ip_mroute.c revision 1.33 1 /* $NetBSD: ip_mroute.c,v 1.33 1996/10/10 23:12:50 christos Exp $ */
2
3 /*
4 * IP multicast forwarding procedures
5 *
6 * Written by David Waitzman, BBN Labs, August 1988.
7 * Modified by Steve Deering, Stanford, February 1989.
8 * Modified by Mark J. Steiglitz, Stanford, May, 1991
9 * Modified by Van Jacobson, LBL, January 1993
10 * Modified by Ajit Thyagarajan, PARC, August 1993
11 * Modified by Bill Fenner, PARC, April 1994
12 * Modified by Charles M. Hannum, NetBSD, May 1995.
13 *
14 * MROUTING Revision: 1.2
15 */
16
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/errno.h>
24 #include <sys/time.h>
25 #include <sys/kernel.h>
26 #include <sys/ioctl.h>
27 #include <sys/syslog.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <net/raw_cb.h>
31 #include <netinet/in.h>
32 #include <netinet/in_var.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_pcb.h>
37 #include <netinet/udp.h>
38 #include <netinet/igmp.h>
39 #include <netinet/igmp_var.h>
40 #include <netinet/ip_mroute.h>
41
42 #include <machine/stdarg.h>
43
44 #define IP_MULTICASTOPTS 0
45 #define M_PULLUP(m, len) \
46 do { \
47 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
48 (m) = m_pullup((m), (len)); \
49 } while (0)
50
51 /*
52 * Globals. All but ip_mrouter and ip_mrtproto could be static,
53 * except for netstat or debugging purposes.
54 */
55 struct socket *ip_mrouter = 0;
56 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
57
58 #define NO_RTE_FOUND 0x1
59 #define RTE_FOUND 0x2
60
61 #define MFCHASH(a, g) \
62 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
63 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
64 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
65 u_long mfchash;
66
67 u_char nexpire[MFCTBLSIZ];
68 struct vif viftable[MAXVIFS];
69 struct mrtstat mrtstat;
70 u_int mrtdebug = 0; /* debug level */
71 #define DEBUG_MFC 0x02
72 #define DEBUG_FORWARD 0x04
73 #define DEBUG_EXPIRE 0x08
74 #define DEBUG_XMIT 0x10
75 u_int tbfdebug = 0; /* tbf debug level */
76 #ifdef RSVP_ISI
77 u_int rsvpdebug = 0; /* rsvp debug level */
78 extern struct socket *ip_rsvpd;
79 extern int rsvp_on;
80 #endif /* RSVP_ISI */
81
82 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
83 #define UPCALL_EXPIRE 6 /* number of timeouts */
84
85 /*
86 * Define the token bucket filter structures
87 */
88
89 #define TBF_REPROCESS (hz / 100) /* 100x / second */
90
91 static int get_sg_cnt __P((struct sioc_sg_req *));
92 static int get_vif_cnt __P((struct sioc_vif_req *));
93 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
94 static int get_version __P((struct mbuf *));
95 static int set_assert __P((struct mbuf *));
96 static int get_assert __P((struct mbuf *));
97 static int add_vif __P((struct mbuf *));
98 static int del_vif __P((struct mbuf *));
99 static void update_mfc __P((struct mfcctl *, struct mfc *));
100 static void expire_mfc __P((struct mfc *));
101 static int add_mfc __P((struct mbuf *));
102 #ifdef UPCALL_TIMING
103 static void collate __P((struct timeval *));
104 #endif
105 static int del_mfc __P((struct mbuf *));
106 static int socket_send __P((struct socket *, struct mbuf *,
107 struct sockaddr_in *));
108 static void expire_upcalls __P((void *));
109 #ifdef RSVP_ISI
110 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
111 #else
112 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
113 #endif
114 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
115 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
116 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
117 u_int32_t));
118 static void tbf_queue __P((struct vif *, struct mbuf *));
119 static void tbf_process_q __P((struct vif *));
120 static void tbf_reprocess_q __P((void *));
121 static int tbf_dq_sel __P((struct vif *, struct ip *));
122 static void tbf_send_packet __P((struct vif *, struct mbuf *));
123 static void tbf_update_tokens __P((struct vif *));
124 static int priority __P((struct vif *, struct ip *));
125
126 /*
127 * 'Interfaces' associated with decapsulator (so we can tell
128 * packets that went through it from ones that get reflected
129 * by a broken gateway). These interfaces are never linked into
130 * the system ifnet list & no routes point to them. I.e., packets
131 * can't be sent this way. They only exist as a placeholder for
132 * multicast source verification.
133 */
134 #if 0
135 struct ifnet multicast_decap_if[MAXVIFS];
136 #endif
137
138 #define ENCAP_TTL 64
139 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
140
141 /* prototype IP hdr for encapsulated packets */
142 struct ip multicast_encap_iphdr = {
143 #if BYTE_ORDER == LITTLE_ENDIAN
144 sizeof(struct ip) >> 2, IPVERSION,
145 #else
146 IPVERSION, sizeof(struct ip) >> 2,
147 #endif
148 0, /* tos */
149 sizeof(struct ip), /* total length */
150 0, /* id */
151 0, /* frag offset */
152 ENCAP_TTL, ENCAP_PROTO,
153 0, /* checksum */
154 };
155
156 /*
157 * Private variables.
158 */
159 static vifi_t numvifs = 0;
160 static int have_encap_tunnel = 0;
161
162 /*
163 * one-back cache used by ipip_input to locate a tunnel's vif
164 * given a datagram's src ip address.
165 */
166 static struct in_addr last_encap_src;
167 static struct vif *last_encap_vif;
168
169 /*
170 * whether or not special PIM assert processing is enabled.
171 */
172 static int pim_assert;
173 /*
174 * Rate limit for assert notification messages, in usec
175 */
176 #define ASSERT_MSG_TIME 3000000
177
178 /*
179 * Find a route for a given origin IP address and Multicast group address
180 * Type of service parameter to be added in the future!!!
181 */
182
183 #define MFCFIND(o, g, rt) { \
184 register struct mfc *_rt; \
185 (rt) = 0; \
186 ++mrtstat.mrts_mfc_lookups; \
187 for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
188 _rt; _rt = _rt->mfc_hash.le_next) { \
189 if (in_hosteq(_rt->mfc_origin, (o)) && \
190 in_hosteq(_rt->mfc_mcastgrp, (g)) && \
191 _rt->mfc_stall == 0) { \
192 (rt) = _rt; \
193 break; \
194 } \
195 } \
196 if ((rt) == 0) \
197 ++mrtstat.mrts_mfc_misses; \
198 }
199
200 /*
201 * Macros to compute elapsed time efficiently
202 * Borrowed from Van Jacobson's scheduling code
203 */
204 #define TV_DELTA(a, b, delta) { \
205 register int xxs; \
206 delta = (a).tv_usec - (b).tv_usec; \
207 xxs = (a).tv_sec - (b).tv_sec; \
208 switch (xxs) { \
209 case 2: \
210 delta += 1000000; \
211 /* fall through */ \
212 case 1: \
213 delta += 1000000; \
214 /* fall through */ \
215 case 0: \
216 break; \
217 default: \
218 delta += (1000000 * xxs); \
219 break; \
220 } \
221 }
222
223 #ifdef UPCALL_TIMING
224 u_int32_t upcall_data[51];
225 #endif /* UPCALL_TIMING */
226
227 /*
228 * Handle MRT setsockopt commands to modify the multicast routing tables.
229 */
230 int
231 ip_mrouter_set(so, optname, m)
232 struct socket *so;
233 int optname;
234 struct mbuf **m;
235 {
236 int error;
237
238 if (optname != MRT_INIT && so != ip_mrouter)
239 error = ENOPROTOOPT;
240 else
241 switch (optname) {
242 case MRT_INIT:
243 error = ip_mrouter_init(so, *m);
244 break;
245 case MRT_DONE:
246 error = ip_mrouter_done();
247 break;
248 case MRT_ADD_VIF:
249 error = add_vif(*m);
250 break;
251 case MRT_DEL_VIF:
252 error = del_vif(*m);
253 break;
254 case MRT_ADD_MFC:
255 error = add_mfc(*m);
256 break;
257 case MRT_DEL_MFC:
258 error = del_mfc(*m);
259 break;
260 case MRT_ASSERT:
261 error = set_assert(*m);
262 break;
263 default:
264 error = ENOPROTOOPT;
265 break;
266 }
267
268 if (*m)
269 m_free(*m);
270 return (error);
271 }
272
273 /*
274 * Handle MRT getsockopt commands
275 */
276 int
277 ip_mrouter_get(so, optname, m)
278 struct socket *so;
279 int optname;
280 struct mbuf **m;
281 {
282 int error;
283
284 if (so != ip_mrouter)
285 error = ENOPROTOOPT;
286 else {
287 *m = m_get(M_WAIT, MT_SOOPTS);
288
289 switch (optname) {
290 case MRT_VERSION:
291 error = get_version(*m);
292 break;
293 case MRT_ASSERT:
294 error = get_assert(*m);
295 break;
296 default:
297 error = ENOPROTOOPT;
298 break;
299 }
300
301 if (error)
302 m_free(*m);
303 }
304
305 return (error);
306 }
307
308 /*
309 * Handle ioctl commands to obtain information from the cache
310 */
311 int
312 mrt_ioctl(so, cmd, data)
313 struct socket *so;
314 u_long cmd;
315 caddr_t data;
316 {
317 int error;
318
319 if (so != ip_mrouter)
320 error = EINVAL;
321 else
322 switch (cmd) {
323 case SIOCGETVIFCNT:
324 error = get_vif_cnt((struct sioc_vif_req *)data);
325 break;
326 case SIOCGETSGCNT:
327 error = get_sg_cnt((struct sioc_sg_req *)data);
328 break;
329 default:
330 error = EINVAL;
331 break;
332 }
333
334 return (error);
335 }
336
337 /*
338 * returns the packet, byte, rpf-failure count for the source group provided
339 */
340 static int
341 get_sg_cnt(req)
342 register struct sioc_sg_req *req;
343 {
344 register struct mfc *rt;
345 int s;
346
347 s = splsoftnet();
348 MFCFIND(req->src, req->grp, rt);
349 splx(s);
350 if (rt != 0) {
351 req->pktcnt = rt->mfc_pkt_cnt;
352 req->bytecnt = rt->mfc_byte_cnt;
353 req->wrong_if = rt->mfc_wrong_if;
354 } else
355 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
356
357 return (0);
358 }
359
360 /*
361 * returns the input and output packet and byte counts on the vif provided
362 */
363 static int
364 get_vif_cnt(req)
365 register struct sioc_vif_req *req;
366 {
367 register vifi_t vifi = req->vifi;
368
369 if (vifi >= numvifs)
370 return (EINVAL);
371
372 req->icount = viftable[vifi].v_pkt_in;
373 req->ocount = viftable[vifi].v_pkt_out;
374 req->ibytes = viftable[vifi].v_bytes_in;
375 req->obytes = viftable[vifi].v_bytes_out;
376
377 return (0);
378 }
379
380 /*
381 * Enable multicast routing
382 */
383 static int
384 ip_mrouter_init(so, m)
385 struct socket *so;
386 struct mbuf *m;
387 {
388 int *v;
389
390 if (mrtdebug)
391 log(LOG_DEBUG,
392 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
393 so->so_type, so->so_proto->pr_protocol);
394
395 if (so->so_type != SOCK_RAW ||
396 so->so_proto->pr_protocol != IPPROTO_IGMP)
397 return (EOPNOTSUPP);
398
399 if (m == 0 || m->m_len < sizeof(int))
400 return (EINVAL);
401
402 v = mtod(m, int *);
403 if (*v != 1)
404 return (EINVAL);
405
406 if (ip_mrouter != 0)
407 return (EADDRINUSE);
408
409 ip_mrouter = so;
410
411 mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, &mfchash);
412 bzero((caddr_t)nexpire, sizeof(nexpire));
413
414 pim_assert = 0;
415
416 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
417
418 if (mrtdebug)
419 log(LOG_DEBUG, "ip_mrouter_init\n");
420
421 return (0);
422 }
423
424 /*
425 * Disable multicast routing
426 */
427 int
428 ip_mrouter_done()
429 {
430 vifi_t vifi;
431 register struct vif *vifp;
432 int i;
433 int s;
434
435 s = splsoftnet();
436
437 /* Clear out all the vifs currently in use. */
438 for (vifi = 0; vifi < numvifs; vifi++) {
439 vifp = &viftable[vifi];
440 if (!in_nullhost(vifp->v_lcl_addr))
441 reset_vif(vifp);
442 }
443
444 numvifs = 0;
445 pim_assert = 0;
446
447 untimeout(expire_upcalls, (caddr_t)0);
448
449 /*
450 * Free all multicast forwarding cache entries.
451 */
452 for (i = 0; i < MFCTBLSIZ; i++) {
453 register struct mfc *rt, *nrt;
454
455 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
456 nrt = rt->mfc_hash.le_next;
457
458 expire_mfc(rt);
459 }
460 }
461 free(mfchashtbl, M_MRTABLE);
462
463 /* Reset de-encapsulation cache. */
464 have_encap_tunnel = 0;
465
466 ip_mrouter = 0;
467
468 splx(s);
469
470 if (mrtdebug)
471 log(LOG_DEBUG, "ip_mrouter_done\n");
472
473 return (0);
474 }
475
476 static int
477 get_version(m)
478 struct mbuf *m;
479 {
480 int *v = mtod(m, int *);
481
482 *v = 0x0305; /* XXX !!!! */
483 m->m_len = sizeof(int);
484 return (0);
485 }
486
487 /*
488 * Set PIM assert processing global
489 */
490 static int
491 set_assert(m)
492 struct mbuf *m;
493 {
494 int *i;
495
496 if (m == 0 || m->m_len < sizeof(int))
497 return (EINVAL);
498
499 i = mtod(m, int *);
500 pim_assert = !!*i;
501 return (0);
502 }
503
504 /*
505 * Get PIM assert processing global
506 */
507 static int
508 get_assert(m)
509 struct mbuf *m;
510 {
511 int *i = mtod(m, int *);
512
513 *i = pim_assert;
514 m->m_len = sizeof(int);
515 return (0);
516 }
517
518 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
519
520 /*
521 * Add a vif to the vif table
522 */
523 static int
524 add_vif(m)
525 struct mbuf *m;
526 {
527 register struct vifctl *vifcp;
528 register struct vif *vifp;
529 struct ifaddr *ifa;
530 struct ifnet *ifp;
531 struct ifreq ifr;
532 int error, s;
533
534 if (m == 0 || m->m_len < sizeof(struct vifctl))
535 return (EINVAL);
536
537 vifcp = mtod(m, struct vifctl *);
538 if (vifcp->vifc_vifi >= MAXVIFS)
539 return (EINVAL);
540
541 vifp = &viftable[vifcp->vifc_vifi];
542 if (!in_nullhost(vifp->v_lcl_addr))
543 return (EADDRINUSE);
544
545 /* Find the interface with an address in AF_INET family. */
546 sin.sin_addr = vifcp->vifc_lcl_addr;
547 ifa = ifa_ifwithaddr(sintosa(&sin));
548 if (ifa == 0)
549 return (EADDRNOTAVAIL);
550
551 if (vifcp->vifc_flags & VIFF_TUNNEL) {
552 if (vifcp->vifc_flags & VIFF_SRCRT) {
553 log(LOG_ERR, "Source routed tunnels not supported\n");
554 return (EOPNOTSUPP);
555 }
556
557 /* Create a fake encapsulation interface. */
558 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
559 bzero(ifp, sizeof(*ifp));
560 ksprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
561
562 /* Prepare cached route entry. */
563 bzero(&vifp->v_route, sizeof(vifp->v_route));
564
565 /* Tell ipip_input() to start looking at encapsulated packets. */
566 have_encap_tunnel = 1;
567 } else {
568 /* Use the physical interface associated with the address. */
569 ifp = ifa->ifa_ifp;
570
571 /* Make sure the interface supports multicast. */
572 if ((ifp->if_flags & IFF_MULTICAST) == 0)
573 return (EOPNOTSUPP);
574
575 /* Enable promiscuous reception of all IP multicasts. */
576 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
577 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
578 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
579 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
580 if (error)
581 return (error);
582 }
583
584 s = splsoftnet();
585
586 /* Define parameters for the tbf structure. */
587 vifp->tbf_q = 0;
588 vifp->tbf_t = &vifp->tbf_q;
589 microtime(&vifp->tbf_last_pkt_t);
590 vifp->tbf_n_tok = 0;
591 vifp->tbf_q_len = 0;
592 vifp->tbf_max_q_len = MAXQSIZE;
593
594 vifp->v_flags = vifcp->vifc_flags;
595 vifp->v_threshold = vifcp->vifc_threshold;
596 /* scaling up here allows division by 1024 in critical code */
597 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
598 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
599 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
600 vifp->v_ifp = ifp;
601 /* Initialize per vif pkt counters. */
602 vifp->v_pkt_in = 0;
603 vifp->v_pkt_out = 0;
604 vifp->v_bytes_in = 0;
605 vifp->v_bytes_out = 0;
606 #ifdef RSVP_ISI
607 vifp->v_rsvp_on = 0;
608 vifp->v_rsvpd = 0;
609 #endif /* RSVP_ISI */
610
611 splx(s);
612
613 /* Adjust numvifs up if the vifi is higher than numvifs. */
614 if (numvifs <= vifcp->vifc_vifi)
615 numvifs = vifcp->vifc_vifi + 1;
616
617 if (mrtdebug)
618 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
619 vifcp->vifc_vifi,
620 ntohl(vifcp->vifc_lcl_addr.s_addr),
621 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
622 ntohl(vifcp->vifc_rmt_addr.s_addr),
623 vifcp->vifc_threshold,
624 vifcp->vifc_rate_limit);
625
626 return (0);
627 }
628
629 void
630 reset_vif(vifp)
631 register struct vif *vifp;
632 {
633 register struct mbuf *m, *n;
634 struct ifnet *ifp;
635 struct ifreq ifr;
636
637 for (m = vifp->tbf_q; m != 0; m = n) {
638 n = m->m_nextpkt;
639 m_freem(m);
640 }
641
642 if (vifp->v_flags & VIFF_TUNNEL) {
643 free(vifp->v_ifp, M_MRTABLE);
644 if (vifp == last_encap_vif) {
645 last_encap_vif = 0;
646 last_encap_src = zeroin_addr;
647 }
648 } else {
649 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
650 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
651 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
652 ifp = vifp->v_ifp;
653 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
654 }
655 bzero((caddr_t)vifp, sizeof(*vifp));
656 }
657
658 /*
659 * Delete a vif from the vif table
660 */
661 static int
662 del_vif(m)
663 struct mbuf *m;
664 {
665 vifi_t *vifip;
666 register struct vif *vifp;
667 register vifi_t vifi;
668 int s;
669
670 if (m == 0 || m->m_len < sizeof(vifi_t))
671 return (EINVAL);
672
673 vifip = mtod(m, vifi_t *);
674 if (*vifip >= numvifs)
675 return (EINVAL);
676
677 vifp = &viftable[*vifip];
678 if (in_nullhost(vifp->v_lcl_addr))
679 return (EADDRNOTAVAIL);
680
681 s = splsoftnet();
682
683 reset_vif(vifp);
684
685 /* Adjust numvifs down */
686 for (vifi = numvifs; vifi > 0; vifi--)
687 if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
688 break;
689 numvifs = vifi;
690
691 splx(s);
692
693 if (mrtdebug)
694 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
695
696 return (0);
697 }
698
699 static void
700 update_mfc(mfccp, rt)
701 struct mfcctl *mfccp;
702 struct mfc *rt;
703 {
704 vifi_t vifi;
705
706 rt->mfc_parent = mfccp->mfcc_parent;
707 for (vifi = 0; vifi < numvifs; vifi++)
708 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
709 rt->mfc_expire = 0;
710 rt->mfc_stall = 0;
711 }
712
713 static void
714 expire_mfc(rt)
715 struct mfc *rt;
716 {
717 struct rtdetq *rte, *nrte;
718
719 for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
720 nrte = rte->next;
721 m_freem(rte->m);
722 free(rte, M_MRTABLE);
723 }
724
725 LIST_REMOVE(rt, mfc_hash);
726 free(rt, M_MRTABLE);
727 }
728
729 /*
730 * Add an mfc entry
731 */
732 static int
733 add_mfc(m)
734 struct mbuf *m;
735 {
736 struct mfcctl *mfccp;
737 struct mfc *rt;
738 u_int32_t hash = 0;
739 struct rtdetq *rte, *nrte;
740 register u_short nstl;
741 int s;
742
743 if (m == 0 || m->m_len < sizeof(struct mfcctl))
744 return (EINVAL);
745
746 mfccp = mtod(m, struct mfcctl *);
747
748 s = splsoftnet();
749 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
750
751 /* If an entry already exists, just update the fields */
752 if (rt) {
753 if (mrtdebug & DEBUG_MFC)
754 log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
755 ntohl(mfccp->mfcc_origin.s_addr),
756 ntohl(mfccp->mfcc_mcastgrp.s_addr),
757 mfccp->mfcc_parent);
758
759 if (rt->mfc_expire)
760 nexpire[hash]--;
761
762 update_mfc(mfccp, rt);
763
764 splx(s);
765 return (0);
766 }
767
768 /*
769 * Find the entry for which the upcall was made and update
770 */
771 nstl = 0;
772 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
773 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
774 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
775 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
776 rt->mfc_stall != 0) {
777 if (nstl++)
778 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
779 "multiple kernel entries",
780 ntohl(mfccp->mfcc_origin.s_addr),
781 ntohl(mfccp->mfcc_mcastgrp.s_addr),
782 mfccp->mfcc_parent, rt->mfc_stall);
783
784 if (mrtdebug & DEBUG_MFC)
785 log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %p\n",
786 ntohl(mfccp->mfcc_origin.s_addr),
787 ntohl(mfccp->mfcc_mcastgrp.s_addr),
788 mfccp->mfcc_parent, rt->mfc_stall);
789
790 if (rt->mfc_expire)
791 nexpire[hash]--;
792
793 /* free packets Qed at the end of this entry */
794 for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
795 nrte = rte->next;
796 #ifdef RSVP_ISI
797 ip_mdq(rte->m, rte->ifp, rt, -1);
798 #else
799 ip_mdq(rte->m, rte->ifp, rt);
800 #endif /* RSVP_ISI */
801 m_freem(rte->m);
802 #ifdef UPCALL_TIMING
803 collate(&rte->t);
804 #endif /* UPCALL_TIMING */
805 free(rte, M_MRTABLE);
806 }
807
808 update_mfc(mfccp, rt);
809 }
810 }
811
812 if (nstl == 0) {
813 /*
814 * No mfc; make a new one
815 */
816 if (mrtdebug & DEBUG_MFC)
817 log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x\n",
818 ntohl(mfccp->mfcc_origin.s_addr),
819 ntohl(mfccp->mfcc_mcastgrp.s_addr),
820 mfccp->mfcc_parent);
821
822 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
823 if (rt == 0) {
824 splx(s);
825 return (ENOBUFS);
826 }
827
828 rt->mfc_origin = mfccp->mfcc_origin;
829 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
830 /* initialize pkt counters per src-grp */
831 rt->mfc_pkt_cnt = 0;
832 rt->mfc_byte_cnt = 0;
833 rt->mfc_wrong_if = 0;
834 timerclear(&rt->mfc_last_assert);
835 update_mfc(mfccp, rt);
836
837 /* insert new entry at head of hash chain */
838 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
839 }
840
841 splx(s);
842 return (0);
843 }
844
845 #ifdef UPCALL_TIMING
846 /*
847 * collect delay statistics on the upcalls
848 */
849 static void collate(t)
850 register struct timeval *t;
851 {
852 register u_int32_t d;
853 register struct timeval tp;
854 register u_int32_t delta;
855
856 microtime(&tp);
857
858 if (timercmp(t, &tp, <)) {
859 TV_DELTA(tp, *t, delta);
860
861 d = delta >> 10;
862 if (d > 50)
863 d = 50;
864
865 ++upcall_data[d];
866 }
867 }
868 #endif /* UPCALL_TIMING */
869
870 /*
871 * Delete an mfc entry
872 */
873 static int
874 del_mfc(m)
875 struct mbuf *m;
876 {
877 struct mfcctl *mfccp;
878 struct mfc *rt;
879 int s;
880
881 if (m == 0 || m->m_len < sizeof(struct mfcctl))
882 return (EINVAL);
883
884 mfccp = mtod(m, struct mfcctl *);
885
886 if (mrtdebug & DEBUG_MFC)
887 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
888 ntohl(mfccp->mfcc_origin.s_addr),
889 ntohl(mfccp->mfcc_mcastgrp.s_addr));
890
891 s = splsoftnet();
892
893 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
894 if (rt == 0) {
895 splx(s);
896 return (EADDRNOTAVAIL);
897 }
898
899 LIST_REMOVE(rt, mfc_hash);
900 free(rt, M_MRTABLE);
901
902 splx(s);
903 return (0);
904 }
905
906 static int
907 socket_send(s, mm, src)
908 struct socket *s;
909 struct mbuf *mm;
910 struct sockaddr_in *src;
911 {
912 if (s) {
913 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
914 sorwakeup(s);
915 return (0);
916 }
917 }
918 m_freem(mm);
919 return (-1);
920 }
921
922 /*
923 * IP multicast forwarding function. This function assumes that the packet
924 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
925 * pointed to by "ifp", and the packet is to be relayed to other networks
926 * that have members of the packet's destination IP multicast group.
927 *
928 * The packet is returned unscathed to the caller, unless it is
929 * erroneous, in which case a non-zero return value tells the caller to
930 * discard it.
931 */
932
933 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
934 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
935
936 int
937 #ifdef RSVP_ISI
938 ip_mforward(m, ifp, imo)
939 #else
940 ip_mforward(m, ifp)
941 #endif /* RSVP_ISI */
942 struct mbuf *m;
943 struct ifnet *ifp;
944 #ifdef RSVP_ISI
945 struct ip_moptions *imo;
946 #endif /* RSVP_ISI */
947 {
948 register struct ip *ip = mtod(m, struct ip *);
949 register struct mfc *rt;
950 register u_char *ipoptions;
951 static int srctun = 0;
952 register struct mbuf *mm;
953 int s;
954 #ifdef RSVP_ISI
955 register struct vif *vifp;
956 vifi_t vifi;
957 #endif /* RSVP_ISI */
958
959 if (mrtdebug & DEBUG_FORWARD)
960 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
961 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
962
963 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
964 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
965 /*
966 * Packet arrived via a physical interface or
967 * an encapuslated tunnel.
968 */
969 } else {
970 /*
971 * Packet arrived through a source-route tunnel.
972 * Source-route tunnels are no longer supported.
973 */
974 if ((srctun++ % 1000) == 0)
975 log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
976 ntohl(ip->ip_src.s_addr));
977
978 return (1);
979 }
980
981 #ifdef RSVP_ISI
982 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
983 if (ip->ip_ttl < 255)
984 ip->ip_ttl++; /* compensate for -1 in *_send routines */
985 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
986 vifp = viftable + vifi;
987 kprintf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
988 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
989 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
990 vifp->v_ifp->if_xname);
991 }
992 return (ip_mdq(m, ifp, (struct mfc *)0, vifi));
993 }
994 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
995 kprintf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
996 ntohl(ip->ip_src), ntohl(ip->ip_dst));
997 }
998 #endif /* RSVP_ISI */
999
1000 /*
1001 * Don't forward a packet with time-to-live of zero or one,
1002 * or a packet destined to a local-only group.
1003 */
1004 if (ip->ip_ttl <= 1 ||
1005 IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1006 return (0);
1007
1008 /*
1009 * Determine forwarding vifs from the forwarding cache table
1010 */
1011 s = splsoftnet();
1012 MFCFIND(ip->ip_src, ip->ip_dst, rt);
1013
1014 /* Entry exists, so forward if necessary */
1015 if (rt != 0) {
1016 splx(s);
1017 #ifdef RSVP_ISI
1018 return (ip_mdq(m, ifp, rt, -1));
1019 #else
1020 return (ip_mdq(m, ifp, rt));
1021 #endif /* RSVP_ISI */
1022 } else {
1023 /*
1024 * If we don't have a route for packet's origin,
1025 * Make a copy of the packet &
1026 * send message to routing daemon
1027 */
1028
1029 register struct mbuf *mb0;
1030 register struct rtdetq *rte;
1031 register u_int32_t hash;
1032 int hlen = ip->ip_hl << 2;
1033 #ifdef UPCALL_TIMING
1034 struct timeval tp;
1035
1036 microtime(&tp);
1037 #endif /* UPCALL_TIMING */
1038
1039 mrtstat.mrts_no_route++;
1040 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1041 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1042 ntohl(ip->ip_src.s_addr),
1043 ntohl(ip->ip_dst.s_addr));
1044
1045 /*
1046 * Allocate mbufs early so that we don't do extra work if we are
1047 * just going to fail anyway. Make sure to pullup the header so
1048 * that other people can't step on it.
1049 */
1050 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1051 if (rte == 0) {
1052 splx(s);
1053 return (ENOBUFS);
1054 }
1055 mb0 = m_copy(m, 0, M_COPYALL);
1056 M_PULLUP(mb0, hlen);
1057 if (mb0 == 0) {
1058 free(rte, M_MRTABLE);
1059 splx(s);
1060 return (ENOBUFS);
1061 }
1062
1063 /* is there an upcall waiting for this packet? */
1064 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1065 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
1066 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1067 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1068 rt->mfc_stall != 0)
1069 break;
1070 }
1071
1072 if (rt == 0) {
1073 int i;
1074 struct igmpmsg *im;
1075
1076 /* no upcall, so make a new entry */
1077 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1078 if (rt == 0) {
1079 free(rte, M_MRTABLE);
1080 m_freem(mb0);
1081 splx(s);
1082 return (ENOBUFS);
1083 }
1084 /* Make a copy of the header to send to the user level process */
1085 mm = m_copy(m, 0, hlen);
1086 M_PULLUP(mm, hlen);
1087 if (mm == 0) {
1088 free(rte, M_MRTABLE);
1089 m_freem(mb0);
1090 free(rt, M_MRTABLE);
1091 splx(s);
1092 return (ENOBUFS);
1093 }
1094
1095 /*
1096 * Send message to routing daemon to install
1097 * a route into the kernel table
1098 */
1099 sin.sin_addr = ip->ip_src;
1100
1101 im = mtod(mm, struct igmpmsg *);
1102 im->im_msgtype = IGMPMSG_NOCACHE;
1103 im->im_mbz = 0;
1104
1105 mrtstat.mrts_upcalls++;
1106
1107 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1108 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1109 ++mrtstat.mrts_upq_sockfull;
1110 free(rte, M_MRTABLE);
1111 m_freem(mb0);
1112 free(rt, M_MRTABLE);
1113 splx(s);
1114 return (ENOBUFS);
1115 }
1116
1117 /* insert new entry at head of hash chain */
1118 rt->mfc_origin = ip->ip_src;
1119 rt->mfc_mcastgrp = ip->ip_dst;
1120 rt->mfc_pkt_cnt = 0;
1121 rt->mfc_byte_cnt = 0;
1122 rt->mfc_wrong_if = 0;
1123 rt->mfc_expire = UPCALL_EXPIRE;
1124 nexpire[hash]++;
1125 for (i = 0; i < numvifs; i++)
1126 rt->mfc_ttls[i] = 0;
1127 rt->mfc_parent = -1;
1128
1129 /* link into table */
1130 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1131 /* Add this entry to the end of the queue */
1132 rt->mfc_stall = rte;
1133 } else {
1134 /* determine if q has overflowed */
1135 struct rtdetq **p;
1136 register int npkts = 0;
1137
1138 for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next)
1139 if (++npkts > MAX_UPQ) {
1140 mrtstat.mrts_upq_ovflw++;
1141 free(rte, M_MRTABLE);
1142 m_freem(mb0);
1143 splx(s);
1144 return (0);
1145 }
1146
1147 /* Add this entry to the end of the queue */
1148 *p = rte;
1149 }
1150
1151 rte->next = 0;
1152 rte->m = mb0;
1153 rte->ifp = ifp;
1154 #ifdef UPCALL_TIMING
1155 rte->t = tp;
1156 #endif /* UPCALL_TIMING */
1157
1158
1159 splx(s);
1160
1161 return (0);
1162 }
1163 }
1164
1165
1166 /*ARGSUSED*/
1167 static void
1168 expire_upcalls(v)
1169 void *v;
1170 {
1171 int i;
1172 int s;
1173
1174 s = splsoftnet();
1175
1176 for (i = 0; i < MFCTBLSIZ; i++) {
1177 register struct mfc *rt, *nrt;
1178
1179 if (nexpire[i] == 0)
1180 continue;
1181
1182 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
1183 nrt = rt->mfc_hash.le_next;
1184
1185 if (rt->mfc_expire == 0 ||
1186 --rt->mfc_expire > 0)
1187 continue;
1188 nexpire[i]--;
1189
1190 ++mrtstat.mrts_cache_cleanups;
1191 if (mrtdebug & DEBUG_EXPIRE)
1192 log(LOG_DEBUG,
1193 "expire_upcalls: expiring (%x %x)\n",
1194 ntohl(rt->mfc_origin.s_addr),
1195 ntohl(rt->mfc_mcastgrp.s_addr));
1196
1197 expire_mfc(rt);
1198 }
1199 }
1200
1201 splx(s);
1202 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
1203 }
1204
1205 /*
1206 * Packet forwarding routine once entry in the cache is made
1207 */
1208 static int
1209 #ifdef RSVP_ISI
1210 ip_mdq(m, ifp, rt, xmt_vif)
1211 #else
1212 ip_mdq(m, ifp, rt)
1213 #endif /* RSVP_ISI */
1214 register struct mbuf *m;
1215 register struct ifnet *ifp;
1216 register struct mfc *rt;
1217 #ifdef RSVP_ISI
1218 register vifi_t xmt_vif;
1219 #endif /* RSVP_ISI */
1220 {
1221 register struct ip *ip = mtod(m, struct ip *);
1222 register vifi_t vifi;
1223 register struct vif *vifp;
1224 register int plen = ntohs(ip->ip_len);
1225
1226 /*
1227 * Macro to send packet on vif. Since RSVP packets don't get counted on
1228 * input, they shouldn't get counted on output, so statistics keeping is
1229 * seperate.
1230 */
1231 #define MC_SEND(ip,vifp,m) { \
1232 if ((vifp)->v_flags & VIFF_TUNNEL) \
1233 encap_send((ip), (vifp), (m)); \
1234 else \
1235 phyint_send((ip), (vifp), (m)); \
1236 }
1237
1238 #ifdef RSVP_ISI
1239 /*
1240 * If xmt_vif is not -1, send on only the requested vif.
1241 *
1242 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1243 */
1244 if (xmt_vif < numvifs) {
1245 MC_SEND(ip, viftable + xmt_vif, m);
1246 return (1);
1247 }
1248 #endif /* RSVP_ISI */
1249
1250 /*
1251 * Don't forward if it didn't arrive from the parent vif for its origin.
1252 */
1253 vifi = rt->mfc_parent;
1254 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1255 /* came in the wrong interface */
1256 if (mrtdebug & DEBUG_FORWARD)
1257 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1258 ifp, vifi, viftable[vifi].v_ifp);
1259 ++mrtstat.mrts_wrong_if;
1260 ++rt->mfc_wrong_if;
1261 /*
1262 * If we are doing PIM assert processing, and we are forwarding
1263 * packets on this interface, and it is a broadcast medium
1264 * interface (and not a tunnel), send a message to the routing daemon.
1265 */
1266 if (pim_assert && rt->mfc_ttls[vifi] &&
1267 (ifp->if_flags & IFF_BROADCAST) &&
1268 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1269 struct mbuf *mm;
1270 struct igmpmsg *im;
1271 int hlen = ip->ip_hl << 2;
1272 struct timeval now;
1273 register u_int32_t delta;
1274
1275 microtime(&now);
1276
1277 TV_DELTA(rt->mfc_last_assert, now, delta);
1278
1279 if (delta > ASSERT_MSG_TIME) {
1280 mm = m_copy(m, 0, hlen);
1281 M_PULLUP(mm, hlen);
1282 if (mm == 0) {
1283 return (ENOBUFS);
1284 }
1285
1286 rt->mfc_last_assert = now;
1287
1288 im = mtod(mm, struct igmpmsg *);
1289 im->im_msgtype = IGMPMSG_WRONGVIF;
1290 im->im_mbz = 0;
1291 im->im_vif = vifi;
1292
1293 sin.sin_addr = im->im_src;
1294
1295 socket_send(ip_mrouter, mm, &sin);
1296 }
1297 }
1298 return (0);
1299 }
1300
1301 /* If I sourced this packet, it counts as output, else it was input. */
1302 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1303 viftable[vifi].v_pkt_out++;
1304 viftable[vifi].v_bytes_out += plen;
1305 } else {
1306 viftable[vifi].v_pkt_in++;
1307 viftable[vifi].v_bytes_in += plen;
1308 }
1309 rt->mfc_pkt_cnt++;
1310 rt->mfc_byte_cnt += plen;
1311
1312 /*
1313 * For each vif, decide if a copy of the packet should be forwarded.
1314 * Forward if:
1315 * - the ttl exceeds the vif's threshold
1316 * - there are group members downstream on interface
1317 */
1318 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1319 if ((rt->mfc_ttls[vifi] > 0) &&
1320 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1321 vifp->v_pkt_out++;
1322 vifp->v_bytes_out += plen;
1323 MC_SEND(ip, vifp, m);
1324 }
1325
1326 return (0);
1327 }
1328
1329 #ifdef RSVP_ISI
1330 /*
1331 * check if a vif number is legal/ok. This is used by ip_output, to export
1332 * numvifs there,
1333 */
1334 int
1335 legal_vif_num(vif)
1336 int vif;
1337 {
1338 if (vif >= 0 && vif < numvifs)
1339 return (1);
1340 else
1341 return (0);
1342 }
1343 #endif /* RSVP_ISI */
1344
1345 static void
1346 phyint_send(ip, vifp, m)
1347 struct ip *ip;
1348 struct vif *vifp;
1349 struct mbuf *m;
1350 {
1351 register struct mbuf *mb_copy;
1352 register int hlen = ip->ip_hl << 2;
1353
1354 /*
1355 * Make a new reference to the packet; make sure that
1356 * the IP header is actually copied, not just referenced,
1357 * so that ip_output() only scribbles on the copy.
1358 */
1359 mb_copy = m_copy(m, 0, M_COPYALL);
1360 M_PULLUP(mb_copy, hlen);
1361 if (mb_copy == 0)
1362 return;
1363
1364 if (vifp->v_rate_limit <= 0)
1365 tbf_send_packet(vifp, mb_copy);
1366 else
1367 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1368 }
1369
1370 static void
1371 encap_send(ip, vifp, m)
1372 register struct ip *ip;
1373 register struct vif *vifp;
1374 register struct mbuf *m;
1375 {
1376 register struct mbuf *mb_copy;
1377 register struct ip *ip_copy;
1378 register int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
1379
1380 /*
1381 * copy the old packet & pullup it's IP header into the
1382 * new mbuf so we can modify it. Try to fill the new
1383 * mbuf since if we don't the ethernet driver will.
1384 */
1385 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1386 if (mb_copy == 0)
1387 return;
1388 mb_copy->m_data += max_linkhdr;
1389 mb_copy->m_pkthdr.len = len;
1390 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1391
1392 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) {
1393 m_freem(mb_copy);
1394 return;
1395 }
1396 i = MHLEN - max_linkhdr;
1397 if (i > len)
1398 i = len;
1399 mb_copy = m_pullup(mb_copy, i);
1400 if (mb_copy == 0)
1401 return;
1402
1403 /*
1404 * fill in the encapsulating IP header.
1405 */
1406 ip_copy = mtod(mb_copy, struct ip *);
1407 *ip_copy = multicast_encap_iphdr;
1408 ip_copy->ip_id = htons(ip_id++);
1409 ip_copy->ip_len = len;
1410 ip_copy->ip_src = vifp->v_lcl_addr;
1411 ip_copy->ip_dst = vifp->v_rmt_addr;
1412
1413 /*
1414 * turn the encapsulated IP header back into a valid one.
1415 */
1416 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1417 --ip->ip_ttl;
1418 HTONS(ip->ip_len);
1419 HTONS(ip->ip_off);
1420 ip->ip_sum = 0;
1421 #if defined(LBL) && !defined(ultrix) && !defined(i386)
1422 ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1423 #else
1424 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1425 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1426 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1427 #endif
1428
1429 if (vifp->v_rate_limit <= 0)
1430 tbf_send_packet(vifp, mb_copy);
1431 else
1432 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1433 }
1434
1435 /*
1436 * De-encapsulate a packet and feed it back through ip input (this
1437 * routine is called whenever IP gets a packet with proto type
1438 * ENCAP_PROTO and a local destination address).
1439 */
1440 void
1441 #if __STDC__
1442 ipip_input(struct mbuf *m, ...)
1443 #else
1444 ipip_input(m, va_alist)
1445 struct mbuf *m;
1446 va_dcl
1447 #endif
1448 {
1449 register int hlen;
1450 register struct ip *ip = mtod(m, struct ip *);
1451 register int s;
1452 register struct ifqueue *ifq;
1453 register struct vif *vifp;
1454 va_list ap;
1455
1456 va_start(ap, m);
1457 hlen = va_arg(ap, int);
1458 va_end(ap);
1459
1460 if (!have_encap_tunnel) {
1461 rip_input(m);
1462 return;
1463 }
1464
1465 /*
1466 * dump the packet if it's not to a multicast destination or if
1467 * we don't have an encapsulating tunnel with the source.
1468 * Note: This code assumes that the remote site IP address
1469 * uniquely identifies the tunnel (i.e., that this site has
1470 * at most one tunnel with the remote site).
1471 */
1472 if (!IN_MULTICAST(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr)) {
1473 ++mrtstat.mrts_bad_tunnel;
1474 m_freem(m);
1475 return;
1476 }
1477
1478 if (!in_hosteq(ip->ip_src, last_encap_src)) {
1479 register struct vif *vife;
1480
1481 vifp = viftable;
1482 vife = vifp + numvifs;
1483 for (; vifp < vife; vifp++)
1484 if (vifp->v_flags & VIFF_TUNNEL &&
1485 in_hosteq(vifp->v_rmt_addr, ip->ip_src))
1486 break;
1487 if (vifp == vife) {
1488 mrtstat.mrts_cant_tunnel++; /*XXX*/
1489 m_freem(m);
1490 if (mrtdebug)
1491 log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1492 ntohl(ip->ip_src.s_addr));
1493 return;
1494 }
1495 last_encap_vif = vifp;
1496 last_encap_src = ip->ip_src;
1497 } else
1498 vifp = last_encap_vif;
1499
1500 m->m_data += hlen;
1501 m->m_len -= hlen;
1502 m->m_pkthdr.len -= hlen;
1503 m->m_pkthdr.rcvif = vifp->v_ifp;
1504 ifq = &ipintrq;
1505 s = splimp();
1506 if (IF_QFULL(ifq)) {
1507 IF_DROP(ifq);
1508 m_freem(m);
1509 } else {
1510 IF_ENQUEUE(ifq, m);
1511 /*
1512 * normally we would need a "schednetisr(NETISR_IP)"
1513 * here but we were called by ip_input and it is going
1514 * to loop back & try to dequeue the packet we just
1515 * queued as soon as we return so we avoid the
1516 * unnecessary software interrrupt.
1517 */
1518 }
1519 splx(s);
1520 }
1521
1522 /*
1523 * Token bucket filter module
1524 */
1525 static void
1526 tbf_control(vifp, m, ip, len)
1527 register struct vif *vifp;
1528 register struct mbuf *m;
1529 register struct ip *ip;
1530 register u_int32_t len;
1531 {
1532
1533 if (len > MAX_BKT_SIZE) {
1534 /* drop if packet is too large */
1535 mrtstat.mrts_pkt2large++;
1536 m_freem(m);
1537 return;
1538 }
1539
1540 tbf_update_tokens(vifp);
1541
1542 /*
1543 * If there are enough tokens, and the queue is empty, send this packet
1544 * out immediately. Otherwise, try to insert it on this vif's queue.
1545 */
1546 if (vifp->tbf_q_len == 0) {
1547 if (len <= vifp->tbf_n_tok) {
1548 vifp->tbf_n_tok -= len;
1549 tbf_send_packet(vifp, m);
1550 } else {
1551 /* queue packet and timeout till later */
1552 tbf_queue(vifp, m);
1553 timeout(tbf_reprocess_q, vifp, TBF_REPROCESS);
1554 }
1555 } else {
1556 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1557 !tbf_dq_sel(vifp, ip)) {
1558 /* queue length too much, and couldn't make room */
1559 mrtstat.mrts_q_overflow++;
1560 m_freem(m);
1561 } else {
1562 /* queue length low enough, or made room */
1563 tbf_queue(vifp, m);
1564 tbf_process_q(vifp);
1565 }
1566 }
1567 }
1568
1569 /*
1570 * adds a packet to the queue at the interface
1571 */
1572 static void
1573 tbf_queue(vifp, m)
1574 register struct vif *vifp;
1575 register struct mbuf *m;
1576 {
1577 register int s = splsoftnet();
1578
1579 /* insert at tail */
1580 *vifp->tbf_t = m;
1581 vifp->tbf_t = &m->m_nextpkt;
1582 vifp->tbf_q_len++;
1583
1584 splx(s);
1585 }
1586
1587
1588 /*
1589 * processes the queue at the interface
1590 */
1591 static void
1592 tbf_process_q(vifp)
1593 register struct vif *vifp;
1594 {
1595 register struct mbuf *m;
1596 register int len;
1597 register int s = splsoftnet();
1598
1599 /*
1600 * Loop through the queue at the interface and send as many packets
1601 * as possible.
1602 */
1603 for (m = vifp->tbf_q;
1604 m != 0;
1605 m = vifp->tbf_q) {
1606 len = mtod(m, struct ip *)->ip_len;
1607
1608 /* determine if the packet can be sent */
1609 if (len <= vifp->tbf_n_tok) {
1610 /* if so,
1611 * reduce no of tokens, dequeue the packet,
1612 * send the packet.
1613 */
1614 if ((vifp->tbf_q = m->m_nextpkt) == 0)
1615 vifp->tbf_t = &vifp->tbf_q;
1616 --vifp->tbf_q_len;
1617
1618 m->m_nextpkt = 0;
1619 vifp->tbf_n_tok -= len;
1620 tbf_send_packet(vifp, m);
1621 } else
1622 break;
1623 }
1624 splx(s);
1625 }
1626
1627 static void
1628 tbf_reprocess_q(arg)
1629 void *arg;
1630 {
1631 register struct vif *vifp = arg;
1632
1633 if (ip_mrouter == 0)
1634 return;
1635
1636 tbf_update_tokens(vifp);
1637 tbf_process_q(vifp);
1638
1639 if (vifp->tbf_q_len != 0)
1640 timeout(tbf_reprocess_q, vifp, TBF_REPROCESS);
1641 }
1642
1643 /* function that will selectively discard a member of the queue
1644 * based on the precedence value and the priority
1645 */
1646 static int
1647 tbf_dq_sel(vifp, ip)
1648 register struct vif *vifp;
1649 register struct ip *ip;
1650 {
1651 register u_int p;
1652 register struct mbuf **mp, *m;
1653 register int s = splsoftnet();
1654
1655 p = priority(vifp, ip);
1656
1657 for (mp = &vifp->tbf_q, m = *mp;
1658 m != 0;
1659 mp = &m->m_nextpkt, m = *mp) {
1660 if (p > priority(vifp, mtod(m, struct ip *))) {
1661 if ((*mp = m->m_nextpkt) == 0)
1662 vifp->tbf_t = mp;
1663 --vifp->tbf_q_len;
1664
1665 m_freem(m);
1666 mrtstat.mrts_drop_sel++;
1667 splx(s);
1668 return (1);
1669 }
1670 }
1671 splx(s);
1672 return (0);
1673 }
1674
1675 static void
1676 tbf_send_packet(vifp, m)
1677 register struct vif *vifp;
1678 register struct mbuf *m;
1679 {
1680 int error;
1681 int s = splsoftnet();
1682
1683 if (vifp->v_flags & VIFF_TUNNEL) {
1684 /* If tunnel options */
1685 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1686 IP_FORWARDING, (struct ip_moptions *)0);
1687 } else {
1688 /* if physical interface option, extract the options and then send */
1689 struct ip_moptions imo;
1690
1691 imo.imo_multicast_ifp = vifp->v_ifp;
1692 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1693 imo.imo_multicast_loop = 1;
1694 #ifdef RSVP_ISI
1695 imo.imo_multicast_vif = -1;
1696 #endif
1697
1698 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1699 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1700
1701 if (mrtdebug & DEBUG_XMIT)
1702 log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1703 vifp-viftable, error);
1704 }
1705 splx(s);
1706 }
1707
1708 /* determine the current time and then
1709 * the elapsed time (between the last time and time now)
1710 * in milliseconds & update the no. of tokens in the bucket
1711 */
1712 static void
1713 tbf_update_tokens(vifp)
1714 register struct vif *vifp;
1715 {
1716 struct timeval tp;
1717 register u_int32_t tm;
1718 register int s = splsoftnet();
1719
1720 microtime(&tp);
1721
1722 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
1723
1724 /*
1725 * This formula is actually
1726 * "time in seconds" * "bytes/second".
1727 *
1728 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1729 *
1730 * The (1000/1024) was introduced in add_vif to optimize
1731 * this divide into a shift.
1732 */
1733 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
1734 vifp->tbf_last_pkt_t = tp;
1735
1736 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
1737 vifp->tbf_n_tok = MAX_BKT_SIZE;
1738
1739 splx(s);
1740 }
1741
1742 static int
1743 priority(vifp, ip)
1744 register struct vif *vifp;
1745 register struct ip *ip;
1746 {
1747 register int prio;
1748
1749 /* temporary hack; may add general packet classifier some day */
1750
1751 /*
1752 * The UDP port space is divided up into four priority ranges:
1753 * [0, 16384) : unclassified - lowest priority
1754 * [16384, 32768) : audio - highest priority
1755 * [32768, 49152) : whiteboard - medium priority
1756 * [49152, 65536) : video - low priority
1757 */
1758 if (ip->ip_p == IPPROTO_UDP) {
1759 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1760
1761 switch (ntohs(udp->uh_dport) & 0xc000) {
1762 case 0x4000:
1763 prio = 70;
1764 break;
1765 case 0x8000:
1766 prio = 60;
1767 break;
1768 case 0xc000:
1769 prio = 55;
1770 break;
1771 default:
1772 prio = 50;
1773 break;
1774 }
1775
1776 if (tbfdebug > 1)
1777 log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio);
1778 } else
1779 prio = 50;
1780
1781
1782 return (prio);
1783 }
1784
1785 /*
1786 * End of token bucket filter modifications
1787 */
1788
1789 #ifdef RSVP_ISI
1790
1791 int
1792 ip_rsvp_vif_init(so, m)
1793 struct socket *so;
1794 struct mbuf *m;
1795 {
1796 int i;
1797 register int s;
1798
1799 if (rsvpdebug)
1800 kprintf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1801 so->so_type, so->so_proto->pr_protocol);
1802
1803 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1804 return (EOPNOTSUPP);
1805
1806 /* Check mbuf. */
1807 if (m == 0 || m->m_len != sizeof(int)) {
1808 return (EINVAL);
1809 }
1810 i = *(mtod(m, int *));
1811
1812 if (rsvpdebug)
1813 kprintf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1814
1815 s = splsoftnet();
1816
1817 /* Check vif. */
1818 if (!legal_vif_num(i)) {
1819 splx(s);
1820 return (EADDRNOTAVAIL);
1821 }
1822
1823 /* Check if socket is available. */
1824 if (viftable[i].v_rsvpd != 0) {
1825 splx(s);
1826 return (EADDRINUSE);
1827 }
1828
1829 viftable[i].v_rsvpd = so;
1830 /* This may seem silly, but we need to be sure we don't over-increment
1831 * the RSVP counter, in case something slips up.
1832 */
1833 if (!viftable[i].v_rsvp_on) {
1834 viftable[i].v_rsvp_on = 1;
1835 rsvp_on++;
1836 }
1837
1838 splx(s);
1839 return (0);
1840 }
1841
1842 int
1843 ip_rsvp_vif_done(so, m)
1844 struct socket *so;
1845 struct mbuf *m;
1846 {
1847 int i;
1848 register int s;
1849
1850 if (rsvpdebug)
1851 kprintf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1852 so->so_type, so->so_proto->pr_protocol);
1853
1854 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1855 return (EOPNOTSUPP);
1856
1857 /* Check mbuf. */
1858 if (m == 0 || m->m_len != sizeof(int)) {
1859 return (EINVAL);
1860 }
1861 i = *(mtod(m, int *));
1862
1863 s = splsoftnet();
1864
1865 /* Check vif. */
1866 if (!legal_vif_num(i)) {
1867 splx(s);
1868 return (EADDRNOTAVAIL);
1869 }
1870
1871 if (rsvpdebug)
1872 kprintf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1873 viftable[i].v_rsvpd, so);
1874
1875 viftable[i].v_rsvpd = 0;
1876 /* This may seem silly, but we need to be sure we don't over-decrement
1877 * the RSVP counter, in case something slips up.
1878 */
1879 if (viftable[i].v_rsvp_on) {
1880 viftable[i].v_rsvp_on = 0;
1881 rsvp_on--;
1882 }
1883
1884 splx(s);
1885 return (0);
1886 }
1887
1888 void
1889 ip_rsvp_force_done(so)
1890 struct socket *so;
1891 {
1892 int vifi;
1893 register int s;
1894
1895 /* Don't bother if it is not the right type of socket. */
1896 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1897 return;
1898
1899 s = splsoftnet();
1900
1901 /* The socket may be attached to more than one vif...this
1902 * is perfectly legal.
1903 */
1904 for (vifi = 0; vifi < numvifs; vifi++) {
1905 if (viftable[vifi].v_rsvpd == so) {
1906 viftable[vifi].v_rsvpd = 0;
1907 /* This may seem silly, but we need to be sure we don't
1908 * over-decrement the RSVP counter, in case something slips up.
1909 */
1910 if (viftable[vifi].v_rsvp_on) {
1911 viftable[vifi].v_rsvp_on = 0;
1912 rsvp_on--;
1913 }
1914 }
1915 }
1916
1917 splx(s);
1918 return;
1919 }
1920
1921 void
1922 rsvp_input(m, ifp)
1923 struct mbuf *m;
1924 struct ifnet *ifp;
1925 {
1926 int vifi;
1927 register struct ip *ip = mtod(m, struct ip *);
1928 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
1929 register int s;
1930
1931 if (rsvpdebug)
1932 kprintf("rsvp_input: rsvp_on %d\n",rsvp_on);
1933
1934 /* Can still get packets with rsvp_on = 0 if there is a local member
1935 * of the group to which the RSVP packet is addressed. But in this
1936 * case we want to throw the packet away.
1937 */
1938 if (!rsvp_on) {
1939 m_freem(m);
1940 return;
1941 }
1942
1943 /* If the old-style non-vif-associated socket is set, then use
1944 * it and ignore the new ones.
1945 */
1946 if (ip_rsvpd != 0) {
1947 if (rsvpdebug)
1948 kprintf("rsvp_input: Sending packet up old-style socket\n");
1949 rip_input(m);
1950 return;
1951 }
1952
1953 s = splsoftnet();
1954
1955 if (rsvpdebug)
1956 kprintf("rsvp_input: check vifs\n");
1957
1958 /* Find which vif the packet arrived on. */
1959 for (vifi = 0; vifi < numvifs; vifi++) {
1960 if (viftable[vifi].v_ifp == ifp)
1961 break;
1962 }
1963
1964 if (vifi == numvifs) {
1965 /* Can't find vif packet arrived on. Drop packet. */
1966 if (rsvpdebug)
1967 kprintf("rsvp_input: Can't find vif for packet...dropping it.\n");
1968 m_freem(m);
1969 splx(s);
1970 return;
1971 }
1972
1973 if (rsvpdebug)
1974 kprintf("rsvp_input: check socket\n");
1975
1976 if (viftable[vifi].v_rsvpd == 0) {
1977 /* drop packet, since there is no specific socket for this
1978 * interface */
1979 if (rsvpdebug)
1980 kprintf("rsvp_input: No socket defined for vif %d\n",vifi);
1981 m_freem(m);
1982 splx(s);
1983 return;
1984 }
1985
1986 rsvp_src.sin_addr = ip->ip_src;
1987
1988 if (rsvpdebug && m)
1989 kprintf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
1990 m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
1991
1992 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
1993 if (rsvpdebug)
1994 kprintf("rsvp_input: Failed to append to socket\n");
1995 else
1996 if (rsvpdebug)
1997 kprintf("rsvp_input: send packet up\n");
1998
1999 splx(s);
2000 }
2001 #endif /* RSVP_ISI */
2002