Home | History | Annotate | Line # | Download | only in netinet
ip_mroute.c revision 1.86
      1 /*	$NetBSD: ip_mroute.c,v 1.86 2004/09/04 23:30:07 manu Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *      The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Stephen Deering of Stanford University.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     35  */
     36 
     37 /*
     38  * Copyright (c) 1989 Stephen Deering
     39  *
     40  * This code is derived from software contributed to Berkeley by
     41  * Stephen Deering of Stanford University.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed by the University of
     54  *      California, Berkeley and its contributors.
     55  * 4. Neither the name of the University nor the names of its contributors
     56  *    may be used to endorse or promote products derived from this software
     57  *    without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
     72  */
     73 
     74 /*
     75  * IP multicast forwarding procedures
     76  *
     77  * Written by David Waitzman, BBN Labs, August 1988.
     78  * Modified by Steve Deering, Stanford, February 1989.
     79  * Modified by Mark J. Steiglitz, Stanford, May, 1991
     80  * Modified by Van Jacobson, LBL, January 1993
     81  * Modified by Ajit Thyagarajan, PARC, August 1993
     82  * Modified by Bill Fenner, PARC, April 1994
     83  * Modified by Charles M. Hannum, NetBSD, May 1995.
     84  * Modified by Ahmed Helmy, SGI, June 1996
     85  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
     86  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
     87  * Modified by Hitoshi Asaeda, WIDE, August 2000
     88  * Modified by Pavlin Radoslavov, ICSI, October 2002
     89  *
     90  * MROUTING Revision: 1.2
     91  * and PIM-SMv2 and PIM-DM support, advanced API support,
     92  * bandwidth metering and signaling
     93  */
     94 
     95 #include <sys/cdefs.h>
     96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.86 2004/09/04 23:30:07 manu Exp $");
     97 
     98 #include "opt_inet.h"
     99 #include "opt_ipsec.h"
    100 #include "opt_pim.h"
    101 
    102 #ifdef PIM
    103 #define _PIM_VT 1
    104 #endif
    105 
    106 #include <sys/param.h>
    107 #include <sys/systm.h>
    108 #include <sys/callout.h>
    109 #include <sys/mbuf.h>
    110 #include <sys/socket.h>
    111 #include <sys/socketvar.h>
    112 #include <sys/protosw.h>
    113 #include <sys/errno.h>
    114 #include <sys/time.h>
    115 #include <sys/kernel.h>
    116 #include <sys/ioctl.h>
    117 #include <sys/syslog.h>
    118 
    119 #include <net/if.h>
    120 #include <net/route.h>
    121 #include <net/raw_cb.h>
    122 
    123 #include <netinet/in.h>
    124 #include <netinet/in_var.h>
    125 #include <netinet/in_systm.h>
    126 #include <netinet/ip.h>
    127 #include <netinet/ip_var.h>
    128 #include <netinet/in_pcb.h>
    129 #include <netinet/udp.h>
    130 #include <netinet/igmp.h>
    131 #include <netinet/igmp_var.h>
    132 #include <netinet/ip_mroute.h>
    133 #ifdef PIM
    134 #include <netinet/pim.h>
    135 #include <netinet/pim_var.h>
    136 #endif
    137 #include <netinet/ip_encap.h>
    138 
    139 #ifdef IPSEC
    140 #include <netinet6/ipsec.h>
    141 #include <netkey/key.h>
    142 #endif
    143 
    144 #ifdef FAST_IPSEC
    145 #include <netipsec/ipsec.h>
    146 #include <netipsec/key.h>
    147 #endif
    148 
    149 #include <machine/stdarg.h>
    150 
    151 #define IP_MULTICASTOPTS 0
    152 #define	M_PULLUP(m, len)						 \
    153 	do {								 \
    154 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
    155 			(m) = m_pullup((m), (len));			 \
    156 	} while (/*CONSTCOND*/ 0)
    157 
    158 /*
    159  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
    160  * except for netstat or debugging purposes.
    161  */
    162 struct socket  *ip_mrouter  = NULL;
    163 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
    164 
    165 #define NO_RTE_FOUND 	0x1
    166 #define RTE_FOUND	0x2
    167 
    168 #define	MFCHASH(a, g)							\
    169 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
    170 	  ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
    171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
    172 u_long	mfchash;
    173 
    174 u_char		nexpire[MFCTBLSIZ];
    175 struct vif	viftable[MAXVIFS];
    176 struct mrtstat	mrtstat;
    177 u_int		mrtdebug = 0;	  /* debug level 	*/
    178 #define		DEBUG_MFC	0x02
    179 #define		DEBUG_FORWARD	0x04
    180 #define		DEBUG_EXPIRE	0x08
    181 #define		DEBUG_XMIT	0x10
    182 #define		DEBUG_PIM	0x20
    183 
    184 #define		VIFI_INVALID	((vifi_t) -1)
    185 
    186 u_int       	tbfdebug = 0;     /* tbf debug level 	*/
    187 #ifdef RSVP_ISI
    188 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
    189 extern struct socket *ip_rsvpd;
    190 extern int rsvp_on;
    191 #endif /* RSVP_ISI */
    192 
    193 /* vif attachment using sys/netinet/ip_encap.c */
    194 static void vif_input __P((struct mbuf *, ...));
    195 static int vif_encapcheck __P((const struct mbuf *, int, int, void *));
    196 
    197 static const struct protosw vif_protosw =
    198 { SOCK_RAW,	&inetdomain,	IPPROTO_IPV4,	PR_ATOMIC|PR_ADDR,
    199   vif_input,	rip_output,	0,		rip_ctloutput,
    200   rip_usrreq,
    201   0,            0,              0,              0,
    202 };
    203 
    204 #define		EXPIRE_TIMEOUT	(hz / 4)	/* 4x / second */
    205 #define		UPCALL_EXPIRE	6		/* number of timeouts */
    206 
    207 /*
    208  * Define the token bucket filter structures
    209  */
    210 
    211 #define		TBF_REPROCESS	(hz / 100)	/* 100x / second */
    212 
    213 static int get_sg_cnt __P((struct sioc_sg_req *));
    214 static int get_vif_cnt __P((struct sioc_vif_req *));
    215 static int ip_mrouter_init __P((struct socket *, struct mbuf *));
    216 static int get_version __P((struct mbuf *));
    217 static int set_assert __P((struct mbuf *));
    218 static int get_assert __P((struct mbuf *));
    219 static int add_vif __P((struct mbuf *));
    220 static int del_vif __P((struct mbuf *));
    221 static void update_mfc_params __P((struct mfc *, struct mfcctl2 *));
    222 static void init_mfc_params __P((struct mfc *, struct mfcctl2 *));
    223 static void expire_mfc __P((struct mfc *));
    224 static int add_mfc __P((struct mbuf *));
    225 #ifdef UPCALL_TIMING
    226 static void collate __P((struct timeval *));
    227 #endif
    228 static int del_mfc __P((struct mbuf *));
    229 static int set_api_config __P((struct mbuf *)); /* chose API capabilities */
    230 static int get_api_support __P((struct mbuf *));
    231 static int get_api_config __P((struct mbuf *));
    232 static int socket_send __P((struct socket *, struct mbuf *,
    233 			    struct sockaddr_in *));
    234 static void expire_upcalls __P((void *));
    235 #ifdef RSVP_ISI
    236 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t));
    237 #else
    238 static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *));
    239 #endif
    240 static void phyint_send __P((struct ip *, struct vif *, struct mbuf *));
    241 static void encap_send __P((struct ip *, struct vif *, struct mbuf *));
    242 static void tbf_control __P((struct vif *, struct mbuf *, struct ip *,
    243 			     u_int32_t));
    244 static void tbf_queue __P((struct vif *, struct mbuf *));
    245 static void tbf_process_q __P((struct vif *));
    246 static void tbf_reprocess_q __P((void *));
    247 static int tbf_dq_sel __P((struct vif *, struct ip *));
    248 static void tbf_send_packet __P((struct vif *, struct mbuf *));
    249 static void tbf_update_tokens __P((struct vif *));
    250 static int priority __P((struct vif *, struct ip *));
    251 
    252 /*
    253  * Bandwidth monitoring
    254  */
    255 static void free_bw_list __P((struct bw_meter *));
    256 static int add_bw_upcall __P((struct mbuf *));
    257 static int del_bw_upcall __P((struct mbuf *));
    258 static void bw_meter_receive_packet __P((struct bw_meter *, int , struct timeval *));
    259 static void bw_meter_prepare_upcall __P((struct bw_meter *, struct timeval *));
    260 static void bw_upcalls_send __P((void));
    261 static void schedule_bw_meter __P((struct bw_meter *, struct timeval *));
    262 static void unschedule_bw_meter __P((struct bw_meter *));
    263 static void bw_meter_process __P((void));
    264 static void expire_bw_upcalls_send __P((void *));
    265 static void expire_bw_meter_process __P((void *));
    266 
    267 #ifdef PIM
    268 static int pim_register_send __P((struct ip *, struct vif *,
    269 		struct mbuf *, struct mfc *));
    270 static int pim_register_send_rp __P((struct ip *, struct vif *,
    271 		struct mbuf *, struct mfc *));
    272 static int pim_register_send_upcall __P((struct ip *, struct vif *,
    273 		struct mbuf *, struct mfc *));
    274 static struct mbuf *pim_register_prepare __P((struct ip *, struct mbuf *));
    275 #endif
    276 
    277 /*
    278  * 'Interfaces' associated with decapsulator (so we can tell
    279  * packets that went through it from ones that get reflected
    280  * by a broken gateway).  These interfaces are never linked into
    281  * the system ifnet list & no routes point to them.  I.e., packets
    282  * can't be sent this way.  They only exist as a placeholder for
    283  * multicast source verification.
    284  */
    285 #if 0
    286 struct ifnet multicast_decap_if[MAXVIFS];
    287 #endif
    288 
    289 #define	ENCAP_TTL	64
    290 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
    291 
    292 /* prototype IP hdr for encapsulated packets */
    293 struct ip multicast_encap_iphdr = {
    294 #if BYTE_ORDER == LITTLE_ENDIAN
    295 	sizeof(struct ip) >> 2, IPVERSION,
    296 #else
    297 	IPVERSION, sizeof(struct ip) >> 2,
    298 #endif
    299 	0,				/* tos */
    300 	sizeof(struct ip),		/* total length */
    301 	0,				/* id */
    302 	0,				/* frag offset */
    303 	ENCAP_TTL, ENCAP_PROTO,
    304 	0,				/* checksum */
    305 };
    306 
    307 /*
    308  * Bandwidth meter variables and constants
    309  */
    310 
    311 /*
    312  * Pending timeouts are stored in a hash table, the key being the
    313  * expiration time. Periodically, the entries are analysed and processed.
    314  */
    315 #define BW_METER_BUCKETS	1024
    316 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
    317 struct callout bw_meter_ch;
    318 #define BW_METER_PERIOD (hz)		/* periodical handling of bw meters */
    319 
    320 /*
    321  * Pending upcalls are stored in a vector which is flushed when
    322  * full, or periodically
    323  */
    324 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
    325 static u_int	bw_upcalls_n; /* # of pending upcalls */
    326 struct callout	bw_upcalls_ch;
    327 #define BW_UPCALLS_PERIOD (hz)		/* periodical flush of bw upcalls */
    328 
    329 #ifdef PIM
    330 struct pimstat pimstat;
    331 
    332 /*
    333  * Note: the PIM Register encapsulation adds the following in front of a
    334  * data packet:
    335  *
    336  * struct pim_encap_hdr {
    337  *    struct ip ip;
    338  *    struct pim_encap_pimhdr  pim;
    339  * }
    340  *
    341  */
    342 
    343 struct pim_encap_pimhdr {
    344 	struct pim pim;
    345 	uint32_t   flags;
    346 };
    347 
    348 static struct ip pim_encap_iphdr = {
    349 #if BYTE_ORDER == LITTLE_ENDIAN
    350 	sizeof(struct ip) >> 2,
    351 	IPVERSION,
    352 #else
    353 	IPVERSION,
    354 	sizeof(struct ip) >> 2,
    355 #endif
    356 	0,			/* tos */
    357 	sizeof(struct ip),	/* total length */
    358 	0,			/* id */
    359 	0,			/* frag offset */
    360 	ENCAP_TTL,
    361 	IPPROTO_PIM,
    362 	0,			/* checksum */
    363 };
    364 
    365 static struct pim_encap_pimhdr pim_encap_pimhdr = {
    366     {
    367 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
    368 	0,			/* reserved */
    369 	0,			/* checksum */
    370     },
    371     0				/* flags */
    372 };
    373 
    374 static struct ifnet multicast_register_if;
    375 static vifi_t reg_vif_num = VIFI_INVALID;
    376 #endif /* PIM */
    377 
    378 
    379 /*
    380  * Private variables.
    381  */
    382 static vifi_t	   numvifs = 0;
    383 
    384 static struct callout expire_upcalls_ch;
    385 
    386 /*
    387  * one-back cache used by vif_encapcheck to locate a tunnel's vif
    388  * given a datagram's src ip address.
    389  */
    390 static struct in_addr last_encap_src;
    391 static struct vif *last_encap_vif;
    392 
    393 /*
    394  * whether or not special PIM assert processing is enabled.
    395  */
    396 static int pim_assert;
    397 /*
    398  * Rate limit for assert notification messages, in usec
    399  */
    400 #define ASSERT_MSG_TIME		3000000
    401 
    402 /*
    403  * Kernel multicast routing API capabilities and setup.
    404  * If more API capabilities are added to the kernel, they should be
    405  * recorded in `mrt_api_support'.
    406  */
    407 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
    408 					  MRT_MFC_FLAGS_BORDER_VIF |
    409 					  MRT_MFC_RP |
    410 					  MRT_MFC_BW_UPCALL);
    411 static u_int32_t mrt_api_config = 0;
    412 
    413 /*
    414  * Find a route for a given origin IP address and Multicast group address
    415  * Type of service parameter to be added in the future!!!
    416  * Statistics are updated by the caller if needed
    417  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
    418  */
    419 static struct mfc *
    420 mfc_find(struct in_addr *o, struct in_addr *g)
    421 {
    422 	struct mfc *rt;
    423 
    424 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
    425 		if (in_hosteq(rt->mfc_origin, *o) &&
    426 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
    427 		    (rt->mfc_stall == NULL))
    428 			break;
    429 	}
    430 
    431 	return (rt);
    432 }
    433 
    434 /*
    435  * Macros to compute elapsed time efficiently
    436  * Borrowed from Van Jacobson's scheduling code
    437  */
    438 #define TV_DELTA(a, b, delta) do {					\
    439 	int xxs;							\
    440 	delta = (a).tv_usec - (b).tv_usec;				\
    441 	xxs = (a).tv_sec - (b).tv_sec;					\
    442 	switch (xxs) {							\
    443 	case 2:								\
    444 		delta += 1000000;					\
    445 		/* fall through */					\
    446 	case 1:								\
    447 		delta += 1000000;					\
    448 		/* fall through */					\
    449 	case 0:								\
    450 		break;							\
    451 	default:							\
    452 		delta += (1000000 * xxs);				\
    453 		break;							\
    454 	}								\
    455 } while (/*CONSTCOND*/ 0)
    456 
    457 #ifdef UPCALL_TIMING
    458 u_int32_t upcall_data[51];
    459 #endif /* UPCALL_TIMING */
    460 
    461 /*
    462  * Handle MRT setsockopt commands to modify the multicast routing tables.
    463  */
    464 int
    465 ip_mrouter_set(so, optname, m)
    466 	struct socket *so;
    467 	int optname;
    468 	struct mbuf **m;
    469 {
    470 	int error;
    471 
    472 	if (optname != MRT_INIT && so != ip_mrouter)
    473 		error = ENOPROTOOPT;
    474 	else
    475 		switch (optname) {
    476 		case MRT_INIT:
    477 			error = ip_mrouter_init(so, *m);
    478 			break;
    479 		case MRT_DONE:
    480 			error = ip_mrouter_done();
    481 			break;
    482 		case MRT_ADD_VIF:
    483 			error = add_vif(*m);
    484 			break;
    485 		case MRT_DEL_VIF:
    486 			error = del_vif(*m);
    487 			break;
    488 		case MRT_ADD_MFC:
    489 			error = add_mfc(*m);
    490 			break;
    491 		case MRT_DEL_MFC:
    492 			error = del_mfc(*m);
    493 			break;
    494 		case MRT_ASSERT:
    495 			error = set_assert(*m);
    496 			break;
    497 		case MRT_API_CONFIG:
    498 			error = set_api_config(*m);
    499 			break;
    500 		case MRT_ADD_BW_UPCALL:
    501 			error = add_bw_upcall(*m);
    502 			break;
    503 		case MRT_DEL_BW_UPCALL:
    504 			error = del_bw_upcall(*m);
    505 			break;
    506 		default:
    507 			error = ENOPROTOOPT;
    508 			break;
    509 		}
    510 
    511 	if (*m)
    512 		m_free(*m);
    513 	return (error);
    514 }
    515 
    516 /*
    517  * Handle MRT getsockopt commands
    518  */
    519 int
    520 ip_mrouter_get(so, optname, m)
    521 	struct socket *so;
    522 	int optname;
    523 	struct mbuf **m;
    524 {
    525 	int error;
    526 
    527 	if (so != ip_mrouter)
    528 		error = ENOPROTOOPT;
    529 	else {
    530 		*m = m_get(M_WAIT, MT_SOOPTS);
    531 		MCLAIM(*m, so->so_mowner);
    532 
    533 		switch (optname) {
    534 		case MRT_VERSION:
    535 			error = get_version(*m);
    536 			break;
    537 		case MRT_ASSERT:
    538 			error = get_assert(*m);
    539 			break;
    540 		case MRT_API_SUPPORT:
    541 			error = get_api_support(*m);
    542 			break;
    543 		case MRT_API_CONFIG:
    544 			error = get_api_config(*m);
    545 			break;
    546 		default:
    547 			error = ENOPROTOOPT;
    548 			break;
    549 		}
    550 
    551 		if (error)
    552 			m_free(*m);
    553 	}
    554 
    555 	return (error);
    556 }
    557 
    558 /*
    559  * Handle ioctl commands to obtain information from the cache
    560  */
    561 int
    562 mrt_ioctl(so, cmd, data)
    563 	struct socket *so;
    564 	u_long cmd;
    565 	caddr_t data;
    566 {
    567 	int error;
    568 
    569 	if (so != ip_mrouter)
    570 		error = EINVAL;
    571 	else
    572 		switch (cmd) {
    573 		case SIOCGETVIFCNT:
    574 			error = get_vif_cnt((struct sioc_vif_req *)data);
    575 			break;
    576 		case SIOCGETSGCNT:
    577 			error = get_sg_cnt((struct sioc_sg_req *)data);
    578 			break;
    579 		default:
    580 			error = EINVAL;
    581 			break;
    582 		}
    583 
    584 	return (error);
    585 }
    586 
    587 /*
    588  * returns the packet, byte, rpf-failure count for the source group provided
    589  */
    590 static int
    591 get_sg_cnt(req)
    592 	struct sioc_sg_req *req;
    593 {
    594 	int s;
    595 	struct mfc *rt;
    596 
    597 	s = splsoftnet();
    598 	rt = mfc_find(&req->src, &req->grp);
    599 	if (rt == NULL) {
    600 		splx(s);
    601 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
    602 		return (EADDRNOTAVAIL);
    603 	}
    604 	req->pktcnt = rt->mfc_pkt_cnt;
    605 	req->bytecnt = rt->mfc_byte_cnt;
    606 	req->wrong_if = rt->mfc_wrong_if;
    607 	splx(s);
    608 
    609 	return (0);
    610 }
    611 
    612 /*
    613  * returns the input and output packet and byte counts on the vif provided
    614  */
    615 static int
    616 get_vif_cnt(req)
    617 	struct sioc_vif_req *req;
    618 {
    619 	vifi_t vifi = req->vifi;
    620 
    621 	if (vifi >= numvifs)
    622 		return (EINVAL);
    623 
    624 	req->icount = viftable[vifi].v_pkt_in;
    625 	req->ocount = viftable[vifi].v_pkt_out;
    626 	req->ibytes = viftable[vifi].v_bytes_in;
    627 	req->obytes = viftable[vifi].v_bytes_out;
    628 
    629 	return (0);
    630 }
    631 
    632 /*
    633  * Enable multicast routing
    634  */
    635 static int
    636 ip_mrouter_init(so, m)
    637 	struct socket *so;
    638 	struct mbuf *m;
    639 {
    640 	int *v;
    641 
    642 	if (mrtdebug)
    643 		log(LOG_DEBUG,
    644 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
    645 		    so->so_type, so->so_proto->pr_protocol);
    646 
    647 	if (so->so_type != SOCK_RAW ||
    648 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
    649 		return (EOPNOTSUPP);
    650 
    651 	if (m == NULL || m->m_len < sizeof(int))
    652 		return (EINVAL);
    653 
    654 	v = mtod(m, int *);
    655 	if (*v != 1)
    656 		return (EINVAL);
    657 
    658 	if (ip_mrouter != NULL)
    659 		return (EADDRINUSE);
    660 
    661 	ip_mrouter = so;
    662 
    663 	mfchashtbl =
    664 	    hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
    665 	bzero((caddr_t)nexpire, sizeof(nexpire));
    666 
    667 	pim_assert = 0;
    668 
    669 	callout_init(&expire_upcalls_ch);
    670 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
    671 		      expire_upcalls, NULL);
    672 
    673 	callout_init(&bw_upcalls_ch);
    674 	callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
    675 		      expire_bw_upcalls_send, NULL);
    676 
    677 	callout_init(&bw_meter_ch);
    678 	callout_reset(&bw_meter_ch, BW_METER_PERIOD,
    679 		      expire_bw_meter_process, NULL);
    680 
    681 	if (mrtdebug)
    682 		log(LOG_DEBUG, "ip_mrouter_init\n");
    683 
    684 	return (0);
    685 }
    686 
    687 /*
    688  * Disable multicast routing
    689  */
    690 int
    691 ip_mrouter_done()
    692 {
    693 	vifi_t vifi;
    694 	struct vif *vifp;
    695 	int i;
    696 	int s;
    697 
    698 	s = splsoftnet();
    699 
    700 	/* Clear out all the vifs currently in use. */
    701 	for (vifi = 0; vifi < numvifs; vifi++) {
    702 		vifp = &viftable[vifi];
    703 		if (!in_nullhost(vifp->v_lcl_addr))
    704 			reset_vif(vifp);
    705 	}
    706 
    707 	numvifs = 0;
    708 	pim_assert = 0;
    709 	mrt_api_config = 0;
    710 
    711 	callout_stop(&expire_upcalls_ch);
    712 	callout_stop(&bw_upcalls_ch);
    713 	callout_stop(&bw_meter_ch);
    714 
    715 	/*
    716 	 * Free all multicast forwarding cache entries.
    717 	 */
    718 	for (i = 0; i < MFCTBLSIZ; i++) {
    719 		struct mfc *rt, *nrt;
    720 
    721 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
    722 			nrt = LIST_NEXT(rt, mfc_hash);
    723 
    724 			expire_mfc(rt);
    725 		}
    726 	}
    727 
    728 	bzero((caddr_t)nexpire, sizeof(nexpire));
    729 	free(mfchashtbl, M_MRTABLE);
    730 	mfchashtbl = NULL;
    731 
    732 	bw_upcalls_n = 0;
    733 	bzero(bw_meter_timers, sizeof(bw_meter_timers));
    734 
    735 	/* Reset de-encapsulation cache. */
    736 
    737 	ip_mrouter = NULL;
    738 
    739 	splx(s);
    740 
    741 	if (mrtdebug)
    742 		log(LOG_DEBUG, "ip_mrouter_done\n");
    743 
    744 	return (0);
    745 }
    746 
    747 void
    748 ip_mrouter_detach(ifp)
    749 	struct ifnet *ifp;
    750 {
    751 	int vifi, i;
    752 	struct vif *vifp;
    753 	struct mfc *rt;
    754 	struct rtdetq *rte;
    755 
    756 	/* XXX not sure about side effect to userland routing daemon */
    757 	for (vifi = 0; vifi < numvifs; vifi++) {
    758 		vifp = &viftable[vifi];
    759 		if (vifp->v_ifp == ifp)
    760 			reset_vif(vifp);
    761 	}
    762 	for (i = 0; i < MFCTBLSIZ; i++) {
    763 		if (nexpire[i] == 0)
    764 			continue;
    765 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
    766 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
    767 				if (rte->ifp == ifp)
    768 					rte->ifp = NULL;
    769 			}
    770 		}
    771 	}
    772 }
    773 
    774 static int
    775 get_version(m)
    776 	struct mbuf *m;
    777 {
    778 	int *v = mtod(m, int *);
    779 
    780 	*v = 0x0305;	/* XXX !!!! */
    781 	m->m_len = sizeof(int);
    782 	return (0);
    783 }
    784 
    785 /*
    786  * Set PIM assert processing global
    787  */
    788 static int
    789 set_assert(m)
    790 	struct mbuf *m;
    791 {
    792 	int *i;
    793 
    794 	if (m == NULL || m->m_len < sizeof(int))
    795 		return (EINVAL);
    796 
    797 	i = mtod(m, int *);
    798 	pim_assert = !!*i;
    799 	return (0);
    800 }
    801 
    802 /*
    803  * Get PIM assert processing global
    804  */
    805 static int
    806 get_assert(m)
    807 	struct mbuf *m;
    808 {
    809 	int *i = mtod(m, int *);
    810 
    811 	*i = pim_assert;
    812 	m->m_len = sizeof(int);
    813 	return (0);
    814 }
    815 
    816 /*
    817  * Configure API capabilities
    818  */
    819 static int
    820 set_api_config(struct mbuf *m)
    821 {
    822 	int i;
    823 	u_int32_t *apival;
    824 
    825 	if (m == NULL || m->m_len < sizeof(u_int32_t))
    826 		return (EINVAL);
    827 
    828 	apival = mtod(m, u_int32_t *);
    829 
    830 	/*
    831 	 * We can set the API capabilities only if it is the first operation
    832 	 * after MRT_INIT. I.e.:
    833 	 *  - there are no vifs installed
    834 	 *  - pim_assert is not enabled
    835 	 *  - the MFC table is empty
    836 	 */
    837 	if (numvifs > 0) {
    838 		*apival = 0;
    839 		return (EPERM);
    840 	}
    841 	if (pim_assert) {
    842 		*apival = 0;
    843 		return (EPERM);
    844 	}
    845 	for (i = 0; i < MFCTBLSIZ; i++) {
    846 		if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
    847 			*apival = 0;
    848 			return (EPERM);
    849 		}
    850 	}
    851 
    852 	mrt_api_config = *apival & mrt_api_support;
    853 	*apival = mrt_api_config;
    854 
    855 	return (0);
    856 }
    857 
    858 /*
    859  * Get API capabilities
    860  */
    861 static int
    862 get_api_support(struct mbuf *m)
    863 {
    864 	u_int32_t *apival;
    865 
    866 	if (m == NULL || m->m_len < sizeof(u_int32_t))
    867 		return (EINVAL);
    868 
    869 	apival = mtod(m, u_int32_t *);
    870 
    871 	*apival = mrt_api_support;
    872 
    873 	return (0);
    874 }
    875 
    876 /*
    877  * Get API configured capabilities
    878  */
    879 static int
    880 get_api_config(struct mbuf *m)
    881 {
    882 	u_int32_t *apival;
    883 
    884 	if (m == NULL || m->m_len < sizeof(u_int32_t))
    885 		return (EINVAL);
    886 
    887 	apival = mtod(m, u_int32_t *);
    888 
    889 	*apival = mrt_api_config;
    890 
    891 	return (0);
    892 }
    893 
    894 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
    895 
    896 /*
    897  * Add a vif to the vif table
    898  */
    899 static int
    900 add_vif(m)
    901 	struct mbuf *m;
    902 {
    903 	struct vifctl *vifcp;
    904 	struct vif *vifp;
    905 	struct ifaddr *ifa;
    906 	struct ifnet *ifp;
    907 	struct ifreq ifr;
    908 	int error, s;
    909 
    910 	if (m == NULL || m->m_len < sizeof(struct vifctl))
    911 		return (EINVAL);
    912 
    913 	vifcp = mtod(m, struct vifctl *);
    914 	if (vifcp->vifc_vifi >= MAXVIFS)
    915 		return (EINVAL);
    916 	if (in_nullhost(vifcp->vifc_lcl_addr))
    917 		return (EADDRNOTAVAIL);
    918 
    919 	vifp = &viftable[vifcp->vifc_vifi];
    920 	if (!in_nullhost(vifp->v_lcl_addr))
    921 		return (EADDRINUSE);
    922 
    923 	/* Find the interface with an address in AF_INET family. */
    924 #ifdef PIM
    925 	if (vifcp->vifc_flags & VIFF_REGISTER) {
    926 		/*
    927 		 * XXX: Because VIFF_REGISTER does not really need a valid
    928 		 * local interface (e.g. it could be 127.0.0.2), we don't
    929 		 * check its address.
    930 		 */
    931 	    ifp = NULL;
    932 	} else
    933 #endif
    934 	{
    935 		sin.sin_addr = vifcp->vifc_lcl_addr;
    936 		ifa = ifa_ifwithaddr(sintosa(&sin));
    937 		if (ifa == NULL)
    938 			return (EADDRNOTAVAIL);
    939 		ifp = ifa->ifa_ifp;
    940 	}
    941 
    942 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
    943 		if (vifcp->vifc_flags & VIFF_SRCRT) {
    944 			log(LOG_ERR, "source routed tunnels not supported\n");
    945 			return (EOPNOTSUPP);
    946 		}
    947 
    948 		/* attach this vif to decapsulator dispatch table */
    949 		vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
    950 		    vif_encapcheck, &vif_protosw, vifp);
    951 		if (!vifp->v_encap_cookie)
    952 			return (EINVAL);
    953 
    954 		/* Create a fake encapsulation interface. */
    955 		ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
    956 		bzero(ifp, sizeof(*ifp));
    957 		snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    958 			 "mdecap%d", vifcp->vifc_vifi);
    959 
    960 		/* Prepare cached route entry. */
    961 		bzero(&vifp->v_route, sizeof(vifp->v_route));
    962 #ifdef PIM
    963 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
    964 		ifp = &multicast_register_if;
    965 		if (mrtdebug)
    966 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
    967 			    (void *)ifp);
    968 		if (reg_vif_num == VIFI_INVALID) {
    969 			bzero(ifp, sizeof(*ifp));
    970 			snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    971 				 "register_vif");
    972 			ifp->if_flags = IFF_LOOPBACK;
    973 			bzero(&vifp->v_route, sizeof(vifp->v_route));
    974 			reg_vif_num = vifcp->vifc_vifi;
    975 		}
    976 #endif
    977 	} else {
    978 		/* Make sure the interface supports multicast. */
    979 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
    980 			return (EOPNOTSUPP);
    981 
    982 		/* Enable promiscuous reception of all IP multicasts. */
    983 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
    984 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
    985 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
    986 		error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
    987 		if (error)
    988 			return (error);
    989 	}
    990 
    991 	s = splsoftnet();
    992 
    993 	/* Define parameters for the tbf structure. */
    994 	vifp->tbf_q = NULL;
    995 	vifp->tbf_t = &vifp->tbf_q;
    996 	microtime(&vifp->tbf_last_pkt_t);
    997 	vifp->tbf_n_tok = 0;
    998 	vifp->tbf_q_len = 0;
    999 	vifp->tbf_max_q_len = MAXQSIZE;
   1000 
   1001 	vifp->v_flags = vifcp->vifc_flags;
   1002 	vifp->v_threshold = vifcp->vifc_threshold;
   1003 	/* scaling up here allows division by 1024 in critical code */
   1004 	vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
   1005 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
   1006 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
   1007 	vifp->v_ifp = ifp;
   1008 	/* Initialize per vif pkt counters. */
   1009 	vifp->v_pkt_in = 0;
   1010 	vifp->v_pkt_out = 0;
   1011 	vifp->v_bytes_in = 0;
   1012 	vifp->v_bytes_out = 0;
   1013 
   1014 	callout_init(&vifp->v_repq_ch);
   1015 
   1016 #ifdef RSVP_ISI
   1017 	vifp->v_rsvp_on = 0;
   1018 	vifp->v_rsvpd = NULL;
   1019 #endif /* RSVP_ISI */
   1020 
   1021 	splx(s);
   1022 
   1023 	/* Adjust numvifs up if the vifi is higher than numvifs. */
   1024 	if (numvifs <= vifcp->vifc_vifi)
   1025 		numvifs = vifcp->vifc_vifi + 1;
   1026 
   1027 	if (mrtdebug)
   1028 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
   1029 		    vifcp->vifc_vifi,
   1030 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
   1031 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
   1032 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
   1033 		    vifcp->vifc_threshold,
   1034 		    vifcp->vifc_rate_limit);
   1035 
   1036 	return (0);
   1037 }
   1038 
   1039 void
   1040 reset_vif(vifp)
   1041 	struct vif *vifp;
   1042 {
   1043 	struct mbuf *m, *n;
   1044 	struct ifnet *ifp;
   1045 	struct ifreq ifr;
   1046 
   1047 	callout_stop(&vifp->v_repq_ch);
   1048 
   1049 	/* detach this vif from decapsulator dispatch table */
   1050 	encap_detach(vifp->v_encap_cookie);
   1051 	vifp->v_encap_cookie = NULL;
   1052 
   1053 	/*
   1054 	 * Free packets queued at the interface
   1055 	 */
   1056 	for (m = vifp->tbf_q; m != NULL; m = n) {
   1057 		n = m->m_nextpkt;
   1058 		m_freem(m);
   1059 	}
   1060 
   1061 	if (vifp->v_flags & VIFF_TUNNEL) {
   1062 		free(vifp->v_ifp, M_MRTABLE);
   1063 		if (vifp == last_encap_vif) {
   1064 			last_encap_vif = NULL;
   1065 			last_encap_src = zeroin_addr;
   1066 		}
   1067 	} else if (vifp->v_flags & VIFF_REGISTER) {
   1068 #ifdef PIM
   1069 		if (vifp->v_flags & VIFF_REGISTER)
   1070 			reg_vif_num = VIFI_INVALID;
   1071 #endif
   1072 	} else {
   1073 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
   1074 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
   1075 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
   1076 		ifp = vifp->v_ifp;
   1077 		(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
   1078 	}
   1079 	bzero((caddr_t)vifp, sizeof(*vifp));
   1080 }
   1081 
   1082 /*
   1083  * Delete a vif from the vif table
   1084  */
   1085 static int
   1086 del_vif(m)
   1087 	struct mbuf *m;
   1088 {
   1089 	vifi_t *vifip;
   1090 	struct vif *vifp;
   1091 	vifi_t vifi;
   1092 	int s;
   1093 
   1094 	if (m == NULL || m->m_len < sizeof(vifi_t))
   1095 		return (EINVAL);
   1096 
   1097 	vifip = mtod(m, vifi_t *);
   1098 	if (*vifip >= numvifs)
   1099 		return (EINVAL);
   1100 
   1101 	vifp = &viftable[*vifip];
   1102 	if (in_nullhost(vifp->v_lcl_addr))
   1103 		return (EADDRNOTAVAIL);
   1104 
   1105 	s = splsoftnet();
   1106 
   1107 	reset_vif(vifp);
   1108 
   1109 	/* Adjust numvifs down */
   1110 	for (vifi = numvifs; vifi > 0; vifi--)
   1111 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
   1112 			break;
   1113 	numvifs = vifi;
   1114 
   1115 	splx(s);
   1116 
   1117 	if (mrtdebug)
   1118 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
   1119 
   1120 	return (0);
   1121 }
   1122 
   1123 /*
   1124  * update an mfc entry without resetting counters and S,G addresses.
   1125  */
   1126 static void
   1127 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
   1128 {
   1129 	int i;
   1130 
   1131 	rt->mfc_parent = mfccp->mfcc_parent;
   1132 	for (i = 0; i < numvifs; i++) {
   1133 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
   1134 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
   1135 			MRT_MFC_FLAGS_ALL;
   1136 	}
   1137 	/* set the RP address */
   1138 	if (mrt_api_config & MRT_MFC_RP)
   1139 		rt->mfc_rp = mfccp->mfcc_rp;
   1140 	else
   1141 		rt->mfc_rp = zeroin_addr;
   1142 }
   1143 
   1144 /*
   1145  * fully initialize an mfc entry from the parameter.
   1146  */
   1147 static void
   1148 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
   1149 {
   1150 	rt->mfc_origin     = mfccp->mfcc_origin;
   1151 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
   1152 
   1153 	update_mfc_params(rt, mfccp);
   1154 
   1155 	/* initialize pkt counters per src-grp */
   1156 	rt->mfc_pkt_cnt    = 0;
   1157 	rt->mfc_byte_cnt   = 0;
   1158 	rt->mfc_wrong_if   = 0;
   1159 	timerclear(&rt->mfc_last_assert);
   1160 }
   1161 
   1162 static void
   1163 expire_mfc(rt)
   1164 	struct mfc *rt;
   1165 {
   1166 	struct rtdetq *rte, *nrte;
   1167 
   1168 	free_bw_list(rt->mfc_bw_meter);
   1169 
   1170 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
   1171 		nrte = rte->next;
   1172 		m_freem(rte->m);
   1173 		free(rte, M_MRTABLE);
   1174 	}
   1175 
   1176 	LIST_REMOVE(rt, mfc_hash);
   1177 	free(rt, M_MRTABLE);
   1178 }
   1179 
   1180 /*
   1181  * Add an mfc entry
   1182  */
   1183 static int
   1184 add_mfc(m)
   1185 	struct mbuf *m;
   1186 {
   1187 	struct mfcctl2 mfcctl2;
   1188 	struct mfcctl2 *mfccp;
   1189 	struct mfc *rt;
   1190 	u_int32_t hash = 0;
   1191 	struct rtdetq *rte, *nrte;
   1192 	u_short nstl;
   1193 	int s;
   1194 	int mfcctl_size = sizeof(struct mfcctl);
   1195 
   1196 	if (mrt_api_config & MRT_API_FLAGS_ALL)
   1197 		mfcctl_size = sizeof(struct mfcctl2);
   1198 
   1199 	if (m == NULL || m->m_len < mfcctl_size)
   1200 		return (EINVAL);
   1201 
   1202 	/*
   1203 	 * select data size depending on API version.
   1204 	 */
   1205 	if (mrt_api_config & MRT_API_FLAGS_ALL) {
   1206 		struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
   1207 		bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2));
   1208 	} else {
   1209 		struct mfcctl *mp = mtod(m, struct mfcctl *);
   1210 		bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
   1211 		bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
   1212 		      sizeof(mfcctl2) - sizeof(struct mfcctl));
   1213 	}
   1214 	mfccp = &mfcctl2;
   1215 
   1216 	s = splsoftnet();
   1217 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1218 
   1219 	/* If an entry already exists, just update the fields */
   1220 	if (rt) {
   1221 		if (mrtdebug & DEBUG_MFC)
   1222 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
   1223 			    ntohl(mfccp->mfcc_origin.s_addr),
   1224 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1225 			    mfccp->mfcc_parent);
   1226 
   1227 		update_mfc_params(rt, mfccp);
   1228 
   1229 		splx(s);
   1230 		return (0);
   1231 	}
   1232 
   1233 	/*
   1234 	 * Find the entry for which the upcall was made and update
   1235 	 */
   1236 	nstl = 0;
   1237 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
   1238 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1239 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1240 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
   1241 		    rt->mfc_stall != NULL) {
   1242 			if (nstl++)
   1243 				log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
   1244 				    "multiple kernel entries",
   1245 				    ntohl(mfccp->mfcc_origin.s_addr),
   1246 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1247 				    mfccp->mfcc_parent, rt->mfc_stall);
   1248 
   1249 			if (mrtdebug & DEBUG_MFC)
   1250 				log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
   1251 				    ntohl(mfccp->mfcc_origin.s_addr),
   1252 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1253 				    mfccp->mfcc_parent, rt->mfc_stall);
   1254 
   1255 			rte = rt->mfc_stall;
   1256 			init_mfc_params(rt, mfccp);
   1257 			rt->mfc_stall = NULL;
   1258 
   1259 			rt->mfc_expire = 0; /* Don't clean this guy up */
   1260 			nexpire[hash]--;
   1261 
   1262 			/* free packets Qed at the end of this entry */
   1263 			for (; rte != NULL; rte = nrte) {
   1264 				nrte = rte->next;
   1265 				if (rte->ifp) {
   1266 #ifdef RSVP_ISI
   1267 					ip_mdq(rte->m, rte->ifp, rt, -1);
   1268 #else
   1269 					ip_mdq(rte->m, rte->ifp, rt);
   1270 #endif /* RSVP_ISI */
   1271 				}
   1272 				m_freem(rte->m);
   1273 #ifdef UPCALL_TIMING
   1274 				collate(&rte->t);
   1275 #endif /* UPCALL_TIMING */
   1276 				free(rte, M_MRTABLE);
   1277 			}
   1278 		}
   1279 	}
   1280 
   1281 	/*
   1282 	 * It is possible that an entry is being inserted without an upcall
   1283 	 */
   1284 	if (nstl == 0) {
   1285 		/*
   1286 		 * No mfc; make a new one
   1287 		 */
   1288 		if (mrtdebug & DEBUG_MFC)
   1289 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
   1290 			    ntohl(mfccp->mfcc_origin.s_addr),
   1291 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
   1292 			    mfccp->mfcc_parent);
   1293 
   1294 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1295 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
   1296 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
   1297 				init_mfc_params(rt, mfccp);
   1298 				if (rt->mfc_expire)
   1299 					nexpire[hash]--;
   1300 				rt->mfc_expire = 0;
   1301 				break; /* XXX */
   1302 			}
   1303 		}
   1304 		if (rt == NULL) {	/* no upcall, so make a new entry */
   1305 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1306 						  M_NOWAIT);
   1307 			if (rt == NULL) {
   1308 				splx(s);
   1309 				return (ENOBUFS);
   1310 			}
   1311 
   1312 			init_mfc_params(rt, mfccp);
   1313 			rt->mfc_expire	= 0;
   1314 			rt->mfc_stall	= NULL;
   1315 			rt->mfc_bw_meter = NULL;
   1316 
   1317 			/* insert new entry at head of hash chain */
   1318 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1319 		}
   1320 	}
   1321 
   1322 	splx(s);
   1323 	return (0);
   1324 }
   1325 
   1326 #ifdef UPCALL_TIMING
   1327 /*
   1328  * collect delay statistics on the upcalls
   1329  */
   1330 static void
   1331 collate(t)
   1332 	struct timeval *t;
   1333 {
   1334 	u_int32_t d;
   1335 	struct timeval tp;
   1336 	u_int32_t delta;
   1337 
   1338 	microtime(&tp);
   1339 
   1340 	if (timercmp(t, &tp, <)) {
   1341 		TV_DELTA(tp, *t, delta);
   1342 
   1343 		d = delta >> 10;
   1344 		if (d > 50)
   1345 			d = 50;
   1346 
   1347 		++upcall_data[d];
   1348 	}
   1349 }
   1350 #endif /* UPCALL_TIMING */
   1351 
   1352 /*
   1353  * Delete an mfc entry
   1354  */
   1355 static int
   1356 del_mfc(m)
   1357 	struct mbuf *m;
   1358 {
   1359 	struct mfcctl2 mfcctl2;
   1360 	struct mfcctl2 *mfccp;
   1361 	struct mfc *rt;
   1362 	int s;
   1363 	int mfcctl_size = sizeof(struct mfcctl);
   1364 	struct mfcctl *mp = mtod(m, struct mfcctl *);
   1365 
   1366 	/*
   1367 	 * XXX: for deleting MFC entries the information in entries
   1368 	 * of size "struct mfcctl" is sufficient.
   1369 	 */
   1370 
   1371 	if (m == NULL || m->m_len < mfcctl_size)
   1372 		return (EINVAL);
   1373 
   1374 	bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
   1375 	bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
   1376 	      sizeof(mfcctl2) - sizeof(struct mfcctl));
   1377 
   1378 	mfccp = &mfcctl2;
   1379 
   1380 	if (mrtdebug & DEBUG_MFC)
   1381 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
   1382 		    ntohl(mfccp->mfcc_origin.s_addr),
   1383 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
   1384 
   1385 	s = splsoftnet();
   1386 
   1387 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
   1388 	if (rt == NULL) {
   1389 		splx(s);
   1390 		return (EADDRNOTAVAIL);
   1391 	}
   1392 
   1393 	/*
   1394 	 * free the bw_meter entries
   1395 	 */
   1396 	free_bw_list(rt->mfc_bw_meter);
   1397 	rt->mfc_bw_meter = NULL;
   1398 
   1399 	LIST_REMOVE(rt, mfc_hash);
   1400 	free(rt, M_MRTABLE);
   1401 
   1402 	splx(s);
   1403 	return (0);
   1404 }
   1405 
   1406 static int
   1407 socket_send(s, mm, src)
   1408 	struct socket *s;
   1409 	struct mbuf *mm;
   1410 	struct sockaddr_in *src;
   1411 {
   1412 	if (s) {
   1413 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
   1414 		    (struct mbuf *)NULL) != 0) {
   1415 			sorwakeup(s);
   1416 			return (0);
   1417 		}
   1418 	}
   1419 	m_freem(mm);
   1420 	return (-1);
   1421 }
   1422 
   1423 /*
   1424  * IP multicast forwarding function. This function assumes that the packet
   1425  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
   1426  * pointed to by "ifp", and the packet is to be relayed to other networks
   1427  * that have members of the packet's destination IP multicast group.
   1428  *
   1429  * The packet is returned unscathed to the caller, unless it is
   1430  * erroneous, in which case a non-zero return value tells the caller to
   1431  * discard it.
   1432  */
   1433 
   1434 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
   1435 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
   1436 
   1437 int
   1438 #ifdef RSVP_ISI
   1439 ip_mforward(m, ifp, imo)
   1440 #else
   1441 ip_mforward(m, ifp)
   1442 #endif /* RSVP_ISI */
   1443 	struct mbuf *m;
   1444 	struct ifnet *ifp;
   1445 #ifdef RSVP_ISI
   1446 	struct ip_moptions *imo;
   1447 #endif /* RSVP_ISI */
   1448 {
   1449 	struct ip *ip = mtod(m, struct ip *);
   1450 	struct mfc *rt;
   1451 	static int srctun = 0;
   1452 	struct mbuf *mm;
   1453 	int s;
   1454 	vifi_t vifi;
   1455 
   1456 	if (mrtdebug & DEBUG_FORWARD)
   1457 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
   1458 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
   1459 
   1460 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
   1461 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
   1462 		/*
   1463 		 * Packet arrived via a physical interface or
   1464 		 * an encapsulated tunnel or a register_vif.
   1465 		 */
   1466 	} else {
   1467 		/*
   1468 		 * Packet arrived through a source-route tunnel.
   1469 		 * Source-route tunnels are no longer supported.
   1470 		 */
   1471 		if ((srctun++ % 1000) == 0)
   1472 			log(LOG_ERR,
   1473 			    "ip_mforward: received source-routed packet from %x\n",
   1474 			    ntohl(ip->ip_src.s_addr));
   1475 
   1476 		return (1);
   1477 	}
   1478 
   1479 #ifdef RSVP_ISI
   1480 	if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
   1481 		if (ip->ip_ttl < 255)
   1482 			ip->ip_ttl++;	/* compensate for -1 in *_send routines */
   1483 		if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
   1484 			struct vif *vifp = viftable + vifi;
   1485 			printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
   1486 			    ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
   1487 			    (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
   1488 			    vifp->v_ifp->if_xname);
   1489 		}
   1490 		return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
   1491 	}
   1492 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
   1493 		printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
   1494 		    ntohl(ip->ip_src), ntohl(ip->ip_dst));
   1495 	}
   1496 #endif /* RSVP_ISI */
   1497 
   1498 	/*
   1499 	 * Don't forward a packet with time-to-live of zero or one,
   1500 	 * or a packet destined to a local-only group.
   1501 	 */
   1502 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
   1503 		return (0);
   1504 
   1505 	/*
   1506 	 * Determine forwarding vifs from the forwarding cache table
   1507 	 */
   1508 	s = splsoftnet();
   1509 	++mrtstat.mrts_mfc_lookups;
   1510 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
   1511 
   1512 	/* Entry exists, so forward if necessary */
   1513 	if (rt != NULL) {
   1514 		splx(s);
   1515 #ifdef RSVP_ISI
   1516 		return (ip_mdq(m, ifp, rt, -1));
   1517 #else
   1518 		return (ip_mdq(m, ifp, rt));
   1519 #endif /* RSVP_ISI */
   1520 	} else {
   1521 		/*
   1522 		 * If we don't have a route for packet's origin,
   1523 		 * Make a copy of the packet & send message to routing daemon
   1524 		 */
   1525 
   1526 		struct mbuf *mb0;
   1527 		struct rtdetq *rte;
   1528 		u_int32_t hash;
   1529 		int hlen = ip->ip_hl << 2;
   1530 #ifdef UPCALL_TIMING
   1531 		struct timeval tp;
   1532 
   1533 		microtime(&tp);
   1534 #endif /* UPCALL_TIMING */
   1535 
   1536 		++mrtstat.mrts_mfc_misses;
   1537 
   1538 		mrtstat.mrts_no_route++;
   1539 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
   1540 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
   1541 			    ntohl(ip->ip_src.s_addr),
   1542 			    ntohl(ip->ip_dst.s_addr));
   1543 
   1544 		/*
   1545 		 * Allocate mbufs early so that we don't do extra work if we are
   1546 		 * just going to fail anyway.  Make sure to pullup the header so
   1547 		 * that other people can't step on it.
   1548 		 */
   1549 		rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
   1550 					      M_NOWAIT);
   1551 		if (rte == NULL) {
   1552 			splx(s);
   1553 			return (ENOBUFS);
   1554 		}
   1555 		mb0 = m_copy(m, 0, M_COPYALL);
   1556 		M_PULLUP(mb0, hlen);
   1557 		if (mb0 == NULL) {
   1558 			free(rte, M_MRTABLE);
   1559 			splx(s);
   1560 			return (ENOBUFS);
   1561 		}
   1562 
   1563 		/* is there an upcall waiting for this flow? */
   1564 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
   1565 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
   1566 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
   1567 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
   1568 			    rt->mfc_stall != NULL)
   1569 				break;
   1570 		}
   1571 
   1572 		if (rt == NULL) {
   1573 			int i;
   1574 			struct igmpmsg *im;
   1575 
   1576 			/*
   1577 			 * Locate the vifi for the incoming interface for
   1578 			 * this packet.
   1579 			 * If none found, drop packet.
   1580 			 */
   1581 			for (vifi = 0; vifi < numvifs &&
   1582 				 viftable[vifi].v_ifp != ifp; vifi++)
   1583 				;
   1584 			if (vifi >= numvifs) /* vif not found, drop packet */
   1585 				goto non_fatal;
   1586 
   1587 			/* no upcall, so make a new entry */
   1588 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
   1589 						  M_NOWAIT);
   1590 			if (rt == NULL)
   1591 				goto fail;
   1592 
   1593 			/*
   1594 			 * Make a copy of the header to send to the user level
   1595 			 * process
   1596 			 */
   1597 			mm = m_copy(m, 0, hlen);
   1598 			M_PULLUP(mm, hlen);
   1599 			if (mm == NULL)
   1600 				goto fail1;
   1601 
   1602 			/*
   1603 			 * Send message to routing daemon to install
   1604 			 * a route into the kernel table
   1605 			 */
   1606 
   1607 			im = mtod(mm, struct igmpmsg *);
   1608 			im->im_msgtype = IGMPMSG_NOCACHE;
   1609 			im->im_mbz = 0;
   1610 			im->im_vif = vifi;
   1611 
   1612 			mrtstat.mrts_upcalls++;
   1613 
   1614 			sin.sin_addr = ip->ip_src;
   1615 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1616 				log(LOG_WARNING,
   1617 				    "ip_mforward: ip_mrouter socket queue full\n");
   1618 				++mrtstat.mrts_upq_sockfull;
   1619 			fail1:
   1620 				free(rt, M_MRTABLE);
   1621 			fail:
   1622 				free(rte, M_MRTABLE);
   1623 				m_freem(mb0);
   1624 				splx(s);
   1625 				return (ENOBUFS);
   1626 			}
   1627 
   1628 			/* insert new entry at head of hash chain */
   1629 			rt->mfc_origin = ip->ip_src;
   1630 			rt->mfc_mcastgrp = ip->ip_dst;
   1631 			rt->mfc_pkt_cnt = 0;
   1632 			rt->mfc_byte_cnt = 0;
   1633 			rt->mfc_wrong_if = 0;
   1634 			rt->mfc_expire = UPCALL_EXPIRE;
   1635 			nexpire[hash]++;
   1636 			for (i = 0; i < numvifs; i++) {
   1637 				rt->mfc_ttls[i] = 0;
   1638 				rt->mfc_flags[i] = 0;
   1639 			}
   1640 			rt->mfc_parent = -1;
   1641 
   1642 			/* clear the RP address */
   1643 			rt->mfc_rp = zeroin_addr;
   1644 
   1645 			rt->mfc_bw_meter = NULL;
   1646 
   1647 			/* link into table */
   1648 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
   1649 			/* Add this entry to the end of the queue */
   1650 			rt->mfc_stall = rte;
   1651 		} else {
   1652 			/* determine if q has overflowed */
   1653 			struct rtdetq **p;
   1654 			int npkts = 0;
   1655 
   1656 			/*
   1657 			 * XXX ouch! we need to append to the list, but we
   1658 			 * only have a pointer to the front, so we have to
   1659 			 * scan the entire list every time.
   1660 			 */
   1661 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
   1662 				if (++npkts > MAX_UPQ) {
   1663 					mrtstat.mrts_upq_ovflw++;
   1664 				non_fatal:
   1665 					free(rte, M_MRTABLE);
   1666 					m_freem(mb0);
   1667 					splx(s);
   1668 					return (0);
   1669 				}
   1670 
   1671 			/* Add this entry to the end of the queue */
   1672 			*p = rte;
   1673 		}
   1674 
   1675 		rte->next = NULL;
   1676 		rte->m = mb0;
   1677 		rte->ifp = ifp;
   1678 #ifdef UPCALL_TIMING
   1679 		rte->t = tp;
   1680 #endif /* UPCALL_TIMING */
   1681 
   1682 		splx(s);
   1683 
   1684 		return (0);
   1685 	}
   1686 }
   1687 
   1688 
   1689 /*ARGSUSED*/
   1690 static void
   1691 expire_upcalls(v)
   1692 	void *v;
   1693 {
   1694 	int i;
   1695 	int s;
   1696 
   1697 	s = splsoftnet();
   1698 
   1699 	for (i = 0; i < MFCTBLSIZ; i++) {
   1700 		struct mfc *rt, *nrt;
   1701 
   1702 		if (nexpire[i] == 0)
   1703 			continue;
   1704 
   1705 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
   1706 			nrt = LIST_NEXT(rt, mfc_hash);
   1707 
   1708 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
   1709 				continue;
   1710 			nexpire[i]--;
   1711 
   1712 			/*
   1713 			 * free the bw_meter entries
   1714 			 */
   1715 			while (rt->mfc_bw_meter != NULL) {
   1716 				struct bw_meter *x = rt->mfc_bw_meter;
   1717 
   1718 				rt->mfc_bw_meter = x->bm_mfc_next;
   1719 				free(x, M_BWMETER);
   1720 			}
   1721 
   1722 			++mrtstat.mrts_cache_cleanups;
   1723 			if (mrtdebug & DEBUG_EXPIRE)
   1724 				log(LOG_DEBUG,
   1725 				    "expire_upcalls: expiring (%x %x)\n",
   1726 				    ntohl(rt->mfc_origin.s_addr),
   1727 				    ntohl(rt->mfc_mcastgrp.s_addr));
   1728 
   1729 			expire_mfc(rt);
   1730 		}
   1731 	}
   1732 
   1733 	splx(s);
   1734 	callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
   1735 	    expire_upcalls, NULL);
   1736 }
   1737 
   1738 /*
   1739  * Packet forwarding routine once entry in the cache is made
   1740  */
   1741 static int
   1742 #ifdef RSVP_ISI
   1743 ip_mdq(m, ifp, rt, xmt_vif)
   1744 #else
   1745 ip_mdq(m, ifp, rt)
   1746 #endif /* RSVP_ISI */
   1747 	struct mbuf *m;
   1748 	struct ifnet *ifp;
   1749 	struct mfc *rt;
   1750 #ifdef RSVP_ISI
   1751 	vifi_t xmt_vif;
   1752 #endif /* RSVP_ISI */
   1753 {
   1754 	struct ip  *ip = mtod(m, struct ip *);
   1755 	vifi_t vifi;
   1756 	struct vif *vifp;
   1757 	int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
   1758 
   1759 /*
   1760  * Macro to send packet on vif.  Since RSVP packets don't get counted on
   1761  * input, they shouldn't get counted on output, so statistics keeping is
   1762  * separate.
   1763  */
   1764 #define MC_SEND(ip, vifp, m) do {					\
   1765 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
   1766 		encap_send((ip), (vifp), (m));				\
   1767 	else								\
   1768 		phyint_send((ip), (vifp), (m));				\
   1769 } while (/*CONSTCOND*/ 0)
   1770 
   1771 #ifdef RSVP_ISI
   1772 	/*
   1773 	 * If xmt_vif is not -1, send on only the requested vif.
   1774 	 *
   1775 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
   1776 	 */
   1777 	if (xmt_vif < numvifs) {
   1778 #ifdef PIM
   1779 		if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
   1780 			pim_register_send(ip, viftable + xmt_vif, m, rt);
   1781 		else
   1782 #endif
   1783 		MC_SEND(ip, viftable + xmt_vif, m);
   1784 		return (1);
   1785 	}
   1786 #endif /* RSVP_ISI */
   1787 
   1788 	/*
   1789 	 * Don't forward if it didn't arrive from the parent vif for its origin.
   1790 	 */
   1791 	vifi = rt->mfc_parent;
   1792 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
   1793 		/* came in the wrong interface */
   1794 		if (mrtdebug & DEBUG_FORWARD)
   1795 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
   1796 			    ifp, vifi,
   1797 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
   1798 		++mrtstat.mrts_wrong_if;
   1799 		++rt->mfc_wrong_if;
   1800 		/*
   1801 		 * If we are doing PIM assert processing, send a message
   1802 		 * to the routing daemon.
   1803 		 *
   1804 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
   1805 		 * can complete the SPT switch, regardless of the type
   1806 		 * of the iif (broadcast media, GRE tunnel, etc).
   1807 		 */
   1808 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
   1809 			struct timeval now;
   1810 			u_int32_t delta;
   1811 
   1812 #ifdef PIM
   1813 			if (ifp == &multicast_register_if)
   1814 				pimstat.pims_rcv_registers_wrongiif++;
   1815 #endif
   1816 
   1817 			/* Get vifi for the incoming packet */
   1818 			for (vifi = 0;
   1819 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
   1820 			     vifi++)
   1821 			    ;
   1822 			if (vifi >= numvifs) {
   1823 				/* The iif is not found: ignore the packet. */
   1824 				return (0);
   1825 			}
   1826 
   1827 			if (rt->mfc_flags[vifi] &
   1828 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
   1829 				/* WRONGVIF disabled: ignore the packet */
   1830 				return (0);
   1831 			}
   1832 
   1833 			microtime(&now);
   1834 
   1835 			TV_DELTA(rt->mfc_last_assert, now, delta);
   1836 
   1837 			if (delta > ASSERT_MSG_TIME) {
   1838 				struct igmpmsg *im;
   1839 				int hlen = ip->ip_hl << 2;
   1840 				struct mbuf *mm = m_copy(m, 0, hlen);
   1841 
   1842 				M_PULLUP(mm, hlen);
   1843 				if (mm == NULL)
   1844 					return (ENOBUFS);
   1845 
   1846 				rt->mfc_last_assert = now;
   1847 
   1848 				im = mtod(mm, struct igmpmsg *);
   1849 				im->im_msgtype	= IGMPMSG_WRONGVIF;
   1850 				im->im_mbz	= 0;
   1851 				im->im_vif	= vifi;
   1852 
   1853 				mrtstat.mrts_upcalls++;
   1854 
   1855 				sin.sin_addr = im->im_src;
   1856 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
   1857 					log(LOG_WARNING,
   1858 					    "ip_mforward: ip_mrouter socket queue full\n");
   1859 					++mrtstat.mrts_upq_sockfull;
   1860 					return (ENOBUFS);
   1861 				}
   1862 			}
   1863 		}
   1864 		return (0);
   1865 	}
   1866 
   1867 	/* If I sourced this packet, it counts as output, else it was input. */
   1868 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
   1869 		viftable[vifi].v_pkt_out++;
   1870 		viftable[vifi].v_bytes_out += plen;
   1871 	} else {
   1872 		viftable[vifi].v_pkt_in++;
   1873 		viftable[vifi].v_bytes_in += plen;
   1874 	}
   1875 	rt->mfc_pkt_cnt++;
   1876 	rt->mfc_byte_cnt += plen;
   1877 
   1878 	/*
   1879 	 * For each vif, decide if a copy of the packet should be forwarded.
   1880 	 * Forward if:
   1881 	 *		- the ttl exceeds the vif's threshold
   1882 	 *		- there are group members downstream on interface
   1883 	 */
   1884 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
   1885 		if ((rt->mfc_ttls[vifi] > 0) &&
   1886 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
   1887 			vifp->v_pkt_out++;
   1888 			vifp->v_bytes_out += plen;
   1889 #ifdef PIM
   1890 			if (vifp->v_flags & VIFF_REGISTER)
   1891 				pim_register_send(ip, vifp, m, rt);
   1892 			else
   1893 #endif
   1894 			MC_SEND(ip, vifp, m);
   1895 		}
   1896 
   1897 	/*
   1898 	 * Perform upcall-related bw measuring.
   1899 	 */
   1900 	if (rt->mfc_bw_meter != NULL) {
   1901 		struct bw_meter *x;
   1902 		struct timeval now;
   1903 
   1904 		microtime(&now);
   1905 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
   1906 			bw_meter_receive_packet(x, plen, &now);
   1907 	}
   1908 
   1909 	return (0);
   1910 }
   1911 
   1912 #ifdef RSVP_ISI
   1913 /*
   1914  * check if a vif number is legal/ok. This is used by ip_output.
   1915  */
   1916 int
   1917 legal_vif_num(vif)
   1918 	int vif;
   1919 {
   1920 	if (vif >= 0 && vif < numvifs)
   1921 		return (1);
   1922 	else
   1923 		return (0);
   1924 }
   1925 #endif /* RSVP_ISI */
   1926 
   1927 static void
   1928 phyint_send(ip, vifp, m)
   1929 	struct ip *ip;
   1930 	struct vif *vifp;
   1931 	struct mbuf *m;
   1932 {
   1933 	struct mbuf *mb_copy;
   1934 	int hlen = ip->ip_hl << 2;
   1935 
   1936 	/*
   1937 	 * Make a new reference to the packet; make sure that
   1938 	 * the IP header is actually copied, not just referenced,
   1939 	 * so that ip_output() only scribbles on the copy.
   1940 	 */
   1941 	mb_copy = m_copy(m, 0, M_COPYALL);
   1942 	M_PULLUP(mb_copy, hlen);
   1943 	if (mb_copy == NULL)
   1944 		return;
   1945 
   1946 	if (vifp->v_rate_limit <= 0)
   1947 		tbf_send_packet(vifp, mb_copy);
   1948 	else
   1949 		tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
   1950 		    ntohs(ip->ip_len));
   1951 }
   1952 
   1953 static void
   1954 encap_send(ip, vifp, m)
   1955 	struct ip *ip;
   1956 	struct vif *vifp;
   1957 	struct mbuf *m;
   1958 {
   1959 	struct mbuf *mb_copy;
   1960 	struct ip *ip_copy;
   1961 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
   1962 
   1963 	/* Take care of delayed checksums */
   1964 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1965 		in_delayed_cksum(m);
   1966 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1967 	}
   1968 
   1969 	/*
   1970 	 * copy the old packet & pullup it's IP header into the
   1971 	 * new mbuf so we can modify it.  Try to fill the new
   1972 	 * mbuf since if we don't the ethernet driver will.
   1973 	 */
   1974 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
   1975 	if (mb_copy == NULL)
   1976 		return;
   1977 	mb_copy->m_data += max_linkhdr;
   1978 	mb_copy->m_pkthdr.len = len;
   1979 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
   1980 
   1981 	if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
   1982 		m_freem(mb_copy);
   1983 		return;
   1984 	}
   1985 	i = MHLEN - max_linkhdr;
   1986 	if (i > len)
   1987 		i = len;
   1988 	mb_copy = m_pullup(mb_copy, i);
   1989 	if (mb_copy == NULL)
   1990 		return;
   1991 
   1992 	/*
   1993 	 * fill in the encapsulating IP header.
   1994 	 */
   1995 	ip_copy = mtod(mb_copy, struct ip *);
   1996 	*ip_copy = multicast_encap_iphdr;
   1997 	ip_copy->ip_id = ip_newid();
   1998 	ip_copy->ip_len = htons(len);
   1999 	ip_copy->ip_src = vifp->v_lcl_addr;
   2000 	ip_copy->ip_dst = vifp->v_rmt_addr;
   2001 
   2002 	/*
   2003 	 * turn the encapsulated IP header back into a valid one.
   2004 	 */
   2005 	ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
   2006 	--ip->ip_ttl;
   2007 	ip->ip_sum = 0;
   2008 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
   2009 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   2010 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
   2011 
   2012 	if (vifp->v_rate_limit <= 0)
   2013 		tbf_send_packet(vifp, mb_copy);
   2014 	else
   2015 		tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
   2016 }
   2017 
   2018 /*
   2019  * De-encapsulate a packet and feed it back through ip input.
   2020  */
   2021 static void
   2022 vif_input(struct mbuf *m, ...)
   2023 {
   2024 	int off, proto;
   2025 	va_list ap;
   2026 	struct vif *vifp;
   2027 	int s;
   2028 	struct ifqueue *ifq;
   2029 
   2030 	va_start(ap, m);
   2031 	off = va_arg(ap, int);
   2032 	proto = va_arg(ap, int);
   2033 	va_end(ap);
   2034 
   2035 	vifp = (struct vif *)encap_getarg(m);
   2036 	if (!vifp || proto != AF_INET) {
   2037 		m_freem(m);
   2038 		mrtstat.mrts_bad_tunnel++;
   2039 		return;
   2040 	}
   2041 
   2042 	m_adj(m, off);
   2043 	m->m_pkthdr.rcvif = vifp->v_ifp;
   2044 	ifq = &ipintrq;
   2045 	s = splnet();
   2046 	if (IF_QFULL(ifq)) {
   2047 		IF_DROP(ifq);
   2048 		m_freem(m);
   2049 	} else {
   2050 		IF_ENQUEUE(ifq, m);
   2051 		/*
   2052 		 * normally we would need a "schednetisr(NETISR_IP)"
   2053 		 * here but we were called by ip_input and it is going
   2054 		 * to loop back & try to dequeue the packet we just
   2055 		 * queued as soon as we return so we avoid the
   2056 		 * unnecessary software interrrupt.
   2057 		 */
   2058 	}
   2059 	splx(s);
   2060 }
   2061 
   2062 /*
   2063  * Check if the packet should be grabbed by us.
   2064  */
   2065 static int
   2066 vif_encapcheck(m, off, proto, arg)
   2067 	const struct mbuf *m;
   2068 	int off;
   2069 	int proto;
   2070 	void *arg;
   2071 {
   2072 	struct vif *vifp;
   2073 	struct ip ip;
   2074 
   2075 #ifdef DIAGNOSTIC
   2076 	if (!arg || proto != IPPROTO_IPV4)
   2077 		panic("unexpected arg in vif_encapcheck");
   2078 #endif
   2079 
   2080 	/*
   2081 	 * do not grab the packet if it's not to a multicast destination or if
   2082 	 * we don't have an encapsulating tunnel with the source.
   2083 	 * Note:  This code assumes that the remote site IP address
   2084 	 * uniquely identifies the tunnel (i.e., that this site has
   2085 	 * at most one tunnel with the remote site).
   2086 	 */
   2087 
   2088 	/* LINTED const cast */
   2089 	m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
   2090 	if (!IN_MULTICAST(ip.ip_dst.s_addr))
   2091 		return 0;
   2092 
   2093 	/* LINTED const cast */
   2094 	m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
   2095 	if (!in_hosteq(ip.ip_src, last_encap_src)) {
   2096 		vifp = (struct vif *)arg;
   2097 		if (vifp->v_flags & VIFF_TUNNEL &&
   2098 		    in_hosteq(vifp->v_rmt_addr, ip.ip_src))
   2099 			;
   2100 		else
   2101 			return 0;
   2102 		last_encap_vif = vifp;
   2103 		last_encap_src = ip.ip_src;
   2104 	} else
   2105 		vifp = last_encap_vif;
   2106 
   2107 	/* 32bit match, since we have checked ip_src only */
   2108 	return 32;
   2109 }
   2110 
   2111 /*
   2112  * Token bucket filter module
   2113  */
   2114 static void
   2115 tbf_control(vifp, m, ip, len)
   2116 	struct vif *vifp;
   2117 	struct mbuf *m;
   2118 	struct ip *ip;
   2119 	u_int32_t len;
   2120 {
   2121 
   2122 	if (len > MAX_BKT_SIZE) {
   2123 		/* drop if packet is too large */
   2124 		mrtstat.mrts_pkt2large++;
   2125 		m_freem(m);
   2126 		return;
   2127 	}
   2128 
   2129 	tbf_update_tokens(vifp);
   2130 
   2131 	/*
   2132 	 * If there are enough tokens, and the queue is empty, send this packet
   2133 	 * out immediately.  Otherwise, try to insert it on this vif's queue.
   2134 	 */
   2135 	if (vifp->tbf_q_len == 0) {
   2136 		if (len <= vifp->tbf_n_tok) {
   2137 			vifp->tbf_n_tok -= len;
   2138 			tbf_send_packet(vifp, m);
   2139 		} else {
   2140 			/* queue packet and timeout till later */
   2141 			tbf_queue(vifp, m);
   2142 			callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   2143 			    tbf_reprocess_q, vifp);
   2144 		}
   2145 	} else {
   2146 		if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
   2147 		    !tbf_dq_sel(vifp, ip)) {
   2148 			/* queue full, and couldn't make room */
   2149 			mrtstat.mrts_q_overflow++;
   2150 			m_freem(m);
   2151 		} else {
   2152 			/* queue length low enough, or made room */
   2153 			tbf_queue(vifp, m);
   2154 			tbf_process_q(vifp);
   2155 		}
   2156 	}
   2157 }
   2158 
   2159 /*
   2160  * adds a packet to the queue at the interface
   2161  */
   2162 static void
   2163 tbf_queue(vifp, m)
   2164 	struct vif *vifp;
   2165 	struct mbuf *m;
   2166 {
   2167 	int s = splsoftnet();
   2168 
   2169 	/* insert at tail */
   2170 	*vifp->tbf_t = m;
   2171 	vifp->tbf_t = &m->m_nextpkt;
   2172 	vifp->tbf_q_len++;
   2173 
   2174 	splx(s);
   2175 }
   2176 
   2177 
   2178 /*
   2179  * processes the queue at the interface
   2180  */
   2181 static void
   2182 tbf_process_q(vifp)
   2183 	struct vif *vifp;
   2184 {
   2185 	struct mbuf *m;
   2186 	int len;
   2187 	int s = splsoftnet();
   2188 
   2189 	/*
   2190 	 * Loop through the queue at the interface and send as many packets
   2191 	 * as possible.
   2192 	 */
   2193 	for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
   2194 		len = ntohs(mtod(m, struct ip *)->ip_len);
   2195 
   2196 		/* determine if the packet can be sent */
   2197 		if (len <= vifp->tbf_n_tok) {
   2198 			/* if so,
   2199 			 * reduce no of tokens, dequeue the packet,
   2200 			 * send the packet.
   2201 			 */
   2202 			if ((vifp->tbf_q = m->m_nextpkt) == NULL)
   2203 				vifp->tbf_t = &vifp->tbf_q;
   2204 			--vifp->tbf_q_len;
   2205 
   2206 			m->m_nextpkt = NULL;
   2207 			vifp->tbf_n_tok -= len;
   2208 			tbf_send_packet(vifp, m);
   2209 		} else
   2210 			break;
   2211 	}
   2212 	splx(s);
   2213 }
   2214 
   2215 static void
   2216 tbf_reprocess_q(arg)
   2217 	void *arg;
   2218 {
   2219 	struct vif *vifp = arg;
   2220 
   2221 	if (ip_mrouter == NULL)
   2222 		return;
   2223 
   2224 	tbf_update_tokens(vifp);
   2225 	tbf_process_q(vifp);
   2226 
   2227 	if (vifp->tbf_q_len != 0)
   2228 		callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
   2229 		    tbf_reprocess_q, vifp);
   2230 }
   2231 
   2232 /* function that will selectively discard a member of the queue
   2233  * based on the precedence value and the priority
   2234  */
   2235 static int
   2236 tbf_dq_sel(vifp, ip)
   2237 	struct vif *vifp;
   2238 	struct ip *ip;
   2239 {
   2240 	u_int p;
   2241 	struct mbuf **mp, *m;
   2242 	int s = splsoftnet();
   2243 
   2244 	p = priority(vifp, ip);
   2245 
   2246 	for (mp = &vifp->tbf_q, m = *mp;
   2247 	    m != NULL;
   2248 	    mp = &m->m_nextpkt, m = *mp) {
   2249 		if (p > priority(vifp, mtod(m, struct ip *))) {
   2250 			if ((*mp = m->m_nextpkt) == NULL)
   2251 				vifp->tbf_t = mp;
   2252 			--vifp->tbf_q_len;
   2253 
   2254 			m_freem(m);
   2255 			mrtstat.mrts_drop_sel++;
   2256 			splx(s);
   2257 			return (1);
   2258 		}
   2259 	}
   2260 	splx(s);
   2261 	return (0);
   2262 }
   2263 
   2264 static void
   2265 tbf_send_packet(vifp, m)
   2266 	struct vif *vifp;
   2267 	struct mbuf *m;
   2268 {
   2269 	int error;
   2270 	int s = splsoftnet();
   2271 
   2272 	if (vifp->v_flags & VIFF_TUNNEL) {
   2273 		/* If tunnel options */
   2274 		ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
   2275 		    IP_FORWARDING, (struct ip_moptions *)NULL,
   2276 		    (struct socket *)NULL);
   2277 	} else {
   2278 		/* if physical interface option, extract the options and then send */
   2279 		struct ip_moptions imo;
   2280 
   2281 		imo.imo_multicast_ifp = vifp->v_ifp;
   2282 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
   2283 		imo.imo_multicast_loop = 1;
   2284 #ifdef RSVP_ISI
   2285 		imo.imo_multicast_vif = -1;
   2286 #endif
   2287 
   2288 		error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL,
   2289 		    IP_FORWARDING|IP_MULTICASTOPTS, &imo,
   2290 		    (struct socket *)NULL);
   2291 
   2292 		if (mrtdebug & DEBUG_XMIT)
   2293 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
   2294 			    (long)(vifp - viftable), error);
   2295 	}
   2296 	splx(s);
   2297 }
   2298 
   2299 /* determine the current time and then
   2300  * the elapsed time (between the last time and time now)
   2301  * in milliseconds & update the no. of tokens in the bucket
   2302  */
   2303 static void
   2304 tbf_update_tokens(vifp)
   2305 	struct vif *vifp;
   2306 {
   2307 	struct timeval tp;
   2308 	u_int32_t tm;
   2309 	int s = splsoftnet();
   2310 
   2311 	microtime(&tp);
   2312 
   2313 	TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
   2314 
   2315 	/*
   2316 	 * This formula is actually
   2317 	 * "time in seconds" * "bytes/second".
   2318 	 *
   2319 	 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
   2320 	 *
   2321 	 * The (1000/1024) was introduced in add_vif to optimize
   2322 	 * this divide into a shift.
   2323 	 */
   2324 	vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
   2325 	vifp->tbf_last_pkt_t = tp;
   2326 
   2327 	if (vifp->tbf_n_tok > MAX_BKT_SIZE)
   2328 		vifp->tbf_n_tok = MAX_BKT_SIZE;
   2329 
   2330 	splx(s);
   2331 }
   2332 
   2333 static int
   2334 priority(vifp, ip)
   2335 	struct vif *vifp;
   2336 	struct ip *ip;
   2337 {
   2338 	int prio = 50;	/* the lowest priority -- default case */
   2339 
   2340 	/* temporary hack; may add general packet classifier some day */
   2341 
   2342 	/*
   2343 	 * The UDP port space is divided up into four priority ranges:
   2344 	 * [0, 16384)     : unclassified - lowest priority
   2345 	 * [16384, 32768) : audio - highest priority
   2346 	 * [32768, 49152) : whiteboard - medium priority
   2347 	 * [49152, 65536) : video - low priority
   2348 	 */
   2349 	if (ip->ip_p == IPPROTO_UDP) {
   2350 		struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
   2351 
   2352 		switch (ntohs(udp->uh_dport) & 0xc000) {
   2353 		case 0x4000:
   2354 			prio = 70;
   2355 			break;
   2356 		case 0x8000:
   2357 			prio = 60;
   2358 			break;
   2359 		case 0xc000:
   2360 			prio = 55;
   2361 			break;
   2362 		}
   2363 
   2364 		if (tbfdebug > 1)
   2365 			log(LOG_DEBUG, "port %x prio %d\n",
   2366 			    ntohs(udp->uh_dport), prio);
   2367 	}
   2368 
   2369 	return (prio);
   2370 }
   2371 
   2372 /*
   2373  * End of token bucket filter modifications
   2374  */
   2375 #ifdef RSVP_ISI
   2376 int
   2377 ip_rsvp_vif_init(so, m)
   2378 	struct socket *so;
   2379 	struct mbuf *m;
   2380 {
   2381 	int vifi, s;
   2382 
   2383 	if (rsvpdebug)
   2384 		printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
   2385 		    so->so_type, so->so_proto->pr_protocol);
   2386 
   2387 	if (so->so_type != SOCK_RAW ||
   2388 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2389 		return (EOPNOTSUPP);
   2390 
   2391 	/* Check mbuf. */
   2392 	if (m == NULL || m->m_len != sizeof(int)) {
   2393 		return (EINVAL);
   2394 	}
   2395 	vifi = *(mtod(m, int *));
   2396 
   2397 	if (rsvpdebug)
   2398 		printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
   2399 		       vifi, rsvp_on);
   2400 
   2401 	s = splsoftnet();
   2402 
   2403 	/* Check vif. */
   2404 	if (!legal_vif_num(vifi)) {
   2405 		splx(s);
   2406 		return (EADDRNOTAVAIL);
   2407 	}
   2408 
   2409 	/* Check if socket is available. */
   2410 	if (viftable[vifi].v_rsvpd != NULL) {
   2411 		splx(s);
   2412 		return (EADDRINUSE);
   2413 	}
   2414 
   2415 	viftable[vifi].v_rsvpd = so;
   2416 	/*
   2417 	 * This may seem silly, but we need to be sure we don't over-increment
   2418 	 * the RSVP counter, in case something slips up.
   2419 	 */
   2420 	if (!viftable[vifi].v_rsvp_on) {
   2421 		viftable[vifi].v_rsvp_on = 1;
   2422 		rsvp_on++;
   2423 	}
   2424 
   2425 	splx(s);
   2426 	return (0);
   2427 }
   2428 
   2429 int
   2430 ip_rsvp_vif_done(so, m)
   2431 	struct socket *so;
   2432 	struct mbuf *m;
   2433 {
   2434 	int vifi, s;
   2435 
   2436 	if (rsvpdebug)
   2437 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
   2438 		    so->so_type, so->so_proto->pr_protocol);
   2439 
   2440 	if (so->so_type != SOCK_RAW ||
   2441 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2442 		return (EOPNOTSUPP);
   2443 
   2444 	/* Check mbuf. */
   2445 	if (m == NULL || m->m_len != sizeof(int)) {
   2446 		return (EINVAL);
   2447 	}
   2448 	vifi = *(mtod(m, int *));
   2449 
   2450 	s = splsoftnet();
   2451 
   2452 	/* Check vif. */
   2453 	if (!legal_vif_num(vifi)) {
   2454 		splx(s);
   2455 		return (EADDRNOTAVAIL);
   2456 	}
   2457 
   2458 	if (rsvpdebug)
   2459 		printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
   2460 		    viftable[vifi].v_rsvpd, so);
   2461 
   2462 	viftable[vifi].v_rsvpd = NULL;
   2463 	/*
   2464 	 * This may seem silly, but we need to be sure we don't over-decrement
   2465 	 * the RSVP counter, in case something slips up.
   2466 	 */
   2467 	if (viftable[vifi].v_rsvp_on) {
   2468 		viftable[vifi].v_rsvp_on = 0;
   2469 		rsvp_on--;
   2470 	}
   2471 
   2472 	splx(s);
   2473 	return (0);
   2474 }
   2475 
   2476 void
   2477 ip_rsvp_force_done(so)
   2478 	struct socket *so;
   2479 {
   2480 	int vifi, s;
   2481 
   2482 	/* Don't bother if it is not the right type of socket. */
   2483 	if (so->so_type != SOCK_RAW ||
   2484 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
   2485 		return;
   2486 
   2487 	s = splsoftnet();
   2488 
   2489 	/*
   2490 	 * The socket may be attached to more than one vif...this
   2491 	 * is perfectly legal.
   2492 	 */
   2493 	for (vifi = 0; vifi < numvifs; vifi++) {
   2494 		if (viftable[vifi].v_rsvpd == so) {
   2495 			viftable[vifi].v_rsvpd = NULL;
   2496 			/*
   2497 			 * This may seem silly, but we need to be sure we don't
   2498 			 * over-decrement the RSVP counter, in case something
   2499 			 * slips up.
   2500 			 */
   2501 			if (viftable[vifi].v_rsvp_on) {
   2502 				viftable[vifi].v_rsvp_on = 0;
   2503 				rsvp_on--;
   2504 			}
   2505 		}
   2506 	}
   2507 
   2508 	splx(s);
   2509 	return;
   2510 }
   2511 
   2512 void
   2513 rsvp_input(m, ifp)
   2514 	struct mbuf *m;
   2515 	struct ifnet *ifp;
   2516 {
   2517 	int vifi, s;
   2518 	struct ip *ip = mtod(m, struct ip *);
   2519 	static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
   2520 
   2521 	if (rsvpdebug)
   2522 		printf("rsvp_input: rsvp_on %d\n", rsvp_on);
   2523 
   2524 	/*
   2525 	 * Can still get packets with rsvp_on = 0 if there is a local member
   2526 	 * of the group to which the RSVP packet is addressed.  But in this
   2527 	 * case we want to throw the packet away.
   2528 	 */
   2529 	if (!rsvp_on) {
   2530 		m_freem(m);
   2531 		return;
   2532 	}
   2533 
   2534 	/*
   2535 	 * If the old-style non-vif-associated socket is set, then use
   2536 	 * it and ignore the new ones.
   2537 	 */
   2538 	if (ip_rsvpd != NULL) {
   2539 		if (rsvpdebug)
   2540 			printf("rsvp_input: "
   2541 			    "Sending packet up old-style socket\n");
   2542 		rip_input(m);	/*XXX*/
   2543 		return;
   2544 	}
   2545 
   2546 	s = splsoftnet();
   2547 
   2548 	if (rsvpdebug)
   2549 		printf("rsvp_input: check vifs\n");
   2550 
   2551 	/* Find which vif the packet arrived on. */
   2552 	for (vifi = 0; vifi < numvifs; vifi++) {
   2553 		if (viftable[vifi].v_ifp == ifp)
   2554 			break;
   2555 	}
   2556 
   2557 	if (vifi == numvifs) {
   2558 		/* Can't find vif packet arrived on. Drop packet. */
   2559 		if (rsvpdebug)
   2560 			printf("rsvp_input: "
   2561 			    "Can't find vif for packet...dropping it.\n");
   2562 		m_freem(m);
   2563 		splx(s);
   2564 		return;
   2565 	}
   2566 
   2567 	if (rsvpdebug)
   2568 		printf("rsvp_input: check socket\n");
   2569 
   2570 	if (viftable[vifi].v_rsvpd == NULL) {
   2571 		/*
   2572 		 * drop packet, since there is no specific socket for this
   2573 		 * interface
   2574 		 */
   2575 		if (rsvpdebug)
   2576 			printf("rsvp_input: No socket defined for vif %d\n",
   2577 			    vifi);
   2578 		m_freem(m);
   2579 		splx(s);
   2580 		return;
   2581 	}
   2582 
   2583 	rsvp_src.sin_addr = ip->ip_src;
   2584 
   2585 	if (rsvpdebug && m)
   2586 		printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
   2587 		    m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
   2588 
   2589 	if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
   2590 		if (rsvpdebug)
   2591 			printf("rsvp_input: Failed to append to socket\n");
   2592 	else
   2593 		if (rsvpdebug)
   2594 			printf("rsvp_input: send packet up\n");
   2595 
   2596 	splx(s);
   2597 }
   2598 #endif /* RSVP_ISI */
   2599 
   2600 /*
   2601  * Code for bandwidth monitors
   2602  */
   2603 
   2604 /*
   2605  * Define common interface for timeval-related methods
   2606  */
   2607 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
   2608 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
   2609 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
   2610 
   2611 static uint32_t
   2612 compute_bw_meter_flags(struct bw_upcall *req)
   2613 {
   2614     uint32_t flags = 0;
   2615 
   2616     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
   2617 	flags |= BW_METER_UNIT_PACKETS;
   2618     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
   2619 	flags |= BW_METER_UNIT_BYTES;
   2620     if (req->bu_flags & BW_UPCALL_GEQ)
   2621 	flags |= BW_METER_GEQ;
   2622     if (req->bu_flags & BW_UPCALL_LEQ)
   2623 	flags |= BW_METER_LEQ;
   2624 
   2625     return flags;
   2626 }
   2627 
   2628 /*
   2629  * Add a bw_meter entry
   2630  */
   2631 static int
   2632 add_bw_upcall(struct mbuf *m)
   2633 {
   2634     int s;
   2635     struct mfc *mfc;
   2636     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
   2637 		BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
   2638     struct timeval now;
   2639     struct bw_meter *x;
   2640     uint32_t flags;
   2641     struct bw_upcall *req;
   2642 
   2643     if (m == NULL || m->m_len < sizeof(struct bw_upcall))
   2644 	return EINVAL;
   2645 
   2646     req = mtod(m, struct bw_upcall *);
   2647 
   2648     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2649 	return EOPNOTSUPP;
   2650 
   2651     /* Test if the flags are valid */
   2652     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
   2653 	return EINVAL;
   2654     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
   2655 	return EINVAL;
   2656     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2657 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
   2658 	return EINVAL;
   2659 
   2660     /* Test if the threshold time interval is valid */
   2661     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
   2662 	return EINVAL;
   2663 
   2664     flags = compute_bw_meter_flags(req);
   2665 
   2666     /*
   2667      * Find if we have already same bw_meter entry
   2668      */
   2669     s = splsoftnet();
   2670     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2671     if (mfc == NULL) {
   2672 	splx(s);
   2673 	return EADDRNOTAVAIL;
   2674     }
   2675     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
   2676 	if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2677 			   &req->bu_threshold.b_time, ==)) &&
   2678 	    (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2679 	    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2680 	    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
   2681 	    splx(s);
   2682 	    return 0;		/* XXX Already installed */
   2683 	}
   2684     }
   2685 
   2686     /* Allocate the new bw_meter entry */
   2687     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
   2688     if (x == NULL) {
   2689 	splx(s);
   2690 	return ENOBUFS;
   2691     }
   2692 
   2693     /* Set the new bw_meter entry */
   2694     x->bm_threshold.b_time = req->bu_threshold.b_time;
   2695     microtime(&now);
   2696     x->bm_start_time = now;
   2697     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
   2698     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
   2699     x->bm_measured.b_packets = 0;
   2700     x->bm_measured.b_bytes = 0;
   2701     x->bm_flags = flags;
   2702     x->bm_time_next = NULL;
   2703     x->bm_time_hash = BW_METER_BUCKETS;
   2704 
   2705     /* Add the new bw_meter entry to the front of entries for this MFC */
   2706     x->bm_mfc = mfc;
   2707     x->bm_mfc_next = mfc->mfc_bw_meter;
   2708     mfc->mfc_bw_meter = x;
   2709     schedule_bw_meter(x, &now);
   2710     splx(s);
   2711 
   2712     return 0;
   2713 }
   2714 
   2715 static void
   2716 free_bw_list(struct bw_meter *list)
   2717 {
   2718     while (list != NULL) {
   2719 	struct bw_meter *x = list;
   2720 
   2721 	list = list->bm_mfc_next;
   2722 	unschedule_bw_meter(x);
   2723 	free(x, M_BWMETER);
   2724     }
   2725 }
   2726 
   2727 /*
   2728  * Delete one or multiple bw_meter entries
   2729  */
   2730 static int
   2731 del_bw_upcall(struct mbuf *m)
   2732 {
   2733     int s;
   2734     struct mfc *mfc;
   2735     struct bw_meter *x;
   2736     struct bw_upcall *req;
   2737 
   2738     if (m == NULL || m->m_len < sizeof(struct bw_upcall))
   2739 	return EINVAL;
   2740 
   2741     req = mtod(m, struct bw_upcall *);
   2742 
   2743     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
   2744 	return EOPNOTSUPP;
   2745 
   2746     s = splsoftnet();
   2747     /* Find the corresponding MFC entry */
   2748     mfc = mfc_find(&req->bu_src, &req->bu_dst);
   2749     if (mfc == NULL) {
   2750 	splx(s);
   2751 	return EADDRNOTAVAIL;
   2752     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
   2753 	/*
   2754 	 * Delete all bw_meter entries for this mfc
   2755 	 */
   2756 	struct bw_meter *list;
   2757 
   2758 	list = mfc->mfc_bw_meter;
   2759 	mfc->mfc_bw_meter = NULL;
   2760 	free_bw_list(list);
   2761 	splx(s);
   2762 	return 0;
   2763     } else {			/* Delete a single bw_meter entry */
   2764 	struct bw_meter *prev;
   2765 	uint32_t flags = 0;
   2766 
   2767 	flags = compute_bw_meter_flags(req);
   2768 
   2769 	/* Find the bw_meter entry to delete */
   2770 	for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
   2771 	     prev = x, x = x->bm_mfc_next) {
   2772 	    if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
   2773 			       &req->bu_threshold.b_time, ==)) &&
   2774 		(x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
   2775 		(x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
   2776 		(x->bm_flags & BW_METER_USER_FLAGS) == flags)
   2777 		break;
   2778 	}
   2779 	if (x != NULL) { /* Delete entry from the list for this MFC */
   2780 	    if (prev != NULL)
   2781 		prev->bm_mfc_next = x->bm_mfc_next;	/* remove from middle*/
   2782 	    else
   2783 		x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
   2784 
   2785 	    unschedule_bw_meter(x);
   2786 	    splx(s);
   2787 	    /* Free the bw_meter entry */
   2788 	    free(x, M_BWMETER);
   2789 	    return 0;
   2790 	} else {
   2791 	    splx(s);
   2792 	    return EINVAL;
   2793 	}
   2794     }
   2795     /* NOTREACHED */
   2796 }
   2797 
   2798 /*
   2799  * Perform bandwidth measurement processing that may result in an upcall
   2800  */
   2801 static void
   2802 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
   2803 {
   2804     struct timeval delta;
   2805 
   2806     delta = *nowp;
   2807     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2808 
   2809     if (x->bm_flags & BW_METER_GEQ) {
   2810 	/*
   2811 	 * Processing for ">=" type of bw_meter entry
   2812 	 */
   2813 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2814 	    /* Reset the bw_meter entry */
   2815 	    x->bm_start_time = *nowp;
   2816 	    x->bm_measured.b_packets = 0;
   2817 	    x->bm_measured.b_bytes = 0;
   2818 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2819 	}
   2820 
   2821 	/* Record that a packet is received */
   2822 	x->bm_measured.b_packets++;
   2823 	x->bm_measured.b_bytes += plen;
   2824 
   2825 	/*
   2826 	 * Test if we should deliver an upcall
   2827 	 */
   2828 	if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
   2829 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2830 		 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
   2831 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2832 		 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
   2833 		/* Prepare an upcall for delivery */
   2834 		bw_meter_prepare_upcall(x, nowp);
   2835 		x->bm_flags |= BW_METER_UPCALL_DELIVERED;
   2836 	    }
   2837 	}
   2838     } else if (x->bm_flags & BW_METER_LEQ) {
   2839 	/*
   2840 	 * Processing for "<=" type of bw_meter entry
   2841 	 */
   2842 	if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
   2843 	    /*
   2844 	     * We are behind time with the multicast forwarding table
   2845 	     * scanning for "<=" type of bw_meter entries, so test now
   2846 	     * if we should deliver an upcall.
   2847 	     */
   2848 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   2849 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   2850 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   2851 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   2852 		/* Prepare an upcall for delivery */
   2853 		bw_meter_prepare_upcall(x, nowp);
   2854 	    }
   2855 	    /* Reschedule the bw_meter entry */
   2856 	    unschedule_bw_meter(x);
   2857 	    schedule_bw_meter(x, nowp);
   2858 	}
   2859 
   2860 	/* Record that a packet is received */
   2861 	x->bm_measured.b_packets++;
   2862 	x->bm_measured.b_bytes += plen;
   2863 
   2864 	/*
   2865 	 * Test if we should restart the measuring interval
   2866 	 */
   2867 	if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
   2868 	     x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
   2869 	    (x->bm_flags & BW_METER_UNIT_BYTES &&
   2870 	     x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
   2871 	    /* Don't restart the measuring interval */
   2872 	} else {
   2873 	    /* Do restart the measuring interval */
   2874 	    /*
   2875 	     * XXX: note that we don't unschedule and schedule, because this
   2876 	     * might be too much overhead per packet. Instead, when we process
   2877 	     * all entries for a given timer hash bin, we check whether it is
   2878 	     * really a timeout. If not, we reschedule at that time.
   2879 	     */
   2880 	    x->bm_start_time = *nowp;
   2881 	    x->bm_measured.b_packets = 0;
   2882 	    x->bm_measured.b_bytes = 0;
   2883 	    x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   2884 	}
   2885     }
   2886 }
   2887 
   2888 /*
   2889  * Prepare a bandwidth-related upcall
   2890  */
   2891 static void
   2892 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
   2893 {
   2894     struct timeval delta;
   2895     struct bw_upcall *u;
   2896 
   2897     /*
   2898      * Compute the measured time interval
   2899      */
   2900     delta = *nowp;
   2901     BW_TIMEVALDECR(&delta, &x->bm_start_time);
   2902 
   2903     /*
   2904      * If there are too many pending upcalls, deliver them now
   2905      */
   2906     if (bw_upcalls_n >= BW_UPCALLS_MAX)
   2907 	bw_upcalls_send();
   2908 
   2909     /*
   2910      * Set the bw_upcall entry
   2911      */
   2912     u = &bw_upcalls[bw_upcalls_n++];
   2913     u->bu_src = x->bm_mfc->mfc_origin;
   2914     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
   2915     u->bu_threshold.b_time = x->bm_threshold.b_time;
   2916     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
   2917     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
   2918     u->bu_measured.b_time = delta;
   2919     u->bu_measured.b_packets = x->bm_measured.b_packets;
   2920     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
   2921     u->bu_flags = 0;
   2922     if (x->bm_flags & BW_METER_UNIT_PACKETS)
   2923 	u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
   2924     if (x->bm_flags & BW_METER_UNIT_BYTES)
   2925 	u->bu_flags |= BW_UPCALL_UNIT_BYTES;
   2926     if (x->bm_flags & BW_METER_GEQ)
   2927 	u->bu_flags |= BW_UPCALL_GEQ;
   2928     if (x->bm_flags & BW_METER_LEQ)
   2929 	u->bu_flags |= BW_UPCALL_LEQ;
   2930 }
   2931 
   2932 /*
   2933  * Send the pending bandwidth-related upcalls
   2934  */
   2935 static void
   2936 bw_upcalls_send(void)
   2937 {
   2938     struct mbuf *m;
   2939     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
   2940     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
   2941     static struct igmpmsg igmpmsg = { 0,		/* unused1 */
   2942 				      0,		/* unused2 */
   2943 				      IGMPMSG_BW_UPCALL,/* im_msgtype */
   2944 				      0,		/* im_mbz  */
   2945 				      0,		/* im_vif  */
   2946 				      0,		/* unused3 */
   2947 				      { 0 },		/* im_src  */
   2948 				      { 0 } };		/* im_dst  */
   2949 
   2950     if (bw_upcalls_n == 0)
   2951 	return;			/* No pending upcalls */
   2952 
   2953     bw_upcalls_n = 0;
   2954 
   2955     /*
   2956      * Allocate a new mbuf, initialize it with the header and
   2957      * the payload for the pending calls.
   2958      */
   2959     MGETHDR(m, M_DONTWAIT, MT_HEADER);
   2960     if (m == NULL) {
   2961 	log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
   2962 	return;
   2963     }
   2964 
   2965     m->m_len = m->m_pkthdr.len = 0;
   2966     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
   2967     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
   2968 
   2969     /*
   2970      * Send the upcalls
   2971      * XXX do we need to set the address in k_igmpsrc ?
   2972      */
   2973     mrtstat.mrts_upcalls++;
   2974     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
   2975 	log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
   2976 	++mrtstat.mrts_upq_sockfull;
   2977     }
   2978 }
   2979 
   2980 /*
   2981  * Compute the timeout hash value for the bw_meter entries
   2982  */
   2983 #define	BW_METER_TIMEHASH(bw_meter, hash)				\
   2984     do {								\
   2985 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
   2986 									\
   2987 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
   2988 	(hash) = next_timeval.tv_sec;					\
   2989 	if (next_timeval.tv_usec)					\
   2990 	    (hash)++; /* XXX: make sure we don't timeout early */	\
   2991 	(hash) %= BW_METER_BUCKETS;					\
   2992     } while (/*CONSTCOND*/ 0)
   2993 
   2994 /*
   2995  * Schedule a timer to process periodically bw_meter entry of type "<="
   2996  * by linking the entry in the proper hash bucket.
   2997  */
   2998 static void
   2999 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
   3000 {
   3001     int time_hash;
   3002 
   3003     if (!(x->bm_flags & BW_METER_LEQ))
   3004 	return;		/* XXX: we schedule timers only for "<=" entries */
   3005 
   3006     /*
   3007      * Reset the bw_meter entry
   3008      */
   3009     x->bm_start_time = *nowp;
   3010     x->bm_measured.b_packets = 0;
   3011     x->bm_measured.b_bytes = 0;
   3012     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
   3013 
   3014     /*
   3015      * Compute the timeout hash value and insert the entry
   3016      */
   3017     BW_METER_TIMEHASH(x, time_hash);
   3018     x->bm_time_next = bw_meter_timers[time_hash];
   3019     bw_meter_timers[time_hash] = x;
   3020     x->bm_time_hash = time_hash;
   3021 }
   3022 
   3023 /*
   3024  * Unschedule the periodic timer that processes bw_meter entry of type "<="
   3025  * by removing the entry from the proper hash bucket.
   3026  */
   3027 static void
   3028 unschedule_bw_meter(struct bw_meter *x)
   3029 {
   3030     int time_hash;
   3031     struct bw_meter *prev, *tmp;
   3032 
   3033     if (!(x->bm_flags & BW_METER_LEQ))
   3034 	return;		/* XXX: we schedule timers only for "<=" entries */
   3035 
   3036     /*
   3037      * Compute the timeout hash value and delete the entry
   3038      */
   3039     time_hash = x->bm_time_hash;
   3040     if (time_hash >= BW_METER_BUCKETS)
   3041 	return;		/* Entry was not scheduled */
   3042 
   3043     for (prev = NULL, tmp = bw_meter_timers[time_hash];
   3044 	     tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
   3045 	if (tmp == x)
   3046 	    break;
   3047 
   3048     if (tmp == NULL)
   3049 	panic("unschedule_bw_meter: bw_meter entry not found");
   3050 
   3051     if (prev != NULL)
   3052 	prev->bm_time_next = x->bm_time_next;
   3053     else
   3054 	bw_meter_timers[time_hash] = x->bm_time_next;
   3055 
   3056     x->bm_time_next = NULL;
   3057     x->bm_time_hash = BW_METER_BUCKETS;
   3058 }
   3059 
   3060 /*
   3061  * Process all "<=" type of bw_meter that should be processed now,
   3062  * and for each entry prepare an upcall if necessary. Each processed
   3063  * entry is rescheduled again for the (periodic) processing.
   3064  *
   3065  * This is run periodically (once per second normally). On each round,
   3066  * all the potentially matching entries are in the hash slot that we are
   3067  * looking at.
   3068  */
   3069 static void
   3070 bw_meter_process()
   3071 {
   3072     int s;
   3073     static uint32_t last_tv_sec;	/* last time we processed this */
   3074 
   3075     uint32_t loops;
   3076     int i;
   3077     struct timeval now, process_endtime;
   3078 
   3079     microtime(&now);
   3080     if (last_tv_sec == now.tv_sec)
   3081 	return;		/* nothing to do */
   3082 
   3083     loops = now.tv_sec - last_tv_sec;
   3084     last_tv_sec = now.tv_sec;
   3085     if (loops > BW_METER_BUCKETS)
   3086 	loops = BW_METER_BUCKETS;
   3087 
   3088     s = splsoftnet();
   3089     /*
   3090      * Process all bins of bw_meter entries from the one after the last
   3091      * processed to the current one. On entry, i points to the last bucket
   3092      * visited, so we need to increment i at the beginning of the loop.
   3093      */
   3094     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
   3095 	struct bw_meter *x, *tmp_list;
   3096 
   3097 	if (++i >= BW_METER_BUCKETS)
   3098 	    i = 0;
   3099 
   3100 	/* Disconnect the list of bw_meter entries from the bin */
   3101 	tmp_list = bw_meter_timers[i];
   3102 	bw_meter_timers[i] = NULL;
   3103 
   3104 	/* Process the list of bw_meter entries */
   3105 	while (tmp_list != NULL) {
   3106 	    x = tmp_list;
   3107 	    tmp_list = tmp_list->bm_time_next;
   3108 
   3109 	    /* Test if the time interval is over */
   3110 	    process_endtime = x->bm_start_time;
   3111 	    BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
   3112 	    if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
   3113 		/* Not yet: reschedule, but don't reset */
   3114 		int time_hash;
   3115 
   3116 		BW_METER_TIMEHASH(x, time_hash);
   3117 		if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
   3118 		    /*
   3119 		     * XXX: somehow the bin processing is a bit ahead of time.
   3120 		     * Put the entry in the next bin.
   3121 		     */
   3122 		    if (++time_hash >= BW_METER_BUCKETS)
   3123 			time_hash = 0;
   3124 		}
   3125 		x->bm_time_next = bw_meter_timers[time_hash];
   3126 		bw_meter_timers[time_hash] = x;
   3127 		x->bm_time_hash = time_hash;
   3128 
   3129 		continue;
   3130 	    }
   3131 
   3132 	    /*
   3133 	     * Test if we should deliver an upcall
   3134 	     */
   3135 	    if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
   3136 		 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
   3137 		((x->bm_flags & BW_METER_UNIT_BYTES) &&
   3138 		 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
   3139 		/* Prepare an upcall for delivery */
   3140 		bw_meter_prepare_upcall(x, &now);
   3141 	    }
   3142 
   3143 	    /*
   3144 	     * Reschedule for next processing
   3145 	     */
   3146 	    schedule_bw_meter(x, &now);
   3147 	}
   3148     }
   3149 
   3150     /* Send all upcalls that are pending delivery */
   3151     bw_upcalls_send();
   3152 
   3153     splx(s);
   3154 }
   3155 
   3156 /*
   3157  * A periodic function for sending all upcalls that are pending delivery
   3158  */
   3159 static void
   3160 expire_bw_upcalls_send(void *unused)
   3161 {
   3162     int s;
   3163 
   3164     s = splsoftnet();
   3165     bw_upcalls_send();
   3166     splx(s);
   3167 
   3168     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
   3169 		  expire_bw_upcalls_send, NULL);
   3170 }
   3171 
   3172 /*
   3173  * A periodic function for periodic scanning of the multicast forwarding
   3174  * table for processing all "<=" bw_meter entries.
   3175  */
   3176 static void
   3177 expire_bw_meter_process(void *unused)
   3178 {
   3179     if (mrt_api_config & MRT_MFC_BW_UPCALL)
   3180 	bw_meter_process();
   3181 
   3182     callout_reset(&bw_meter_ch, BW_METER_PERIOD,
   3183 		  expire_bw_meter_process, NULL);
   3184 }
   3185 
   3186 /*
   3187  * End of bandwidth monitoring code
   3188  */
   3189 
   3190 #ifdef PIM
   3191 /*
   3192  * Send the packet up to the user daemon, or eventually do kernel encapsulation
   3193  */
   3194 static int
   3195 pim_register_send(struct ip *ip, struct vif *vifp,
   3196 	struct mbuf *m, struct mfc *rt)
   3197 {
   3198     struct mbuf *mb_copy, *mm;
   3199 
   3200     if (mrtdebug & DEBUG_PIM)
   3201         log(LOG_DEBUG, "pim_register_send: ");
   3202 
   3203     mb_copy = pim_register_prepare(ip, m);
   3204     if (mb_copy == NULL)
   3205 	return ENOBUFS;
   3206 
   3207     /*
   3208      * Send all the fragments. Note that the mbuf for each fragment
   3209      * is freed by the sending machinery.
   3210      */
   3211     for (mm = mb_copy; mm; mm = mb_copy) {
   3212 	mb_copy = mm->m_nextpkt;
   3213 	mm->m_nextpkt = NULL;
   3214 	mm = m_pullup(mm, sizeof(struct ip));
   3215 	if (mm != NULL) {
   3216 	    ip = mtod(mm, struct ip *);
   3217 	    if ((mrt_api_config & MRT_MFC_RP) &&
   3218 		!in_nullhost(rt->mfc_rp)) {
   3219 		pim_register_send_rp(ip, vifp, mm, rt);
   3220 	    } else {
   3221 		pim_register_send_upcall(ip, vifp, mm, rt);
   3222 	    }
   3223 	}
   3224     }
   3225 
   3226     return 0;
   3227 }
   3228 
   3229 /*
   3230  * Return a copy of the data packet that is ready for PIM Register
   3231  * encapsulation.
   3232  * XXX: Note that in the returned copy the IP header is a valid one.
   3233  */
   3234 static struct mbuf *
   3235 pim_register_prepare(struct ip *ip, struct mbuf *m)
   3236 {
   3237     struct mbuf *mb_copy = NULL;
   3238     int mtu;
   3239 
   3240     /* Take care of delayed checksums */
   3241     if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   3242 	in_delayed_cksum(m);
   3243 	m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   3244     }
   3245 
   3246     /*
   3247      * Copy the old packet & pullup its IP header into the
   3248      * new mbuf so we can modify it.
   3249      */
   3250     mb_copy = m_copy(m, 0, M_COPYALL);
   3251     if (mb_copy == NULL)
   3252 	return NULL;
   3253     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
   3254     if (mb_copy == NULL)
   3255 	return NULL;
   3256 
   3257     /* take care of the TTL */
   3258     ip = mtod(mb_copy, struct ip *);
   3259     --ip->ip_ttl;
   3260 
   3261     /* Compute the MTU after the PIM Register encapsulation */
   3262     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
   3263 
   3264     if (ntohs(ip->ip_len) <= mtu) {
   3265 	/* Turn the IP header into a valid one */
   3266 	ip->ip_sum = 0;
   3267 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
   3268     } else {
   3269 	/* Fragment the packet */
   3270 	if (ip_fragment(mb_copy, NULL, mtu) != 0) {
   3271 	    /* XXX: mb_copy was freed by ip_fragment() */
   3272 	    return NULL;
   3273 	}
   3274     }
   3275     return mb_copy;
   3276 }
   3277 
   3278 /*
   3279  * Send an upcall with the data packet to the user-level process.
   3280  */
   3281 static int
   3282 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
   3283 	struct mbuf *mb_copy, struct mfc *rt)
   3284 {
   3285     struct mbuf *mb_first;
   3286     int len = ntohs(ip->ip_len);
   3287     struct igmpmsg *im;
   3288     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
   3289 
   3290     /*
   3291      * Add a new mbuf with an upcall header
   3292      */
   3293     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3294     if (mb_first == NULL) {
   3295 	m_freem(mb_copy);
   3296 	return ENOBUFS;
   3297     }
   3298     mb_first->m_data += max_linkhdr;
   3299     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
   3300     mb_first->m_len = sizeof(struct igmpmsg);
   3301     mb_first->m_next = mb_copy;
   3302 
   3303     /* Send message to routing daemon */
   3304     im = mtod(mb_first, struct igmpmsg *);
   3305     im->im_msgtype	= IGMPMSG_WHOLEPKT;
   3306     im->im_mbz		= 0;
   3307     im->im_vif		= vifp - viftable;
   3308     im->im_src		= ip->ip_src;
   3309     im->im_dst		= ip->ip_dst;
   3310 
   3311     k_igmpsrc.sin_addr	= ip->ip_src;
   3312 
   3313     mrtstat.mrts_upcalls++;
   3314 
   3315     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
   3316 	if (mrtdebug & DEBUG_PIM)
   3317 	    log(LOG_WARNING,
   3318 		"mcast: pim_register_send_upcall: ip_mrouter socket queue full");
   3319 	++mrtstat.mrts_upq_sockfull;
   3320 	return ENOBUFS;
   3321     }
   3322 
   3323     /* Keep statistics */
   3324     pimstat.pims_snd_registers_msgs++;
   3325     pimstat.pims_snd_registers_bytes += len;
   3326 
   3327     return 0;
   3328 }
   3329 
   3330 /*
   3331  * Encapsulate the data packet in PIM Register message and send it to the RP.
   3332  */
   3333 static int
   3334 pim_register_send_rp(struct ip *ip, struct vif *vifp,
   3335 	struct mbuf *mb_copy, struct mfc *rt)
   3336 {
   3337     struct mbuf *mb_first;
   3338     struct ip *ip_outer;
   3339     struct pim_encap_pimhdr *pimhdr;
   3340     int len = ntohs(ip->ip_len);
   3341     vifi_t vifi = rt->mfc_parent;
   3342 
   3343     if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
   3344 	m_freem(mb_copy);
   3345 	return EADDRNOTAVAIL;		/* The iif vif is invalid */
   3346     }
   3347 
   3348     /*
   3349      * Add a new mbuf with the encapsulating header
   3350      */
   3351     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
   3352     if (mb_first == NULL) {
   3353 	m_freem(mb_copy);
   3354 	return ENOBUFS;
   3355     }
   3356     mb_first->m_data += max_linkhdr;
   3357     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
   3358     mb_first->m_next = mb_copy;
   3359 
   3360     mb_first->m_pkthdr.len = len + mb_first->m_len;
   3361 
   3362     /*
   3363      * Fill in the encapsulating IP and PIM header
   3364      */
   3365     ip_outer = mtod(mb_first, struct ip *);
   3366     *ip_outer = pim_encap_iphdr;
   3367     ip_outer->ip_id = ip_newid();
   3368     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
   3369 			     sizeof(pim_encap_pimhdr));
   3370     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
   3371     ip_outer->ip_dst = rt->mfc_rp;
   3372     /*
   3373      * Copy the inner header TOS to the outer header, and take care of the
   3374      * IP_DF bit.
   3375      */
   3376     ip_outer->ip_tos = ip->ip_tos;
   3377     if (ntohs(ip->ip_off) & IP_DF)
   3378 	ip_outer->ip_off |= IP_DF;
   3379     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
   3380 					 + sizeof(pim_encap_iphdr));
   3381     *pimhdr = pim_encap_pimhdr;
   3382     /* If the iif crosses a border, set the Border-bit */
   3383     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
   3384 	pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
   3385 
   3386     mb_first->m_data += sizeof(pim_encap_iphdr);
   3387     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
   3388     mb_first->m_data -= sizeof(pim_encap_iphdr);
   3389 
   3390     if (vifp->v_rate_limit == 0)
   3391 	tbf_send_packet(vifp, mb_first);
   3392     else
   3393 	tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
   3394 
   3395     /* Keep statistics */
   3396     pimstat.pims_snd_registers_msgs++;
   3397     pimstat.pims_snd_registers_bytes += len;
   3398 
   3399     return 0;
   3400 }
   3401 
   3402 /*
   3403  * PIM-SMv2 and PIM-DM messages processing.
   3404  * Receives and verifies the PIM control messages, and passes them
   3405  * up to the listening socket, using rip_input().
   3406  * The only message with special processing is the PIM_REGISTER message
   3407  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
   3408  * is passed to if_simloop().
   3409  */
   3410 void
   3411 pim_input(struct mbuf *m, ...)
   3412 {
   3413     struct ip *ip = mtod(m, struct ip *);
   3414     struct pim *pim;
   3415     int minlen;
   3416     int datalen;
   3417     int ip_tos;
   3418     int proto;
   3419     int iphlen;
   3420     va_list ap;
   3421 
   3422     va_start(ap, m);
   3423     iphlen = va_arg(ap, int);
   3424     proto = va_arg(ap, int);
   3425     va_end(ap);
   3426 
   3427     datalen = ntohs(ip->ip_len) - iphlen;
   3428 
   3429     /* Keep statistics */
   3430     pimstat.pims_rcv_total_msgs++;
   3431     pimstat.pims_rcv_total_bytes += datalen;
   3432 
   3433     /*
   3434      * Validate lengths
   3435      */
   3436     if (datalen < PIM_MINLEN) {
   3437 	pimstat.pims_rcv_tooshort++;
   3438 	log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
   3439 	    datalen, (u_long)ip->ip_src.s_addr);
   3440 	m_freem(m);
   3441 	return;
   3442     }
   3443 
   3444     /*
   3445      * If the packet is at least as big as a REGISTER, go agead
   3446      * and grab the PIM REGISTER header size, to avoid another
   3447      * possible m_pullup() later.
   3448      *
   3449      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
   3450      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
   3451      */
   3452     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
   3453     /*
   3454      * Get the IP and PIM headers in contiguous memory, and
   3455      * possibly the PIM REGISTER header.
   3456      */
   3457     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
   3458 	(m = m_pullup(m, minlen)) == NULL) {
   3459 	log(LOG_ERR, "pim_input: m_pullup failure\n");
   3460 	return;
   3461     }
   3462     /* m_pullup() may have given us a new mbuf so reset ip. */
   3463     ip = mtod(m, struct ip *);
   3464     ip_tos = ip->ip_tos;
   3465 
   3466     /* adjust mbuf to point to the PIM header */
   3467     m->m_data += iphlen;
   3468     m->m_len  -= iphlen;
   3469     pim = mtod(m, struct pim *);
   3470 
   3471     /*
   3472      * Validate checksum. If PIM REGISTER, exclude the data packet.
   3473      *
   3474      * XXX: some older PIMv2 implementations don't make this distinction,
   3475      * so for compatibility reason perform the checksum over part of the
   3476      * message, and if error, then over the whole message.
   3477      */
   3478     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
   3479 	/* do nothing, checksum okay */
   3480     } else if (in_cksum(m, datalen)) {
   3481 	pimstat.pims_rcv_badsum++;
   3482 	if (mrtdebug & DEBUG_PIM)
   3483 	    log(LOG_DEBUG, "pim_input: invalid checksum");
   3484 	m_freem(m);
   3485 	return;
   3486     }
   3487 
   3488     /* PIM version check */
   3489     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
   3490 	pimstat.pims_rcv_badversion++;
   3491 	log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
   3492 	    PIM_VT_V(pim->pim_vt), PIM_VERSION);
   3493 	m_freem(m);
   3494 	return;
   3495     }
   3496 
   3497     /* restore mbuf back to the outer IP */
   3498     m->m_data -= iphlen;
   3499     m->m_len  += iphlen;
   3500 
   3501     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
   3502 	/*
   3503 	 * Since this is a REGISTER, we'll make a copy of the register
   3504 	 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
   3505 	 * routing daemon.
   3506 	 */
   3507 	int s;
   3508 	struct sockaddr_in dst = { sizeof(dst), AF_INET };
   3509 	struct mbuf *mcp;
   3510 	struct ip *encap_ip;
   3511 	u_int32_t *reghdr;
   3512 	struct ifnet *vifp;
   3513 
   3514 	s = splsoftnet();
   3515 	if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
   3516 	    splx(s);
   3517 	    if (mrtdebug & DEBUG_PIM)
   3518 		log(LOG_DEBUG,
   3519 		    "pim_input: register vif not set: %d\n", reg_vif_num);
   3520 	    m_freem(m);
   3521 	    return;
   3522 	}
   3523 	/* XXX need refcnt? */
   3524 	vifp = viftable[reg_vif_num].v_ifp;
   3525 	splx(s);
   3526 
   3527 	/*
   3528 	 * Validate length
   3529 	 */
   3530 	if (datalen < PIM_REG_MINLEN) {
   3531 	    pimstat.pims_rcv_tooshort++;
   3532 	    pimstat.pims_rcv_badregisters++;
   3533 	    log(LOG_ERR,
   3534 		"pim_input: register packet size too small %d from %lx\n",
   3535 		datalen, (u_long)ip->ip_src.s_addr);
   3536 	    m_freem(m);
   3537 	    return;
   3538 	}
   3539 
   3540 	reghdr = (u_int32_t *)(pim + 1);
   3541 	encap_ip = (struct ip *)(reghdr + 1);
   3542 
   3543 	if (mrtdebug & DEBUG_PIM) {
   3544 	    log(LOG_DEBUG,
   3545 		"pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
   3546 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3547 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3548 		ntohs(encap_ip->ip_len));
   3549 	}
   3550 
   3551 	/* verify the version number of the inner packet */
   3552 	if (encap_ip->ip_v != IPVERSION) {
   3553 	    pimstat.pims_rcv_badregisters++;
   3554 	    if (mrtdebug & DEBUG_PIM) {
   3555 		log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
   3556 		    "of the inner packet\n", encap_ip->ip_v);
   3557 	    }
   3558 	    m_freem(m);
   3559 	    return;
   3560 	}
   3561 
   3562 	/* verify the inner packet is destined to a mcast group */
   3563 	if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
   3564 	    pimstat.pims_rcv_badregisters++;
   3565 	    if (mrtdebug & DEBUG_PIM)
   3566 		log(LOG_DEBUG,
   3567 		    "pim_input: inner packet of register is not "
   3568 		    "multicast %lx\n",
   3569 		    (u_long)ntohl(encap_ip->ip_dst.s_addr));
   3570 	    m_freem(m);
   3571 	    return;
   3572 	}
   3573 
   3574 	/* If a NULL_REGISTER, pass it to the daemon */
   3575 	if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
   3576 	    goto pim_input_to_daemon;
   3577 
   3578 	/*
   3579 	 * Copy the TOS from the outer IP header to the inner IP header.
   3580 	 */
   3581 	if (encap_ip->ip_tos != ip_tos) {
   3582 	    /* Outer TOS -> inner TOS */
   3583 	    encap_ip->ip_tos = ip_tos;
   3584 	    /* Recompute the inner header checksum. Sigh... */
   3585 
   3586 	    /* adjust mbuf to point to the inner IP header */
   3587 	    m->m_data += (iphlen + PIM_MINLEN);
   3588 	    m->m_len  -= (iphlen + PIM_MINLEN);
   3589 
   3590 	    encap_ip->ip_sum = 0;
   3591 	    encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
   3592 
   3593 	    /* restore mbuf to point back to the outer IP header */
   3594 	    m->m_data -= (iphlen + PIM_MINLEN);
   3595 	    m->m_len  += (iphlen + PIM_MINLEN);
   3596 	}
   3597 
   3598 	/*
   3599 	 * Decapsulate the inner IP packet and loopback to forward it
   3600 	 * as a normal multicast packet. Also, make a copy of the
   3601 	 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
   3602 	 * to pass to the daemon later, so it can take the appropriate
   3603 	 * actions (e.g., send back PIM_REGISTER_STOP).
   3604 	 * XXX: here m->m_data points to the outer IP header.
   3605 	 */
   3606 	mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
   3607 	if (mcp == NULL) {
   3608 	    log(LOG_ERR,
   3609 		"pim_input: pim register: could not copy register head\n");
   3610 	    m_freem(m);
   3611 	    return;
   3612 	}
   3613 
   3614 	/* Keep statistics */
   3615 	/* XXX: registers_bytes include only the encap. mcast pkt */
   3616 	pimstat.pims_rcv_registers_msgs++;
   3617 	pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
   3618 
   3619 	/*
   3620 	 * forward the inner ip packet; point m_data at the inner ip.
   3621 	 */
   3622 	m_adj(m, iphlen + PIM_MINLEN);
   3623 
   3624 	if (mrtdebug & DEBUG_PIM) {
   3625 	    log(LOG_DEBUG,
   3626 		"pim_input: forwarding decapsulated register: "
   3627 		"src %lx, dst %lx, vif %d\n",
   3628 		(u_long)ntohl(encap_ip->ip_src.s_addr),
   3629 		(u_long)ntohl(encap_ip->ip_dst.s_addr),
   3630 		reg_vif_num);
   3631 	}
   3632 	/* NB: vifp was collected above; can it change on us? */
   3633 	looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
   3634 
   3635 	/* prepare the register head to send to the mrouting daemon */
   3636 	m = mcp;
   3637     }
   3638 
   3639 pim_input_to_daemon:
   3640     /*
   3641      * Pass the PIM message up to the daemon; if it is a Register message,
   3642      * pass the 'head' only up to the daemon. This includes the
   3643      * outer IP header, PIM header, PIM-Register header and the
   3644      * inner IP header.
   3645      * XXX: the outer IP header pkt size of a Register is not adjust to
   3646      * reflect the fact that the inner multicast data is truncated.
   3647      */
   3648     rip_input(m, iphlen, proto);
   3649 
   3650     return;
   3651 }
   3652 #endif /* PIM */
   3653