ip_mroute.c revision 1.55 1 /* $NetBSD: ip_mroute.c,v 1.55 2001/06/02 16:17:10 thorpej Exp $ */
2
3 /*
4 * IP multicast forwarding procedures
5 *
6 * Written by David Waitzman, BBN Labs, August 1988.
7 * Modified by Steve Deering, Stanford, February 1989.
8 * Modified by Mark J. Steiglitz, Stanford, May, 1991
9 * Modified by Van Jacobson, LBL, January 1993
10 * Modified by Ajit Thyagarajan, PARC, August 1993
11 * Modified by Bill Fenner, PARC, April 1994
12 * Modified by Charles M. Hannum, NetBSD, May 1995.
13 *
14 * MROUTING Revision: 1.2
15 */
16
17 #include "opt_ipsec.h"
18
19 #include <sys/param.h>
20 #include <sys/systm.h>
21 #include <sys/callout.h>
22 #include <sys/mbuf.h>
23 #include <sys/socket.h>
24 #include <sys/socketvar.h>
25 #include <sys/protosw.h>
26 #include <sys/errno.h>
27 #include <sys/time.h>
28 #include <sys/kernel.h>
29 #include <sys/ioctl.h>
30 #include <sys/syslog.h>
31 #include <net/if.h>
32 #include <net/route.h>
33 #include <net/raw_cb.h>
34 #include <netinet/in.h>
35 #include <netinet/in_var.h>
36 #include <netinet/in_systm.h>
37 #include <netinet/ip.h>
38 #include <netinet/ip_var.h>
39 #include <netinet/in_pcb.h>
40 #include <netinet/udp.h>
41 #include <netinet/igmp.h>
42 #include <netinet/igmp_var.h>
43 #include <netinet/ip_mroute.h>
44 #include <netinet/ip_encap.h>
45
46 #include <machine/stdarg.h>
47
48 #define IP_MULTICASTOPTS 0
49 #define M_PULLUP(m, len) \
50 do { \
51 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
52 (m) = m_pullup((m), (len)); \
53 } while (0)
54
55 /*
56 * Globals. All but ip_mrouter and ip_mrtproto could be static,
57 * except for netstat or debugging purposes.
58 */
59 struct socket *ip_mrouter = 0;
60 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
61
62 #define NO_RTE_FOUND 0x1
63 #define RTE_FOUND 0x2
64
65 #define MFCHASH(a, g) \
66 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
67 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
68 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
69 u_long mfchash;
70
71 u_char nexpire[MFCTBLSIZ];
72 struct vif viftable[MAXVIFS];
73 struct mrtstat mrtstat;
74 u_int mrtdebug = 0; /* debug level */
75 #define DEBUG_MFC 0x02
76 #define DEBUG_FORWARD 0x04
77 #define DEBUG_EXPIRE 0x08
78 #define DEBUG_XMIT 0x10
79 u_int tbfdebug = 0; /* tbf debug level */
80 #ifdef RSVP_ISI
81 u_int rsvpdebug = 0; /* rsvp debug level */
82 extern struct socket *ip_rsvpd;
83 extern int rsvp_on;
84 #endif /* RSVP_ISI */
85
86 /* vif attachment using sys/netinet/ip_encap.c */
87 extern struct domain inetdomain;
88 static void vif_input __P((struct mbuf *, ...));
89 static int vif_encapcheck __P((const struct mbuf *, int, int, void *));
90 static struct protosw vif_protosw =
91 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
92 vif_input, rip_output, 0, rip_ctloutput,
93 rip_usrreq,
94 0, 0, 0, 0,
95 };
96
97 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
98 #define UPCALL_EXPIRE 6 /* number of timeouts */
99
100 /*
101 * Define the token bucket filter structures
102 */
103
104 #define TBF_REPROCESS (hz / 100) /* 100x / second */
105
106 static int get_sg_cnt __P((struct sioc_sg_req *));
107 static int get_vif_cnt __P((struct sioc_vif_req *));
108 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
109 static int get_version __P((struct mbuf *));
110 static int set_assert __P((struct mbuf *));
111 static int get_assert __P((struct mbuf *));
112 static int add_vif __P((struct mbuf *));
113 static int del_vif __P((struct mbuf *));
114 static void update_mfc __P((struct mfcctl *, struct mfc *));
115 static void expire_mfc __P((struct mfc *));
116 static int add_mfc __P((struct mbuf *));
117 #ifdef UPCALL_TIMING
118 static void collate __P((struct timeval *));
119 #endif
120 static int del_mfc __P((struct mbuf *));
121 static int socket_send __P((struct socket *, struct mbuf *,
122 struct sockaddr_in *));
123 static void expire_upcalls __P((void *));
124 #ifdef RSVP_ISI
125 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
126 #else
127 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
128 #endif
129 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
130 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
131 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
132 u_int32_t));
133 static void tbf_queue __P((struct vif *, struct mbuf *));
134 static void tbf_process_q __P((struct vif *));
135 static void tbf_reprocess_q __P((void *));
136 static int tbf_dq_sel __P((struct vif *, struct ip *));
137 static void tbf_send_packet __P((struct vif *, struct mbuf *));
138 static void tbf_update_tokens __P((struct vif *));
139 static int priority __P((struct vif *, struct ip *));
140
141 /*
142 * 'Interfaces' associated with decapsulator (so we can tell
143 * packets that went through it from ones that get reflected
144 * by a broken gateway). These interfaces are never linked into
145 * the system ifnet list & no routes point to them. I.e., packets
146 * can't be sent this way. They only exist as a placeholder for
147 * multicast source verification.
148 */
149 #if 0
150 struct ifnet multicast_decap_if[MAXVIFS];
151 #endif
152
153 #define ENCAP_TTL 64
154 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
155
156 /* prototype IP hdr for encapsulated packets */
157 struct ip multicast_encap_iphdr = {
158 #if BYTE_ORDER == LITTLE_ENDIAN
159 sizeof(struct ip) >> 2, IPVERSION,
160 #else
161 IPVERSION, sizeof(struct ip) >> 2,
162 #endif
163 0, /* tos */
164 sizeof(struct ip), /* total length */
165 0, /* id */
166 0, /* frag offset */
167 ENCAP_TTL, ENCAP_PROTO,
168 0, /* checksum */
169 };
170
171 /*
172 * Private variables.
173 */
174 static vifi_t numvifs = 0;
175 static int have_encap_tunnel = 0;
176
177 static struct callout expire_upcalls_ch;
178
179 /*
180 * one-back cache used by mrt_ipip_input to locate a tunnel's vif
181 * given a datagram's src ip address.
182 */
183 static struct in_addr last_encap_src;
184 static struct vif *last_encap_vif;
185
186 /*
187 * whether or not special PIM assert processing is enabled.
188 */
189 static int pim_assert;
190 /*
191 * Rate limit for assert notification messages, in usec
192 */
193 #define ASSERT_MSG_TIME 3000000
194
195 /*
196 * Find a route for a given origin IP address and Multicast group address
197 * Type of service parameter to be added in the future!!!
198 */
199
200 #define MFCFIND(o, g, rt) { \
201 struct mfc *_rt; \
202 (rt) = 0; \
203 ++mrtstat.mrts_mfc_lookups; \
204 for (_rt = mfchashtbl[MFCHASH(o, g)].lh_first; \
205 _rt; _rt = _rt->mfc_hash.le_next) { \
206 if (in_hosteq(_rt->mfc_origin, (o)) && \
207 in_hosteq(_rt->mfc_mcastgrp, (g)) && \
208 _rt->mfc_stall == 0) { \
209 (rt) = _rt; \
210 break; \
211 } \
212 } \
213 if ((rt) == 0) \
214 ++mrtstat.mrts_mfc_misses; \
215 }
216
217 /*
218 * Macros to compute elapsed time efficiently
219 * Borrowed from Van Jacobson's scheduling code
220 */
221 #define TV_DELTA(a, b, delta) { \
222 int xxs; \
223 delta = (a).tv_usec - (b).tv_usec; \
224 xxs = (a).tv_sec - (b).tv_sec; \
225 switch (xxs) { \
226 case 2: \
227 delta += 1000000; \
228 /* fall through */ \
229 case 1: \
230 delta += 1000000; \
231 /* fall through */ \
232 case 0: \
233 break; \
234 default: \
235 delta += (1000000 * xxs); \
236 break; \
237 } \
238 }
239
240 #ifdef UPCALL_TIMING
241 u_int32_t upcall_data[51];
242 #endif /* UPCALL_TIMING */
243
244 /*
245 * Handle MRT setsockopt commands to modify the multicast routing tables.
246 */
247 int
248 ip_mrouter_set(so, optname, m)
249 struct socket *so;
250 int optname;
251 struct mbuf **m;
252 {
253 int error;
254
255 if (optname != MRT_INIT && so != ip_mrouter)
256 error = ENOPROTOOPT;
257 else
258 switch (optname) {
259 case MRT_INIT:
260 error = ip_mrouter_init(so, *m);
261 break;
262 case MRT_DONE:
263 error = ip_mrouter_done();
264 break;
265 case MRT_ADD_VIF:
266 error = add_vif(*m);
267 break;
268 case MRT_DEL_VIF:
269 error = del_vif(*m);
270 break;
271 case MRT_ADD_MFC:
272 error = add_mfc(*m);
273 break;
274 case MRT_DEL_MFC:
275 error = del_mfc(*m);
276 break;
277 case MRT_ASSERT:
278 error = set_assert(*m);
279 break;
280 default:
281 error = ENOPROTOOPT;
282 break;
283 }
284
285 if (*m)
286 m_free(*m);
287 return (error);
288 }
289
290 /*
291 * Handle MRT getsockopt commands
292 */
293 int
294 ip_mrouter_get(so, optname, m)
295 struct socket *so;
296 int optname;
297 struct mbuf **m;
298 {
299 int error;
300
301 if (so != ip_mrouter)
302 error = ENOPROTOOPT;
303 else {
304 *m = m_get(M_WAIT, MT_SOOPTS);
305
306 switch (optname) {
307 case MRT_VERSION:
308 error = get_version(*m);
309 break;
310 case MRT_ASSERT:
311 error = get_assert(*m);
312 break;
313 default:
314 error = ENOPROTOOPT;
315 break;
316 }
317
318 if (error)
319 m_free(*m);
320 }
321
322 return (error);
323 }
324
325 /*
326 * Handle ioctl commands to obtain information from the cache
327 */
328 int
329 mrt_ioctl(so, cmd, data)
330 struct socket *so;
331 u_long cmd;
332 caddr_t data;
333 {
334 int error;
335
336 if (so != ip_mrouter)
337 error = EINVAL;
338 else
339 switch (cmd) {
340 case SIOCGETVIFCNT:
341 error = get_vif_cnt((struct sioc_vif_req *)data);
342 break;
343 case SIOCGETSGCNT:
344 error = get_sg_cnt((struct sioc_sg_req *)data);
345 break;
346 default:
347 error = EINVAL;
348 break;
349 }
350
351 return (error);
352 }
353
354 /*
355 * returns the packet, byte, rpf-failure count for the source group provided
356 */
357 static int
358 get_sg_cnt(req)
359 struct sioc_sg_req *req;
360 {
361 struct mfc *rt;
362 int s;
363
364 s = splsoftnet();
365 MFCFIND(req->src, req->grp, rt);
366 splx(s);
367 if (rt != 0) {
368 req->pktcnt = rt->mfc_pkt_cnt;
369 req->bytecnt = rt->mfc_byte_cnt;
370 req->wrong_if = rt->mfc_wrong_if;
371 } else
372 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
373
374 return (0);
375 }
376
377 /*
378 * returns the input and output packet and byte counts on the vif provided
379 */
380 static int
381 get_vif_cnt(req)
382 struct sioc_vif_req *req;
383 {
384 vifi_t vifi = req->vifi;
385
386 if (vifi >= numvifs)
387 return (EINVAL);
388
389 req->icount = viftable[vifi].v_pkt_in;
390 req->ocount = viftable[vifi].v_pkt_out;
391 req->ibytes = viftable[vifi].v_bytes_in;
392 req->obytes = viftable[vifi].v_bytes_out;
393
394 return (0);
395 }
396
397 /*
398 * Enable multicast routing
399 */
400 static int
401 ip_mrouter_init(so, m)
402 struct socket *so;
403 struct mbuf *m;
404 {
405 int *v;
406
407 if (mrtdebug)
408 log(LOG_DEBUG,
409 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
410 so->so_type, so->so_proto->pr_protocol);
411
412 if (so->so_type != SOCK_RAW ||
413 so->so_proto->pr_protocol != IPPROTO_IGMP)
414 return (EOPNOTSUPP);
415
416 if (m == 0 || m->m_len < sizeof(int))
417 return (EINVAL);
418
419 v = mtod(m, int *);
420 if (*v != 1)
421 return (EINVAL);
422
423 if (ip_mrouter != 0)
424 return (EADDRINUSE);
425
426 ip_mrouter = so;
427
428 mfchashtbl =
429 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
430 bzero((caddr_t)nexpire, sizeof(nexpire));
431
432 pim_assert = 0;
433
434 callout_init(&expire_upcalls_ch);
435 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
436 expire_upcalls, NULL);
437
438 if (mrtdebug)
439 log(LOG_DEBUG, "ip_mrouter_init\n");
440
441 return (0);
442 }
443
444 /*
445 * Disable multicast routing
446 */
447 int
448 ip_mrouter_done()
449 {
450 vifi_t vifi;
451 struct vif *vifp;
452 int i;
453 int s;
454
455 s = splsoftnet();
456
457 /* Clear out all the vifs currently in use. */
458 for (vifi = 0; vifi < numvifs; vifi++) {
459 vifp = &viftable[vifi];
460 if (!in_nullhost(vifp->v_lcl_addr))
461 reset_vif(vifp);
462 }
463
464 numvifs = 0;
465 pim_assert = 0;
466
467 callout_stop(&expire_upcalls_ch);
468
469 /*
470 * Free all multicast forwarding cache entries.
471 */
472 for (i = 0; i < MFCTBLSIZ; i++) {
473 struct mfc *rt, *nrt;
474
475 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
476 nrt = rt->mfc_hash.le_next;
477
478 expire_mfc(rt);
479 }
480 }
481
482 free(mfchashtbl, M_MRTABLE);
483 mfchashtbl = 0;
484
485 /* Reset de-encapsulation cache. */
486 have_encap_tunnel = 0;
487
488 ip_mrouter = 0;
489
490 splx(s);
491
492 if (mrtdebug)
493 log(LOG_DEBUG, "ip_mrouter_done\n");
494
495 return (0);
496 }
497
498 static int
499 get_version(m)
500 struct mbuf *m;
501 {
502 int *v = mtod(m, int *);
503
504 *v = 0x0305; /* XXX !!!! */
505 m->m_len = sizeof(int);
506 return (0);
507 }
508
509 /*
510 * Set PIM assert processing global
511 */
512 static int
513 set_assert(m)
514 struct mbuf *m;
515 {
516 int *i;
517
518 if (m == 0 || m->m_len < sizeof(int))
519 return (EINVAL);
520
521 i = mtod(m, int *);
522 pim_assert = !!*i;
523 return (0);
524 }
525
526 /*
527 * Get PIM assert processing global
528 */
529 static int
530 get_assert(m)
531 struct mbuf *m;
532 {
533 int *i = mtod(m, int *);
534
535 *i = pim_assert;
536 m->m_len = sizeof(int);
537 return (0);
538 }
539
540 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
541
542 /*
543 * Add a vif to the vif table
544 */
545 static int
546 add_vif(m)
547 struct mbuf *m;
548 {
549 struct vifctl *vifcp;
550 struct vif *vifp;
551 struct ifaddr *ifa;
552 struct ifnet *ifp;
553 struct ifreq ifr;
554 int error, s;
555
556 if (m == 0 || m->m_len < sizeof(struct vifctl))
557 return (EINVAL);
558
559 vifcp = mtod(m, struct vifctl *);
560 if (vifcp->vifc_vifi >= MAXVIFS)
561 return (EINVAL);
562
563 vifp = &viftable[vifcp->vifc_vifi];
564 if (!in_nullhost(vifp->v_lcl_addr))
565 return (EADDRINUSE);
566
567 /* Find the interface with an address in AF_INET family. */
568 sin.sin_addr = vifcp->vifc_lcl_addr;
569 ifa = ifa_ifwithaddr(sintosa(&sin));
570 if (ifa == 0)
571 return (EADDRNOTAVAIL);
572
573 if (vifcp->vifc_flags & VIFF_TUNNEL) {
574 if (vifcp->vifc_flags & VIFF_SRCRT) {
575 log(LOG_ERR, "Source routed tunnels not supported\n");
576 return (EOPNOTSUPP);
577 }
578
579 /* attach this vif to decapsulator dispatch table */
580 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
581 vif_encapcheck, &vif_protosw, vifp);
582 if (!vifp->v_encap_cookie)
583 return (EINVAL);
584
585 /* Create a fake encapsulation interface. */
586 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
587 bzero(ifp, sizeof(*ifp));
588 sprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
589
590 /* Prepare cached route entry. */
591 bzero(&vifp->v_route, sizeof(vifp->v_route));
592
593 /*
594 * Tell mrt_ipip_input() to start looking at encapsulated
595 * packets.
596 */
597 have_encap_tunnel = 1;
598 } else {
599 /* Use the physical interface associated with the address. */
600 ifp = ifa->ifa_ifp;
601
602 /* Make sure the interface supports multicast. */
603 if ((ifp->if_flags & IFF_MULTICAST) == 0)
604 return (EOPNOTSUPP);
605
606 /* Enable promiscuous reception of all IP multicasts. */
607 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
608 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
609 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
610 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
611 if (error)
612 return (error);
613 }
614
615 s = splsoftnet();
616
617 /* Define parameters for the tbf structure. */
618 vifp->tbf_q = 0;
619 vifp->tbf_t = &vifp->tbf_q;
620 microtime(&vifp->tbf_last_pkt_t);
621 vifp->tbf_n_tok = 0;
622 vifp->tbf_q_len = 0;
623 vifp->tbf_max_q_len = MAXQSIZE;
624
625 vifp->v_flags = vifcp->vifc_flags;
626 vifp->v_threshold = vifcp->vifc_threshold;
627 /* scaling up here allows division by 1024 in critical code */
628 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
629 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
630 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
631 vifp->v_ifp = ifp;
632 /* Initialize per vif pkt counters. */
633 vifp->v_pkt_in = 0;
634 vifp->v_pkt_out = 0;
635 vifp->v_bytes_in = 0;
636 vifp->v_bytes_out = 0;
637
638 callout_init(&vifp->v_repq_ch);
639
640 #ifdef RSVP_ISI
641 vifp->v_rsvp_on = 0;
642 vifp->v_rsvpd = 0;
643 #endif /* RSVP_ISI */
644
645 splx(s);
646
647 /* Adjust numvifs up if the vifi is higher than numvifs. */
648 if (numvifs <= vifcp->vifc_vifi)
649 numvifs = vifcp->vifc_vifi + 1;
650
651 if (mrtdebug)
652 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
653 vifcp->vifc_vifi,
654 ntohl(vifcp->vifc_lcl_addr.s_addr),
655 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
656 ntohl(vifcp->vifc_rmt_addr.s_addr),
657 vifcp->vifc_threshold,
658 vifcp->vifc_rate_limit);
659
660 return (0);
661 }
662
663 void
664 reset_vif(vifp)
665 struct vif *vifp;
666 {
667 struct mbuf *m, *n;
668 struct ifnet *ifp;
669 struct ifreq ifr;
670
671 callout_stop(&vifp->v_repq_ch);
672
673 /* detach this vif from decapsulator dispatch table */
674 encap_detach(vifp->v_encap_cookie);
675 vifp->v_encap_cookie = NULL;
676
677 for (m = vifp->tbf_q; m != 0; m = n) {
678 n = m->m_nextpkt;
679 m_freem(m);
680 }
681
682 if (vifp->v_flags & VIFF_TUNNEL) {
683 free(vifp->v_ifp, M_MRTABLE);
684 if (vifp == last_encap_vif) {
685 last_encap_vif = 0;
686 last_encap_src = zeroin_addr;
687 }
688 } else {
689 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
690 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
691 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
692 ifp = vifp->v_ifp;
693 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
694 }
695 bzero((caddr_t)vifp, sizeof(*vifp));
696 }
697
698 /*
699 * Delete a vif from the vif table
700 */
701 static int
702 del_vif(m)
703 struct mbuf *m;
704 {
705 vifi_t *vifip;
706 struct vif *vifp;
707 vifi_t vifi;
708 int s;
709
710 if (m == 0 || m->m_len < sizeof(vifi_t))
711 return (EINVAL);
712
713 vifip = mtod(m, vifi_t *);
714 if (*vifip >= numvifs)
715 return (EINVAL);
716
717 vifp = &viftable[*vifip];
718 if (in_nullhost(vifp->v_lcl_addr))
719 return (EADDRNOTAVAIL);
720
721 s = splsoftnet();
722
723 reset_vif(vifp);
724
725 /* Adjust numvifs down */
726 for (vifi = numvifs; vifi > 0; vifi--)
727 if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
728 break;
729 numvifs = vifi;
730
731 splx(s);
732
733 if (mrtdebug)
734 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
735
736 return (0);
737 }
738
739 static void
740 update_mfc(mfccp, rt)
741 struct mfcctl *mfccp;
742 struct mfc *rt;
743 {
744 vifi_t vifi;
745
746 rt->mfc_parent = mfccp->mfcc_parent;
747 for (vifi = 0; vifi < numvifs; vifi++)
748 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
749 rt->mfc_expire = 0;
750 rt->mfc_stall = 0;
751 }
752
753 static void
754 expire_mfc(rt)
755 struct mfc *rt;
756 {
757 struct rtdetq *rte, *nrte;
758
759 for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
760 nrte = rte->next;
761 m_freem(rte->m);
762 free(rte, M_MRTABLE);
763 }
764
765 LIST_REMOVE(rt, mfc_hash);
766 free(rt, M_MRTABLE);
767 }
768
769 /*
770 * Add an mfc entry
771 */
772 static int
773 add_mfc(m)
774 struct mbuf *m;
775 {
776 struct mfcctl *mfccp;
777 struct mfc *rt;
778 u_int32_t hash = 0;
779 struct rtdetq *rte, *nrte;
780 u_short nstl;
781 int s;
782
783 if (m == 0 || m->m_len < sizeof(struct mfcctl))
784 return (EINVAL);
785
786 mfccp = mtod(m, struct mfcctl *);
787
788 s = splsoftnet();
789 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
790
791 /* If an entry already exists, just update the fields */
792 if (rt) {
793 if (mrtdebug & DEBUG_MFC)
794 log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
795 ntohl(mfccp->mfcc_origin.s_addr),
796 ntohl(mfccp->mfcc_mcastgrp.s_addr),
797 mfccp->mfcc_parent);
798
799 if (rt->mfc_expire)
800 nexpire[hash]--;
801
802 update_mfc(mfccp, rt);
803
804 splx(s);
805 return (0);
806 }
807
808 /*
809 * Find the entry for which the upcall was made and update
810 */
811 nstl = 0;
812 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
813 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
814 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
815 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
816 rt->mfc_stall != 0) {
817 if (nstl++)
818 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
819 "multiple kernel entries",
820 ntohl(mfccp->mfcc_origin.s_addr),
821 ntohl(mfccp->mfcc_mcastgrp.s_addr),
822 mfccp->mfcc_parent, rt->mfc_stall);
823
824 if (mrtdebug & DEBUG_MFC)
825 log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %p\n",
826 ntohl(mfccp->mfcc_origin.s_addr),
827 ntohl(mfccp->mfcc_mcastgrp.s_addr),
828 mfccp->mfcc_parent, rt->mfc_stall);
829
830 if (rt->mfc_expire)
831 nexpire[hash]--;
832
833 rte = rt->mfc_stall;
834 update_mfc(mfccp, rt);
835
836 /* free packets Qed at the end of this entry */
837 for (; rte != 0; rte = nrte) {
838 nrte = rte->next;
839 #ifdef RSVP_ISI
840 ip_mdq(rte->m, rte->ifp, rt, -1);
841 #else
842 ip_mdq(rte->m, rte->ifp, rt);
843 #endif /* RSVP_ISI */
844 m_freem(rte->m);
845 #ifdef UPCALL_TIMING
846 collate(&rte->t);
847 #endif /* UPCALL_TIMING */
848 free(rte, M_MRTABLE);
849 }
850 }
851 }
852
853 if (nstl == 0) {
854 /*
855 * No mfc; make a new one
856 */
857 if (mrtdebug & DEBUG_MFC)
858 log(LOG_DEBUG,"add_mfc no upcall o %x g %x p %x\n",
859 ntohl(mfccp->mfcc_origin.s_addr),
860 ntohl(mfccp->mfcc_mcastgrp.s_addr),
861 mfccp->mfcc_parent);
862
863 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
864 if (rt == 0) {
865 splx(s);
866 return (ENOBUFS);
867 }
868
869 rt->mfc_origin = mfccp->mfcc_origin;
870 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
871 /* initialize pkt counters per src-grp */
872 rt->mfc_pkt_cnt = 0;
873 rt->mfc_byte_cnt = 0;
874 rt->mfc_wrong_if = 0;
875 timerclear(&rt->mfc_last_assert);
876 update_mfc(mfccp, rt);
877
878 /* insert new entry at head of hash chain */
879 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
880 }
881
882 splx(s);
883 return (0);
884 }
885
886 #ifdef UPCALL_TIMING
887 /*
888 * collect delay statistics on the upcalls
889 */
890 static void collate(t)
891 struct timeval *t;
892 {
893 u_int32_t d;
894 struct timeval tp;
895 u_int32_t delta;
896
897 microtime(&tp);
898
899 if (timercmp(t, &tp, <)) {
900 TV_DELTA(tp, *t, delta);
901
902 d = delta >> 10;
903 if (d > 50)
904 d = 50;
905
906 ++upcall_data[d];
907 }
908 }
909 #endif /* UPCALL_TIMING */
910
911 /*
912 * Delete an mfc entry
913 */
914 static int
915 del_mfc(m)
916 struct mbuf *m;
917 {
918 struct mfcctl *mfccp;
919 struct mfc *rt;
920 int s;
921
922 if (m == 0 || m->m_len < sizeof(struct mfcctl))
923 return (EINVAL);
924
925 mfccp = mtod(m, struct mfcctl *);
926
927 if (mrtdebug & DEBUG_MFC)
928 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
929 ntohl(mfccp->mfcc_origin.s_addr),
930 ntohl(mfccp->mfcc_mcastgrp.s_addr));
931
932 s = splsoftnet();
933
934 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
935 if (rt == 0) {
936 splx(s);
937 return (EADDRNOTAVAIL);
938 }
939
940 LIST_REMOVE(rt, mfc_hash);
941 free(rt, M_MRTABLE);
942
943 splx(s);
944 return (0);
945 }
946
947 static int
948 socket_send(s, mm, src)
949 struct socket *s;
950 struct mbuf *mm;
951 struct sockaddr_in *src;
952 {
953 if (s) {
954 if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) {
955 sorwakeup(s);
956 return (0);
957 }
958 }
959 m_freem(mm);
960 return (-1);
961 }
962
963 /*
964 * IP multicast forwarding function. This function assumes that the packet
965 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
966 * pointed to by "ifp", and the packet is to be relayed to other networks
967 * that have members of the packet's destination IP multicast group.
968 *
969 * The packet is returned unscathed to the caller, unless it is
970 * erroneous, in which case a non-zero return value tells the caller to
971 * discard it.
972 */
973
974 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
975 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
976
977 int
978 #ifdef RSVP_ISI
979 ip_mforward(m, ifp, imo)
980 #else
981 ip_mforward(m, ifp)
982 #endif /* RSVP_ISI */
983 struct mbuf *m;
984 struct ifnet *ifp;
985 #ifdef RSVP_ISI
986 struct ip_moptions *imo;
987 #endif /* RSVP_ISI */
988 {
989 struct ip *ip = mtod(m, struct ip *);
990 struct mfc *rt;
991 u_char *ipoptions;
992 static int srctun = 0;
993 struct mbuf *mm;
994 int s;
995 #ifdef RSVP_ISI
996 struct vif *vifp;
997 vifi_t vifi;
998 #endif /* RSVP_ISI */
999
1000 /*
1001 * Clear any in-bound checksum flags for this packet.
1002 */
1003 m->m_pkthdr.csum_flags = 0;
1004
1005 if (mrtdebug & DEBUG_FORWARD)
1006 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1007 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1008
1009 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1010 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1011 /*
1012 * Packet arrived via a physical interface or
1013 * an encapuslated tunnel.
1014 */
1015 } else {
1016 /*
1017 * Packet arrived through a source-route tunnel.
1018 * Source-route tunnels are no longer supported.
1019 */
1020 if ((srctun++ % 1000) == 0)
1021 log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1022 ntohl(ip->ip_src.s_addr));
1023
1024 return (1);
1025 }
1026
1027 #ifdef RSVP_ISI
1028 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1029 if (ip->ip_ttl < 255)
1030 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1031 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1032 vifp = viftable + vifi;
1033 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1034 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1035 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1036 vifp->v_ifp->if_xname);
1037 }
1038 return (ip_mdq(m, ifp, (struct mfc *)0, vifi));
1039 }
1040 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1041 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1042 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1043 }
1044 #endif /* RSVP_ISI */
1045
1046 /*
1047 * Don't forward a packet with time-to-live of zero or one,
1048 * or a packet destined to a local-only group.
1049 */
1050 if (ip->ip_ttl <= 1 ||
1051 IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1052 return (0);
1053
1054 /*
1055 * Determine forwarding vifs from the forwarding cache table
1056 */
1057 s = splsoftnet();
1058 MFCFIND(ip->ip_src, ip->ip_dst, rt);
1059
1060 /* Entry exists, so forward if necessary */
1061 if (rt != 0) {
1062 splx(s);
1063 #ifdef RSVP_ISI
1064 return (ip_mdq(m, ifp, rt, -1));
1065 #else
1066 return (ip_mdq(m, ifp, rt));
1067 #endif /* RSVP_ISI */
1068 } else {
1069 /*
1070 * If we don't have a route for packet's origin,
1071 * Make a copy of the packet &
1072 * send message to routing daemon
1073 */
1074
1075 struct mbuf *mb0;
1076 struct rtdetq *rte;
1077 u_int32_t hash;
1078 int hlen = ip->ip_hl << 2;
1079 #ifdef UPCALL_TIMING
1080 struct timeval tp;
1081
1082 microtime(&tp);
1083 #endif /* UPCALL_TIMING */
1084
1085 mrtstat.mrts_no_route++;
1086 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1087 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1088 ntohl(ip->ip_src.s_addr),
1089 ntohl(ip->ip_dst.s_addr));
1090
1091 /*
1092 * Allocate mbufs early so that we don't do extra work if we are
1093 * just going to fail anyway. Make sure to pullup the header so
1094 * that other people can't step on it.
1095 */
1096 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT);
1097 if (rte == 0) {
1098 splx(s);
1099 return (ENOBUFS);
1100 }
1101 mb0 = m_copy(m, 0, M_COPYALL);
1102 M_PULLUP(mb0, hlen);
1103 if (mb0 == 0) {
1104 free(rte, M_MRTABLE);
1105 splx(s);
1106 return (ENOBUFS);
1107 }
1108
1109 /* is there an upcall waiting for this packet? */
1110 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1111 for (rt = mfchashtbl[hash].lh_first; rt; rt = rt->mfc_hash.le_next) {
1112 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1113 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1114 rt->mfc_stall != 0)
1115 break;
1116 }
1117
1118 if (rt == 0) {
1119 int i;
1120 struct igmpmsg *im;
1121
1122 /* no upcall, so make a new entry */
1123 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1124 if (rt == 0) {
1125 free(rte, M_MRTABLE);
1126 m_freem(mb0);
1127 splx(s);
1128 return (ENOBUFS);
1129 }
1130 /* Make a copy of the header to send to the user level process */
1131 mm = m_copy(m, 0, hlen);
1132 M_PULLUP(mm, hlen);
1133 if (mm == 0) {
1134 free(rte, M_MRTABLE);
1135 m_freem(mb0);
1136 free(rt, M_MRTABLE);
1137 splx(s);
1138 return (ENOBUFS);
1139 }
1140
1141 /*
1142 * Send message to routing daemon to install
1143 * a route into the kernel table
1144 */
1145 sin.sin_addr = ip->ip_src;
1146
1147 im = mtod(mm, struct igmpmsg *);
1148 im->im_msgtype = IGMPMSG_NOCACHE;
1149 im->im_mbz = 0;
1150
1151 mrtstat.mrts_upcalls++;
1152
1153 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1154 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1155 ++mrtstat.mrts_upq_sockfull;
1156 free(rte, M_MRTABLE);
1157 m_freem(mb0);
1158 free(rt, M_MRTABLE);
1159 splx(s);
1160 return (ENOBUFS);
1161 }
1162
1163 /* insert new entry at head of hash chain */
1164 rt->mfc_origin = ip->ip_src;
1165 rt->mfc_mcastgrp = ip->ip_dst;
1166 rt->mfc_pkt_cnt = 0;
1167 rt->mfc_byte_cnt = 0;
1168 rt->mfc_wrong_if = 0;
1169 rt->mfc_expire = UPCALL_EXPIRE;
1170 nexpire[hash]++;
1171 for (i = 0; i < numvifs; i++)
1172 rt->mfc_ttls[i] = 0;
1173 rt->mfc_parent = -1;
1174
1175 /* link into table */
1176 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1177 /* Add this entry to the end of the queue */
1178 rt->mfc_stall = rte;
1179 } else {
1180 /* determine if q has overflowed */
1181 struct rtdetq **p;
1182 int npkts = 0;
1183
1184 for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next)
1185 if (++npkts > MAX_UPQ) {
1186 mrtstat.mrts_upq_ovflw++;
1187 free(rte, M_MRTABLE);
1188 m_freem(mb0);
1189 splx(s);
1190 return (0);
1191 }
1192
1193 /* Add this entry to the end of the queue */
1194 *p = rte;
1195 }
1196
1197 rte->next = 0;
1198 rte->m = mb0;
1199 rte->ifp = ifp;
1200 #ifdef UPCALL_TIMING
1201 rte->t = tp;
1202 #endif /* UPCALL_TIMING */
1203
1204
1205 splx(s);
1206
1207 return (0);
1208 }
1209 }
1210
1211
1212 /*ARGSUSED*/
1213 static void
1214 expire_upcalls(v)
1215 void *v;
1216 {
1217 int i;
1218 int s;
1219
1220 s = splsoftnet();
1221
1222 for (i = 0; i < MFCTBLSIZ; i++) {
1223 struct mfc *rt, *nrt;
1224
1225 if (nexpire[i] == 0)
1226 continue;
1227
1228 for (rt = mfchashtbl[i].lh_first; rt; rt = nrt) {
1229 nrt = rt->mfc_hash.le_next;
1230
1231 if (rt->mfc_expire == 0 ||
1232 --rt->mfc_expire > 0)
1233 continue;
1234 nexpire[i]--;
1235
1236 ++mrtstat.mrts_cache_cleanups;
1237 if (mrtdebug & DEBUG_EXPIRE)
1238 log(LOG_DEBUG,
1239 "expire_upcalls: expiring (%x %x)\n",
1240 ntohl(rt->mfc_origin.s_addr),
1241 ntohl(rt->mfc_mcastgrp.s_addr));
1242
1243 expire_mfc(rt);
1244 }
1245 }
1246
1247 splx(s);
1248 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1249 expire_upcalls, NULL);
1250 }
1251
1252 /*
1253 * Packet forwarding routine once entry in the cache is made
1254 */
1255 static int
1256 #ifdef RSVP_ISI
1257 ip_mdq(m, ifp, rt, xmt_vif)
1258 #else
1259 ip_mdq(m, ifp, rt)
1260 #endif /* RSVP_ISI */
1261 struct mbuf *m;
1262 struct ifnet *ifp;
1263 struct mfc *rt;
1264 #ifdef RSVP_ISI
1265 vifi_t xmt_vif;
1266 #endif /* RSVP_ISI */
1267 {
1268 struct ip *ip = mtod(m, struct ip *);
1269 vifi_t vifi;
1270 struct vif *vifp;
1271 int plen = ntohs(ip->ip_len);
1272
1273 /*
1274 * Macro to send packet on vif. Since RSVP packets don't get counted on
1275 * input, they shouldn't get counted on output, so statistics keeping is
1276 * seperate.
1277 */
1278 #define MC_SEND(ip,vifp,m) { \
1279 if ((vifp)->v_flags & VIFF_TUNNEL) \
1280 encap_send((ip), (vifp), (m)); \
1281 else \
1282 phyint_send((ip), (vifp), (m)); \
1283 }
1284
1285 #ifdef RSVP_ISI
1286 /*
1287 * If xmt_vif is not -1, send on only the requested vif.
1288 *
1289 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1290 */
1291 if (xmt_vif < numvifs) {
1292 MC_SEND(ip, viftable + xmt_vif, m);
1293 return (1);
1294 }
1295 #endif /* RSVP_ISI */
1296
1297 /*
1298 * Don't forward if it didn't arrive from the parent vif for its origin.
1299 */
1300 vifi = rt->mfc_parent;
1301 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1302 /* came in the wrong interface */
1303 if (mrtdebug & DEBUG_FORWARD)
1304 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1305 ifp, vifi, viftable[vifi].v_ifp);
1306 ++mrtstat.mrts_wrong_if;
1307 ++rt->mfc_wrong_if;
1308 /*
1309 * If we are doing PIM assert processing, and we are forwarding
1310 * packets on this interface, and it is a broadcast medium
1311 * interface (and not a tunnel), send a message to the routing daemon.
1312 */
1313 if (pim_assert && rt->mfc_ttls[vifi] &&
1314 (ifp->if_flags & IFF_BROADCAST) &&
1315 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1316 struct mbuf *mm;
1317 struct igmpmsg *im;
1318 int hlen = ip->ip_hl << 2;
1319 struct timeval now;
1320 u_int32_t delta;
1321
1322 microtime(&now);
1323
1324 TV_DELTA(rt->mfc_last_assert, now, delta);
1325
1326 if (delta > ASSERT_MSG_TIME) {
1327 mm = m_copy(m, 0, hlen);
1328 M_PULLUP(mm, hlen);
1329 if (mm == 0) {
1330 return (ENOBUFS);
1331 }
1332
1333 rt->mfc_last_assert = now;
1334
1335 im = mtod(mm, struct igmpmsg *);
1336 im->im_msgtype = IGMPMSG_WRONGVIF;
1337 im->im_mbz = 0;
1338 im->im_vif = vifi;
1339
1340 sin.sin_addr = im->im_src;
1341
1342 socket_send(ip_mrouter, mm, &sin);
1343 }
1344 }
1345 return (0);
1346 }
1347
1348 /* If I sourced this packet, it counts as output, else it was input. */
1349 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1350 viftable[vifi].v_pkt_out++;
1351 viftable[vifi].v_bytes_out += plen;
1352 } else {
1353 viftable[vifi].v_pkt_in++;
1354 viftable[vifi].v_bytes_in += plen;
1355 }
1356 rt->mfc_pkt_cnt++;
1357 rt->mfc_byte_cnt += plen;
1358
1359 /*
1360 * For each vif, decide if a copy of the packet should be forwarded.
1361 * Forward if:
1362 * - the ttl exceeds the vif's threshold
1363 * - there are group members downstream on interface
1364 */
1365 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1366 if ((rt->mfc_ttls[vifi] > 0) &&
1367 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1368 vifp->v_pkt_out++;
1369 vifp->v_bytes_out += plen;
1370 MC_SEND(ip, vifp, m);
1371 }
1372
1373 return (0);
1374 }
1375
1376 #ifdef RSVP_ISI
1377 /*
1378 * check if a vif number is legal/ok. This is used by ip_output, to export
1379 * numvifs there,
1380 */
1381 int
1382 legal_vif_num(vif)
1383 int vif;
1384 {
1385 if (vif >= 0 && vif < numvifs)
1386 return (1);
1387 else
1388 return (0);
1389 }
1390 #endif /* RSVP_ISI */
1391
1392 static void
1393 phyint_send(ip, vifp, m)
1394 struct ip *ip;
1395 struct vif *vifp;
1396 struct mbuf *m;
1397 {
1398 struct mbuf *mb_copy;
1399 int hlen = ip->ip_hl << 2;
1400
1401 /*
1402 * Make a new reference to the packet; make sure that
1403 * the IP header is actually copied, not just referenced,
1404 * so that ip_output() only scribbles on the copy.
1405 */
1406 mb_copy = m_copy(m, 0, M_COPYALL);
1407 M_PULLUP(mb_copy, hlen);
1408 if (mb_copy == 0)
1409 return;
1410
1411 if (vifp->v_rate_limit <= 0)
1412 tbf_send_packet(vifp, mb_copy);
1413 else
1414 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1415 }
1416
1417 static void
1418 encap_send(ip, vifp, m)
1419 struct ip *ip;
1420 struct vif *vifp;
1421 struct mbuf *m;
1422 {
1423 struct mbuf *mb_copy;
1424 struct ip *ip_copy;
1425 int i, len = ip->ip_len + sizeof(multicast_encap_iphdr);
1426
1427 /*
1428 * copy the old packet & pullup it's IP header into the
1429 * new mbuf so we can modify it. Try to fill the new
1430 * mbuf since if we don't the ethernet driver will.
1431 */
1432 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1433 if (mb_copy == 0)
1434 return;
1435 mb_copy->m_data += max_linkhdr;
1436 mb_copy->m_pkthdr.len = len;
1437 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1438
1439 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) {
1440 m_freem(mb_copy);
1441 return;
1442 }
1443 i = MHLEN - max_linkhdr;
1444 if (i > len)
1445 i = len;
1446 mb_copy = m_pullup(mb_copy, i);
1447 if (mb_copy == 0)
1448 return;
1449
1450 /*
1451 * fill in the encapsulating IP header.
1452 */
1453 ip_copy = mtod(mb_copy, struct ip *);
1454 *ip_copy = multicast_encap_iphdr;
1455 ip_copy->ip_id = htons(ip_id++);
1456 ip_copy->ip_len = len;
1457 ip_copy->ip_src = vifp->v_lcl_addr;
1458 ip_copy->ip_dst = vifp->v_rmt_addr;
1459
1460 /*
1461 * turn the encapsulated IP header back into a valid one.
1462 */
1463 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1464 --ip->ip_ttl;
1465 HTONS(ip->ip_len);
1466 HTONS(ip->ip_off);
1467 ip->ip_sum = 0;
1468 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1469 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1470 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1471
1472 if (vifp->v_rate_limit <= 0)
1473 tbf_send_packet(vifp, mb_copy);
1474 else
1475 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1476 }
1477
1478 /*
1479 * De-encapsulate a packet and feed it back through ip input.
1480 */
1481 static void
1482 #if __STDC__
1483 vif_input(struct mbuf *m, ...)
1484 #else
1485 vif_input(m, va_alist)
1486 struct mbuf *m;
1487 va_dcl
1488 #endif
1489 {
1490 int off, proto;
1491 va_list ap;
1492 struct ip *ip;
1493 struct vif *vifp;
1494 int s;
1495 struct ifqueue *ifq;
1496
1497 va_start(ap, m);
1498 off = va_arg(ap, int);
1499 proto = va_arg(ap, int);
1500 va_end(ap);
1501
1502 vifp = (struct vif *)encap_getarg(m);
1503 if (!vifp || proto != AF_INET) {
1504 m_freem(m);
1505 mrtstat.mrts_bad_tunnel++;
1506 return;
1507 }
1508
1509 ip = mtod(m, struct ip *);
1510
1511 m_adj(m, off);
1512 m->m_pkthdr.rcvif = vifp->v_ifp;
1513 ifq = &ipintrq;
1514 s = splnet();
1515 if (IF_QFULL(ifq)) {
1516 IF_DROP(ifq);
1517 m_freem(m);
1518 } else {
1519 IF_ENQUEUE(ifq, m);
1520 /*
1521 * normally we would need a "schednetisr(NETISR_IP)"
1522 * here but we were called by ip_input and it is going
1523 * to loop back & try to dequeue the packet we just
1524 * queued as soon as we return so we avoid the
1525 * unnecessary software interrrupt.
1526 */
1527 }
1528 splx(s);
1529 }
1530
1531 /*
1532 * Check if the packet should be grabbed by us.
1533 */
1534 static int
1535 vif_encapcheck(m, off, proto, arg)
1536 const struct mbuf *m;
1537 int off;
1538 int proto;
1539 void *arg;
1540 {
1541 struct vif *vifp;
1542 struct ip ip;
1543
1544 #ifdef DIAGNOSTIC
1545 if (!arg || proto != IPPROTO_IPV4)
1546 panic("unexpected arg in vif_encapcheck");
1547 #endif
1548
1549 /*
1550 * do not grab the packet if it's not to a multicast destination or if
1551 * we don't have an encapsulating tunnel with the source.
1552 * Note: This code assumes that the remote site IP address
1553 * uniquely identifies the tunnel (i.e., that this site has
1554 * at most one tunnel with the remote site).
1555 */
1556
1557 /* LINTED const cast */
1558 m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
1559 if (!IN_MULTICAST(ip.ip_dst.s_addr))
1560 return 0;
1561
1562 /* LINTED const cast */
1563 m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
1564 if (!in_hosteq(ip.ip_src, last_encap_src)) {
1565 vifp = (struct vif *)arg;
1566 if (vifp->v_flags & VIFF_TUNNEL &&
1567 in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1568 ;
1569 else
1570 return 0;
1571 last_encap_vif = vifp;
1572 last_encap_src = ip.ip_src;
1573 } else
1574 vifp = last_encap_vif;
1575
1576 /* 32bit match, since we have checked ip_src only */
1577 return 32;
1578 }
1579
1580 /*
1581 * Token bucket filter module
1582 */
1583 static void
1584 tbf_control(vifp, m, ip, len)
1585 struct vif *vifp;
1586 struct mbuf *m;
1587 struct ip *ip;
1588 u_int32_t len;
1589 {
1590
1591 if (len > MAX_BKT_SIZE) {
1592 /* drop if packet is too large */
1593 mrtstat.mrts_pkt2large++;
1594 m_freem(m);
1595 return;
1596 }
1597
1598 tbf_update_tokens(vifp);
1599
1600 /*
1601 * If there are enough tokens, and the queue is empty, send this packet
1602 * out immediately. Otherwise, try to insert it on this vif's queue.
1603 */
1604 if (vifp->tbf_q_len == 0) {
1605 if (len <= vifp->tbf_n_tok) {
1606 vifp->tbf_n_tok -= len;
1607 tbf_send_packet(vifp, m);
1608 } else {
1609 /* queue packet and timeout till later */
1610 tbf_queue(vifp, m);
1611 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1612 tbf_reprocess_q, vifp);
1613 }
1614 } else {
1615 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1616 !tbf_dq_sel(vifp, ip)) {
1617 /* queue length too much, and couldn't make room */
1618 mrtstat.mrts_q_overflow++;
1619 m_freem(m);
1620 } else {
1621 /* queue length low enough, or made room */
1622 tbf_queue(vifp, m);
1623 tbf_process_q(vifp);
1624 }
1625 }
1626 }
1627
1628 /*
1629 * adds a packet to the queue at the interface
1630 */
1631 static void
1632 tbf_queue(vifp, m)
1633 struct vif *vifp;
1634 struct mbuf *m;
1635 {
1636 int s = splsoftnet();
1637
1638 /* insert at tail */
1639 *vifp->tbf_t = m;
1640 vifp->tbf_t = &m->m_nextpkt;
1641 vifp->tbf_q_len++;
1642
1643 splx(s);
1644 }
1645
1646
1647 /*
1648 * processes the queue at the interface
1649 */
1650 static void
1651 tbf_process_q(vifp)
1652 struct vif *vifp;
1653 {
1654 struct mbuf *m;
1655 int len;
1656 int s = splsoftnet();
1657
1658 /*
1659 * Loop through the queue at the interface and send as many packets
1660 * as possible.
1661 */
1662 for (m = vifp->tbf_q;
1663 m != 0;
1664 m = vifp->tbf_q) {
1665 len = mtod(m, struct ip *)->ip_len;
1666
1667 /* determine if the packet can be sent */
1668 if (len <= vifp->tbf_n_tok) {
1669 /* if so,
1670 * reduce no of tokens, dequeue the packet,
1671 * send the packet.
1672 */
1673 if ((vifp->tbf_q = m->m_nextpkt) == 0)
1674 vifp->tbf_t = &vifp->tbf_q;
1675 --vifp->tbf_q_len;
1676
1677 m->m_nextpkt = 0;
1678 vifp->tbf_n_tok -= len;
1679 tbf_send_packet(vifp, m);
1680 } else
1681 break;
1682 }
1683 splx(s);
1684 }
1685
1686 static void
1687 tbf_reprocess_q(arg)
1688 void *arg;
1689 {
1690 struct vif *vifp = arg;
1691
1692 if (ip_mrouter == 0)
1693 return;
1694
1695 tbf_update_tokens(vifp);
1696 tbf_process_q(vifp);
1697
1698 if (vifp->tbf_q_len != 0)
1699 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1700 tbf_reprocess_q, vifp);
1701 }
1702
1703 /* function that will selectively discard a member of the queue
1704 * based on the precedence value and the priority
1705 */
1706 static int
1707 tbf_dq_sel(vifp, ip)
1708 struct vif *vifp;
1709 struct ip *ip;
1710 {
1711 u_int p;
1712 struct mbuf **mp, *m;
1713 int s = splsoftnet();
1714
1715 p = priority(vifp, ip);
1716
1717 for (mp = &vifp->tbf_q, m = *mp;
1718 m != 0;
1719 mp = &m->m_nextpkt, m = *mp) {
1720 if (p > priority(vifp, mtod(m, struct ip *))) {
1721 if ((*mp = m->m_nextpkt) == 0)
1722 vifp->tbf_t = mp;
1723 --vifp->tbf_q_len;
1724
1725 m_freem(m);
1726 mrtstat.mrts_drop_sel++;
1727 splx(s);
1728 return (1);
1729 }
1730 }
1731 splx(s);
1732 return (0);
1733 }
1734
1735 static void
1736 tbf_send_packet(vifp, m)
1737 struct vif *vifp;
1738 struct mbuf *m;
1739 {
1740 int error;
1741 int s = splsoftnet();
1742
1743 if (vifp->v_flags & VIFF_TUNNEL) {
1744 /* If tunnel options */
1745 #ifdef IPSEC
1746 /* Don't lookup socket in forwading case */
1747 (void)ipsec_setsocket(m, NULL);
1748 #endif
1749 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1750 IP_FORWARDING, (struct ip_moptions *)0);
1751 } else {
1752 /* if physical interface option, extract the options and then send */
1753 struct ip_moptions imo;
1754
1755 imo.imo_multicast_ifp = vifp->v_ifp;
1756 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1757 imo.imo_multicast_loop = 1;
1758 #ifdef RSVP_ISI
1759 imo.imo_multicast_vif = -1;
1760 #endif
1761
1762 #ifdef IPSEC
1763 /* Don't lookup socket in forwading case */
1764 (void)ipsec_setsocket(m, NULL);
1765 #endif
1766 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1767 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1768
1769 if (mrtdebug & DEBUG_XMIT)
1770 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
1771 (long)(vifp-viftable), error);
1772 }
1773 splx(s);
1774 }
1775
1776 /* determine the current time and then
1777 * the elapsed time (between the last time and time now)
1778 * in milliseconds & update the no. of tokens in the bucket
1779 */
1780 static void
1781 tbf_update_tokens(vifp)
1782 struct vif *vifp;
1783 {
1784 struct timeval tp;
1785 u_int32_t tm;
1786 int s = splsoftnet();
1787
1788 microtime(&tp);
1789
1790 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
1791
1792 /*
1793 * This formula is actually
1794 * "time in seconds" * "bytes/second".
1795 *
1796 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1797 *
1798 * The (1000/1024) was introduced in add_vif to optimize
1799 * this divide into a shift.
1800 */
1801 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
1802 vifp->tbf_last_pkt_t = tp;
1803
1804 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
1805 vifp->tbf_n_tok = MAX_BKT_SIZE;
1806
1807 splx(s);
1808 }
1809
1810 static int
1811 priority(vifp, ip)
1812 struct vif *vifp;
1813 struct ip *ip;
1814 {
1815 int prio;
1816
1817 /* temporary hack; may add general packet classifier some day */
1818
1819 /*
1820 * The UDP port space is divided up into four priority ranges:
1821 * [0, 16384) : unclassified - lowest priority
1822 * [16384, 32768) : audio - highest priority
1823 * [32768, 49152) : whiteboard - medium priority
1824 * [49152, 65536) : video - low priority
1825 */
1826 if (ip->ip_p == IPPROTO_UDP) {
1827 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1828
1829 switch (ntohs(udp->uh_dport) & 0xc000) {
1830 case 0x4000:
1831 prio = 70;
1832 break;
1833 case 0x8000:
1834 prio = 60;
1835 break;
1836 case 0xc000:
1837 prio = 55;
1838 break;
1839 default:
1840 prio = 50;
1841 break;
1842 }
1843
1844 if (tbfdebug > 1)
1845 log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio);
1846 } else
1847 prio = 50;
1848
1849
1850 return (prio);
1851 }
1852
1853 /*
1854 * End of token bucket filter modifications
1855 */
1856
1857 #ifdef RSVP_ISI
1858
1859 int
1860 ip_rsvp_vif_init(so, m)
1861 struct socket *so;
1862 struct mbuf *m;
1863 {
1864 int i;
1865 int s;
1866
1867 if (rsvpdebug)
1868 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1869 so->so_type, so->so_proto->pr_protocol);
1870
1871 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1872 return (EOPNOTSUPP);
1873
1874 /* Check mbuf. */
1875 if (m == 0 || m->m_len != sizeof(int)) {
1876 return (EINVAL);
1877 }
1878 i = *(mtod(m, int *));
1879
1880 if (rsvpdebug)
1881 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
1882
1883 s = splsoftnet();
1884
1885 /* Check vif. */
1886 if (!legal_vif_num(i)) {
1887 splx(s);
1888 return (EADDRNOTAVAIL);
1889 }
1890
1891 /* Check if socket is available. */
1892 if (viftable[i].v_rsvpd != 0) {
1893 splx(s);
1894 return (EADDRINUSE);
1895 }
1896
1897 viftable[i].v_rsvpd = so;
1898 /* This may seem silly, but we need to be sure we don't over-increment
1899 * the RSVP counter, in case something slips up.
1900 */
1901 if (!viftable[i].v_rsvp_on) {
1902 viftable[i].v_rsvp_on = 1;
1903 rsvp_on++;
1904 }
1905
1906 splx(s);
1907 return (0);
1908 }
1909
1910 int
1911 ip_rsvp_vif_done(so, m)
1912 struct socket *so;
1913 struct mbuf *m;
1914 {
1915 int i;
1916 int s;
1917
1918 if (rsvpdebug)
1919 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1920 so->so_type, so->so_proto->pr_protocol);
1921
1922 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1923 return (EOPNOTSUPP);
1924
1925 /* Check mbuf. */
1926 if (m == 0 || m->m_len != sizeof(int)) {
1927 return (EINVAL);
1928 }
1929 i = *(mtod(m, int *));
1930
1931 s = splsoftnet();
1932
1933 /* Check vif. */
1934 if (!legal_vif_num(i)) {
1935 splx(s);
1936 return (EADDRNOTAVAIL);
1937 }
1938
1939 if (rsvpdebug)
1940 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1941 viftable[i].v_rsvpd, so);
1942
1943 viftable[i].v_rsvpd = 0;
1944 /* This may seem silly, but we need to be sure we don't over-decrement
1945 * the RSVP counter, in case something slips up.
1946 */
1947 if (viftable[i].v_rsvp_on) {
1948 viftable[i].v_rsvp_on = 0;
1949 rsvp_on--;
1950 }
1951
1952 splx(s);
1953 return (0);
1954 }
1955
1956 void
1957 ip_rsvp_force_done(so)
1958 struct socket *so;
1959 {
1960 int vifi;
1961 int s;
1962
1963 /* Don't bother if it is not the right type of socket. */
1964 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1965 return;
1966
1967 s = splsoftnet();
1968
1969 /* The socket may be attached to more than one vif...this
1970 * is perfectly legal.
1971 */
1972 for (vifi = 0; vifi < numvifs; vifi++) {
1973 if (viftable[vifi].v_rsvpd == so) {
1974 viftable[vifi].v_rsvpd = 0;
1975 /* This may seem silly, but we need to be sure we don't
1976 * over-decrement the RSVP counter, in case something slips up.
1977 */
1978 if (viftable[vifi].v_rsvp_on) {
1979 viftable[vifi].v_rsvp_on = 0;
1980 rsvp_on--;
1981 }
1982 }
1983 }
1984
1985 splx(s);
1986 return;
1987 }
1988
1989 void
1990 rsvp_input(m, ifp)
1991 struct mbuf *m;
1992 struct ifnet *ifp;
1993 {
1994 int vifi;
1995 struct ip *ip = mtod(m, struct ip *);
1996 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
1997 int s;
1998
1999 if (rsvpdebug)
2000 printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2001
2002 /* Can still get packets with rsvp_on = 0 if there is a local member
2003 * of the group to which the RSVP packet is addressed. But in this
2004 * case we want to throw the packet away.
2005 */
2006 if (!rsvp_on) {
2007 m_freem(m);
2008 return;
2009 }
2010
2011 /* If the old-style non-vif-associated socket is set, then use
2012 * it and ignore the new ones.
2013 */
2014 if (ip_rsvpd != 0) {
2015 if (rsvpdebug)
2016 printf("rsvp_input: Sending packet up old-style socket\n");
2017 rip_input(m); /*XXX*/
2018 return;
2019 }
2020
2021 s = splsoftnet();
2022
2023 if (rsvpdebug)
2024 printf("rsvp_input: check vifs\n");
2025
2026 /* Find which vif the packet arrived on. */
2027 for (vifi = 0; vifi < numvifs; vifi++) {
2028 if (viftable[vifi].v_ifp == ifp)
2029 break;
2030 }
2031
2032 if (vifi == numvifs) {
2033 /* Can't find vif packet arrived on. Drop packet. */
2034 if (rsvpdebug)
2035 printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2036 m_freem(m);
2037 splx(s);
2038 return;
2039 }
2040
2041 if (rsvpdebug)
2042 printf("rsvp_input: check socket\n");
2043
2044 if (viftable[vifi].v_rsvpd == 0) {
2045 /* drop packet, since there is no specific socket for this
2046 * interface */
2047 if (rsvpdebug)
2048 printf("rsvp_input: No socket defined for vif %d\n",vifi);
2049 m_freem(m);
2050 splx(s);
2051 return;
2052 }
2053
2054 rsvp_src.sin_addr = ip->ip_src;
2055
2056 if (rsvpdebug && m)
2057 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2058 m->m_len,sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2059
2060 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2061 if (rsvpdebug)
2062 printf("rsvp_input: Failed to append to socket\n");
2063 else
2064 if (rsvpdebug)
2065 printf("rsvp_input: send packet up\n");
2066
2067 splx(s);
2068 }
2069 #endif /* RSVP_ISI */
2070