ip_mroute.c revision 1.40 1 /* $NetBSD: ip_mroute.c,v 1.40 1999/02/01 15:09:46 mycroft Exp $ */
2
3 /*
4 * IP multicast forwarding procedures
5 *
6 * Written by David Waitzman, BBN Labs, August 1988.
7 * Modified by Steve Deering, Stanford, February 1989.
8 * Modified by Mark J. Steiglitz, Stanford, May, 1991
9 * Modified by Van Jacobson, LBL, January 1993
10 * Modified by Ajit Thyagarajan, PARC, August 1993
11 * Modified by Bill Fenner, PARC, April 1994
12 * Modified by Charles M. Hannum, NetBSD, May 1995.
13 *
14 * MROUTING Revision: 1.2
15 */
16
17 #include <sys/param.h>
18 #include <sys/systm.h>
19 #include <sys/mbuf.h>
20 #include <sys/socket.h>
21 #include <sys/socketvar.h>
22 #include <sys/protosw.h>
23 #include <sys/errno.h>
24 #include <sys/time.h>
25 #include <sys/kernel.h>
26 #include <sys/ioctl.h>
27 #include <sys/syslog.h>
28 #include <net/if.h>
29 #include <net/route.h>
30 #include <net/raw_cb.h>
31 #include <netinet/in.h>
32 #include <netinet/in_var.h>
33 #include <netinet/in_systm.h>
34 #include <netinet/ip.h>
35 #include <netinet/ip_var.h>
36 #include <netinet/in_pcb.h>
37 #include <netinet/udp.h>
38 #include <netinet/igmp.h>
39 #include <netinet/igmp_var.h>
40 #include <netinet/ip_mroute.h>
41
42 #if NGRE > 0
43 extern struct gre_softc gre_softc[NGRE];
44 #endif
45
46 #include <machine/stdarg.h>
47
48 #define IP_MULTICASTOPTS 0
49 #define M_PULLUP(m, len) \
50 do { \
51 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
52 (m) = m_pullup((m), (len)); \
53 } while (0)
54
55 /*
56 * Globals. All but ip_mrouter and ip_mrtproto could be static,
57 * except for netstat or debugging purposes.
58 */
59 struct socket *ip_mrouter = 0;
60 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
61
62 #define NO_RTE_FOUND 0x1
63 #define RTE_FOUND 0x2
64
65 #define MFCHASH(a, g) \
66 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
67 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
68 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
69 u_long mfchash;
70
71 u_char nexpire[MFCTBLSIZ];
72 struct vif viftable[MAXVIFS];
73 struct mrtstat mrtstat;
74 u_int mrtdebug = 0; /* debug level */
75 #define DEBUG_MFC 0x02
76 #define DEBUG_FORWARD 0x04
77 #define DEBUG_EXPIRE 0x08
78 #define DEBUG_XMIT 0x10
79 u_int tbfdebug = 0; /* tbf debug level */
80 #ifdef RSVP_ISI
81 u_int rsvpdebug = 0; /* rsvp debug level */
82 extern struct socket *ip_rsvpd;
83 extern int rsvp_on;
84 #endif /* RSVP_ISI */
85
86 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
87 #define UPCALL_EXPIRE 6 /* number of timeouts */
88
89 /*
90 * Define the token bucket filter structures
91 */
92
93 #define TBF_REPROCESS (hz / 100) /* 100x / second */
94
95 static int get_sg_cnt __P((struct sioc_sg_req *));
96 static int get_vif_cnt __P((struct sioc_vif_req *));
97 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
98 static int get_version __P((struct mbuf *));
99 static int set_assert __P((struct mbuf *));
100 static int get_assert __P((struct mbuf *));
101 static int add_vif __P((struct mbuf *));
102 static int del_vif __P((struct mbuf *));
103 static void update_mfc __P((struct mfcctl *, struct mfc *));
104 static void expire_mfc __P((struct mfc *));
105 static int add_mfc __P((struct mbuf *));
106 #ifdef UPCALL_TIMING
107 static void collate __P((struct timeval *));
108 #endif
109 static int del_mfc __P((struct mbuf *));
110 static int socket_send __P((struct socket *, struct mbuf *,
111 struct sockaddr_in *));
112 static void expire_upcalls __P((void *));
113 #ifdef RSVP_ISI
114 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
115 #else
116 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
117 #endif
118 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
119 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
120 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
121 u_int32_t));
122 static void tbf_queue __P((struct vif *, struct mbuf *));
123 static void tbf_process_q __P((struct vif *));
124 static void tbf_reprocess_q __P((void *));
125 static int tbf_dq_sel __P((struct vif *, struct ip *));
126 static void tbf_send_packet __P((struct vif *, struct mbuf *));
127 static void tbf_update_tokens __P((struct vif *));
128 static int priority __P((struct vif *, struct ip *));
129
130 /*
131 * 'Interfaces' associated with decapsulator (so we can tell
132 * packets that went through it from ones that get reflected
133 * by a broken gateway). These interfaces are never linked into
134 * the system ifnet list & no routes point to them. I.e., packets
135 * can't be sent this way. They only exist as a placeholder for
136 * multicast source verification.
137 */
138 #if 0
139 struct ifnet multicast_decap_if[MAXVIFS];
140 #endif
141
142 #define ENCAP_TTL 64
143 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
144
145 /* prototype IP hdr for encapsulated packets */
146 struct ip multicast_encap_iphdr = {
147 #if BYTE_ORDER == LITTLE_ENDIAN
148 sizeof(struct ip) >> 2, IPVERSION,
149 #else
150 IPVERSION, sizeof(struct ip) >> 2,
151 #endif
152 0, /* tos */
153 sizeof(struct ip), /* total length */
154 0, /* id */
155 0, /* frag offset */
156 ENCAP_TTL, ENCAP_PROTO,
157 0, /* checksum */
158 };
159
160 /*
161 * Private variables.
162 */
163 static vifi_t numvifs = 0;
164 static int have_encap_tunnel = 0;
165
166 /*
167 * one-back cache used by mrt_ipip_input to locate a tunnel's vif
168 * given a datagram's src ip address.
169 */
170 static struct in_addr last_encap_src;
171 static struct vif *last_encap_vif;
172
173 /*
174 * whether or not special PIM assert processing is enabled.
175 */
176 static int pim_assert;
177 /*
178 * Rate limit for assert notification messages, in usec
179 */
180 #define ASSERT_MSG_TIME 3000000
181
182 /*
183 * Find a route for a given origin IP address and Multicast group address
184 * Type of service parameter to be added in the future!!!
185 */
186
187 #define MFCFIND(o, g, rt) { \
188 register struct mfc *_rt; \
189 (rt) = 0; \
190 ++mrtstat.mrts_mfc_lookups; \
191 for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
192 _rt; _rt = _rt->mfc_hash.le_next) { \
193 if (in_hosteq(_rt->mfc_origin, (o)) && \
194 in_hosteq(_rt->mfc_mcastgrp, (g)) && \
195 _rt->mfc_stall == 0) { \
196 (rt) = _rt; \
197 break; \
198 } \
199 } \
200 if ((rt) == 0) \
201 ++mrtstat.mrts_mfc_misses; \
202 }
203
204 /*
205 * Macros to compute elapsed time efficiently
206 * Borrowed from Van Jacobson's scheduling code
207 */
208 #define TV_DELTA(a, b, delta) { \
209 register int xxs; \
210 delta = (a).tv_usec - (b).tv_usec; \
211 xxs = (a).tv_sec - (b).tv_sec; \
212 switch (xxs) { \
213 case 2: \
214 delta += 1000000; \
215 /* fall through */ \
216 case 1: \
217 delta += 1000000; \
218 /* fall through */ \
219 case 0: \
220 break; \
221 default: \
222 delta += (1000000 * xxs); \
223 break; \
224 } \
225 }
226
227 #ifdef UPCALL_TIMING
228 u_int32_t upcall_data[51];
229 #endif /* UPCALL_TIMING */
230
231 /*
232 * Handle MRT setsockopt commands to modify the multicast routing tables.
233 */
234 int
235 ip_mrouter_set(so, optname, m)
236 struct socket *so;
237 int optname;
238 struct mbuf **m;
239 {
240 int error;
241
242 if (optname != MRT_INIT && so != ip_mrouter)
243 error = ENOPROTOOPT;
244 else
245 switch (optname) {
246 case MRT_INIT:
247 error = ip_mrouter_init(so, *m);
248 break;
249 case MRT_DONE:
250 error = ip_mrouter_done();
251 break;
252 case MRT_ADD_VIF:
253 error = add_vif(*m);
254 break;
255 case MRT_DEL_VIF:
256 error = del_vif(*m);
257 break;
258 case MRT_ADD_MFC:
259 error = add_mfc(*m);
260 break;
261 case MRT_DEL_MFC:
262 error = del_mfc(*m);
263 break;
264 case MRT_ASSERT:
265 error = set_assert(*m);
266 break;
267 default:
268 error = ENOPROTOOPT;
269 break;
270 }
271
272 if (*m)
273 m_free(*m);
274 return (error);
275 }
276
277 /*
278 * Handle MRT getsockopt commands
279 */
280 int
281 ip_mrouter_get(so, optname, m)
282 struct socket *so;
283 int optname;
284 struct mbuf **m;
285 {
286 int error;
287
288 if (so != ip_mrouter)
289 error = ENOPROTOOPT;
290 else {
291 *m = m_get(M_WAIT, MT_SOOPTS);
292
293 switch (optname) {
294 case MRT_VERSION:
295 error = get_version(*m);
296 break;
297 case MRT_ASSERT:
298 error = get_assert(*m);
299 break;
300 default:
301 error = ENOPROTOOPT;
302 break;
303 }
304
305 if (error)
306 m_free(*m);
307 }
308
309 return (error);
310 }
311
312 /*
313 * Handle ioctl commands to obtain information from the cache
314 */
315 int
316 mrt_ioctl(so, cmd, data)
317 struct socket *so;
318 u_long cmd;
319 caddr_t data;
320 {
321 int error;
322
323 if (so != ip_mrouter)
324 error = EINVAL;
325 else
326 switch (cmd) {
327 case SIOCGETVIFCNT:
328 error = get_vif_cnt((struct sioc_vif_req *)data);
329 break;
330 case SIOCGETSGCNT:
331 error = get_sg_cnt((struct sioc_sg_req *)data);
332 break;
333 default:
334 error = EINVAL;
335 break;
336 }
337
338 return (error);
339 }
340
341 /*
342 * returns the packet, byte, rpf-failure count for the source group provided
343 */
344 static int
345 get_sg_cnt(req)
346 register struct sioc_sg_req *req;
347 {
348 register struct mfc *rt;
349 int s;
350
351 s = splsoftnet();
352 MFCFIND(req->src, req->grp, rt);
353 splx(s);
354 if (rt != 0) {
355 req->pktcnt = rt->mfc_pkt_cnt;
356 req->bytecnt = rt->mfc_byte_cnt;
357 req->wrong_if = rt->mfc_wrong_if;
358 } else
359 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
360
361 return (0);
362 }
363
364 /*
365 * returns the input and output packet and byte counts on the vif provided
366 */
367 static int
368 get_vif_cnt(req)
369 register struct sioc_vif_req *req;
370 {
371 register vifi_t vifi = req->vifi;
372
373 if (vifi >= numvifs)
374 return (EINVAL);
375
376 req->icount = viftable[vifi].v_pkt_in;
377 req->ocount = viftable[vifi].v_pkt_out;
378 req->ibytes = viftable[vifi].v_bytes_in;
379 req->obytes = viftable[vifi].v_bytes_out;
380
381 return (0);
382 }
383
384 /*
385 * Enable multicast routing
386 */
387 static int
388 ip_mrouter_init(so, m)
389 struct socket *so;
390 struct mbuf *m;
391 {
392 int *v;
393
394 if (mrtdebug)
395 log(LOG_DEBUG,
396 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
397 so->so_type, so->so_proto->pr_protocol);
398
399 if (so->so_type != SOCK_RAW ||
400 so->so_proto->pr_protocol != IPPROTO_IGMP)
401 return (EOPNOTSUPP);
402
403 if (m == 0 || m->m_len < sizeof(int))
404 return (EINVAL);
405
406 v = mtod(m, int *);
407 if (*v != 1)
408 return (EINVAL);
409
410 if (ip_mrouter != 0)
411 return (EADDRINUSE);
412
413 ip_mrouter = so;
414
415 mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, M_WAITOK, &mfchash);
416 bzero((caddr_t)nexpire, sizeof(nexpire));
417
418 pim_assert = 0;
419
420 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
421
422 if (mrtdebug)
423 log(LOG_DEBUG, "ip_mrouter_init\n");
424
425 return (0);
426 }
427
428 /*
429 * Disable multicast routing
430 */
431 int
432 ip_mrouter_done()
433 {
434 vifi_t vifi;
435 register struct vif *vifp;
436 int i;
437 int s;
438
439 s = splsoftnet();
440
441 /* Clear out all the vifs currently in use. */
442 for (vifi = 0; vifi < numvifs; vifi++) {
443 vifp = &viftable[vifi];
444 if (!in_nullhost(vifp->v_lcl_addr))
445 reset_vif(vifp);
446 }
447
448 numvifs = 0;
449 pim_assert = 0;
450
451 untimeout(expire_upcalls, (caddr_t)0);
452
453 /*
454 * Free all multicast forwarding cache entries.
455 */
456 for (i = 0; i < MFCTBLSIZ; i++) {
457 register struct mfc *rt, *nrt;
458
459 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
460 nrt = rt->mfc_hash.le_next;
461
462 expire_mfc(rt);
463 }
464 }
465
466 free(mfchashtbl, M_MRTABLE);
467 mfchashtbl = 0;
468
469 /* Reset de-encapsulation cache. */
470 have_encap_tunnel = 0;
471
472 ip_mrouter = 0;
473
474 splx(s);
475
476 if (mrtdebug)
477 log(LOG_DEBUG, "ip_mrouter_done\n");
478
479 return (0);
480 }
481
482 static int
483 get_version(m)
484 struct mbuf *m;
485 {
486 int *v = mtod(m, int *);
487
488 *v = 0x0305; /* XXX !!!! */
489 m->m_len = sizeof(int);
490 return (0);
491 }
492
493 /*
494 * Set PIM assert processing global
495 */
496 static int
497 set_assert(m)
498 struct mbuf *m;
499 {
500 int *i;
501
502 if (m == 0 || m->m_len < sizeof(int))
503 return (EINVAL);
504
505 i = mtod(m, int *);
506 pim_assert = !!*i;
507 return (0);
508 }
509
510 /*
511 * Get PIM assert processing global
512 */
513 static int
514 get_assert(m)
515 struct mbuf *m;
516 {
517 int *i = mtod(m, int *);
518
519 *i = pim_assert;
520 m->m_len = sizeof(int);
521 return (0);
522 }
523
524 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
525
526 /*
527 * Add a vif to the vif table
528 */
529 static int
530 add_vif(m)
531 struct mbuf *m;
532 {
533 register struct vifctl *vifcp;
534 register struct vif *vifp;
535 struct ifaddr *ifa;
536 struct ifnet *ifp;
537 struct ifreq ifr;
538 int error, s;
539
540 if (m == 0 || m->m_len < sizeof(struct vifctl))
541 return (EINVAL);
542
543 vifcp = mtod(m, struct vifctl *);
544 if (vifcp->vifc_vifi >= MAXVIFS)
545 return (EINVAL);
546
547 vifp = &viftable[vifcp->vifc_vifi];
548 if (!in_nullhost(vifp->v_lcl_addr))
549 return (EADDRINUSE);
550
551 /* Find the interface with an address in AF_INET family. */
552 sin.sin_addr = vifcp->vifc_lcl_addr;
553 ifa = ifa_ifwithaddr(sintosa(&sin));
554 if (ifa == 0)
555 return (EADDRNOTAVAIL);
556
557 if (vifcp->vifc_flags & VIFF_TUNNEL) {
558 if (vifcp->vifc_flags & VIFF_SRCRT) {
559 log(LOG_ERR, "Source routed tunnels not supported\n");
560 return (EOPNOTSUPP);
561 }
562
563 /* Create a fake encapsulation interface. */
564 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
565 bzero(ifp, sizeof(*ifp));
566 sprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
567
568 /* Prepare cached route entry. */
569 bzero(&vifp->v_route, sizeof(vifp->v_route));
570
571 /* Tell mrt_ipip_input() to start looking at encapsulated packets. */
572 have_encap_tunnel = 1;
573 } else {
574 /* Use the physical interface associated with the address. */
575 ifp = ifa->ifa_ifp;
576
577 /* Make sure the interface supports multicast. */
578 if ((ifp->if_flags & IFF_MULTICAST) == 0)
579 return (EOPNOTSUPP);
580
581 /* Enable promiscuous reception of all IP multicasts. */
582 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
583 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
584 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
585 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
586 if (error)
587 return (error);
588 }
589
590 s = splsoftnet();
591
592 /* Define parameters for the tbf structure. */
593 vifp->tbf_q = 0;
594 vifp->tbf_t = &vifp->tbf_q;
595 microtime(&vifp->tbf_last_pkt_t);
596 vifp->tbf_n_tok = 0;
597 vifp->tbf_q_len = 0;
598 vifp->tbf_max_q_len = MAXQSIZE;
599
600 vifp->v_flags = vifcp->vifc_flags;
601 vifp->v_threshold = vifcp->vifc_threshold;
602 /* scaling up here allows division by 1024 in critical code */
603 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
604 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
605 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
606 vifp->v_ifp = ifp;
607 /* Initialize per vif pkt counters. */
608 vifp->v_pkt_in = 0;
609 vifp->v_pkt_out = 0;
610 vifp->v_bytes_in = 0;
611 vifp->v_bytes_out = 0;
612 #ifdef RSVP_ISI
613 vifp->v_rsvp_on = 0;
614 vifp->v_rsvpd = 0;
615 #endif /* RSVP_ISI */
616
617 splx(s);
618
619 /* Adjust numvifs up if the vifi is higher than numvifs. */
620 if (numvifs <= vifcp->vifc_vifi)
621 numvifs = vifcp->vifc_vifi + 1;
622
623 if (mrtdebug)
624 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
625 vifcp->vifc_vifi,
626 ntohl(vifcp->vifc_lcl_addr.s_addr),
627 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
628 ntohl(vifcp->vifc_rmt_addr.s_addr),
629 vifcp->vifc_threshold,
630 vifcp->vifc_rate_limit);
631
632 return (0);
633 }
634
635 void
636 reset_vif(vifp)
637 register struct vif *vifp;
638 {
639 register struct mbuf *m, *n;
640 struct ifnet *ifp;
641 struct ifreq ifr;
642
643 for (m = vifp->tbf_q; m != 0; m = n) {
644 n = m->m_nextpkt;
645 m_freem(m);
646 }
647
648 if (vifp->v_flags & VIFF_TUNNEL) {
649 free(vifp->v_ifp, M_MRTABLE);
650 if (vifp == last_encap_vif) {
651 last_encap_vif = 0;
652 last_encap_src = zeroin_addr;
653 }
654 } else {
655 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
656 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
657 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
658 ifp = vifp->v_ifp;
659 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
660 }
661 bzero((caddr_t)vifp, sizeof(*vifp));
662 }
663
664 /*
665 * Delete a vif from the vif table
666 */
667 static int
668 del_vif(m)
669 struct mbuf *m;
670 {
671 vifi_t *vifip;
672 register struct vif *vifp;
673 register vifi_t vifi;
674 int s;
675
676 if (m == 0 || m->m_len < sizeof(vifi_t))
677 return (EINVAL);
678
679 vifip = mtod(m, vifi_t *);
680 if (*vifip >= numvifs)
681 return (EINVAL);
682
683 vifp = &viftable[*vifip];
684 if (in_nullhost(vifp->v_lcl_addr))
685 return (EADDRNOTAVAIL);
686
687 s = splsoftnet();
688
689 reset_vif(vifp);
690
691 /* Adjust numvifs down */
692 for (vifi = numvifs; vifi > 0; vifi--)
693 if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
694 break;
695 numvifs = vifi;
696
697 splx(s);
698
699 if (mrtdebug)
700 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
701
702 return (0);
703 }
704
705 static void
706 update_mfc(mfccp, rt)
707 struct mfcctl *mfccp;
708 struct mfc *rt;
709 {
710 vifi_t vifi;
711
712 rt->mfc_parent = mfccp->mfcc_parent;
713 for (vifi = 0; vifi < numvifs; vifi++)
714 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
715 rt->mfc_expire = 0;
716 rt->mfc_stall = 0;
717 }
718
719 static void
720 expire_mfc(rt)
721 struct mfc *rt;
722 {
723 struct rtdetq *rte, *nrte;
724
725 for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
726 nrte = rte->next;
727 m_freem(rte->m);
728 free(rte, M_MRTABLE);
729 }
730
731 LIST_REMOVE(rt, mfc_hash);
732 free(rt, M_MRTABLE);
733 }
734
735 /*
736 * Add an mfc entry
737 */
738 static int
739 add_mfc(m)
740 struct mbuf *m;
741 {
742 struct mfcctl *mfccp;
743 struct mfc *rt;
744 u_int32_t hash = 0;
745 struct rtdetq *rte, *nrte;
746 register u_short nstl;
747 int s;
748
749 if (m == 0 || m->m_len < sizeof(struct mfcctl))
750 return (EINVAL);
751
752 mfccp = mtod(m, struct mfcctl *);
753
754 s = splsoftnet();
755 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
756
757 /* If an entry already exists, just update the fields */
758 if (rt) {
759 if (mrtdebug & DEBUG_MFC)
760 log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
761 ntohl(mfccp->mfcc_origin.s_addr),
762 ntohl(mfccp->mfcc_mcastgrp.s_addr),
763 mfccp->mfcc_parent);
764
765 if (rt->mfc_expire)
766 nexpire[hash]--;
767
768 update_mfc(mfccp, rt);
769
770 splx(s);
771 return (0);
772 }
773
774 /*
775 * Find the entry for which the upcall was made and update
776 */
777 nstl = 0;
778 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
779 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
780 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
781 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
782 rt->mfc_stall != 0) {
783 if (nstl++)
784 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
785 "multiple kernel entries",
786 ntohl(mfccp->mfcc_origin.s_addr),
787 ntohl(mfccp->mfcc_mcastgrp.s_addr),
788 mfccp->mfcc_parent, rt->mfc_stall);
789
790 if (mrtdebug & DEBUG_MFC)
791 log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %p\n",
792 ntohl(mfccp->mfcc_origin.s_addr),
793 ntohl(mfccp->mfcc_mcastgrp.s_addr),
794 mfccp->mfcc_parent, rt->mfc_stall);
795
796 if (rt->mfc_expire)
797 nexpire[hash]--;
798
799 rte = rt->mfc_stall;
800 update_mfc(mfccp, rt);
801
802 /* free packets Qed at the end of this entry */
803 for (; rte != 0; rte = nrte) {
804 nrte = rte->next;
805 #ifdef RSVP_ISI
806 ip_mdq(rte->m, rte->ifp, rt, -1);
807 #else
808 ip_mdq(rte->m, rte->ifp, rt);
809 #endif /* RSVP_ISI */
810 m_freem(rte->m);
811 #ifdef UPCALL_TIMING
812 collate(&rte->t);
813 #endif /* UPCALL_TIMING */
814 free(rte, M_MRTABLE);
815 }
816 }
817 }
818
819 if (nstl == 0) {
820 /*
821 * No mfc; make a new one
822 */
823 if (mrtdebug & DEBUG_MFC)
824 log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x\n",
825 ntohl(mfccp->mfcc_origin.s_addr),
826 ntohl(mfccp->mfcc_mcastgrp.s_addr),
827 mfccp->mfcc_parent);
828
829 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
830 if (rt == 0) {
831 splx(s);
832 return (ENOBUFS);
833 }
834
835 rt->mfc_origin = mfccp->mfcc_origin;
836 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
837 /* initialize pkt counters per src-grp */
838 rt->mfc_pkt_cnt = 0;
839 rt->mfc_byte_cnt = 0;
840 rt->mfc_wrong_if = 0;
841 timerclear(&rt->mfc_last_assert);
842 update_mfc(mfccp, rt);
843
844 /* insert new entry at head of hash chain */
845 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
846 }
847
848 splx(s);
849 return (0);
850 }
851
852 #ifdef UPCALL_TIMING
853 /*
854 * collect delay statistics on the upcalls
855 */
856 static void collate(t)
857 register struct timeval *t;
858 {
859 register u_int32_t d;
860 register struct timeval tp;
861 register u_int32_t delta;
862
863 microtime(&tp);
864
865 if (timercmp(t, &tp, <)) {
866 TV_DELTA(tp, *t, delta);
867
868 d = delta >> 10;
869 if (d > 50)
870 d = 50;
871
872 ++upcall_data[d];
873 }
874 }
875 #endif /* UPCALL_TIMING */
876
877 /*
878 * Delete an mfc entry
879 */
880 static int
881 del_mfc(m)
882 struct mbuf *m;
883 {
884 struct mfcctl *mfccp;
885 struct mfc *rt;
886 int s;
887
888 if (m == 0 || m->m_len < sizeof(struct mfcctl))
889 return (EINVAL);
890
891 mfccp = mtod(m, struct mfcctl *);
892
893 if (mrtdebug & DEBUG_MFC)
894 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
895 ntohl(mfccp->mfcc_origin.s_addr),
896 ntohl(mfccp->mfcc_mcastgrp.s_addr));
897
898 s = splsoftnet();
899
900 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
901 if (rt == 0) {
902 splx(s);
903 return (EADDRNOTAVAIL);
904 }
905
906 LIST_REMOVE(rt, mfc_hash);
907 free(rt, M_MRTABLE);
908
909 splx(s);
910 return (0);
911 }
912
913 static int
914 socket_send(s, mm, src)
915 struct socket *s;
916 struct mbuf *mm;
917 struct sockaddr_in *src;
918 {
919 if (s) {
920 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
921 sorwakeup(s);
922 return (0);
923 }
924 }
925 m_freem(mm);
926 return (-1);
927 }
928
929 /*
930 * IP multicast forwarding function. This function assumes that the packet
931 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
932 * pointed to by "ifp", and the packet is to be relayed to other networks
933 * that have members of the packet's destination IP multicast group.
934 *
935 * The packet is returned unscathed to the caller, unless it is
936 * erroneous, in which case a non-zero return value tells the caller to
937 * discard it.
938 */
939
940 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
941 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
942
943 int
944 #ifdef RSVP_ISI
945 ip_mforward(m, ifp, imo)
946 #else
947 ip_mforward(m, ifp)
948 #endif /* RSVP_ISI */
949 struct mbuf *m;
950 struct ifnet *ifp;
951 #ifdef RSVP_ISI
952 struct ip_moptions *imo;
953 #endif /* RSVP_ISI */
954 {
955 register struct ip *ip = mtod(m, struct ip *);
956 register struct mfc *rt;
957 register u_char *ipoptions;
958 static int srctun = 0;
959 register struct mbuf *mm;
960 int s;
961 #ifdef RSVP_ISI
962 register struct vif *vifp;
963 vifi_t vifi;
964 #endif /* RSVP_ISI */
965
966 if (mrtdebug & DEBUG_FORWARD)
967 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
968 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
969
970 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
971 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
972 /*
973 * Packet arrived via a physical interface or
974 * an encapuslated tunnel.
975 */
976 } else {
977 /*
978 * Packet arrived through a source-route tunnel.
979 * Source-route tunnels are no longer supported.
980 */
981 if ((srctun++ % 1000) == 0)
982 log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
983 ntohl(ip->ip_src.s_addr));
984
985 return (1);
986 }
987
988 #ifdef RSVP_ISI
989 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
990 if (ip->ip_ttl < 255)
991 ip->ip_ttl++; /* compensate for -1 in *_send routines */
992 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
993 vifp = viftable + vifi;
994 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
995 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
996 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
997 vifp->v_ifp->if_xname);
998 }
999 return (ip_mdq(m, ifp, (struct mfc *)0, vifi));
1000 }
1001 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1002 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1003 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1004 }
1005 #endif /* RSVP_ISI */
1006
1007 /*
1008 * Don't forward a packet with time-to-live of zero or one,
1009 * or a packet destined to a local-only group.
1010 */
1011 if (ip->ip_ttl <= 1 ||
1012 IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1013 return (0);
1014
1015 /*
1016 * Determine forwarding vifs from the forwarding cache table
1017 */
1018 s = splsoftnet();
1019 MFCFIND(ip->ip_src, ip->ip_dst, rt);
1020
1021 /* Entry exists, so forward if necessary */
1022 if (rt != 0) {
1023 splx(s);
1024 #ifdef RSVP_ISI
1025 return (ip_mdq(m, ifp, rt, -1));
1026 #else
1027 return (ip_mdq(m, ifp, rt));
1028 #endif /* RSVP_ISI */
1029 } else {
1030 /*
1031 * If we don't have a route for packet's origin,
1032 * Make a copy of the packet &
1033 * send message to routing daemon
1034 */
1035
1036 register struct mbuf *mb0;
1037 register struct rtdetq *rte;
1038 register u_int32_t hash;
1039 int hlen = ip->ip_hl << 2;
1040 #ifdef UPCALL_TIMING
1041 struct timeval tp;
1042
1043 microtime(&tp);
1044 #endif /* UPCALL_TIMING */
1045
1046 mrtstat.mrts_no_route++;
1047 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1048 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1049 ntohl(ip->ip_src.s_addr),
1050 ntohl(ip->ip_dst.s_addr));
1051
1052 /*
1053 * Allocate mbufs early so that we don't do extra work if we are
1054 * just going to fail anyway. Make sure to pullup the header so
1055 * that other people can't step on it.
1056 */
1057 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1058 if (rte == 0) {
1059 splx(s);
1060 return (ENOBUFS);
1061 }
1062 mb0 = m_copy(m, 0, M_COPYALL);
1063 M_PULLUP(mb0, hlen);
1064 if (mb0 == 0) {
1065 free(rte, M_MRTABLE);
1066 splx(s);
1067 return (ENOBUFS);
1068 }
1069
1070 /* is there an upcall waiting for this packet? */
1071 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1072 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
1073 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1074 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1075 rt->mfc_stall != 0)
1076 break;
1077 }
1078
1079 if (rt == 0) {
1080 int i;
1081 struct igmpmsg *im;
1082
1083 /* no upcall, so make a new entry */
1084 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1085 if (rt == 0) {
1086 free(rte, M_MRTABLE);
1087 m_freem(mb0);
1088 splx(s);
1089 return (ENOBUFS);
1090 }
1091 /* Make a copy of the header to send to the user level process */
1092 mm = m_copy(m, 0, hlen);
1093 M_PULLUP(mm, hlen);
1094 if (mm == 0) {
1095 free(rte, M_MRTABLE);
1096 m_freem(mb0);
1097 free(rt, M_MRTABLE);
1098 splx(s);
1099 return (ENOBUFS);
1100 }
1101
1102 /*
1103 * Send message to routing daemon to install
1104 * a route into the kernel table
1105 */
1106 sin.sin_addr = ip->ip_src;
1107
1108 im = mtod(mm, struct igmpmsg *);
1109 im->im_msgtype = IGMPMSG_NOCACHE;
1110 im->im_mbz = 0;
1111
1112 mrtstat.mrts_upcalls++;
1113
1114 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1115 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1116 ++mrtstat.mrts_upq_sockfull;
1117 free(rte, M_MRTABLE);
1118 m_freem(mb0);
1119 free(rt, M_MRTABLE);
1120 splx(s);
1121 return (ENOBUFS);
1122 }
1123
1124 /* insert new entry at head of hash chain */
1125 rt->mfc_origin = ip->ip_src;
1126 rt->mfc_mcastgrp = ip->ip_dst;
1127 rt->mfc_pkt_cnt = 0;
1128 rt->mfc_byte_cnt = 0;
1129 rt->mfc_wrong_if = 0;
1130 rt->mfc_expire = UPCALL_EXPIRE;
1131 nexpire[hash]++;
1132 for (i = 0; i < numvifs; i++)
1133 rt->mfc_ttls[i] = 0;
1134 rt->mfc_parent = -1;
1135
1136 /* link into table */
1137 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1138 /* Add this entry to the end of the queue */
1139 rt->mfc_stall = rte;
1140 } else {
1141 /* determine if q has overflowed */
1142 struct rtdetq **p;
1143 register int npkts = 0;
1144
1145 for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next)
1146 if (++npkts > MAX_UPQ) {
1147 mrtstat.mrts_upq_ovflw++;
1148 free(rte, M_MRTABLE);
1149 m_freem(mb0);
1150 splx(s);
1151 return (0);
1152 }
1153
1154 /* Add this entry to the end of the queue */
1155 *p = rte;
1156 }
1157
1158 rte->next = 0;
1159 rte->m = mb0;
1160 rte->ifp = ifp;
1161 #ifdef UPCALL_TIMING
1162 rte->t = tp;
1163 #endif /* UPCALL_TIMING */
1164
1165
1166 splx(s);
1167
1168 return (0);
1169 }
1170 }
1171
1172
1173 /*ARGSUSED*/
1174 static void
1175 expire_upcalls(v)
1176 void *v;
1177 {
1178 int i;
1179 int s;
1180
1181 s = splsoftnet();
1182
1183 for (i = 0; i < MFCTBLSIZ; i++) {
1184 register struct mfc *rt, *nrt;
1185
1186 if (nexpire[i] == 0)
1187 continue;
1188
1189 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
1190 nrt = rt->mfc_hash.le_next;
1191
1192 if (rt->mfc_expire == 0 ||
1193 --rt->mfc_expire > 0)
1194 continue;
1195 nexpire[i]--;
1196
1197 ++mrtstat.mrts_cache_cleanups;
1198 if (mrtdebug & DEBUG_EXPIRE)
1199 log(LOG_DEBUG,
1200 "expire_upcalls: expiring (%x %x)\n",
1201 ntohl(rt->mfc_origin.s_addr),
1202 ntohl(rt->mfc_mcastgrp.s_addr));
1203
1204 expire_mfc(rt);
1205 }
1206 }
1207
1208 splx(s);
1209 timeout(expire_upcalls, (caddr_t)0, EXPIRE_TIMEOUT);
1210 }
1211
1212 /*
1213 * Packet forwarding routine once entry in the cache is made
1214 */
1215 static int
1216 #ifdef RSVP_ISI
1217 ip_mdq(m, ifp, rt, xmt_vif)
1218 #else
1219 ip_mdq(m, ifp, rt)
1220 #endif /* RSVP_ISI */
1221 register struct mbuf *m;
1222 register struct ifnet *ifp;
1223 register struct mfc *rt;
1224 #ifdef RSVP_ISI
1225 register vifi_t xmt_vif;
1226 #endif /* RSVP_ISI */
1227 {
1228 register struct ip *ip = mtod(m, struct ip *);
1229 register vifi_t vifi;
1230 register struct vif *vifp;
1231 register int plen = ntohs(ip->ip_len);
1232
1233 /*
1234 * Macro to send packet on vif. Since RSVP packets don't get counted on
1235 * input, they shouldn't get counted on output, so statistics keeping is
1236 * seperate.
1237 */
1238 #define MC_SEND(ip,vifp,m) { \
1239 if ((vifp)->v_flags & VIFF_TUNNEL) \
1240 encap_send((ip), (vifp), (m)); \
1241 else \
1242 phyint_send((ip), (vifp), (m)); \
1243 }
1244
1245 #ifdef RSVP_ISI
1246 /*
1247 * If xmt_vif is not -1, send on only the requested vif.
1248 *
1249 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1250 */
1251 if (xmt_vif < numvifs) {
1252 MC_SEND(ip, viftable + xmt_vif, m);
1253 return (1);
1254 }
1255 #endif /* RSVP_ISI */
1256
1257 /*
1258 * Don't forward if it didn't arrive from the parent vif for its origin.
1259 */
1260 vifi = rt->mfc_parent;
1261 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1262 /* came in the wrong interface */
1263 if (mrtdebug & DEBUG_FORWARD)
1264 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1265 ifp, vifi, viftable[vifi].v_ifp);
1266 ++mrtstat.mrts_wrong_if;
1267 ++rt->mfc_wrong_if;
1268 /*
1269 * If we are doing PIM assert processing, and we are forwarding
1270 * packets on this interface, and it is a broadcast medium
1271 * interface (and not a tunnel), send a message to the routing daemon.
1272 */
1273 if (pim_assert && rt->mfc_ttls[vifi] &&
1274 (ifp->if_flags & IFF_BROADCAST) &&
1275 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1276 struct mbuf *mm;
1277 struct igmpmsg *im;
1278 int hlen = ip->ip_hl << 2;
1279 struct timeval now;
1280 register u_int32_t delta;
1281
1282 microtime(&now);
1283
1284 TV_DELTA(rt->mfc_last_assert, now, delta);
1285
1286 if (delta > ASSERT_MSG_TIME) {
1287 mm = m_copy(m, 0, hlen);
1288 M_PULLUP(mm, hlen);
1289 if (mm == 0) {
1290 return (ENOBUFS);
1291 }
1292
1293 rt->mfc_last_assert = now;
1294
1295 im = mtod(mm, struct igmpmsg *);
1296 im->im_msgtype = IGMPMSG_WRONGVIF;
1297 im->im_mbz = 0;
1298 im->im_vif = vifi;
1299
1300 sin.sin_addr = im->im_src;
1301
1302 socket_send(ip_mrouter, mm, &sin);
1303 }
1304 }
1305 return (0);
1306 }
1307
1308 /* If I sourced this packet, it counts as output, else it was input. */
1309 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1310 viftable[vifi].v_pkt_out++;
1311 viftable[vifi].v_bytes_out += plen;
1312 } else {
1313 viftable[vifi].v_pkt_in++;
1314 viftable[vifi].v_bytes_in += plen;
1315 }
1316 rt->mfc_pkt_cnt++;
1317 rt->mfc_byte_cnt += plen;
1318
1319 /*
1320 * For each vif, decide if a copy of the packet should be forwarded.
1321 * Forward if:
1322 * - the ttl exceeds the vif's threshold
1323 * - there are group members downstream on interface
1324 */
1325 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1326 if ((rt->mfc_ttls[vifi] > 0) &&
1327 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1328 vifp->v_pkt_out++;
1329 vifp->v_bytes_out += plen;
1330 MC_SEND(ip, vifp, m);
1331 }
1332
1333 return (0);
1334 }
1335
1336 #ifdef RSVP_ISI
1337 /*
1338 * check if a vif number is legal/ok. This is used by ip_output, to export
1339 * numvifs there,
1340 */
1341 int
1342 legal_vif_num(vif)
1343 int vif;
1344 {
1345 if (vif >= 0 && vif < numvifs)
1346 return (1);
1347 else
1348 return (0);
1349 }
1350 #endif /* RSVP_ISI */
1351
1352 static void
1353 phyint_send(ip, vifp, m)
1354 struct ip *ip;
1355 struct vif *vifp;
1356 struct mbuf *m;
1357 {
1358 register struct mbuf *mb_copy;
1359 register int hlen = ip->ip_hl << 2;
1360
1361 /*
1362 * Make a new reference to the packet; make sure that
1363 * the IP header is actually copied, not just referenced,
1364 * so that ip_output() only scribbles on the copy.
1365 */
1366 mb_copy = m_copy(m, 0, M_COPYALL);
1367 M_PULLUP(mb_copy, hlen);
1368 if (mb_copy == 0)
1369 return;
1370
1371 if (vifp->v_rate_limit <= 0)
1372 tbf_send_packet(vifp, mb_copy);
1373 else
1374 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1375 }
1376
1377 static void
1378 encap_send(ip, vifp, m)
1379 register struct ip *ip;
1380 register struct vif *vifp;
1381 register struct mbuf *m;
1382 {
1383 register struct mbuf *mb_copy;
1384 register struct ip *ip_copy;
1385 register int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
1386
1387 /*
1388 * copy the old packet & pullup it's IP header into the
1389 * new mbuf so we can modify it. Try to fill the new
1390 * mbuf since if we don't the ethernet driver will.
1391 */
1392 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1393 if (mb_copy == 0)
1394 return;
1395 mb_copy->m_data += max_linkhdr;
1396 mb_copy->m_pkthdr.len = len;
1397 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1398
1399 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) {
1400 m_freem(mb_copy);
1401 return;
1402 }
1403 i = MHLEN - max_linkhdr;
1404 if (i > len)
1405 i = len;
1406 mb_copy = m_pullup(mb_copy, i);
1407 if (mb_copy == 0)
1408 return;
1409
1410 /*
1411 * fill in the encapsulating IP header.
1412 */
1413 ip_copy = mtod(mb_copy, struct ip *);
1414 *ip_copy = multicast_encap_iphdr;
1415 ip_copy->ip_id = htons(ip_id++);
1416 ip_copy->ip_len = len;
1417 ip_copy->ip_src = vifp->v_lcl_addr;
1418 ip_copy->ip_dst = vifp->v_rmt_addr;
1419
1420 /*
1421 * turn the encapsulated IP header back into a valid one.
1422 */
1423 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1424 --ip->ip_ttl;
1425 HTONS(ip->ip_len);
1426 HTONS(ip->ip_off);
1427 ip->ip_sum = 0;
1428 #if defined(LBL) && !defined(ultrix) && !defined(i386)
1429 ip->ip_sum = ~oc_cksum((caddr_t)ip, ip->ip_hl << 2, 0);
1430 #else
1431 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1432 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1433 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1434 #endif
1435
1436 if (vifp->v_rate_limit <= 0)
1437 tbf_send_packet(vifp, mb_copy);
1438 else
1439 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1440 }
1441
1442 /*
1443 * De-encapsulate a packet and feed it back through ip input (this
1444 * routine is called whenever IP gets a packet with proto type
1445 * ENCAP_PROTO and a local destination address).
1446 *
1447 * Return 1 if we handled the packet, 0 if we did not.
1448 *
1449 * Called from ipip_input().
1450 */
1451 int
1452 mrt_ipip_input(m, hlen)
1453 struct mbuf *m;
1454 int hlen;
1455 {
1456 register struct ip *ip = mtod(m, struct ip *);
1457 register int s;
1458 register struct ifqueue *ifq;
1459 register struct vif *vifp;
1460
1461 if (!have_encap_tunnel)
1462 return (0);
1463
1464 /*
1465 * dump the packet if it's not to a multicast destination or if
1466 * we don't have an encapsulating tunnel with the source.
1467 * Note: This code assumes that the remote site IP address
1468 * uniquely identifies the tunnel (i.e., that this site has
1469 * at most one tunnel with the remote site).
1470 */
1471 if (!IN_MULTICAST(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr)) {
1472 ++mrtstat.mrts_bad_tunnel;
1473 return (0);
1474 }
1475
1476 if (!in_hosteq(ip->ip_src, last_encap_src)) {
1477 register struct vif *vife;
1478
1479 vifp = viftable;
1480 vife = vifp + numvifs;
1481 for (; vifp < vife; vifp++)
1482 if (vifp->v_flags & VIFF_TUNNEL &&
1483 in_hosteq(vifp->v_rmt_addr, ip->ip_src))
1484 break;
1485 if (vifp == vife) {
1486 mrtstat.mrts_cant_tunnel++; /*XXX*/
1487 if (mrtdebug)
1488 log(LOG_DEBUG,
1489 "ip_mforward: no tunnel with %x\n",
1490 ntohl(ip->ip_src.s_addr));
1491 return (0);
1492 }
1493 last_encap_vif = vifp;
1494 last_encap_src = ip->ip_src;
1495 } else
1496 vifp = last_encap_vif;
1497
1498 m->m_data += hlen;
1499 m->m_len -= hlen;
1500 m->m_pkthdr.len -= hlen;
1501 m->m_pkthdr.rcvif = vifp->v_ifp;
1502 ifq = &ipintrq;
1503 s = splimp();
1504 if (IF_QFULL(ifq)) {
1505 IF_DROP(ifq);
1506 m_freem(m);
1507 } else {
1508 IF_ENQUEUE(ifq, m);
1509 /*
1510 * normally we would need a "schednetisr(NETISR_IP)"
1511 * here but we were called by ip_input and it is going
1512 * to loop back & try to dequeue the packet we just
1513 * queued as soon as we return so we avoid the
1514 * unnecessary software interrrupt.
1515 */
1516 }
1517 splx(s);
1518 return (1);
1519 }
1520
1521 /*
1522 * Token bucket filter module
1523 */
1524 static void
1525 tbf_control(vifp, m, ip, len)
1526 register struct vif *vifp;
1527 register struct mbuf *m;
1528 register struct ip *ip;
1529 register u_int32_t len;
1530 {
1531
1532 if (len > MAX_BKT_SIZE) {
1533 /* drop if packet is too large */
1534 mrtstat.mrts_pkt2large++;
1535 m_freem(m);
1536 return;
1537 }
1538
1539 tbf_update_tokens(vifp);
1540
1541 /*
1542 * If there are enough tokens, and the queue is empty, send this packet
1543 * out immediately. Otherwise, try to insert it on this vif's queue.
1544 */
1545 if (vifp->tbf_q_len == 0) {
1546 if (len <= vifp->tbf_n_tok) {
1547 vifp->tbf_n_tok -= len;
1548 tbf_send_packet(vifp, m);
1549 } else {
1550 /* queue packet and timeout till later */
1551 tbf_queue(vifp, m);
1552 timeout(tbf_reprocess_q, vifp, TBF_REPROCESS);
1553 }
1554 } else {
1555 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1556 !tbf_dq_sel(vifp, ip)) {
1557 /* queue length too much, and couldn't make room */
1558 mrtstat.mrts_q_overflow++;
1559 m_freem(m);
1560 } else {
1561 /* queue length low enough, or made room */
1562 tbf_queue(vifp, m);
1563 tbf_process_q(vifp);
1564 }
1565 }
1566 }
1567
1568 /*
1569 * adds a packet to the queue at the interface
1570 */
1571 static void
1572 tbf_queue(vifp, m)
1573 register struct vif *vifp;
1574 register struct mbuf *m;
1575 {
1576 register int s = splsoftnet();
1577
1578 /* insert at tail */
1579 *vifp->tbf_t = m;
1580 vifp->tbf_t = &m->m_nextpkt;
1581 vifp->tbf_q_len++;
1582
1583 splx(s);
1584 }
1585
1586
1587 /*
1588 * processes the queue at the interface
1589 */
1590 static void
1591 tbf_process_q(vifp)
1592 register struct vif *vifp;
1593 {
1594 register struct mbuf *m;
1595 register int len;
1596 register int s = splsoftnet();
1597
1598 /*
1599 * Loop through the queue at the interface and send as many packets
1600 * as possible.
1601 */
1602 for (m = vifp->tbf_q;
1603 m != 0;
1604 m = vifp->tbf_q) {
1605 len = mtod(m, struct ip *)->ip_len;
1606
1607 /* determine if the packet can be sent */
1608 if (len <= vifp->tbf_n_tok) {
1609 /* if so,
1610 * reduce no of tokens, dequeue the packet,
1611 * send the packet.
1612 */
1613 if ((vifp->tbf_q = m->m_nextpkt) == 0)
1614 vifp->tbf_t = &vifp->tbf_q;
1615 --vifp->tbf_q_len;
1616
1617 m->m_nextpkt = 0;
1618 vifp->tbf_n_tok -= len;
1619 tbf_send_packet(vifp, m);
1620 } else
1621 break;
1622 }
1623 splx(s);
1624 }
1625
1626 static void
1627 tbf_reprocess_q(arg)
1628 void *arg;
1629 {
1630 register struct vif *vifp = arg;
1631
1632 if (ip_mrouter == 0)
1633 return;
1634
1635 tbf_update_tokens(vifp);
1636 tbf_process_q(vifp);
1637
1638 if (vifp->tbf_q_len != 0)
1639 timeout(tbf_reprocess_q, vifp, TBF_REPROCESS);
1640 }
1641
1642 /* function that will selectively discard a member of the queue
1643 * based on the precedence value and the priority
1644 */
1645 static int
1646 tbf_dq_sel(vifp, ip)
1647 register struct vif *vifp;
1648 register struct ip *ip;
1649 {
1650 register u_int p;
1651 register struct mbuf **mp, *m;
1652 register int s = splsoftnet();
1653
1654 p = priority(vifp, ip);
1655
1656 for (mp = &vifp->tbf_q, m = *mp;
1657 m != 0;
1658 mp = &m->m_nextpkt, m = *mp) {
1659 if (p > priority(vifp, mtod(m, struct ip *))) {
1660 if ((*mp = m->m_nextpkt) == 0)
1661 vifp->tbf_t = mp;
1662 --vifp->tbf_q_len;
1663
1664 m_freem(m);
1665 mrtstat.mrts_drop_sel++;
1666 splx(s);
1667 return (1);
1668 }
1669 }
1670 splx(s);
1671 return (0);
1672 }
1673
1674 static void
1675 tbf_send_packet(vifp, m)
1676 register struct vif *vifp;
1677 register struct mbuf *m;
1678 {
1679 int error;
1680 int s = splsoftnet();
1681
1682 if (vifp->v_flags & VIFF_TUNNEL) {
1683 /* If tunnel options */
1684 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1685 IP_FORWARDING, (struct ip_moptions *)0);
1686 } else {
1687 /* if physical interface option, extract the options and then send */
1688 struct ip_moptions imo;
1689
1690 imo.imo_multicast_ifp = vifp->v_ifp;
1691 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1692 imo.imo_multicast_loop = 1;
1693 #ifdef RSVP_ISI
1694 imo.imo_multicast_vif = -1;
1695 #endif
1696
1697 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1698 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1699
1700 if (mrtdebug & DEBUG_XMIT)
1701 log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1702 vifp-viftable, error);
1703 }
1704 splx(s);
1705 }
1706
1707 /* determine the current time and then
1708 * the elapsed time (between the last time and time now)
1709 * in milliseconds & update the no. of tokens in the bucket
1710 */
1711 static void
1712 tbf_update_tokens(vifp)
1713 register struct vif *vifp;
1714 {
1715 struct timeval tp;
1716 register u_int32_t tm;
1717 register int s = splsoftnet();
1718
1719 microtime(&tp);
1720
1721 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
1722
1723 /*
1724 * This formula is actually
1725 * "time in seconds" * "bytes/second".
1726 *
1727 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1728 *
1729 * The (1000/1024) was introduced in add_vif to optimize
1730 * this divide into a shift.
1731 */
1732 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
1733 vifp->tbf_last_pkt_t = tp;
1734
1735 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
1736 vifp->tbf_n_tok = MAX_BKT_SIZE;
1737
1738 splx(s);
1739 }
1740
1741 static int
1742 priority(vifp, ip)
1743 register struct vif *vifp;
1744 register struct ip *ip;
1745 {
1746 register int prio;
1747
1748 /* temporary hack; may add general packet classifier some day */
1749
1750 /*
1751 * The UDP port space is divided up into four priority ranges:
1752 * [0, 16384) : unclassified - lowest priority
1753 * [16384, 32768) : audio - highest priority
1754 * [32768, 49152) : whiteboard - medium priority
1755 * [49152, 65536) : video - low priority
1756 */
1757 if (ip->ip_p == IPPROTO_UDP) {
1758 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1759
1760 switch (ntohs(udp->uh_dport) & 0xc000) {
1761 case 0x4000:
1762 prio = 70;
1763 break;
1764 case 0x8000:
1765 prio = 60;
1766 break;
1767 case 0xc000:
1768 prio = 55;
1769 break;
1770 default:
1771 prio = 50;
1772 break;
1773 }
1774
1775 if (tbfdebug > 1)
1776 log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio);
1777 } else
1778 prio = 50;
1779
1780
1781 return (prio);
1782 }
1783
1784 /*
1785 * End of token bucket filter modifications
1786 */
1787
1788 #ifdef RSVP_ISI
1789
1790 int
1791 ip_rsvp_vif_init(so, m)
1792 struct socket *so;
1793 struct mbuf *m;
1794 {
1795 int i;
1796 register int s;
1797
1798 if (rsvpdebug)
1799 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1800 so->so_type, so->so_proto->pr_protocol);
1801
1802 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1803 return (EOPNOTSUPP);
1804
1805 /* Check mbuf. */
1806 if (m == 0 || m->m_len != sizeof(int)) {
1807 return (EINVAL);
1808 }
1809 i = *(mtod(m, int *));
1810
1811 if (rsvpdebug)
1812 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1813
1814 s = splsoftnet();
1815
1816 /* Check vif. */
1817 if (!legal_vif_num(i)) {
1818 splx(s);
1819 return (EADDRNOTAVAIL);
1820 }
1821
1822 /* Check if socket is available. */
1823 if (viftable[i].v_rsvpd != 0) {
1824 splx(s);
1825 return (EADDRINUSE);
1826 }
1827
1828 viftable[i].v_rsvpd = so;
1829 /* This may seem silly, but we need to be sure we don't over-increment
1830 * the RSVP counter, in case something slips up.
1831 */
1832 if (!viftable[i].v_rsvp_on) {
1833 viftable[i].v_rsvp_on = 1;
1834 rsvp_on++;
1835 }
1836
1837 splx(s);
1838 return (0);
1839 }
1840
1841 int
1842 ip_rsvp_vif_done(so, m)
1843 struct socket *so;
1844 struct mbuf *m;
1845 {
1846 int i;
1847 register int s;
1848
1849 if (rsvpdebug)
1850 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1851 so->so_type, so->so_proto->pr_protocol);
1852
1853 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1854 return (EOPNOTSUPP);
1855
1856 /* Check mbuf. */
1857 if (m == 0 || m->m_len != sizeof(int)) {
1858 return (EINVAL);
1859 }
1860 i = *(mtod(m, int *));
1861
1862 s = splsoftnet();
1863
1864 /* Check vif. */
1865 if (!legal_vif_num(i)) {
1866 splx(s);
1867 return (EADDRNOTAVAIL);
1868 }
1869
1870 if (rsvpdebug)
1871 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1872 viftable[i].v_rsvpd, so);
1873
1874 viftable[i].v_rsvpd = 0;
1875 /* This may seem silly, but we need to be sure we don't over-decrement
1876 * the RSVP counter, in case something slips up.
1877 */
1878 if (viftable[i].v_rsvp_on) {
1879 viftable[i].v_rsvp_on = 0;
1880 rsvp_on--;
1881 }
1882
1883 splx(s);
1884 return (0);
1885 }
1886
1887 void
1888 ip_rsvp_force_done(so)
1889 struct socket *so;
1890 {
1891 int vifi;
1892 register int s;
1893
1894 /* Don't bother if it is not the right type of socket. */
1895 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1896 return;
1897
1898 s = splsoftnet();
1899
1900 /* The socket may be attached to more than one vif...this
1901 * is perfectly legal.
1902 */
1903 for (vifi = 0; vifi < numvifs; vifi++) {
1904 if (viftable[vifi].v_rsvpd == so) {
1905 viftable[vifi].v_rsvpd = 0;
1906 /* This may seem silly, but we need to be sure we don't
1907 * over-decrement the RSVP counter, in case something slips up.
1908 */
1909 if (viftable[vifi].v_rsvp_on) {
1910 viftable[vifi].v_rsvp_on = 0;
1911 rsvp_on--;
1912 }
1913 }
1914 }
1915
1916 splx(s);
1917 return;
1918 }
1919
1920 void
1921 rsvp_input(m, ifp)
1922 struct mbuf *m;
1923 struct ifnet *ifp;
1924 {
1925 int vifi;
1926 register struct ip *ip = mtod(m, struct ip *);
1927 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
1928 register int s;
1929
1930 if (rsvpdebug)
1931 printf("rsvp_input: rsvp_on %d\n",rsvp_on);
1932
1933 /* Can still get packets with rsvp_on = 0 if there is a local member
1934 * of the group to which the RSVP packet is addressed. But in this
1935 * case we want to throw the packet away.
1936 */
1937 if (!rsvp_on) {
1938 m_freem(m);
1939 return;
1940 }
1941
1942 /* If the old-style non-vif-associated socket is set, then use
1943 * it and ignore the new ones.
1944 */
1945 if (ip_rsvpd != 0) {
1946 if (rsvpdebug)
1947 printf("rsvp_input: Sending packet up old-style socket\n");
1948 rip_input(m);
1949 return;
1950 }
1951
1952 s = splsoftnet();
1953
1954 if (rsvpdebug)
1955 printf("rsvp_input: check vifs\n");
1956
1957 /* Find which vif the packet arrived on. */
1958 for (vifi = 0; vifi < numvifs; vifi++) {
1959 if (viftable[vifi].v_ifp == ifp)
1960 break;
1961 }
1962
1963 if (vifi == numvifs) {
1964 /* Can't find vif packet arrived on. Drop packet. */
1965 if (rsvpdebug)
1966 printf("rsvp_input: Can't find vif for packet...dropping it.\n");
1967 m_freem(m);
1968 splx(s);
1969 return;
1970 }
1971
1972 if (rsvpdebug)
1973 printf("rsvp_input: check socket\n");
1974
1975 if (viftable[vifi].v_rsvpd == 0) {
1976 /* drop packet, since there is no specific socket for this
1977 * interface */
1978 if (rsvpdebug)
1979 printf("rsvp_input: No socket defined for vif %d\n",vifi);
1980 m_freem(m);
1981 splx(s);
1982 return;
1983 }
1984
1985 rsvp_src.sin_addr = ip->ip_src;
1986
1987 if (rsvpdebug && m)
1988 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
1989 m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
1990
1991 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
1992 if (rsvpdebug)
1993 printf("rsvp_input: Failed to append to socket\n");
1994 else
1995 if (rsvpdebug)
1996 printf("rsvp_input: send packet up\n");
1997
1998 splx(s);
1999 }
2000 #endif /* RSVP_ISI */
2001