 ++mrtstat.mrts_bad_tunnel;
1465 m_freem(m);
1466 return;
1467 }
1468
1469 if (!in_hosteq(ip->ip_src, last_encap_src)) {
1470 register struct vif *vife;
1471
1472 vifp = viftable;
1473 vife = vifp + numvifs;
1474 for (; vifp < vife; vifp++)
1475 if (vifp->v_flags & VIFF_TUNNEL &&
1476 in_hosteq(vifp->v_rmt_addr, ip->ip_src))
1477 break;
1478 if (vifp == vife) {
1479 mrtstat.mrts_cant_tunnel++; /*XXX*/
1480 m_freem(m);
1481 if (mrtdebug)
1482 log(LOG_DEBUG, "ip_mforward: no tunnel with %x",
1483 ntohl(ip->ip_src.s_addr));
1484 return;
1485 }
1486 last_encap_vif = vifp;
1487 last_encap_src = ip->ip_src;
1488 } else
1489 vifp = last_encap_vif;
1490
1491 m->m_data += hlen;
1492 m->m_len -= hlen;
1493 m->m_pkthdr.len -= hlen;
1494 m->m_pkthdr.rcvif = vifp->v_ifp;
1495 ifq = &ipintrq;
1496 s = splimp();
1497 if (IF_QFULL(ifq)) {
1498 IF_DROP(ifq);
1499 m_freem(m);
1500 } else {
1501 IF_ENQUEUE(ifq, m);
1502 /*
1503 * normally we would need a "schednetisr(NETISR_IP)"
1504 * here but we were called by ip_input and it is going
1505 * to loop back & try to dequeue the packet we just
1506 * queued as soon as we return so we avoid the
1507 * unnecessary software interrrupt.
1508 */
1509 }
1510 splx(s);
1511 }
1512
1513 /*
1514 * Token bucket filter module
1515 */
1516 static void
1517 tbf_control(vifp, m, ip, p_len)
1518 register struct vif *vifp;
1519 register struct mbuf *m;
1520 register struct ip *ip;
1521 register u_int32_t p_len;
1522 {
1523
1524 tbf_update_tokens(vifp);
1525
1526 /*
1527 * If there are enough tokens, and the queue is empty, send this packet
1528 * out immediately. Otherwise, try to insert it on this vif's queue.
1529 */
1530 if (vifp->v_tbf.q_len == 0) {
1531 if (p_len <= vifp->v_tbf.n_tok) {
1532 vifp->v_tbf.n_tok -= p_len;
1533 tbf_send_packet(vifp, m);
1534 } else if (p_len > MAX_BKT_SIZE) {
1535 /* drop if packet is too large */
1536 mrtstat.mrts_pkt2large++;
1537 m_freem(m);
1538 } else {
1539 /* queue packet and timeout till later */
1540 tbf_queue(vifp, m, ip);
1541 timeout(tbf_reprocess_q, vifp, 1);
1542 }
1543 } else {
1544 if (vifp->v_tbf.q_len >= MAXQSIZE &&
1545 !tbf_dq_sel(vifp, ip)) {
1546 /* queue length too much, and couldn't make room */
1547 mrtstat.mrts_q_overflow++;
1548 m_freem(m);
1549 } else {
1550 /* queue length low enough, or made room */
1551 tbf_queue(vifp, m, ip);
1552 tbf_process_q(vifp);
1553 }
1554 }
1555 }
1556
1557 /*
1558 * adds a packet to the queue at the interface
1559 */
1560 static void
1561 tbf_queue(vifp, m, ip)
1562 register struct vif *vifp;
1563 register struct mbuf *m;
1564 register struct ip *ip;
1565 {
1566 register u_int32_t ql;
1567 register int index = (vifp - viftable);
1568 register int s = splsoftnet();
1569
1570 ql = vifp->v_tbf.q_len;
1571
1572 qtable[index][ql].pkt_m = m;
1573 qtable[index][ql].pkt_len = (mtod(m, struct ip *))->ip_len;
1574 qtable[index][ql].pkt_ip = ip;
1575
1576 vifp->v_tbf.q_len++;
1577 splx(s);
1578 }
1579
1580
1581 /*
1582 * processes the queue at the interface
1583 */
1584 static void
1585 tbf_process_q(vifp)
1586 register struct vif *vifp;
1587 {
1588 register struct pkt_queue pkt_1;
1589 register int index = (vifp - viftable);
1590 register int s = splsoftnet();
1591
1592 /* loop through the queue at the interface and send as many packets
1593 * as possible
1594 */
1595 while (vifp->v_tbf.q_len > 0) {
1596 /* locate the first packet */
1597 pkt_1 = qtable[index][0];
1598
1599 /* determine if the packet can be sent */
1600 if (pkt_1.pkt_len <= vifp->v_tbf.n_tok) {
1601 /* if so,
1602 * reduce no of tokens, dequeue the queue,
1603 * send the packet.
1604 */
1605 vifp->v_tbf.n_tok -= pkt_1.pkt_len;
1606
1607 tbf_dequeue(vifp, 0);
1608 tbf_send_packet(vifp, pkt_1.pkt_m);
1609 } else
1610 break;
1611 }
1612 splx(s);
1613 }
1614
1615 /*
1616 * removes the jth packet from the queue at the interface
1617 */
1618 static void
1619 tbf_dequeue(vifp, j)
1620 register struct vif *vifp;
1621 register int j;
1622 {
1623 register u_int32_t index = vifp - viftable;
1624 register int i;
1625
1626 for (i=j+1; i <= vifp->v_tbf.q_len - 1; i++) {
1627 qtable[index][i-1] = qtable[index][i];
1628 }
1629 qtable[index][i-1].pkt_m = NULL;
1630 qtable[index][i-1].pkt_len = NULL;
1631 qtable[index][i-1].pkt_ip = NULL;
1632
1633 vifp->v_tbf.q_len--;
1634
1635 if (tbfdebug > 1)
1636 log(LOG_DEBUG, "tbf_dequeue: vif# %d qlen %d",vifp-viftable, i-1);
1637 }
1638
1639 static void
1640 tbf_reprocess_q(arg)
1641 void *arg;
1642 {
1643 register struct vif *vifp = arg;
1644
1645 if (ip_mrouter == NULL)
1646 return;
1647
1648 tbf_update_tokens(vifp);
1649 tbf_process_q(vifp);
1650
1651 if (vifp->v_tbf.q_len)
1652 timeout(tbf_reprocess_q, vifp, 1);
1653 }
1654
1655 /* function that will selectively discard a member of the queue
1656 * based on the precedence value and the priority obtained through
1657 * a lookup table - not yet implemented accurately!
1658 */
1659 static int
1660 tbf_dq_sel(vifp, ip)
1661 register struct vif *vifp;
1662 register struct ip *ip;
1663 {
1664 register int i;
1665 register int s = splsoftnet();
1666 register u_int p;
1667
1668 p = priority(vifp, ip);
1669
1670 for(i=vifp->v_tbf.q_len-1;i >= 0;i--) {
1671 if (p > priority(vifp, qtable[vifp-viftable][i].pkt_ip)) {
1672 m_freem(qtable[vifp-viftable][i].pkt_m);
1673 tbf_dequeue(vifp, i);
1674 splx(s);
1675 mrtstat.mrts_drop_sel++;
1676 return (1);
1677 }
1678 }
1679 splx(s);
1680 return (0);
1681 }
1682
1683 static void
1684 tbf_send_packet(vifp,m)
1685 register struct vif *vifp;
1686 register struct mbuf *m;
1687 {
1688 int error;
1689 int s = splsoftnet();
1690
1691 if (vifp->v_flags & VIFF_TUNNEL) {
1692 /* If tunnel options */
1693 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1694 IP_FORWARDING, NULL);
1695 } else {
1696 /* if physical interface option, extract the options and then send */
1697 struct ip *ip = mtod(m, struct ip *);
1698 struct ip_moptions imo;
1699 imo.imo_multicast_ifp = vifp->v_ifp;
1700 imo.imo_multicast_ttl = ip->ip_ttl - 1;
1701 imo.imo_multicast_loop = 1;
1702 #ifdef RSVP_ISI
1703 imo.imo_multicast_vif = -1;
1704 #endif
1705
1706 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1707 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1708 if (mrtdebug & DEBUG_XMIT)
1709 log(LOG_DEBUG, "phyint_send on vif %d err %d", vifp-viftable, error);
1710 }
1711 splx(s);
1712 }
1713
1714 /* determine the current time and then
1715 * the elapsed time (between the last time and time now)
1716 * in milliseconds & update the no. of tokens in the bucket
1717 */
1718 static void
1719 tbf_update_tokens(vifp)
1720 register struct vif *vifp;
1721 {
1722 struct timeval tp;
1723 register u_int32_t t;
1724 register u_int32_t elapsed;
1725 register int s = splsoftnet();
1726
1727 microtime(&tp);
1728
1729 t = tp.tv_sec*1000 + tp.tv_usec/1000;
1730
1731 elapsed = (t - vifp->v_tbf.last_pkt_t) * vifp->v_rate_limit /8;
1732 vifp->v_tbf.n_tok += elapsed;
1733 vifp->v_tbf.last_pkt_t = t;
1734
1735 if (vifp->v_tbf.n_tok > MAX_BKT_SIZE)
1736 vifp->v_tbf.n_tok = MAX_BKT_SIZE;
1737
1738 splx(s);
1739 }
1740
1741 static int
1742 priority(vifp, ip)
1743 register struct vif *vifp;
1744 register struct ip *ip;
1745 {
1746 register int prio;
1747
1748 /* temporary hack; may add general packet classifier some day */
1749
1750 /*
1751 * The UDP port space is divided up into four priority ranges:
1752 * [0, 16384) : unclassified - lowest priority
1753 * [16384, 32768) : audio - highest priority
1754 * [32768, 49152) : whiteboard - medium priority
1755 * [49152, 65536) : video - low priority
1756 */
1757 if (ip->ip_p == IPPROTO_UDP) {
1758 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1759
1760 switch (ntohs(udp->uh_dport) & 0xc000) {
1761 case 0x4000:
1762 prio = 70;
1763 break;
1764 case 0x8000:
1765 prio = 60;
1766 break;
1767 case 0xc000:
1768 prio = 55;
1769 break;
1770 default:
1771 prio = 50;
1772 break;
1773 }
1774
1775 if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio %d", ntohs(udp->uh_dport), prio);
1776 } else
1777 prio = 50;
1778
1779
1780 return (prio);
1781 }
1782
1783 /*
1784 * End of token bucket filter modifications
1785 */
1786
1787 #ifdef RSVP_ISI
1788
1789 int
1790 ip_rsvp_vif_init(so, m)
1791 struct socket *so;
1792 struct mbuf *m;
1793 {
1794 int i;
1795 register int s;
1796
1797 if (rsvpdebug)
1798 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1799 so->so_type, so->so_proto->pr_protocol);
1800
1801 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1802 return (EOPNOTSUPP);
1803
1804 /* Check mbuf. */
1805 if (m == NULL || m->m_len != sizeof(int)) {
1806 return (EINVAL);
1807 }
1808 i = *(mtod(m, int *));
1809
1810 if (rsvpdebug)
1811 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1812
1813 s = splsoftnet();
1814
1815 /* Check vif. */
1816 if (!legal_vif_num(i)) {
1817 splx(s);
1818 return (EADDRNOTAVAIL);
1819 }
1820
1821 /* Check if socket is available. */
1822 if (viftable[i].v_rsvpd != NULL) {
1823 splx(s);
1824 return (EADDRINUSE);
1825 }
1826
1827 viftable[i].v_rsvpd = so;
1828 /* This may seem silly, but we need to be sure we don't over-increment
1829 * the RSVP counter, in case something slips up.
1830 */
1831 if (!viftable[i].v_rsvp_on) {
1832 viftable[i].v_rsvp_on = 1;
1833 rsvp_on++;
1834 }
1835
1836 splx(s);
1837 return (0);
1838 }
1839
1840 int
1841 ip_rsvp_vif_done(so, m)
1842 struct socket *so;
1843 struct mbuf *m;
1844 {
1845 int i;
1846 register int s;
1847
1848 if (rsvpdebug)
1849 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1850 so->so_type, so->so_proto->pr_protocol);
1851
1852 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1853 return (EOPNOTSUPP);
1854
1855 /* Check mbuf. */
1856 if (m == NULL || m->m_len != sizeof(int)) {
1857 return (EINVAL);
1858 }
1859 i = *(mtod(m, int *));
1860
1861 s = splsoftnet();
1862
1863 /* Check vif. */
1864 if (!legal_vif_num(i)) {
1865 splx(s);
1866 return (EADDRNOTAVAIL);
1867 }
1868
1869 if (rsvpdebug)
1870 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1871 viftable[i].v_rsvpd, so);
1872
1873 viftable[i].v_rsvpd = NULL;
1874 /* This may seem silly, but we need to be sure we don't over-decrement
1875 * the RSVP counter, in case something slips up.
1876 */
1877 if (viftable[i].v_rsvp_on) {
1878 viftable[i].v_rsvp_on = 0;
1879 rsvp_on--;
1880 }
1881
1882 splx(s);
1883 return (0);
1884 }
1885
1886 void
1887 ip_rsvp_force_done(so)
1888 struct socket *so;
1889 {
1890 int vifi;
1891 register int s;
1892
1893 /* Don't bother if it is not the right type of socket. */
1894 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1895 return;
1896
1897 s = splsoftnet();
1898
1899 /* The socket may be attached to more than one vif...this
1900 * is perfectly legal.
1901 */
1902 for (vifi = 0; vifi < numvifs; vifi++) {
1903 if (viftable[vifi].v_rsvpd == so) {
1904 viftable[vifi].v_rsvpd = NULL;
1905 /* This may seem silly, but we need to be sure we don't
1906 * over-decrement the RSVP counter, in case something slips up.
1907 */
1908 if (viftable[vifi].v_rsvp_on) {
1909 viftable[vifi].v_rsvp_on = 0;
1910 rsvp_on--;
1911 }
1912 }
1913 }
1914
1915 splx(s);
1916 return;
1917 }
1918
1919 void
1920 rsvp_input(m, ifp)
1921 struct mbuf *m;
1922 struct ifnet *ifp;
1923 {
1924 int vifi;
1925 register struct ip *ip = mtod(m, struct ip *);
1926 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
1927 register int s;
1928
1929 if (rsvpdebug)
1930 printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1931
1932 /* Can still get packets with rsvp_on = 0 if there is a local member
1933 * of the group to which the RSVP packet is addressed. But in this
1934 * case we want to throw the packet away.
1935 */
1936 if (!rsvp_on) {
1937 m_freem(m);
1938 return;
1939 }
1940
1941 /* If the old-style non-vif-associated socket is set, then use
1942 * it and ignore the new ones.
1943 */
1944 if (ip_rsvpd != NULL) {
1945 if (rsvpdebug)
1946 printf("rsvp_input: Sending packet up old-style socket\n");
1947 rip_input(m);
1948 return;
1949 }
1950
1951 s = splsoftnet();
1952
1953 if (rsvpdebug)
1954 printf("rsvp_input: check vifs\n");
1955
1956 /* Find which vif the packet arrived on. */
1957 for (vifi = 0; vifi < numvifs; vifi++) {
1958 if (viftable[vifi].v_ifp == ifp)
1959 break;
1960 }
1961
1962 if (vifi == numvifs) {
1963 /* Can't find vif packet arrived on. Drop packet. */
1964 if (rsvpdebug)
1965 printf("rsvp_input: Can't find vif for packet...dropping it.\n");
1966 m_freem(m);
1967 splx(s);
1968 return;
1969 }
1970
1971 if (rsvpdebug)
1972 printf("rsvp_input: check socket\n");
1973
1974 if (viftable[vifi].v_rsvpd == NULL) {
1975 /* drop packet, since there is no specific socket for this
1976 * interface */
1977 if (rsvpdebug)
1978 printf("rsvp_input: No socket defined for vif %d\n",vifi);
1979 m_freem(m);
1980 splx(s);
1981 return;
1982 }
1983
1984 rsvp_src.sin_addr = ip->ip_src;
1985
1986 if (rsvpdebug && m)
1987 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
1988 m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
1989
1990 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
1991 if (rsvpdebug)
1992 printf("rsvp_input: Failed to append to socket\n");
1993 else
1994 if (rsvpdebug)
1995 printf("rsvp_input: send packet up\n");
1996
1997 splx(s);
1998 }
1999 #endif /* RSVP_ISI */
2000