ip_mroute.c revision 1.72 1 /* $NetBSD: ip_mroute.c,v 1.72 2003/06/26 03:35:00 itojun Exp $ */
2
3 /*
4 * Copyright (c) 1989 Stephen Deering
5 * Copyright (c) 1992, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * Stephen Deering of Stanford University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the University of
22 * California, Berkeley and its contributors.
23 * 4. Neither the name of the University nor the names of its contributors
24 * may be used to endorse or promote products derived from this software
25 * without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * SUCH DAMAGE.
38 *
39 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
40 */
41
42 /*
43 * IP multicast forwarding procedures
44 *
45 * Written by David Waitzman, BBN Labs, August 1988.
46 * Modified by Steve Deering, Stanford, February 1989.
47 * Modified by Mark J. Steiglitz, Stanford, May, 1991
48 * Modified by Van Jacobson, LBL, January 1993
49 * Modified by Ajit Thyagarajan, PARC, August 1993
50 * Modified by Bill Fenner, PARC, April 1994
51 * Modified by Charles M. Hannum, NetBSD, May 1995.
52 *
53 * MROUTING Revision: 1.2
54 */
55
56 #include <sys/cdefs.h>
57 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.72 2003/06/26 03:35:00 itojun Exp $");
58
59 #include "opt_ipsec.h"
60
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/callout.h>
64 #include <sys/mbuf.h>
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/protosw.h>
68 #include <sys/errno.h>
69 #include <sys/time.h>
70 #include <sys/kernel.h>
71 #include <sys/ioctl.h>
72 #include <sys/syslog.h>
73 #include <net/if.h>
74 #include <net/route.h>
75 #include <net/raw_cb.h>
76 #include <netinet/in.h>
77 #include <netinet/in_var.h>
78 #include <netinet/in_systm.h>
79 #include <netinet/ip.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/in_pcb.h>
82 #include <netinet/udp.h>
83 #include <netinet/igmp.h>
84 #include <netinet/igmp_var.h>
85 #include <netinet/ip_mroute.h>
86 #include <netinet/ip_encap.h>
87
88 #ifdef IPSEC
89 #include <netinet6/ipsec.h>
90 #include <netkey/key.h>
91 #endif
92
93 #include <machine/stdarg.h>
94
95 #define IP_MULTICASTOPTS 0
96 #define M_PULLUP(m, len) \
97 do { \
98 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
99 (m) = m_pullup((m), (len)); \
100 } while (/*CONSTCOND*/ 0)
101
102 /*
103 * Globals. All but ip_mrouter and ip_mrtproto could be static,
104 * except for netstat or debugging purposes.
105 */
106 struct socket *ip_mrouter = 0;
107 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
108
109 #define NO_RTE_FOUND 0x1
110 #define RTE_FOUND 0x2
111
112 #define MFCHASH(a, g) \
113 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
114 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
115 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
116 u_long mfchash;
117
118 u_char nexpire[MFCTBLSIZ];
119 struct vif viftable[MAXVIFS];
120 struct mrtstat mrtstat;
121 u_int mrtdebug = 0; /* debug level */
122 #define DEBUG_MFC 0x02
123 #define DEBUG_FORWARD 0x04
124 #define DEBUG_EXPIRE 0x08
125 #define DEBUG_XMIT 0x10
126 u_int tbfdebug = 0; /* tbf debug level */
127 #ifdef RSVP_ISI
128 u_int rsvpdebug = 0; /* rsvp debug level */
129 extern struct socket *ip_rsvpd;
130 extern int rsvp_on;
131 #endif /* RSVP_ISI */
132
133 /* vif attachment using sys/netinet/ip_encap.c */
134 extern struct domain inetdomain;
135 static void vif_input __P((struct mbuf *, ...));
136 static int vif_encapcheck __P((const struct mbuf *, int, int, void *));
137 static struct protosw vif_protosw =
138 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
139 vif_input, rip_output, 0, rip_ctloutput,
140 rip_usrreq,
141 0, 0, 0, 0,
142 };
143
144 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
145 #define UPCALL_EXPIRE 6 /* number of timeouts */
146
147 /*
148 * Define the token bucket filter structures
149 */
150
151 #define TBF_REPROCESS (hz / 100) /* 100x / second */
152
153 static int get_sg_cnt __P((struct sioc_sg_req *));
154 static int get_vif_cnt __P((struct sioc_vif_req *));
155 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
156 static int get_version __P((struct mbuf *));
157 static int set_assert __P((struct mbuf *));
158 static int get_assert __P((struct mbuf *));
159 static int add_vif __P((struct mbuf *));
160 static int del_vif __P((struct mbuf *));
161 static void update_mfc __P((struct mfcctl *, struct mfc *));
162 static void expire_mfc __P((struct mfc *));
163 static int add_mfc __P((struct mbuf *));
164 #ifdef UPCALL_TIMING
165 static void collate __P((struct timeval *));
166 #endif
167 static int del_mfc __P((struct mbuf *));
168 static int socket_send __P((struct socket *, struct mbuf *,
169 struct sockaddr_in *));
170 static void expire_upcalls __P((void *));
171 #ifdef RSVP_ISI
172 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
173 #else
174 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
175 #endif
176 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
177 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
178 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
179 u_int32_t));
180 static void tbf_queue __P((struct vif *, struct mbuf *));
181 static void tbf_process_q __P((struct vif *));
182 static void tbf_reprocess_q __P((void *));
183 static int tbf_dq_sel __P((struct vif *, struct ip *));
184 static void tbf_send_packet __P((struct vif *, struct mbuf *));
185 static void tbf_update_tokens __P((struct vif *));
186 static int priority __P((struct vif *, struct ip *));
187
188 /*
189 * 'Interfaces' associated with decapsulator (so we can tell
190 * packets that went through it from ones that get reflected
191 * by a broken gateway). These interfaces are never linked into
192 * the system ifnet list & no routes point to them. I.e., packets
193 * can't be sent this way. They only exist as a placeholder for
194 * multicast source verification.
195 */
196 #if 0
197 struct ifnet multicast_decap_if[MAXVIFS];
198 #endif
199
200 #define ENCAP_TTL 64
201 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
202
203 /* prototype IP hdr for encapsulated packets */
204 struct ip multicast_encap_iphdr = {
205 #if BYTE_ORDER == LITTLE_ENDIAN
206 sizeof(struct ip) >> 2, IPVERSION,
207 #else
208 IPVERSION, sizeof(struct ip) >> 2,
209 #endif
210 0, /* tos */
211 sizeof(struct ip), /* total length */
212 0, /* id */
213 0, /* frag offset */
214 ENCAP_TTL, ENCAP_PROTO,
215 0, /* checksum */
216 };
217
218 /*
219 * Private variables.
220 */
221 static vifi_t numvifs = 0;
222
223 static struct callout expire_upcalls_ch;
224
225 /*
226 * one-back cache used by vif_encapcheck to locate a tunnel's vif
227 * given a datagram's src ip address.
228 */
229 static struct in_addr last_encap_src;
230 static struct vif *last_encap_vif;
231
232 /*
233 * whether or not special PIM assert processing is enabled.
234 */
235 static int pim_assert;
236 /*
237 * Rate limit for assert notification messages, in usec
238 */
239 #define ASSERT_MSG_TIME 3000000
240
241 /*
242 * Find a route for a given origin IP address and Multicast group address
243 * Type of service parameter to be added in the future!!!
244 */
245
246 #define MFCFIND(o, g, rt) do { \
247 struct mfc *_rt; \
248 (rt) = 0; \
249 ++mrtstat.mrts_mfc_lookups; \
250 LIST_FOREACH(_rt, &mfchashtbl[MFCHASH(o, g)], mfc_hash) { \
251 if (in_hosteq(_rt->mfc_origin, (o)) && \
252 in_hosteq(_rt->mfc_mcastgrp, (g)) && \
253 _rt->mfc_stall == 0) { \
254 (rt) = _rt; \
255 break; \
256 } \
257 } \
258 if ((rt) == 0) \
259 ++mrtstat.mrts_mfc_misses; \
260 } while (/*CONSTCOND*/ 0)
261
262 /*
263 * Macros to compute elapsed time efficiently
264 * Borrowed from Van Jacobson's scheduling code
265 */
266 #define TV_DELTA(a, b, delta) do { \
267 int xxs; \
268 delta = (a).tv_usec - (b).tv_usec; \
269 xxs = (a).tv_sec - (b).tv_sec; \
270 switch (xxs) { \
271 case 2: \
272 delta += 1000000; \
273 /* fall through */ \
274 case 1: \
275 delta += 1000000; \
276 /* fall through */ \
277 case 0: \
278 break; \
279 default: \
280 delta += (1000000 * xxs); \
281 break; \
282 } \
283 } while (/*CONSTCOND*/ 0)
284
285 #ifdef UPCALL_TIMING
286 u_int32_t upcall_data[51];
287 #endif /* UPCALL_TIMING */
288
289 /*
290 * Handle MRT setsockopt commands to modify the multicast routing tables.
291 */
292 int
293 ip_mrouter_set(so, optname, m)
294 struct socket *so;
295 int optname;
296 struct mbuf **m;
297 {
298 int error;
299
300 if (optname != MRT_INIT && so != ip_mrouter)
301 error = ENOPROTOOPT;
302 else
303 switch (optname) {
304 case MRT_INIT:
305 error = ip_mrouter_init(so, *m);
306 break;
307 case MRT_DONE:
308 error = ip_mrouter_done();
309 break;
310 case MRT_ADD_VIF:
311 error = add_vif(*m);
312 break;
313 case MRT_DEL_VIF:
314 error = del_vif(*m);
315 break;
316 case MRT_ADD_MFC:
317 error = add_mfc(*m);
318 break;
319 case MRT_DEL_MFC:
320 error = del_mfc(*m);
321 break;
322 case MRT_ASSERT:
323 error = set_assert(*m);
324 break;
325 default:
326 error = ENOPROTOOPT;
327 break;
328 }
329
330 if (*m)
331 m_free(*m);
332 return (error);
333 }
334
335 /*
336 * Handle MRT getsockopt commands
337 */
338 int
339 ip_mrouter_get(so, optname, m)
340 struct socket *so;
341 int optname;
342 struct mbuf **m;
343 {
344 int error;
345
346 if (so != ip_mrouter)
347 error = ENOPROTOOPT;
348 else {
349 *m = m_get(M_WAIT, MT_SOOPTS);
350 MCLAIM(*m, so->so_mowner);
351
352 switch (optname) {
353 case MRT_VERSION:
354 error = get_version(*m);
355 break;
356 case MRT_ASSERT:
357 error = get_assert(*m);
358 break;
359 default:
360 error = ENOPROTOOPT;
361 break;
362 }
363
364 if (error)
365 m_free(*m);
366 }
367
368 return (error);
369 }
370
371 /*
372 * Handle ioctl commands to obtain information from the cache
373 */
374 int
375 mrt_ioctl(so, cmd, data)
376 struct socket *so;
377 u_long cmd;
378 caddr_t data;
379 {
380 int error;
381
382 if (so != ip_mrouter)
383 error = EINVAL;
384 else
385 switch (cmd) {
386 case SIOCGETVIFCNT:
387 error = get_vif_cnt((struct sioc_vif_req *)data);
388 break;
389 case SIOCGETSGCNT:
390 error = get_sg_cnt((struct sioc_sg_req *)data);
391 break;
392 default:
393 error = EINVAL;
394 break;
395 }
396
397 return (error);
398 }
399
400 /*
401 * returns the packet, byte, rpf-failure count for the source group provided
402 */
403 static int
404 get_sg_cnt(req)
405 struct sioc_sg_req *req;
406 {
407 struct mfc *rt;
408 int s;
409
410 s = splsoftnet();
411 MFCFIND(req->src, req->grp, rt);
412 splx(s);
413 if (rt != 0) {
414 req->pktcnt = rt->mfc_pkt_cnt;
415 req->bytecnt = rt->mfc_byte_cnt;
416 req->wrong_if = rt->mfc_wrong_if;
417 } else
418 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
419
420 return (0);
421 }
422
423 /*
424 * returns the input and output packet and byte counts on the vif provided
425 */
426 static int
427 get_vif_cnt(req)
428 struct sioc_vif_req *req;
429 {
430 vifi_t vifi = req->vifi;
431
432 if (vifi >= numvifs)
433 return (EINVAL);
434
435 req->icount = viftable[vifi].v_pkt_in;
436 req->ocount = viftable[vifi].v_pkt_out;
437 req->ibytes = viftable[vifi].v_bytes_in;
438 req->obytes = viftable[vifi].v_bytes_out;
439
440 return (0);
441 }
442
443 /*
444 * Enable multicast routing
445 */
446 static int
447 ip_mrouter_init(so, m)
448 struct socket *so;
449 struct mbuf *m;
450 {
451 int *v;
452
453 if (mrtdebug)
454 log(LOG_DEBUG,
455 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
456 so->so_type, so->so_proto->pr_protocol);
457
458 if (so->so_type != SOCK_RAW ||
459 so->so_proto->pr_protocol != IPPROTO_IGMP)
460 return (EOPNOTSUPP);
461
462 if (m == 0 || m->m_len < sizeof(int))
463 return (EINVAL);
464
465 v = mtod(m, int *);
466 if (*v != 1)
467 return (EINVAL);
468
469 if (ip_mrouter != 0)
470 return (EADDRINUSE);
471
472 ip_mrouter = so;
473
474 mfchashtbl =
475 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
476 bzero((caddr_t)nexpire, sizeof(nexpire));
477
478 pim_assert = 0;
479
480 callout_init(&expire_upcalls_ch);
481 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
482 expire_upcalls, NULL);
483
484 if (mrtdebug)
485 log(LOG_DEBUG, "ip_mrouter_init\n");
486
487 return (0);
488 }
489
490 /*
491 * Disable multicast routing
492 */
493 int
494 ip_mrouter_done()
495 {
496 vifi_t vifi;
497 struct vif *vifp;
498 int i;
499 int s;
500
501 s = splsoftnet();
502
503 /* Clear out all the vifs currently in use. */
504 for (vifi = 0; vifi < numvifs; vifi++) {
505 vifp = &viftable[vifi];
506 if (!in_nullhost(vifp->v_lcl_addr))
507 reset_vif(vifp);
508 }
509
510 numvifs = 0;
511 pim_assert = 0;
512
513 callout_stop(&expire_upcalls_ch);
514
515 /*
516 * Free all multicast forwarding cache entries.
517 */
518 for (i = 0; i < MFCTBLSIZ; i++) {
519 struct mfc *rt, *nrt;
520
521 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
522 nrt = LIST_NEXT(rt, mfc_hash);
523
524 expire_mfc(rt);
525 }
526 }
527
528 free(mfchashtbl, M_MRTABLE);
529 mfchashtbl = 0;
530
531 /* Reset de-encapsulation cache. */
532
533 ip_mrouter = 0;
534
535 splx(s);
536
537 if (mrtdebug)
538 log(LOG_DEBUG, "ip_mrouter_done\n");
539
540 return (0);
541 }
542
543 void
544 ip_mrouter_detach(ifp)
545 struct ifnet *ifp;
546 {
547 int vifi, i;
548 struct vif *vifp;
549 struct mfc *rt, *nrt;
550 struct rtdetq *rte, *nrte, **prte;
551
552 /* XXX not sure about sideeffect to userland routing daemon */
553 for (vifi = 0; vifi < numvifs; vifi++) {
554 vifp = &viftable[vifi];
555 if (vifp->v_ifp == ifp)
556 reset_vif(vifp);
557 }
558 for (i = 0; i < MFCTBLSIZ; i++) {
559 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
560 prte = &rt->mfc_stall;
561 for (rte = *prte; rte; rte = nrte) {
562 nrte = rte->next;
563 if (rte->ifp == ifp) {
564 m_freem(rte->m);
565 free(rte, M_MRTABLE);
566 *prte = nrte;
567 } else
568 prte = &rte->next;
569 }
570 }
571 }
572 }
573
574 static int
575 get_version(m)
576 struct mbuf *m;
577 {
578 int *v = mtod(m, int *);
579
580 *v = 0x0305; /* XXX !!!! */
581 m->m_len = sizeof(int);
582 return (0);
583 }
584
585 /*
586 * Set PIM assert processing global
587 */
588 static int
589 set_assert(m)
590 struct mbuf *m;
591 {
592 int *i;
593
594 if (m == 0 || m->m_len < sizeof(int))
595 return (EINVAL);
596
597 i = mtod(m, int *);
598 pim_assert = !!*i;
599 return (0);
600 }
601
602 /*
603 * Get PIM assert processing global
604 */
605 static int
606 get_assert(m)
607 struct mbuf *m;
608 {
609 int *i = mtod(m, int *);
610
611 *i = pim_assert;
612 m->m_len = sizeof(int);
613 return (0);
614 }
615
616 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
617
618 /*
619 * Add a vif to the vif table
620 */
621 static int
622 add_vif(m)
623 struct mbuf *m;
624 {
625 struct vifctl *vifcp;
626 struct vif *vifp;
627 struct ifaddr *ifa;
628 struct ifnet *ifp;
629 struct ifreq ifr;
630 int error, s;
631
632 if (m == 0 || m->m_len < sizeof(struct vifctl))
633 return (EINVAL);
634
635 vifcp = mtod(m, struct vifctl *);
636 if (vifcp->vifc_vifi >= MAXVIFS)
637 return (EINVAL);
638
639 vifp = &viftable[vifcp->vifc_vifi];
640 if (!in_nullhost(vifp->v_lcl_addr))
641 return (EADDRINUSE);
642
643 /* Find the interface with an address in AF_INET family. */
644 sin.sin_addr = vifcp->vifc_lcl_addr;
645 ifa = ifa_ifwithaddr(sintosa(&sin));
646 if (ifa == 0)
647 return (EADDRNOTAVAIL);
648
649 if (vifcp->vifc_flags & VIFF_TUNNEL) {
650 if (vifcp->vifc_flags & VIFF_SRCRT) {
651 log(LOG_ERR, "Source routed tunnels not supported\n");
652 return (EOPNOTSUPP);
653 }
654
655 /* attach this vif to decapsulator dispatch table */
656 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
657 vif_encapcheck, &vif_protosw, vifp);
658 if (!vifp->v_encap_cookie)
659 return (EINVAL);
660
661 /* Create a fake encapsulation interface. */
662 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
663 bzero(ifp, sizeof(*ifp));
664 sprintf(ifp->if_xname, "mdecap%d", vifcp->vifc_vifi);
665
666 /* Prepare cached route entry. */
667 bzero(&vifp->v_route, sizeof(vifp->v_route));
668 } else {
669 /* Use the physical interface associated with the address. */
670 ifp = ifa->ifa_ifp;
671
672 /* Make sure the interface supports multicast. */
673 if ((ifp->if_flags & IFF_MULTICAST) == 0)
674 return (EOPNOTSUPP);
675
676 /* Enable promiscuous reception of all IP multicasts. */
677 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
678 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
679 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
680 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
681 if (error)
682 return (error);
683 }
684
685 s = splsoftnet();
686
687 /* Define parameters for the tbf structure. */
688 vifp->tbf_q = 0;
689 vifp->tbf_t = &vifp->tbf_q;
690 microtime(&vifp->tbf_last_pkt_t);
691 vifp->tbf_n_tok = 0;
692 vifp->tbf_q_len = 0;
693 vifp->tbf_max_q_len = MAXQSIZE;
694
695 vifp->v_flags = vifcp->vifc_flags;
696 vifp->v_threshold = vifcp->vifc_threshold;
697 /* scaling up here allows division by 1024 in critical code */
698 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
699 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
700 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
701 vifp->v_ifp = ifp;
702 /* Initialize per vif pkt counters. */
703 vifp->v_pkt_in = 0;
704 vifp->v_pkt_out = 0;
705 vifp->v_bytes_in = 0;
706 vifp->v_bytes_out = 0;
707
708 callout_init(&vifp->v_repq_ch);
709
710 #ifdef RSVP_ISI
711 vifp->v_rsvp_on = 0;
712 vifp->v_rsvpd = 0;
713 #endif /* RSVP_ISI */
714
715 splx(s);
716
717 /* Adjust numvifs up if the vifi is higher than numvifs. */
718 if (numvifs <= vifcp->vifc_vifi)
719 numvifs = vifcp->vifc_vifi + 1;
720
721 if (mrtdebug)
722 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
723 vifcp->vifc_vifi,
724 ntohl(vifcp->vifc_lcl_addr.s_addr),
725 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
726 ntohl(vifcp->vifc_rmt_addr.s_addr),
727 vifcp->vifc_threshold,
728 vifcp->vifc_rate_limit);
729
730 return (0);
731 }
732
733 void
734 reset_vif(vifp)
735 struct vif *vifp;
736 {
737 struct mbuf *m, *n;
738 struct ifnet *ifp;
739 struct ifreq ifr;
740
741 callout_stop(&vifp->v_repq_ch);
742
743 /* detach this vif from decapsulator dispatch table */
744 encap_detach(vifp->v_encap_cookie);
745 vifp->v_encap_cookie = NULL;
746
747 for (m = vifp->tbf_q; m != 0; m = n) {
748 n = m->m_nextpkt;
749 m_freem(m);
750 }
751
752 if (vifp->v_flags & VIFF_TUNNEL) {
753 free(vifp->v_ifp, M_MRTABLE);
754 if (vifp == last_encap_vif) {
755 last_encap_vif = 0;
756 last_encap_src = zeroin_addr;
757 }
758 } else {
759 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
760 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
761 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
762 ifp = vifp->v_ifp;
763 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
764 }
765 bzero((caddr_t)vifp, sizeof(*vifp));
766 }
767
768 /*
769 * Delete a vif from the vif table
770 */
771 static int
772 del_vif(m)
773 struct mbuf *m;
774 {
775 vifi_t *vifip;
776 struct vif *vifp;
777 vifi_t vifi;
778 int s;
779
780 if (m == 0 || m->m_len < sizeof(vifi_t))
781 return (EINVAL);
782
783 vifip = mtod(m, vifi_t *);
784 if (*vifip >= numvifs)
785 return (EINVAL);
786
787 vifp = &viftable[*vifip];
788 if (in_nullhost(vifp->v_lcl_addr))
789 return (EADDRNOTAVAIL);
790
791 s = splsoftnet();
792
793 reset_vif(vifp);
794
795 /* Adjust numvifs down */
796 for (vifi = numvifs; vifi > 0; vifi--)
797 if (!in_nullhost(viftable[vifi-1].v_lcl_addr))
798 break;
799 numvifs = vifi;
800
801 splx(s);
802
803 if (mrtdebug)
804 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
805
806 return (0);
807 }
808
809 static void
810 update_mfc(mfccp, rt)
811 struct mfcctl *mfccp;
812 struct mfc *rt;
813 {
814 vifi_t vifi;
815
816 rt->mfc_parent = mfccp->mfcc_parent;
817 for (vifi = 0; vifi < numvifs; vifi++)
818 rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi];
819 rt->mfc_expire = 0;
820 rt->mfc_stall = 0;
821 }
822
823 static void
824 expire_mfc(rt)
825 struct mfc *rt;
826 {
827 struct rtdetq *rte, *nrte;
828
829 for (rte = rt->mfc_stall; rte != 0; rte = nrte) {
830 nrte = rte->next;
831 m_freem(rte->m);
832 free(rte, M_MRTABLE);
833 }
834
835 LIST_REMOVE(rt, mfc_hash);
836 free(rt, M_MRTABLE);
837 }
838
839 /*
840 * Add an mfc entry
841 */
842 static int
843 add_mfc(m)
844 struct mbuf *m;
845 {
846 struct mfcctl *mfccp;
847 struct mfc *rt;
848 u_int32_t hash = 0;
849 struct rtdetq *rte, *nrte;
850 u_short nstl;
851 int s;
852
853 if (m == 0 || m->m_len < sizeof(struct mfcctl))
854 return (EINVAL);
855
856 mfccp = mtod(m, struct mfcctl *);
857
858 s = splsoftnet();
859 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
860
861 /* If an entry already exists, just update the fields */
862 if (rt) {
863 if (mrtdebug & DEBUG_MFC)
864 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
865 ntohl(mfccp->mfcc_origin.s_addr),
866 ntohl(mfccp->mfcc_mcastgrp.s_addr),
867 mfccp->mfcc_parent);
868
869 if (rt->mfc_expire)
870 nexpire[hash]--;
871
872 update_mfc(mfccp, rt);
873
874 splx(s);
875 return (0);
876 }
877
878 /*
879 * Find the entry for which the upcall was made and update
880 */
881 nstl = 0;
882 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
883 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
884 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
885 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
886 rt->mfc_stall != 0) {
887 if (nstl++)
888 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
889 "multiple kernel entries",
890 ntohl(mfccp->mfcc_origin.s_addr),
891 ntohl(mfccp->mfcc_mcastgrp.s_addr),
892 mfccp->mfcc_parent, rt->mfc_stall);
893
894 if (mrtdebug & DEBUG_MFC)
895 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
896 ntohl(mfccp->mfcc_origin.s_addr),
897 ntohl(mfccp->mfcc_mcastgrp.s_addr),
898 mfccp->mfcc_parent, rt->mfc_stall);
899
900 if (rt->mfc_expire)
901 nexpire[hash]--;
902
903 rte = rt->mfc_stall;
904 update_mfc(mfccp, rt);
905
906 /* free packets Qed at the end of this entry */
907 for (; rte != 0; rte = nrte) {
908 nrte = rte->next;
909 #ifdef RSVP_ISI
910 ip_mdq(rte->m, rte->ifp, rt, -1);
911 #else
912 ip_mdq(rte->m, rte->ifp, rt);
913 #endif /* RSVP_ISI */
914 m_freem(rte->m);
915 #ifdef UPCALL_TIMING
916 collate(&rte->t);
917 #endif /* UPCALL_TIMING */
918 free(rte, M_MRTABLE);
919 }
920 }
921 }
922
923 if (nstl == 0) {
924 /*
925 * No mfc; make a new one
926 */
927 if (mrtdebug & DEBUG_MFC)
928 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
929 ntohl(mfccp->mfcc_origin.s_addr),
930 ntohl(mfccp->mfcc_mcastgrp.s_addr),
931 mfccp->mfcc_parent);
932
933 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
934 if (rt == 0) {
935 splx(s);
936 return (ENOBUFS);
937 }
938
939 rt->mfc_origin = mfccp->mfcc_origin;
940 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
941 /* initialize pkt counters per src-grp */
942 rt->mfc_pkt_cnt = 0;
943 rt->mfc_byte_cnt = 0;
944 rt->mfc_wrong_if = 0;
945 timerclear(&rt->mfc_last_assert);
946 update_mfc(mfccp, rt);
947
948 /* insert new entry at head of hash chain */
949 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
950 }
951
952 splx(s);
953 return (0);
954 }
955
956 #ifdef UPCALL_TIMING
957 /*
958 * collect delay statistics on the upcalls
959 */
960 static void collate(t)
961 struct timeval *t;
962 {
963 u_int32_t d;
964 struct timeval tp;
965 u_int32_t delta;
966
967 microtime(&tp);
968
969 if (timercmp(t, &tp, <)) {
970 TV_DELTA(tp, *t, delta);
971
972 d = delta >> 10;
973 if (d > 50)
974 d = 50;
975
976 ++upcall_data[d];
977 }
978 }
979 #endif /* UPCALL_TIMING */
980
981 /*
982 * Delete an mfc entry
983 */
984 static int
985 del_mfc(m)
986 struct mbuf *m;
987 {
988 struct mfcctl *mfccp;
989 struct mfc *rt;
990 int s;
991
992 if (m == 0 || m->m_len < sizeof(struct mfcctl))
993 return (EINVAL);
994
995 mfccp = mtod(m, struct mfcctl *);
996
997 if (mrtdebug & DEBUG_MFC)
998 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
999 ntohl(mfccp->mfcc_origin.s_addr),
1000 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1001
1002 s = splsoftnet();
1003
1004 MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt);
1005 if (rt == 0) {
1006 splx(s);
1007 return (EADDRNOTAVAIL);
1008 }
1009
1010 LIST_REMOVE(rt, mfc_hash);
1011 free(rt, M_MRTABLE);
1012
1013 splx(s);
1014 return (0);
1015 }
1016
1017 static int
1018 socket_send(s, mm, src)
1019 struct socket *s;
1020 struct mbuf *mm;
1021 struct sockaddr_in *src;
1022 {
1023 if (s) {
1024 if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1025 (struct mbuf *)0) != 0) {
1026 sorwakeup(s);
1027 return (0);
1028 }
1029 }
1030 m_freem(mm);
1031 return (-1);
1032 }
1033
1034 /*
1035 * IP multicast forwarding function. This function assumes that the packet
1036 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1037 * pointed to by "ifp", and the packet is to be relayed to other networks
1038 * that have members of the packet's destination IP multicast group.
1039 *
1040 * The packet is returned unscathed to the caller, unless it is
1041 * erroneous, in which case a non-zero return value tells the caller to
1042 * discard it.
1043 */
1044
1045 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1046 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1047
1048 int
1049 #ifdef RSVP_ISI
1050 ip_mforward(m, ifp, imo)
1051 #else
1052 ip_mforward(m, ifp)
1053 #endif /* RSVP_ISI */
1054 struct mbuf *m;
1055 struct ifnet *ifp;
1056 #ifdef RSVP_ISI
1057 struct ip_moptions *imo;
1058 #endif /* RSVP_ISI */
1059 {
1060 struct ip *ip = mtod(m, struct ip *);
1061 struct mfc *rt;
1062 static int srctun = 0;
1063 struct mbuf *mm;
1064 int s;
1065 #ifdef RSVP_ISI
1066 struct vif *vifp;
1067 vifi_t vifi;
1068 #endif /* RSVP_ISI */
1069
1070 /*
1071 * Clear any in-bound checksum flags for this packet.
1072 */
1073 m->m_pkthdr.csum_flags = 0;
1074
1075 if (mrtdebug & DEBUG_FORWARD)
1076 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1077 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1078
1079 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1080 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1081 /*
1082 * Packet arrived via a physical interface or
1083 * an encapuslated tunnel.
1084 */
1085 } else {
1086 /*
1087 * Packet arrived through a source-route tunnel.
1088 * Source-route tunnels are no longer supported.
1089 */
1090 if ((srctun++ % 1000) == 0)
1091 log(LOG_ERR,
1092 "ip_mforward: received source-routed packet from %x\n",
1093 ntohl(ip->ip_src.s_addr));
1094
1095 return (1);
1096 }
1097
1098 #ifdef RSVP_ISI
1099 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1100 if (ip->ip_ttl < 255)
1101 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1102 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1103 vifp = viftable + vifi;
1104 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1105 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1106 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1107 vifp->v_ifp->if_xname);
1108 }
1109 return (ip_mdq(m, ifp, (struct mfc *)0, vifi));
1110 }
1111 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1112 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1113 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1114 }
1115 #endif /* RSVP_ISI */
1116
1117 /*
1118 * Don't forward a packet with time-to-live of zero or one,
1119 * or a packet destined to a local-only group.
1120 */
1121 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1122 return (0);
1123
1124 /*
1125 * Determine forwarding vifs from the forwarding cache table
1126 */
1127 s = splsoftnet();
1128 MFCFIND(ip->ip_src, ip->ip_dst, rt);
1129
1130 /* Entry exists, so forward if necessary */
1131 if (rt != 0) {
1132 splx(s);
1133 #ifdef RSVP_ISI
1134 return (ip_mdq(m, ifp, rt, -1));
1135 #else
1136 return (ip_mdq(m, ifp, rt));
1137 #endif /* RSVP_ISI */
1138 } else {
1139 /*
1140 * If we don't have a route for packet's origin,
1141 * Make a copy of the packet &
1142 * send message to routing daemon
1143 */
1144
1145 struct mbuf *mb0;
1146 struct rtdetq *rte;
1147 u_int32_t hash;
1148 int hlen = ip->ip_hl << 2;
1149 #ifdef UPCALL_TIMING
1150 struct timeval tp;
1151
1152 microtime(&tp);
1153 #endif /* UPCALL_TIMING */
1154
1155 mrtstat.mrts_no_route++;
1156 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1157 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1158 ntohl(ip->ip_src.s_addr),
1159 ntohl(ip->ip_dst.s_addr));
1160
1161 /*
1162 * Allocate mbufs early so that we don't do extra work if we are
1163 * just going to fail anyway. Make sure to pullup the header so
1164 * that other people can't step on it.
1165 */
1166 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1167 M_NOWAIT);
1168 if (rte == 0) {
1169 splx(s);
1170 return (ENOBUFS);
1171 }
1172 mb0 = m_copy(m, 0, M_COPYALL);
1173 M_PULLUP(mb0, hlen);
1174 if (mb0 == 0) {
1175 free(rte, M_MRTABLE);
1176 splx(s);
1177 return (ENOBUFS);
1178 }
1179
1180 /* is there an upcall waiting for this packet? */
1181 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1182 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1183 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1184 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1185 rt->mfc_stall != 0)
1186 break;
1187 }
1188
1189 if (rt == 0) {
1190 int i;
1191 struct igmpmsg *im;
1192
1193 /* no upcall, so make a new entry */
1194 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1195 M_NOWAIT);
1196 if (rt == 0) {
1197 free(rte, M_MRTABLE);
1198 m_freem(mb0);
1199 splx(s);
1200 return (ENOBUFS);
1201 }
1202 /*
1203 * Make a copy of the header to send to the user level
1204 * process
1205 */
1206 mm = m_copy(m, 0, hlen);
1207 M_PULLUP(mm, hlen);
1208 if (mm == 0) {
1209 free(rte, M_MRTABLE);
1210 m_freem(mb0);
1211 free(rt, M_MRTABLE);
1212 splx(s);
1213 return (ENOBUFS);
1214 }
1215
1216 /*
1217 * Send message to routing daemon to install
1218 * a route into the kernel table
1219 */
1220 sin.sin_addr = ip->ip_src;
1221
1222 im = mtod(mm, struct igmpmsg *);
1223 im->im_msgtype = IGMPMSG_NOCACHE;
1224 im->im_mbz = 0;
1225
1226 mrtstat.mrts_upcalls++;
1227
1228 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1229 log(LOG_WARNING,
1230 "ip_mforward: ip_mrouter socket queue full\n");
1231 ++mrtstat.mrts_upq_sockfull;
1232 free(rte, M_MRTABLE);
1233 m_freem(mb0);
1234 free(rt, M_MRTABLE);
1235 splx(s);
1236 return (ENOBUFS);
1237 }
1238
1239 /* insert new entry at head of hash chain */
1240 rt->mfc_origin = ip->ip_src;
1241 rt->mfc_mcastgrp = ip->ip_dst;
1242 rt->mfc_pkt_cnt = 0;
1243 rt->mfc_byte_cnt = 0;
1244 rt->mfc_wrong_if = 0;
1245 rt->mfc_expire = UPCALL_EXPIRE;
1246 nexpire[hash]++;
1247 for (i = 0; i < numvifs; i++)
1248 rt->mfc_ttls[i] = 0;
1249 rt->mfc_parent = -1;
1250
1251 /* link into table */
1252 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1253 /* Add this entry to the end of the queue */
1254 rt->mfc_stall = rte;
1255 } else {
1256 /* determine if q has overflowed */
1257 struct rtdetq **p;
1258 int npkts = 0;
1259
1260 for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next)
1261 if (++npkts > MAX_UPQ) {
1262 mrtstat.mrts_upq_ovflw++;
1263 free(rte, M_MRTABLE);
1264 m_freem(mb0);
1265 splx(s);
1266 return (0);
1267 }
1268
1269 /* Add this entry to the end of the queue */
1270 *p = rte;
1271 }
1272
1273 rte->next = 0;
1274 rte->m = mb0;
1275 rte->ifp = ifp;
1276 #ifdef UPCALL_TIMING
1277 rte->t = tp;
1278 #endif /* UPCALL_TIMING */
1279
1280 splx(s);
1281
1282 return (0);
1283 }
1284 }
1285
1286
1287 /*ARGSUSED*/
1288 static void
1289 expire_upcalls(v)
1290 void *v;
1291 {
1292 int i;
1293 int s;
1294
1295 s = splsoftnet();
1296
1297 for (i = 0; i < MFCTBLSIZ; i++) {
1298 struct mfc *rt, *nrt;
1299
1300 if (nexpire[i] == 0)
1301 continue;
1302
1303 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1304 nrt = LIST_NEXT(rt, mfc_hash);
1305
1306 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1307 continue;
1308 nexpire[i]--;
1309
1310 ++mrtstat.mrts_cache_cleanups;
1311 if (mrtdebug & DEBUG_EXPIRE)
1312 log(LOG_DEBUG,
1313 "expire_upcalls: expiring (%x %x)\n",
1314 ntohl(rt->mfc_origin.s_addr),
1315 ntohl(rt->mfc_mcastgrp.s_addr));
1316
1317 expire_mfc(rt);
1318 }
1319 }
1320
1321 splx(s);
1322 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1323 expire_upcalls, NULL);
1324 }
1325
1326 /*
1327 * Packet forwarding routine once entry in the cache is made
1328 */
1329 static int
1330 #ifdef RSVP_ISI
1331 ip_mdq(m, ifp, rt, xmt_vif)
1332 #else
1333 ip_mdq(m, ifp, rt)
1334 #endif /* RSVP_ISI */
1335 struct mbuf *m;
1336 struct ifnet *ifp;
1337 struct mfc *rt;
1338 #ifdef RSVP_ISI
1339 vifi_t xmt_vif;
1340 #endif /* RSVP_ISI */
1341 {
1342 struct ip *ip = mtod(m, struct ip *);
1343 vifi_t vifi;
1344 struct vif *vifp;
1345 int plen = ntohs(ip->ip_len);
1346
1347 /*
1348 * Macro to send packet on vif. Since RSVP packets don't get counted on
1349 * input, they shouldn't get counted on output, so statistics keeping is
1350 * separate.
1351 */
1352 #define MC_SEND(ip, vifp, m) do { \
1353 if ((vifp)->v_flags & VIFF_TUNNEL) \
1354 encap_send((ip), (vifp), (m)); \
1355 else \
1356 phyint_send((ip), (vifp), (m)); \
1357 } while (/*CONSTCOND*/ 0)
1358
1359 #ifdef RSVP_ISI
1360 /*
1361 * If xmt_vif is not -1, send on only the requested vif.
1362 *
1363 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1364 */
1365 if (xmt_vif < numvifs) {
1366 MC_SEND(ip, viftable + xmt_vif, m);
1367 return (1);
1368 }
1369 #endif /* RSVP_ISI */
1370
1371 /*
1372 * Don't forward if it didn't arrive from the parent vif for its origin.
1373 */
1374 vifi = rt->mfc_parent;
1375 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1376 /* came in the wrong interface */
1377 if (mrtdebug & DEBUG_FORWARD)
1378 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1379 ifp, vifi,
1380 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1381 ++mrtstat.mrts_wrong_if;
1382 ++rt->mfc_wrong_if;
1383 /*
1384 * If we are doing PIM assert processing, and we are forwarding
1385 * packets on this interface, and it is a broadcast medium
1386 * interface (and not a tunnel), send a message to the routing
1387 * daemon.
1388 */
1389 if (pim_assert && rt->mfc_ttls[vifi] &&
1390 (ifp->if_flags & IFF_BROADCAST) &&
1391 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1392 struct mbuf *mm;
1393 struct igmpmsg *im;
1394 int hlen = ip->ip_hl << 2;
1395 struct timeval now;
1396 u_int32_t delta;
1397
1398 microtime(&now);
1399
1400 TV_DELTA(rt->mfc_last_assert, now, delta);
1401
1402 if (delta > ASSERT_MSG_TIME) {
1403 mm = m_copy(m, 0, hlen);
1404 M_PULLUP(mm, hlen);
1405 if (mm == 0) {
1406 return (ENOBUFS);
1407 }
1408
1409 rt->mfc_last_assert = now;
1410
1411 im = mtod(mm, struct igmpmsg *);
1412 im->im_msgtype = IGMPMSG_WRONGVIF;
1413 im->im_mbz = 0;
1414 im->im_vif = vifi;
1415
1416 sin.sin_addr = im->im_src;
1417
1418 socket_send(ip_mrouter, mm, &sin);
1419 }
1420 }
1421 return (0);
1422 }
1423
1424 /* If I sourced this packet, it counts as output, else it was input. */
1425 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1426 viftable[vifi].v_pkt_out++;
1427 viftable[vifi].v_bytes_out += plen;
1428 } else {
1429 viftable[vifi].v_pkt_in++;
1430 viftable[vifi].v_bytes_in += plen;
1431 }
1432 rt->mfc_pkt_cnt++;
1433 rt->mfc_byte_cnt += plen;
1434
1435 /*
1436 * For each vif, decide if a copy of the packet should be forwarded.
1437 * Forward if:
1438 * - the ttl exceeds the vif's threshold
1439 * - there are group members downstream on interface
1440 */
1441 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1442 if ((rt->mfc_ttls[vifi] > 0) &&
1443 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1444 vifp->v_pkt_out++;
1445 vifp->v_bytes_out += plen;
1446 MC_SEND(ip, vifp, m);
1447 }
1448
1449 return (0);
1450 }
1451
1452 #ifdef RSVP_ISI
1453 /*
1454 * check if a vif number is legal/ok. This is used by ip_output, to export
1455 * numvifs there,
1456 */
1457 int
1458 legal_vif_num(vif)
1459 int vif;
1460 {
1461 if (vif >= 0 && vif < numvifs)
1462 return (1);
1463 else
1464 return (0);
1465 }
1466 #endif /* RSVP_ISI */
1467
1468 static void
1469 phyint_send(ip, vifp, m)
1470 struct ip *ip;
1471 struct vif *vifp;
1472 struct mbuf *m;
1473 {
1474 struct mbuf *mb_copy;
1475 int hlen = ip->ip_hl << 2;
1476
1477 /*
1478 * Make a new reference to the packet; make sure that
1479 * the IP header is actually copied, not just referenced,
1480 * so that ip_output() only scribbles on the copy.
1481 */
1482 mb_copy = m_copy(m, 0, M_COPYALL);
1483 M_PULLUP(mb_copy, hlen);
1484 if (mb_copy == 0)
1485 return;
1486
1487 if (vifp->v_rate_limit <= 0)
1488 tbf_send_packet(vifp, mb_copy);
1489 else
1490 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1491 ntohs(ip->ip_len));
1492 }
1493
1494 static void
1495 encap_send(ip, vifp, m)
1496 struct ip *ip;
1497 struct vif *vifp;
1498 struct mbuf *m;
1499 {
1500 struct mbuf *mb_copy;
1501 struct ip *ip_copy;
1502 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1503
1504 /*
1505 * copy the old packet & pullup it's IP header into the
1506 * new mbuf so we can modify it. Try to fill the new
1507 * mbuf since if we don't the ethernet driver will.
1508 */
1509 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1510 if (mb_copy == 0)
1511 return;
1512 mb_copy->m_data += max_linkhdr;
1513 mb_copy->m_pkthdr.len = len;
1514 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1515
1516 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) {
1517 m_freem(mb_copy);
1518 return;
1519 }
1520 i = MHLEN - max_linkhdr;
1521 if (i > len)
1522 i = len;
1523 mb_copy = m_pullup(mb_copy, i);
1524 if (mb_copy == 0)
1525 return;
1526
1527 /*
1528 * fill in the encapsulating IP header.
1529 */
1530 ip_copy = mtod(mb_copy, struct ip *);
1531 *ip_copy = multicast_encap_iphdr;
1532 ip_copy->ip_id = htons(ip_id++);
1533 ip_copy->ip_len = htons(len);
1534 ip_copy->ip_src = vifp->v_lcl_addr;
1535 ip_copy->ip_dst = vifp->v_rmt_addr;
1536
1537 /*
1538 * turn the encapsulated IP header back into a valid one.
1539 */
1540 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1541 --ip->ip_ttl;
1542 ip->ip_sum = 0;
1543 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1544 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1545 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1546
1547 if (vifp->v_rate_limit <= 0)
1548 tbf_send_packet(vifp, mb_copy);
1549 else
1550 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1551 }
1552
1553 /*
1554 * De-encapsulate a packet and feed it back through ip input.
1555 */
1556 static void
1557 #if __STDC__
1558 vif_input(struct mbuf *m, ...)
1559 #else
1560 vif_input(m, va_alist)
1561 struct mbuf *m;
1562 va_dcl
1563 #endif
1564 {
1565 int off, proto;
1566 va_list ap;
1567 struct vif *vifp;
1568 int s;
1569 struct ifqueue *ifq;
1570
1571 va_start(ap, m);
1572 off = va_arg(ap, int);
1573 proto = va_arg(ap, int);
1574 va_end(ap);
1575
1576 vifp = (struct vif *)encap_getarg(m);
1577 if (!vifp || proto != AF_INET) {
1578 m_freem(m);
1579 mrtstat.mrts_bad_tunnel++;
1580 return;
1581 }
1582
1583 m_adj(m, off);
1584 m->m_pkthdr.rcvif = vifp->v_ifp;
1585 ifq = &ipintrq;
1586 s = splnet();
1587 if (IF_QFULL(ifq)) {
1588 IF_DROP(ifq);
1589 m_freem(m);
1590 } else {
1591 IF_ENQUEUE(ifq, m);
1592 /*
1593 * normally we would need a "schednetisr(NETISR_IP)"
1594 * here but we were called by ip_input and it is going
1595 * to loop back & try to dequeue the packet we just
1596 * queued as soon as we return so we avoid the
1597 * unnecessary software interrrupt.
1598 */
1599 }
1600 splx(s);
1601 }
1602
1603 /*
1604 * Check if the packet should be grabbed by us.
1605 */
1606 static int
1607 vif_encapcheck(m, off, proto, arg)
1608 const struct mbuf *m;
1609 int off;
1610 int proto;
1611 void *arg;
1612 {
1613 struct vif *vifp;
1614 struct ip ip;
1615
1616 #ifdef DIAGNOSTIC
1617 if (!arg || proto != IPPROTO_IPV4)
1618 panic("unexpected arg in vif_encapcheck");
1619 #endif
1620
1621 /*
1622 * do not grab the packet if it's not to a multicast destination or if
1623 * we don't have an encapsulating tunnel with the source.
1624 * Note: This code assumes that the remote site IP address
1625 * uniquely identifies the tunnel (i.e., that this site has
1626 * at most one tunnel with the remote site).
1627 */
1628
1629 /* LINTED const cast */
1630 m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
1631 if (!IN_MULTICAST(ip.ip_dst.s_addr))
1632 return 0;
1633
1634 /* LINTED const cast */
1635 m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
1636 if (!in_hosteq(ip.ip_src, last_encap_src)) {
1637 vifp = (struct vif *)arg;
1638 if (vifp->v_flags & VIFF_TUNNEL &&
1639 in_hosteq(vifp->v_rmt_addr, ip.ip_src))
1640 ;
1641 else
1642 return 0;
1643 last_encap_vif = vifp;
1644 last_encap_src = ip.ip_src;
1645 } else
1646 vifp = last_encap_vif;
1647
1648 /* 32bit match, since we have checked ip_src only */
1649 return 32;
1650 }
1651
1652 /*
1653 * Token bucket filter module
1654 */
1655 static void
1656 tbf_control(vifp, m, ip, len)
1657 struct vif *vifp;
1658 struct mbuf *m;
1659 struct ip *ip;
1660 u_int32_t len;
1661 {
1662
1663 if (len > MAX_BKT_SIZE) {
1664 /* drop if packet is too large */
1665 mrtstat.mrts_pkt2large++;
1666 m_freem(m);
1667 return;
1668 }
1669
1670 tbf_update_tokens(vifp);
1671
1672 /*
1673 * If there are enough tokens, and the queue is empty, send this packet
1674 * out immediately. Otherwise, try to insert it on this vif's queue.
1675 */
1676 if (vifp->tbf_q_len == 0) {
1677 if (len <= vifp->tbf_n_tok) {
1678 vifp->tbf_n_tok -= len;
1679 tbf_send_packet(vifp, m);
1680 } else {
1681 /* queue packet and timeout till later */
1682 tbf_queue(vifp, m);
1683 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1684 tbf_reprocess_q, vifp);
1685 }
1686 } else {
1687 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
1688 !tbf_dq_sel(vifp, ip)) {
1689 /* queue length too much, and couldn't make room */
1690 mrtstat.mrts_q_overflow++;
1691 m_freem(m);
1692 } else {
1693 /* queue length low enough, or made room */
1694 tbf_queue(vifp, m);
1695 tbf_process_q(vifp);
1696 }
1697 }
1698 }
1699
1700 /*
1701 * adds a packet to the queue at the interface
1702 */
1703 static void
1704 tbf_queue(vifp, m)
1705 struct vif *vifp;
1706 struct mbuf *m;
1707 {
1708 int s = splsoftnet();
1709
1710 /* insert at tail */
1711 *vifp->tbf_t = m;
1712 vifp->tbf_t = &m->m_nextpkt;
1713 vifp->tbf_q_len++;
1714
1715 splx(s);
1716 }
1717
1718
1719 /*
1720 * processes the queue at the interface
1721 */
1722 static void
1723 tbf_process_q(vifp)
1724 struct vif *vifp;
1725 {
1726 struct mbuf *m;
1727 int len;
1728 int s = splsoftnet();
1729
1730 /*
1731 * Loop through the queue at the interface and send as many packets
1732 * as possible.
1733 */
1734 for (m = vifp->tbf_q; m != 0; m = vifp->tbf_q) {
1735 len = ntohs(mtod(m, struct ip *)->ip_len);
1736
1737 /* determine if the packet can be sent */
1738 if (len <= vifp->tbf_n_tok) {
1739 /* if so,
1740 * reduce no of tokens, dequeue the packet,
1741 * send the packet.
1742 */
1743 if ((vifp->tbf_q = m->m_nextpkt) == 0)
1744 vifp->tbf_t = &vifp->tbf_q;
1745 --vifp->tbf_q_len;
1746
1747 m->m_nextpkt = 0;
1748 vifp->tbf_n_tok -= len;
1749 tbf_send_packet(vifp, m);
1750 } else
1751 break;
1752 }
1753 splx(s);
1754 }
1755
1756 static void
1757 tbf_reprocess_q(arg)
1758 void *arg;
1759 {
1760 struct vif *vifp = arg;
1761
1762 if (ip_mrouter == 0)
1763 return;
1764
1765 tbf_update_tokens(vifp);
1766 tbf_process_q(vifp);
1767
1768 if (vifp->tbf_q_len != 0)
1769 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
1770 tbf_reprocess_q, vifp);
1771 }
1772
1773 /* function that will selectively discard a member of the queue
1774 * based on the precedence value and the priority
1775 */
1776 static int
1777 tbf_dq_sel(vifp, ip)
1778 struct vif *vifp;
1779 struct ip *ip;
1780 {
1781 u_int p;
1782 struct mbuf **mp, *m;
1783 int s = splsoftnet();
1784
1785 p = priority(vifp, ip);
1786
1787 for (mp = &vifp->tbf_q, m = *mp;
1788 m != 0;
1789 mp = &m->m_nextpkt, m = *mp) {
1790 if (p > priority(vifp, mtod(m, struct ip *))) {
1791 if ((*mp = m->m_nextpkt) == 0)
1792 vifp->tbf_t = mp;
1793 --vifp->tbf_q_len;
1794
1795 m_freem(m);
1796 mrtstat.mrts_drop_sel++;
1797 splx(s);
1798 return (1);
1799 }
1800 }
1801 splx(s);
1802 return (0);
1803 }
1804
1805 static void
1806 tbf_send_packet(vifp, m)
1807 struct vif *vifp;
1808 struct mbuf *m;
1809 {
1810 int error;
1811 int s = splsoftnet();
1812
1813 if (vifp->v_flags & VIFF_TUNNEL) {
1814 /* If tunnel options */
1815 #ifdef IPSEC
1816 /* Don't lookup socket in forwading case */
1817 (void)ipsec_setsocket(m, NULL);
1818 #endif
1819 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1820 IP_FORWARDING, (struct ip_moptions *)0);
1821 } else {
1822 /* if physical interface option, extract the options and then send */
1823 struct ip_moptions imo;
1824
1825 imo.imo_multicast_ifp = vifp->v_ifp;
1826 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1827 imo.imo_multicast_loop = 1;
1828 #ifdef RSVP_ISI
1829 imo.imo_multicast_vif = -1;
1830 #endif
1831
1832 #ifdef IPSEC
1833 /* Don't lookup socket in forwading case */
1834 (void)ipsec_setsocket(m, NULL);
1835 #endif
1836 error = ip_output(m, (struct mbuf *)0, (struct route *)0,
1837 IP_FORWARDING|IP_MULTICASTOPTS, &imo);
1838
1839 if (mrtdebug & DEBUG_XMIT)
1840 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
1841 (long)(vifp - viftable), error);
1842 }
1843 splx(s);
1844 }
1845
1846 /* determine the current time and then
1847 * the elapsed time (between the last time and time now)
1848 * in milliseconds & update the no. of tokens in the bucket
1849 */
1850 static void
1851 tbf_update_tokens(vifp)
1852 struct vif *vifp;
1853 {
1854 struct timeval tp;
1855 u_int32_t tm;
1856 int s = splsoftnet();
1857
1858 microtime(&tp);
1859
1860 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
1861
1862 /*
1863 * This formula is actually
1864 * "time in seconds" * "bytes/second".
1865 *
1866 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1867 *
1868 * The (1000/1024) was introduced in add_vif to optimize
1869 * this divide into a shift.
1870 */
1871 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
1872 vifp->tbf_last_pkt_t = tp;
1873
1874 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
1875 vifp->tbf_n_tok = MAX_BKT_SIZE;
1876
1877 splx(s);
1878 }
1879
1880 static int
1881 priority(vifp, ip)
1882 struct vif *vifp;
1883 struct ip *ip;
1884 {
1885 int prio;
1886
1887 /* temporary hack; may add general packet classifier some day */
1888
1889 /*
1890 * The UDP port space is divided up into four priority ranges:
1891 * [0, 16384) : unclassified - lowest priority
1892 * [16384, 32768) : audio - highest priority
1893 * [32768, 49152) : whiteboard - medium priority
1894 * [49152, 65536) : video - low priority
1895 */
1896 if (ip->ip_p == IPPROTO_UDP) {
1897 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1898
1899 switch (ntohs(udp->uh_dport) & 0xc000) {
1900 case 0x4000:
1901 prio = 70;
1902 break;
1903 case 0x8000:
1904 prio = 60;
1905 break;
1906 case 0xc000:
1907 prio = 55;
1908 break;
1909 default:
1910 prio = 50;
1911 break;
1912 }
1913
1914 if (tbfdebug > 1)
1915 log(LOG_DEBUG, "port %x prio %d\n",
1916 ntohs(udp->uh_dport), prio);
1917 } else
1918 prio = 50;
1919
1920 return (prio);
1921 }
1922
1923 /*
1924 * End of token bucket filter modifications
1925 */
1926 #ifdef RSVP_ISI
1927 int
1928 ip_rsvp_vif_init(so, m)
1929 struct socket *so;
1930 struct mbuf *m;
1931 {
1932 int i;
1933 int s;
1934
1935 if (rsvpdebug)
1936 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1937 so->so_type, so->so_proto->pr_protocol);
1938
1939 if (so->so_type != SOCK_RAW ||
1940 so->so_proto->pr_protocol != IPPROTO_RSVP)
1941 return (EOPNOTSUPP);
1942
1943 /* Check mbuf. */
1944 if (m == 0 || m->m_len != sizeof(int)) {
1945 return (EINVAL);
1946 }
1947 i = *(mtod(m, int *));
1948
1949 if (rsvpdebug)
1950 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
1951
1952 s = splsoftnet();
1953
1954 /* Check vif. */
1955 if (!legal_vif_num(i)) {
1956 splx(s);
1957 return (EADDRNOTAVAIL);
1958 }
1959
1960 /* Check if socket is available. */
1961 if (viftable[i].v_rsvpd != 0) {
1962 splx(s);
1963 return (EADDRINUSE);
1964 }
1965
1966 viftable[i].v_rsvpd = so;
1967 /*
1968 * This may seem silly, but we need to be sure we don't over-increment
1969 * the RSVP counter, in case something slips up.
1970 */
1971 if (!viftable[i].v_rsvp_on) {
1972 viftable[i].v_rsvp_on = 1;
1973 rsvp_on++;
1974 }
1975
1976 splx(s);
1977 return (0);
1978 }
1979
1980 int
1981 ip_rsvp_vif_done(so, m)
1982 struct socket *so;
1983 struct mbuf *m;
1984 {
1985 int i;
1986 int s;
1987
1988 if (rsvpdebug)
1989 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1990 so->so_type, so->so_proto->pr_protocol);
1991
1992 if (so->so_type != SOCK_RAW ||
1993 so->so_proto->pr_protocol != IPPROTO_RSVP)
1994 return (EOPNOTSUPP);
1995
1996 /* Check mbuf. */
1997 if (m == 0 || m->m_len != sizeof(int)) {
1998 return (EINVAL);
1999 }
2000 i = *(mtod(m, int *));
2001
2002 s = splsoftnet();
2003
2004 /* Check vif. */
2005 if (!legal_vif_num(i)) {
2006 splx(s);
2007 return (EADDRNOTAVAIL);
2008 }
2009
2010 if (rsvpdebug)
2011 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2012 viftable[i].v_rsvpd, so);
2013
2014 viftable[i].v_rsvpd = 0;
2015 /*
2016 * This may seem silly, but we need to be sure we don't over-decrement
2017 * the RSVP counter, in case something slips up.
2018 */
2019 if (viftable[i].v_rsvp_on) {
2020 viftable[i].v_rsvp_on = 0;
2021 rsvp_on--;
2022 }
2023
2024 splx(s);
2025 return (0);
2026 }
2027
2028 void
2029 ip_rsvp_force_done(so)
2030 struct socket *so;
2031 {
2032 int vifi;
2033 int s;
2034
2035 /* Don't bother if it is not the right type of socket. */
2036 if (so->so_type != SOCK_RAW ||
2037 so->so_proto->pr_protocol != IPPROTO_RSVP)
2038 return;
2039
2040 s = splsoftnet();
2041
2042 /*
2043 * The socket may be attached to more than one vif...this
2044 * is perfectly legal.
2045 */
2046 for (vifi = 0; vifi < numvifs; vifi++) {
2047 if (viftable[vifi].v_rsvpd == so) {
2048 viftable[vifi].v_rsvpd = 0;
2049 /*
2050 * This may seem silly, but we need to be sure we don't
2051 * over-decrement the RSVP counter, in case something
2052 * slips up.
2053 */
2054 if (viftable[vifi].v_rsvp_on) {
2055 viftable[vifi].v_rsvp_on = 0;
2056 rsvp_on--;
2057 }
2058 }
2059 }
2060
2061 splx(s);
2062 return;
2063 }
2064
2065 void
2066 rsvp_input(m, ifp)
2067 struct mbuf *m;
2068 struct ifnet *ifp;
2069 {
2070 int vifi;
2071 struct ip *ip = mtod(m, struct ip *);
2072 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
2073 int s;
2074
2075 if (rsvpdebug)
2076 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2077
2078 /*
2079 * Can still get packets with rsvp_on = 0 if there is a local member
2080 * of the group to which the RSVP packet is addressed. But in this
2081 * case we want to throw the packet away.
2082 */
2083 if (!rsvp_on) {
2084 m_freem(m);
2085 return;
2086 }
2087
2088 /*
2089 * If the old-style non-vif-associated socket is set, then use
2090 * it and ignore the new ones.
2091 */
2092 if (ip_rsvpd != 0) {
2093 if (rsvpdebug)
2094 printf("rsvp_input: "
2095 "Sending packet up old-style socket\n");
2096 rip_input(m); /*XXX*/
2097 return;
2098 }
2099
2100 s = splsoftnet();
2101
2102 if (rsvpdebug)
2103 printf("rsvp_input: check vifs\n");
2104
2105 /* Find which vif the packet arrived on. */
2106 for (vifi = 0; vifi < numvifs; vifi++) {
2107 if (viftable[vifi].v_ifp == ifp)
2108 break;
2109 }
2110
2111 if (vifi == numvifs) {
2112 /* Can't find vif packet arrived on. Drop packet. */
2113 if (rsvpdebug)
2114 printf("rsvp_input: "
2115 "Can't find vif for packet...dropping it.\n");
2116 m_freem(m);
2117 splx(s);
2118 return;
2119 }
2120
2121 if (rsvpdebug)
2122 printf("rsvp_input: check socket\n");
2123
2124 if (viftable[vifi].v_rsvpd == 0) {
2125 /*
2126 * drop packet, since there is no specific socket for this
2127 * interface
2128 */
2129 if (rsvpdebug)
2130 printf("rsvp_input: No socket defined for vif %d\n",
2131 vifi);
2132 m_freem(m);
2133 splx(s);
2134 return;
2135 }
2136
2137 rsvp_src.sin_addr = ip->ip_src;
2138
2139 if (rsvpdebug && m)
2140 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2141 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2142
2143 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2144 if (rsvpdebug)
2145 printf("rsvp_input: Failed to append to socket\n");
2146 else
2147 if (rsvpdebug)
2148 printf("rsvp_input: send packet up\n");
2149
2150 splx(s);
2151 }
2152 #endif /* RSVP_ISI */
2153