ip_mroute.c revision 1.88 1 /* $NetBSD: ip_mroute.c,v 1.88 2005/02/02 21:41:55 perry Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35 */
36
37 /*
38 * Copyright (c) 1989 Stephen Deering
39 *
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72 */
73
74 /*
75 * IP multicast forwarding procedures
76 *
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
89 *
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
93 */
94
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.88 2005/02/02 21:41:55 perry Exp $");
97
98 #include "opt_inet.h"
99 #include "opt_ipsec.h"
100 #include "opt_pim.h"
101
102 #ifdef PIM
103 #define _PIM_VT 1
104 #endif
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/ioctl.h>
117 #include <sys/syslog.h>
118
119 #include <net/if.h>
120 #include <net/route.h>
121 #include <net/raw_cb.h>
122
123 #include <netinet/in.h>
124 #include <netinet/in_var.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/udp.h>
130 #include <netinet/igmp.h>
131 #include <netinet/igmp_var.h>
132 #include <netinet/ip_mroute.h>
133 #ifdef PIM
134 #include <netinet/pim.h>
135 #include <netinet/pim_var.h>
136 #endif
137 #include <netinet/ip_encap.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #endif
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #endif
148
149 #include <machine/stdarg.h>
150
151 #define IP_MULTICASTOPTS 0
152 #define M_PULLUP(m, len) \
153 do { \
154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
155 (m) = m_pullup((m), (len)); \
156 } while (/*CONSTCOND*/ 0)
157
158 /*
159 * Globals. All but ip_mrouter and ip_mrtproto could be static,
160 * except for netstat or debugging purposes.
161 */
162 struct socket *ip_mrouter = NULL;
163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
164
165 #define NO_RTE_FOUND 0x1
166 #define RTE_FOUND 0x2
167
168 #define MFCHASH(a, g) \
169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
172 u_long mfchash;
173
174 u_char nexpire[MFCTBLSIZ];
175 struct vif viftable[MAXVIFS];
176 struct mrtstat mrtstat;
177 u_int mrtdebug = 0; /* debug level */
178 #define DEBUG_MFC 0x02
179 #define DEBUG_FORWARD 0x04
180 #define DEBUG_EXPIRE 0x08
181 #define DEBUG_XMIT 0x10
182 #define DEBUG_PIM 0x20
183
184 #define VIFI_INVALID ((vifi_t) -1)
185
186 u_int tbfdebug = 0; /* tbf debug level */
187 #ifdef RSVP_ISI
188 u_int rsvpdebug = 0; /* rsvp debug level */
189 extern struct socket *ip_rsvpd;
190 extern int rsvp_on;
191 #endif /* RSVP_ISI */
192
193 /* vif attachment using sys/netinet/ip_encap.c */
194 static void vif_input(struct mbuf *, ...);
195 static int vif_encapcheck(const struct mbuf *, int, int, void *);
196
197 static const struct protosw vif_protosw =
198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
199 vif_input, rip_output, 0, rip_ctloutput,
200 rip_usrreq,
201 0, 0, 0, 0,
202 };
203
204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
205 #define UPCALL_EXPIRE 6 /* number of timeouts */
206
207 /*
208 * Define the token bucket filter structures
209 */
210
211 #define TBF_REPROCESS (hz / 100) /* 100x / second */
212
213 static int get_sg_cnt(struct sioc_sg_req *);
214 static int get_vif_cnt(struct sioc_vif_req *);
215 static int ip_mrouter_init(struct socket *, struct mbuf *);
216 static int get_version(struct mbuf *);
217 static int set_assert(struct mbuf *);
218 static int get_assert(struct mbuf *);
219 static int add_vif(struct mbuf *);
220 static int del_vif(struct mbuf *);
221 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
222 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
223 static void expire_mfc(struct mfc *);
224 static int add_mfc(struct mbuf *);
225 #ifdef UPCALL_TIMING
226 static void collate(struct timeval *);
227 #endif
228 static int del_mfc(struct mbuf *);
229 static int set_api_config(struct mbuf *); /* chose API capabilities */
230 static int get_api_support(struct mbuf *);
231 static int get_api_config(struct mbuf *);
232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
233 static void expire_upcalls(void *);
234 #ifdef RSVP_ISI
235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
236 #else
237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
238 #endif
239 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
240 static void encap_send(struct ip *, struct vif *, struct mbuf *);
241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
242 static void tbf_queue(struct vif *, struct mbuf *);
243 static void tbf_process_q(struct vif *);
244 static void tbf_reprocess_q(void *);
245 static int tbf_dq_sel(struct vif *, struct ip *);
246 static void tbf_send_packet(struct vif *, struct mbuf *);
247 static void tbf_update_tokens(struct vif *);
248 static int priority(struct vif *, struct ip *);
249
250 /*
251 * Bandwidth monitoring
252 */
253 static void free_bw_list(struct bw_meter *);
254 static int add_bw_upcall(struct mbuf *);
255 static int del_bw_upcall(struct mbuf *);
256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
258 static void bw_upcalls_send(void);
259 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
260 static void unschedule_bw_meter(struct bw_meter *);
261 static void bw_meter_process(void);
262 static void expire_bw_upcalls_send(void *);
263 static void expire_bw_meter_process(void *);
264
265 #ifdef PIM
266 static int pim_register_send(struct ip *, struct vif *,
267 struct mbuf *, struct mfc *);
268 static int pim_register_send_rp(struct ip *, struct vif *,
269 struct mbuf *, struct mfc *);
270 static int pim_register_send_upcall(struct ip *, struct vif *,
271 struct mbuf *, struct mfc *);
272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
273 #endif
274
275 /*
276 * 'Interfaces' associated with decapsulator (so we can tell
277 * packets that went through it from ones that get reflected
278 * by a broken gateway). These interfaces are never linked into
279 * the system ifnet list & no routes point to them. I.e., packets
280 * can't be sent this way. They only exist as a placeholder for
281 * multicast source verification.
282 */
283 #if 0
284 struct ifnet multicast_decap_if[MAXVIFS];
285 #endif
286
287 #define ENCAP_TTL 64
288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
289
290 /* prototype IP hdr for encapsulated packets */
291 struct ip multicast_encap_iphdr = {
292 #if BYTE_ORDER == LITTLE_ENDIAN
293 sizeof(struct ip) >> 2, IPVERSION,
294 #else
295 IPVERSION, sizeof(struct ip) >> 2,
296 #endif
297 0, /* tos */
298 sizeof(struct ip), /* total length */
299 0, /* id */
300 0, /* frag offset */
301 ENCAP_TTL, ENCAP_PROTO,
302 0, /* checksum */
303 };
304
305 /*
306 * Bandwidth meter variables and constants
307 */
308
309 /*
310 * Pending timeouts are stored in a hash table, the key being the
311 * expiration time. Periodically, the entries are analysed and processed.
312 */
313 #define BW_METER_BUCKETS 1024
314 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
315 struct callout bw_meter_ch;
316 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
317
318 /*
319 * Pending upcalls are stored in a vector which is flushed when
320 * full, or periodically
321 */
322 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
323 static u_int bw_upcalls_n; /* # of pending upcalls */
324 struct callout bw_upcalls_ch;
325 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
326
327 #ifdef PIM
328 struct pimstat pimstat;
329
330 /*
331 * Note: the PIM Register encapsulation adds the following in front of a
332 * data packet:
333 *
334 * struct pim_encap_hdr {
335 * struct ip ip;
336 * struct pim_encap_pimhdr pim;
337 * }
338 *
339 */
340
341 struct pim_encap_pimhdr {
342 struct pim pim;
343 uint32_t flags;
344 };
345
346 static struct ip pim_encap_iphdr = {
347 #if BYTE_ORDER == LITTLE_ENDIAN
348 sizeof(struct ip) >> 2,
349 IPVERSION,
350 #else
351 IPVERSION,
352 sizeof(struct ip) >> 2,
353 #endif
354 0, /* tos */
355 sizeof(struct ip), /* total length */
356 0, /* id */
357 0, /* frag offset */
358 ENCAP_TTL,
359 IPPROTO_PIM,
360 0, /* checksum */
361 };
362
363 static struct pim_encap_pimhdr pim_encap_pimhdr = {
364 {
365 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
366 0, /* reserved */
367 0, /* checksum */
368 },
369 0 /* flags */
370 };
371
372 static struct ifnet multicast_register_if;
373 static vifi_t reg_vif_num = VIFI_INVALID;
374 #endif /* PIM */
375
376
377 /*
378 * Private variables.
379 */
380 static vifi_t numvifs = 0;
381
382 static struct callout expire_upcalls_ch;
383
384 /*
385 * one-back cache used by vif_encapcheck to locate a tunnel's vif
386 * given a datagram's src ip address.
387 */
388 static struct in_addr last_encap_src;
389 static struct vif *last_encap_vif;
390
391 /*
392 * whether or not special PIM assert processing is enabled.
393 */
394 static int pim_assert;
395 /*
396 * Rate limit for assert notification messages, in usec
397 */
398 #define ASSERT_MSG_TIME 3000000
399
400 /*
401 * Kernel multicast routing API capabilities and setup.
402 * If more API capabilities are added to the kernel, they should be
403 * recorded in `mrt_api_support'.
404 */
405 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
406 MRT_MFC_FLAGS_BORDER_VIF |
407 MRT_MFC_RP |
408 MRT_MFC_BW_UPCALL);
409 static u_int32_t mrt_api_config = 0;
410
411 /*
412 * Find a route for a given origin IP address and Multicast group address
413 * Type of service parameter to be added in the future!!!
414 * Statistics are updated by the caller if needed
415 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
416 */
417 static struct mfc *
418 mfc_find(struct in_addr *o, struct in_addr *g)
419 {
420 struct mfc *rt;
421
422 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
423 if (in_hosteq(rt->mfc_origin, *o) &&
424 in_hosteq(rt->mfc_mcastgrp, *g) &&
425 (rt->mfc_stall == NULL))
426 break;
427 }
428
429 return (rt);
430 }
431
432 /*
433 * Macros to compute elapsed time efficiently
434 * Borrowed from Van Jacobson's scheduling code
435 */
436 #define TV_DELTA(a, b, delta) do { \
437 int xxs; \
438 delta = (a).tv_usec - (b).tv_usec; \
439 xxs = (a).tv_sec - (b).tv_sec; \
440 switch (xxs) { \
441 case 2: \
442 delta += 1000000; \
443 /* fall through */ \
444 case 1: \
445 delta += 1000000; \
446 /* fall through */ \
447 case 0: \
448 break; \
449 default: \
450 delta += (1000000 * xxs); \
451 break; \
452 } \
453 } while (/*CONSTCOND*/ 0)
454
455 #ifdef UPCALL_TIMING
456 u_int32_t upcall_data[51];
457 #endif /* UPCALL_TIMING */
458
459 /*
460 * Handle MRT setsockopt commands to modify the multicast routing tables.
461 */
462 int
463 ip_mrouter_set(so, optname, m)
464 struct socket *so;
465 int optname;
466 struct mbuf **m;
467 {
468 int error;
469
470 if (optname != MRT_INIT && so != ip_mrouter)
471 error = ENOPROTOOPT;
472 else
473 switch (optname) {
474 case MRT_INIT:
475 error = ip_mrouter_init(so, *m);
476 break;
477 case MRT_DONE:
478 error = ip_mrouter_done();
479 break;
480 case MRT_ADD_VIF:
481 error = add_vif(*m);
482 break;
483 case MRT_DEL_VIF:
484 error = del_vif(*m);
485 break;
486 case MRT_ADD_MFC:
487 error = add_mfc(*m);
488 break;
489 case MRT_DEL_MFC:
490 error = del_mfc(*m);
491 break;
492 case MRT_ASSERT:
493 error = set_assert(*m);
494 break;
495 case MRT_API_CONFIG:
496 error = set_api_config(*m);
497 break;
498 case MRT_ADD_BW_UPCALL:
499 error = add_bw_upcall(*m);
500 break;
501 case MRT_DEL_BW_UPCALL:
502 error = del_bw_upcall(*m);
503 break;
504 default:
505 error = ENOPROTOOPT;
506 break;
507 }
508
509 if (*m)
510 m_free(*m);
511 return (error);
512 }
513
514 /*
515 * Handle MRT getsockopt commands
516 */
517 int
518 ip_mrouter_get(so, optname, m)
519 struct socket *so;
520 int optname;
521 struct mbuf **m;
522 {
523 int error;
524
525 if (so != ip_mrouter)
526 error = ENOPROTOOPT;
527 else {
528 *m = m_get(M_WAIT, MT_SOOPTS);
529 MCLAIM(*m, so->so_mowner);
530
531 switch (optname) {
532 case MRT_VERSION:
533 error = get_version(*m);
534 break;
535 case MRT_ASSERT:
536 error = get_assert(*m);
537 break;
538 case MRT_API_SUPPORT:
539 error = get_api_support(*m);
540 break;
541 case MRT_API_CONFIG:
542 error = get_api_config(*m);
543 break;
544 default:
545 error = ENOPROTOOPT;
546 break;
547 }
548
549 if (error)
550 m_free(*m);
551 }
552
553 return (error);
554 }
555
556 /*
557 * Handle ioctl commands to obtain information from the cache
558 */
559 int
560 mrt_ioctl(so, cmd, data)
561 struct socket *so;
562 u_long cmd;
563 caddr_t data;
564 {
565 int error;
566
567 if (so != ip_mrouter)
568 error = EINVAL;
569 else
570 switch (cmd) {
571 case SIOCGETVIFCNT:
572 error = get_vif_cnt((struct sioc_vif_req *)data);
573 break;
574 case SIOCGETSGCNT:
575 error = get_sg_cnt((struct sioc_sg_req *)data);
576 break;
577 default:
578 error = EINVAL;
579 break;
580 }
581
582 return (error);
583 }
584
585 /*
586 * returns the packet, byte, rpf-failure count for the source group provided
587 */
588 static int
589 get_sg_cnt(req)
590 struct sioc_sg_req *req;
591 {
592 int s;
593 struct mfc *rt;
594
595 s = splsoftnet();
596 rt = mfc_find(&req->src, &req->grp);
597 if (rt == NULL) {
598 splx(s);
599 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
600 return (EADDRNOTAVAIL);
601 }
602 req->pktcnt = rt->mfc_pkt_cnt;
603 req->bytecnt = rt->mfc_byte_cnt;
604 req->wrong_if = rt->mfc_wrong_if;
605 splx(s);
606
607 return (0);
608 }
609
610 /*
611 * returns the input and output packet and byte counts on the vif provided
612 */
613 static int
614 get_vif_cnt(req)
615 struct sioc_vif_req *req;
616 {
617 vifi_t vifi = req->vifi;
618
619 if (vifi >= numvifs)
620 return (EINVAL);
621
622 req->icount = viftable[vifi].v_pkt_in;
623 req->ocount = viftable[vifi].v_pkt_out;
624 req->ibytes = viftable[vifi].v_bytes_in;
625 req->obytes = viftable[vifi].v_bytes_out;
626
627 return (0);
628 }
629
630 /*
631 * Enable multicast routing
632 */
633 static int
634 ip_mrouter_init(so, m)
635 struct socket *so;
636 struct mbuf *m;
637 {
638 int *v;
639
640 if (mrtdebug)
641 log(LOG_DEBUG,
642 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
643 so->so_type, so->so_proto->pr_protocol);
644
645 if (so->so_type != SOCK_RAW ||
646 so->so_proto->pr_protocol != IPPROTO_IGMP)
647 return (EOPNOTSUPP);
648
649 if (m == NULL || m->m_len < sizeof(int))
650 return (EINVAL);
651
652 v = mtod(m, int *);
653 if (*v != 1)
654 return (EINVAL);
655
656 if (ip_mrouter != NULL)
657 return (EADDRINUSE);
658
659 ip_mrouter = so;
660
661 mfchashtbl =
662 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
663 bzero((caddr_t)nexpire, sizeof(nexpire));
664
665 pim_assert = 0;
666
667 callout_init(&expire_upcalls_ch);
668 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
669 expire_upcalls, NULL);
670
671 callout_init(&bw_upcalls_ch);
672 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
673 expire_bw_upcalls_send, NULL);
674
675 callout_init(&bw_meter_ch);
676 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
677 expire_bw_meter_process, NULL);
678
679 if (mrtdebug)
680 log(LOG_DEBUG, "ip_mrouter_init\n");
681
682 return (0);
683 }
684
685 /*
686 * Disable multicast routing
687 */
688 int
689 ip_mrouter_done()
690 {
691 vifi_t vifi;
692 struct vif *vifp;
693 int i;
694 int s;
695
696 s = splsoftnet();
697
698 /* Clear out all the vifs currently in use. */
699 for (vifi = 0; vifi < numvifs; vifi++) {
700 vifp = &viftable[vifi];
701 if (!in_nullhost(vifp->v_lcl_addr))
702 reset_vif(vifp);
703 }
704
705 numvifs = 0;
706 pim_assert = 0;
707 mrt_api_config = 0;
708
709 callout_stop(&expire_upcalls_ch);
710 callout_stop(&bw_upcalls_ch);
711 callout_stop(&bw_meter_ch);
712
713 /*
714 * Free all multicast forwarding cache entries.
715 */
716 for (i = 0; i < MFCTBLSIZ; i++) {
717 struct mfc *rt, *nrt;
718
719 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
720 nrt = LIST_NEXT(rt, mfc_hash);
721
722 expire_mfc(rt);
723 }
724 }
725
726 bzero((caddr_t)nexpire, sizeof(nexpire));
727 free(mfchashtbl, M_MRTABLE);
728 mfchashtbl = NULL;
729
730 bw_upcalls_n = 0;
731 bzero(bw_meter_timers, sizeof(bw_meter_timers));
732
733 /* Reset de-encapsulation cache. */
734
735 ip_mrouter = NULL;
736
737 splx(s);
738
739 if (mrtdebug)
740 log(LOG_DEBUG, "ip_mrouter_done\n");
741
742 return (0);
743 }
744
745 void
746 ip_mrouter_detach(ifp)
747 struct ifnet *ifp;
748 {
749 int vifi, i;
750 struct vif *vifp;
751 struct mfc *rt;
752 struct rtdetq *rte;
753
754 /* XXX not sure about side effect to userland routing daemon */
755 for (vifi = 0; vifi < numvifs; vifi++) {
756 vifp = &viftable[vifi];
757 if (vifp->v_ifp == ifp)
758 reset_vif(vifp);
759 }
760 for (i = 0; i < MFCTBLSIZ; i++) {
761 if (nexpire[i] == 0)
762 continue;
763 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
764 for (rte = rt->mfc_stall; rte; rte = rte->next) {
765 if (rte->ifp == ifp)
766 rte->ifp = NULL;
767 }
768 }
769 }
770 }
771
772 static int
773 get_version(m)
774 struct mbuf *m;
775 {
776 int *v = mtod(m, int *);
777
778 *v = 0x0305; /* XXX !!!! */
779 m->m_len = sizeof(int);
780 return (0);
781 }
782
783 /*
784 * Set PIM assert processing global
785 */
786 static int
787 set_assert(m)
788 struct mbuf *m;
789 {
790 int *i;
791
792 if (m == NULL || m->m_len < sizeof(int))
793 return (EINVAL);
794
795 i = mtod(m, int *);
796 pim_assert = !!*i;
797 return (0);
798 }
799
800 /*
801 * Get PIM assert processing global
802 */
803 static int
804 get_assert(m)
805 struct mbuf *m;
806 {
807 int *i = mtod(m, int *);
808
809 *i = pim_assert;
810 m->m_len = sizeof(int);
811 return (0);
812 }
813
814 /*
815 * Configure API capabilities
816 */
817 static int
818 set_api_config(struct mbuf *m)
819 {
820 int i;
821 u_int32_t *apival;
822
823 if (m == NULL || m->m_len < sizeof(u_int32_t))
824 return (EINVAL);
825
826 apival = mtod(m, u_int32_t *);
827
828 /*
829 * We can set the API capabilities only if it is the first operation
830 * after MRT_INIT. I.e.:
831 * - there are no vifs installed
832 * - pim_assert is not enabled
833 * - the MFC table is empty
834 */
835 if (numvifs > 0) {
836 *apival = 0;
837 return (EPERM);
838 }
839 if (pim_assert) {
840 *apival = 0;
841 return (EPERM);
842 }
843 for (i = 0; i < MFCTBLSIZ; i++) {
844 if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
845 *apival = 0;
846 return (EPERM);
847 }
848 }
849
850 mrt_api_config = *apival & mrt_api_support;
851 *apival = mrt_api_config;
852
853 return (0);
854 }
855
856 /*
857 * Get API capabilities
858 */
859 static int
860 get_api_support(struct mbuf *m)
861 {
862 u_int32_t *apival;
863
864 if (m == NULL || m->m_len < sizeof(u_int32_t))
865 return (EINVAL);
866
867 apival = mtod(m, u_int32_t *);
868
869 *apival = mrt_api_support;
870
871 return (0);
872 }
873
874 /*
875 * Get API configured capabilities
876 */
877 static int
878 get_api_config(struct mbuf *m)
879 {
880 u_int32_t *apival;
881
882 if (m == NULL || m->m_len < sizeof(u_int32_t))
883 return (EINVAL);
884
885 apival = mtod(m, u_int32_t *);
886
887 *apival = mrt_api_config;
888
889 return (0);
890 }
891
892 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
893
894 /*
895 * Add a vif to the vif table
896 */
897 static int
898 add_vif(m)
899 struct mbuf *m;
900 {
901 struct vifctl *vifcp;
902 struct vif *vifp;
903 struct ifaddr *ifa;
904 struct ifnet *ifp;
905 struct ifreq ifr;
906 int error, s;
907
908 if (m == NULL || m->m_len < sizeof(struct vifctl))
909 return (EINVAL);
910
911 vifcp = mtod(m, struct vifctl *);
912 if (vifcp->vifc_vifi >= MAXVIFS)
913 return (EINVAL);
914 if (in_nullhost(vifcp->vifc_lcl_addr))
915 return (EADDRNOTAVAIL);
916
917 vifp = &viftable[vifcp->vifc_vifi];
918 if (!in_nullhost(vifp->v_lcl_addr))
919 return (EADDRINUSE);
920
921 /* Find the interface with an address in AF_INET family. */
922 #ifdef PIM
923 if (vifcp->vifc_flags & VIFF_REGISTER) {
924 /*
925 * XXX: Because VIFF_REGISTER does not really need a valid
926 * local interface (e.g. it could be 127.0.0.2), we don't
927 * check its address.
928 */
929 ifp = NULL;
930 } else
931 #endif
932 {
933 sin.sin_addr = vifcp->vifc_lcl_addr;
934 ifa = ifa_ifwithaddr(sintosa(&sin));
935 if (ifa == NULL)
936 return (EADDRNOTAVAIL);
937 ifp = ifa->ifa_ifp;
938 }
939
940 if (vifcp->vifc_flags & VIFF_TUNNEL) {
941 if (vifcp->vifc_flags & VIFF_SRCRT) {
942 log(LOG_ERR, "source routed tunnels not supported\n");
943 return (EOPNOTSUPP);
944 }
945
946 /* attach this vif to decapsulator dispatch table */
947 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
948 vif_encapcheck, &vif_protosw, vifp);
949 if (!vifp->v_encap_cookie)
950 return (EINVAL);
951
952 /* Create a fake encapsulation interface. */
953 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
954 bzero(ifp, sizeof(*ifp));
955 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
956 "mdecap%d", vifcp->vifc_vifi);
957
958 /* Prepare cached route entry. */
959 bzero(&vifp->v_route, sizeof(vifp->v_route));
960 #ifdef PIM
961 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
962 ifp = &multicast_register_if;
963 if (mrtdebug)
964 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
965 (void *)ifp);
966 if (reg_vif_num == VIFI_INVALID) {
967 bzero(ifp, sizeof(*ifp));
968 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
969 "register_vif");
970 ifp->if_flags = IFF_LOOPBACK;
971 bzero(&vifp->v_route, sizeof(vifp->v_route));
972 reg_vif_num = vifcp->vifc_vifi;
973 }
974 #endif
975 } else {
976 /* Make sure the interface supports multicast. */
977 if ((ifp->if_flags & IFF_MULTICAST) == 0)
978 return (EOPNOTSUPP);
979
980 /* Enable promiscuous reception of all IP multicasts. */
981 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
982 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
983 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
984 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
985 if (error)
986 return (error);
987 }
988
989 s = splsoftnet();
990
991 /* Define parameters for the tbf structure. */
992 vifp->tbf_q = NULL;
993 vifp->tbf_t = &vifp->tbf_q;
994 microtime(&vifp->tbf_last_pkt_t);
995 vifp->tbf_n_tok = 0;
996 vifp->tbf_q_len = 0;
997 vifp->tbf_max_q_len = MAXQSIZE;
998
999 vifp->v_flags = vifcp->vifc_flags;
1000 vifp->v_threshold = vifcp->vifc_threshold;
1001 /* scaling up here allows division by 1024 in critical code */
1002 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
1003 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
1004 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
1005 vifp->v_ifp = ifp;
1006 /* Initialize per vif pkt counters. */
1007 vifp->v_pkt_in = 0;
1008 vifp->v_pkt_out = 0;
1009 vifp->v_bytes_in = 0;
1010 vifp->v_bytes_out = 0;
1011
1012 callout_init(&vifp->v_repq_ch);
1013
1014 #ifdef RSVP_ISI
1015 vifp->v_rsvp_on = 0;
1016 vifp->v_rsvpd = NULL;
1017 #endif /* RSVP_ISI */
1018
1019 splx(s);
1020
1021 /* Adjust numvifs up if the vifi is higher than numvifs. */
1022 if (numvifs <= vifcp->vifc_vifi)
1023 numvifs = vifcp->vifc_vifi + 1;
1024
1025 if (mrtdebug)
1026 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
1027 vifcp->vifc_vifi,
1028 ntohl(vifcp->vifc_lcl_addr.s_addr),
1029 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1030 ntohl(vifcp->vifc_rmt_addr.s_addr),
1031 vifcp->vifc_threshold,
1032 vifcp->vifc_rate_limit);
1033
1034 return (0);
1035 }
1036
1037 void
1038 reset_vif(vifp)
1039 struct vif *vifp;
1040 {
1041 struct mbuf *m, *n;
1042 struct ifnet *ifp;
1043 struct ifreq ifr;
1044
1045 callout_stop(&vifp->v_repq_ch);
1046
1047 /* detach this vif from decapsulator dispatch table */
1048 encap_detach(vifp->v_encap_cookie);
1049 vifp->v_encap_cookie = NULL;
1050
1051 /*
1052 * Free packets queued at the interface
1053 */
1054 for (m = vifp->tbf_q; m != NULL; m = n) {
1055 n = m->m_nextpkt;
1056 m_freem(m);
1057 }
1058
1059 if (vifp->v_flags & VIFF_TUNNEL) {
1060 free(vifp->v_ifp, M_MRTABLE);
1061 if (vifp == last_encap_vif) {
1062 last_encap_vif = NULL;
1063 last_encap_src = zeroin_addr;
1064 }
1065 } else if (vifp->v_flags & VIFF_REGISTER) {
1066 #ifdef PIM
1067 reg_vif_num = VIFI_INVALID;
1068 #endif
1069 } else {
1070 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
1071 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
1072 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
1073 ifp = vifp->v_ifp;
1074 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
1075 }
1076 bzero((caddr_t)vifp, sizeof(*vifp));
1077 }
1078
1079 /*
1080 * Delete a vif from the vif table
1081 */
1082 static int
1083 del_vif(m)
1084 struct mbuf *m;
1085 {
1086 vifi_t *vifip;
1087 struct vif *vifp;
1088 vifi_t vifi;
1089 int s;
1090
1091 if (m == NULL || m->m_len < sizeof(vifi_t))
1092 return (EINVAL);
1093
1094 vifip = mtod(m, vifi_t *);
1095 if (*vifip >= numvifs)
1096 return (EINVAL);
1097
1098 vifp = &viftable[*vifip];
1099 if (in_nullhost(vifp->v_lcl_addr))
1100 return (EADDRNOTAVAIL);
1101
1102 s = splsoftnet();
1103
1104 reset_vif(vifp);
1105
1106 /* Adjust numvifs down */
1107 for (vifi = numvifs; vifi > 0; vifi--)
1108 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
1109 break;
1110 numvifs = vifi;
1111
1112 splx(s);
1113
1114 if (mrtdebug)
1115 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
1116
1117 return (0);
1118 }
1119
1120 /*
1121 * update an mfc entry without resetting counters and S,G addresses.
1122 */
1123 static void
1124 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1125 {
1126 int i;
1127
1128 rt->mfc_parent = mfccp->mfcc_parent;
1129 for (i = 0; i < numvifs; i++) {
1130 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1131 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1132 MRT_MFC_FLAGS_ALL;
1133 }
1134 /* set the RP address */
1135 if (mrt_api_config & MRT_MFC_RP)
1136 rt->mfc_rp = mfccp->mfcc_rp;
1137 else
1138 rt->mfc_rp = zeroin_addr;
1139 }
1140
1141 /*
1142 * fully initialize an mfc entry from the parameter.
1143 */
1144 static void
1145 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1146 {
1147 rt->mfc_origin = mfccp->mfcc_origin;
1148 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1149
1150 update_mfc_params(rt, mfccp);
1151
1152 /* initialize pkt counters per src-grp */
1153 rt->mfc_pkt_cnt = 0;
1154 rt->mfc_byte_cnt = 0;
1155 rt->mfc_wrong_if = 0;
1156 timerclear(&rt->mfc_last_assert);
1157 }
1158
1159 static void
1160 expire_mfc(rt)
1161 struct mfc *rt;
1162 {
1163 struct rtdetq *rte, *nrte;
1164
1165 free_bw_list(rt->mfc_bw_meter);
1166
1167 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1168 nrte = rte->next;
1169 m_freem(rte->m);
1170 free(rte, M_MRTABLE);
1171 }
1172
1173 LIST_REMOVE(rt, mfc_hash);
1174 free(rt, M_MRTABLE);
1175 }
1176
1177 /*
1178 * Add an mfc entry
1179 */
1180 static int
1181 add_mfc(m)
1182 struct mbuf *m;
1183 {
1184 struct mfcctl2 mfcctl2;
1185 struct mfcctl2 *mfccp;
1186 struct mfc *rt;
1187 u_int32_t hash = 0;
1188 struct rtdetq *rte, *nrte;
1189 u_short nstl;
1190 int s;
1191 int mfcctl_size = sizeof(struct mfcctl);
1192
1193 if (mrt_api_config & MRT_API_FLAGS_ALL)
1194 mfcctl_size = sizeof(struct mfcctl2);
1195
1196 if (m == NULL || m->m_len < mfcctl_size)
1197 return (EINVAL);
1198
1199 /*
1200 * select data size depending on API version.
1201 */
1202 if (mrt_api_config & MRT_API_FLAGS_ALL) {
1203 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
1204 bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2));
1205 } else {
1206 struct mfcctl *mp = mtod(m, struct mfcctl *);
1207 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1208 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1209 sizeof(mfcctl2) - sizeof(struct mfcctl));
1210 }
1211 mfccp = &mfcctl2;
1212
1213 s = splsoftnet();
1214 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1215
1216 /* If an entry already exists, just update the fields */
1217 if (rt) {
1218 if (mrtdebug & DEBUG_MFC)
1219 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1220 ntohl(mfccp->mfcc_origin.s_addr),
1221 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1222 mfccp->mfcc_parent);
1223
1224 update_mfc_params(rt, mfccp);
1225
1226 splx(s);
1227 return (0);
1228 }
1229
1230 /*
1231 * Find the entry for which the upcall was made and update
1232 */
1233 nstl = 0;
1234 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1235 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1236 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1237 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1238 rt->mfc_stall != NULL) {
1239 if (nstl++)
1240 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1241 "multiple kernel entries",
1242 ntohl(mfccp->mfcc_origin.s_addr),
1243 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1244 mfccp->mfcc_parent, rt->mfc_stall);
1245
1246 if (mrtdebug & DEBUG_MFC)
1247 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1248 ntohl(mfccp->mfcc_origin.s_addr),
1249 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1250 mfccp->mfcc_parent, rt->mfc_stall);
1251
1252 rte = rt->mfc_stall;
1253 init_mfc_params(rt, mfccp);
1254 rt->mfc_stall = NULL;
1255
1256 rt->mfc_expire = 0; /* Don't clean this guy up */
1257 nexpire[hash]--;
1258
1259 /* free packets Qed at the end of this entry */
1260 for (; rte != NULL; rte = nrte) {
1261 nrte = rte->next;
1262 if (rte->ifp) {
1263 #ifdef RSVP_ISI
1264 ip_mdq(rte->m, rte->ifp, rt, -1);
1265 #else
1266 ip_mdq(rte->m, rte->ifp, rt);
1267 #endif /* RSVP_ISI */
1268 }
1269 m_freem(rte->m);
1270 #ifdef UPCALL_TIMING
1271 collate(&rte->t);
1272 #endif /* UPCALL_TIMING */
1273 free(rte, M_MRTABLE);
1274 }
1275 }
1276 }
1277
1278 /*
1279 * It is possible that an entry is being inserted without an upcall
1280 */
1281 if (nstl == 0) {
1282 /*
1283 * No mfc; make a new one
1284 */
1285 if (mrtdebug & DEBUG_MFC)
1286 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1287 ntohl(mfccp->mfcc_origin.s_addr),
1288 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1289 mfccp->mfcc_parent);
1290
1291 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1292 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1293 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1294 init_mfc_params(rt, mfccp);
1295 if (rt->mfc_expire)
1296 nexpire[hash]--;
1297 rt->mfc_expire = 0;
1298 break; /* XXX */
1299 }
1300 }
1301 if (rt == NULL) { /* no upcall, so make a new entry */
1302 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1303 M_NOWAIT);
1304 if (rt == NULL) {
1305 splx(s);
1306 return (ENOBUFS);
1307 }
1308
1309 init_mfc_params(rt, mfccp);
1310 rt->mfc_expire = 0;
1311 rt->mfc_stall = NULL;
1312 rt->mfc_bw_meter = NULL;
1313
1314 /* insert new entry at head of hash chain */
1315 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1316 }
1317 }
1318
1319 splx(s);
1320 return (0);
1321 }
1322
1323 #ifdef UPCALL_TIMING
1324 /*
1325 * collect delay statistics on the upcalls
1326 */
1327 static void
1328 collate(t)
1329 struct timeval *t;
1330 {
1331 u_int32_t d;
1332 struct timeval tp;
1333 u_int32_t delta;
1334
1335 microtime(&tp);
1336
1337 if (timercmp(t, &tp, <)) {
1338 TV_DELTA(tp, *t, delta);
1339
1340 d = delta >> 10;
1341 if (d > 50)
1342 d = 50;
1343
1344 ++upcall_data[d];
1345 }
1346 }
1347 #endif /* UPCALL_TIMING */
1348
1349 /*
1350 * Delete an mfc entry
1351 */
1352 static int
1353 del_mfc(m)
1354 struct mbuf *m;
1355 {
1356 struct mfcctl2 mfcctl2;
1357 struct mfcctl2 *mfccp;
1358 struct mfc *rt;
1359 int s;
1360 int mfcctl_size = sizeof(struct mfcctl);
1361 struct mfcctl *mp = mtod(m, struct mfcctl *);
1362
1363 /*
1364 * XXX: for deleting MFC entries the information in entries
1365 * of size "struct mfcctl" is sufficient.
1366 */
1367
1368 if (m == NULL || m->m_len < mfcctl_size)
1369 return (EINVAL);
1370
1371 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1372 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1373 sizeof(mfcctl2) - sizeof(struct mfcctl));
1374
1375 mfccp = &mfcctl2;
1376
1377 if (mrtdebug & DEBUG_MFC)
1378 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1379 ntohl(mfccp->mfcc_origin.s_addr),
1380 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1381
1382 s = splsoftnet();
1383
1384 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1385 if (rt == NULL) {
1386 splx(s);
1387 return (EADDRNOTAVAIL);
1388 }
1389
1390 /*
1391 * free the bw_meter entries
1392 */
1393 free_bw_list(rt->mfc_bw_meter);
1394 rt->mfc_bw_meter = NULL;
1395
1396 LIST_REMOVE(rt, mfc_hash);
1397 free(rt, M_MRTABLE);
1398
1399 splx(s);
1400 return (0);
1401 }
1402
1403 static int
1404 socket_send(s, mm, src)
1405 struct socket *s;
1406 struct mbuf *mm;
1407 struct sockaddr_in *src;
1408 {
1409 if (s) {
1410 if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1411 (struct mbuf *)NULL) != 0) {
1412 sorwakeup(s);
1413 return (0);
1414 }
1415 }
1416 m_freem(mm);
1417 return (-1);
1418 }
1419
1420 /*
1421 * IP multicast forwarding function. This function assumes that the packet
1422 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1423 * pointed to by "ifp", and the packet is to be relayed to other networks
1424 * that have members of the packet's destination IP multicast group.
1425 *
1426 * The packet is returned unscathed to the caller, unless it is
1427 * erroneous, in which case a non-zero return value tells the caller to
1428 * discard it.
1429 */
1430
1431 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1432 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1433
1434 int
1435 #ifdef RSVP_ISI
1436 ip_mforward(m, ifp, imo)
1437 #else
1438 ip_mforward(m, ifp)
1439 #endif /* RSVP_ISI */
1440 struct mbuf *m;
1441 struct ifnet *ifp;
1442 #ifdef RSVP_ISI
1443 struct ip_moptions *imo;
1444 #endif /* RSVP_ISI */
1445 {
1446 struct ip *ip = mtod(m, struct ip *);
1447 struct mfc *rt;
1448 static int srctun = 0;
1449 struct mbuf *mm;
1450 int s;
1451 vifi_t vifi;
1452
1453 if (mrtdebug & DEBUG_FORWARD)
1454 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1455 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1456
1457 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1458 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1459 /*
1460 * Packet arrived via a physical interface or
1461 * an encapsulated tunnel or a register_vif.
1462 */
1463 } else {
1464 /*
1465 * Packet arrived through a source-route tunnel.
1466 * Source-route tunnels are no longer supported.
1467 */
1468 if ((srctun++ % 1000) == 0)
1469 log(LOG_ERR,
1470 "ip_mforward: received source-routed packet from %x\n",
1471 ntohl(ip->ip_src.s_addr));
1472
1473 return (1);
1474 }
1475
1476 #ifdef RSVP_ISI
1477 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1478 if (ip->ip_ttl < 255)
1479 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1480 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1481 struct vif *vifp = viftable + vifi;
1482 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1483 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1484 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1485 vifp->v_ifp->if_xname);
1486 }
1487 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1488 }
1489 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1490 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1491 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1492 }
1493 #endif /* RSVP_ISI */
1494
1495 /*
1496 * Don't forward a packet with time-to-live of zero or one,
1497 * or a packet destined to a local-only group.
1498 */
1499 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1500 return (0);
1501
1502 /*
1503 * Determine forwarding vifs from the forwarding cache table
1504 */
1505 s = splsoftnet();
1506 ++mrtstat.mrts_mfc_lookups;
1507 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1508
1509 /* Entry exists, so forward if necessary */
1510 if (rt != NULL) {
1511 splx(s);
1512 #ifdef RSVP_ISI
1513 return (ip_mdq(m, ifp, rt, -1));
1514 #else
1515 return (ip_mdq(m, ifp, rt));
1516 #endif /* RSVP_ISI */
1517 } else {
1518 /*
1519 * If we don't have a route for packet's origin,
1520 * Make a copy of the packet & send message to routing daemon
1521 */
1522
1523 struct mbuf *mb0;
1524 struct rtdetq *rte;
1525 u_int32_t hash;
1526 int hlen = ip->ip_hl << 2;
1527 #ifdef UPCALL_TIMING
1528 struct timeval tp;
1529
1530 microtime(&tp);
1531 #endif /* UPCALL_TIMING */
1532
1533 ++mrtstat.mrts_mfc_misses;
1534
1535 mrtstat.mrts_no_route++;
1536 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1537 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1538 ntohl(ip->ip_src.s_addr),
1539 ntohl(ip->ip_dst.s_addr));
1540
1541 /*
1542 * Allocate mbufs early so that we don't do extra work if we are
1543 * just going to fail anyway. Make sure to pullup the header so
1544 * that other people can't step on it.
1545 */
1546 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1547 M_NOWAIT);
1548 if (rte == NULL) {
1549 splx(s);
1550 return (ENOBUFS);
1551 }
1552 mb0 = m_copy(m, 0, M_COPYALL);
1553 M_PULLUP(mb0, hlen);
1554 if (mb0 == NULL) {
1555 free(rte, M_MRTABLE);
1556 splx(s);
1557 return (ENOBUFS);
1558 }
1559
1560 /* is there an upcall waiting for this flow? */
1561 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1562 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1563 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1564 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1565 rt->mfc_stall != NULL)
1566 break;
1567 }
1568
1569 if (rt == NULL) {
1570 int i;
1571 struct igmpmsg *im;
1572
1573 /*
1574 * Locate the vifi for the incoming interface for
1575 * this packet.
1576 * If none found, drop packet.
1577 */
1578 for (vifi = 0; vifi < numvifs &&
1579 viftable[vifi].v_ifp != ifp; vifi++)
1580 ;
1581 if (vifi >= numvifs) /* vif not found, drop packet */
1582 goto non_fatal;
1583
1584 /* no upcall, so make a new entry */
1585 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1586 M_NOWAIT);
1587 if (rt == NULL)
1588 goto fail;
1589
1590 /*
1591 * Make a copy of the header to send to the user level
1592 * process
1593 */
1594 mm = m_copy(m, 0, hlen);
1595 M_PULLUP(mm, hlen);
1596 if (mm == NULL)
1597 goto fail1;
1598
1599 /*
1600 * Send message to routing daemon to install
1601 * a route into the kernel table
1602 */
1603
1604 im = mtod(mm, struct igmpmsg *);
1605 im->im_msgtype = IGMPMSG_NOCACHE;
1606 im->im_mbz = 0;
1607 im->im_vif = vifi;
1608
1609 mrtstat.mrts_upcalls++;
1610
1611 sin.sin_addr = ip->ip_src;
1612 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1613 log(LOG_WARNING,
1614 "ip_mforward: ip_mrouter socket queue full\n");
1615 ++mrtstat.mrts_upq_sockfull;
1616 fail1:
1617 free(rt, M_MRTABLE);
1618 fail:
1619 free(rte, M_MRTABLE);
1620 m_freem(mb0);
1621 splx(s);
1622 return (ENOBUFS);
1623 }
1624
1625 /* insert new entry at head of hash chain */
1626 rt->mfc_origin = ip->ip_src;
1627 rt->mfc_mcastgrp = ip->ip_dst;
1628 rt->mfc_pkt_cnt = 0;
1629 rt->mfc_byte_cnt = 0;
1630 rt->mfc_wrong_if = 0;
1631 rt->mfc_expire = UPCALL_EXPIRE;
1632 nexpire[hash]++;
1633 for (i = 0; i < numvifs; i++) {
1634 rt->mfc_ttls[i] = 0;
1635 rt->mfc_flags[i] = 0;
1636 }
1637 rt->mfc_parent = -1;
1638
1639 /* clear the RP address */
1640 rt->mfc_rp = zeroin_addr;
1641
1642 rt->mfc_bw_meter = NULL;
1643
1644 /* link into table */
1645 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1646 /* Add this entry to the end of the queue */
1647 rt->mfc_stall = rte;
1648 } else {
1649 /* determine if q has overflowed */
1650 struct rtdetq **p;
1651 int npkts = 0;
1652
1653 /*
1654 * XXX ouch! we need to append to the list, but we
1655 * only have a pointer to the front, so we have to
1656 * scan the entire list every time.
1657 */
1658 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1659 if (++npkts > MAX_UPQ) {
1660 mrtstat.mrts_upq_ovflw++;
1661 non_fatal:
1662 free(rte, M_MRTABLE);
1663 m_freem(mb0);
1664 splx(s);
1665 return (0);
1666 }
1667
1668 /* Add this entry to the end of the queue */
1669 *p = rte;
1670 }
1671
1672 rte->next = NULL;
1673 rte->m = mb0;
1674 rte->ifp = ifp;
1675 #ifdef UPCALL_TIMING
1676 rte->t = tp;
1677 #endif /* UPCALL_TIMING */
1678
1679 splx(s);
1680
1681 return (0);
1682 }
1683 }
1684
1685
1686 /*ARGSUSED*/
1687 static void
1688 expire_upcalls(v)
1689 void *v;
1690 {
1691 int i;
1692 int s;
1693
1694 s = splsoftnet();
1695
1696 for (i = 0; i < MFCTBLSIZ; i++) {
1697 struct mfc *rt, *nrt;
1698
1699 if (nexpire[i] == 0)
1700 continue;
1701
1702 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1703 nrt = LIST_NEXT(rt, mfc_hash);
1704
1705 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1706 continue;
1707 nexpire[i]--;
1708
1709 /*
1710 * free the bw_meter entries
1711 */
1712 while (rt->mfc_bw_meter != NULL) {
1713 struct bw_meter *x = rt->mfc_bw_meter;
1714
1715 rt->mfc_bw_meter = x->bm_mfc_next;
1716 free(x, M_BWMETER);
1717 }
1718
1719 ++mrtstat.mrts_cache_cleanups;
1720 if (mrtdebug & DEBUG_EXPIRE)
1721 log(LOG_DEBUG,
1722 "expire_upcalls: expiring (%x %x)\n",
1723 ntohl(rt->mfc_origin.s_addr),
1724 ntohl(rt->mfc_mcastgrp.s_addr));
1725
1726 expire_mfc(rt);
1727 }
1728 }
1729
1730 splx(s);
1731 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1732 expire_upcalls, NULL);
1733 }
1734
1735 /*
1736 * Packet forwarding routine once entry in the cache is made
1737 */
1738 static int
1739 #ifdef RSVP_ISI
1740 ip_mdq(m, ifp, rt, xmt_vif)
1741 #else
1742 ip_mdq(m, ifp, rt)
1743 #endif /* RSVP_ISI */
1744 struct mbuf *m;
1745 struct ifnet *ifp;
1746 struct mfc *rt;
1747 #ifdef RSVP_ISI
1748 vifi_t xmt_vif;
1749 #endif /* RSVP_ISI */
1750 {
1751 struct ip *ip = mtod(m, struct ip *);
1752 vifi_t vifi;
1753 struct vif *vifp;
1754 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1755
1756 /*
1757 * Macro to send packet on vif. Since RSVP packets don't get counted on
1758 * input, they shouldn't get counted on output, so statistics keeping is
1759 * separate.
1760 */
1761 #define MC_SEND(ip, vifp, m) do { \
1762 if ((vifp)->v_flags & VIFF_TUNNEL) \
1763 encap_send((ip), (vifp), (m)); \
1764 else \
1765 phyint_send((ip), (vifp), (m)); \
1766 } while (/*CONSTCOND*/ 0)
1767
1768 #ifdef RSVP_ISI
1769 /*
1770 * If xmt_vif is not -1, send on only the requested vif.
1771 *
1772 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1773 */
1774 if (xmt_vif < numvifs) {
1775 #ifdef PIM
1776 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1777 pim_register_send(ip, viftable + xmt_vif, m, rt);
1778 else
1779 #endif
1780 MC_SEND(ip, viftable + xmt_vif, m);
1781 return (1);
1782 }
1783 #endif /* RSVP_ISI */
1784
1785 /*
1786 * Don't forward if it didn't arrive from the parent vif for its origin.
1787 */
1788 vifi = rt->mfc_parent;
1789 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1790 /* came in the wrong interface */
1791 if (mrtdebug & DEBUG_FORWARD)
1792 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1793 ifp, vifi,
1794 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1795 ++mrtstat.mrts_wrong_if;
1796 ++rt->mfc_wrong_if;
1797 /*
1798 * If we are doing PIM assert processing, send a message
1799 * to the routing daemon.
1800 *
1801 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1802 * can complete the SPT switch, regardless of the type
1803 * of the iif (broadcast media, GRE tunnel, etc).
1804 */
1805 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1806 struct timeval now;
1807 u_int32_t delta;
1808
1809 #ifdef PIM
1810 if (ifp == &multicast_register_if)
1811 pimstat.pims_rcv_registers_wrongiif++;
1812 #endif
1813
1814 /* Get vifi for the incoming packet */
1815 for (vifi = 0;
1816 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1817 vifi++)
1818 ;
1819 if (vifi >= numvifs) {
1820 /* The iif is not found: ignore the packet. */
1821 return (0);
1822 }
1823
1824 if (rt->mfc_flags[vifi] &
1825 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1826 /* WRONGVIF disabled: ignore the packet */
1827 return (0);
1828 }
1829
1830 microtime(&now);
1831
1832 TV_DELTA(rt->mfc_last_assert, now, delta);
1833
1834 if (delta > ASSERT_MSG_TIME) {
1835 struct igmpmsg *im;
1836 int hlen = ip->ip_hl << 2;
1837 struct mbuf *mm = m_copy(m, 0, hlen);
1838
1839 M_PULLUP(mm, hlen);
1840 if (mm == NULL)
1841 return (ENOBUFS);
1842
1843 rt->mfc_last_assert = now;
1844
1845 im = mtod(mm, struct igmpmsg *);
1846 im->im_msgtype = IGMPMSG_WRONGVIF;
1847 im->im_mbz = 0;
1848 im->im_vif = vifi;
1849
1850 mrtstat.mrts_upcalls++;
1851
1852 sin.sin_addr = im->im_src;
1853 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1854 log(LOG_WARNING,
1855 "ip_mforward: ip_mrouter socket queue full\n");
1856 ++mrtstat.mrts_upq_sockfull;
1857 return (ENOBUFS);
1858 }
1859 }
1860 }
1861 return (0);
1862 }
1863
1864 /* If I sourced this packet, it counts as output, else it was input. */
1865 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1866 viftable[vifi].v_pkt_out++;
1867 viftable[vifi].v_bytes_out += plen;
1868 } else {
1869 viftable[vifi].v_pkt_in++;
1870 viftable[vifi].v_bytes_in += plen;
1871 }
1872 rt->mfc_pkt_cnt++;
1873 rt->mfc_byte_cnt += plen;
1874
1875 /*
1876 * For each vif, decide if a copy of the packet should be forwarded.
1877 * Forward if:
1878 * - the ttl exceeds the vif's threshold
1879 * - there are group members downstream on interface
1880 */
1881 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1882 if ((rt->mfc_ttls[vifi] > 0) &&
1883 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1884 vifp->v_pkt_out++;
1885 vifp->v_bytes_out += plen;
1886 #ifdef PIM
1887 if (vifp->v_flags & VIFF_REGISTER)
1888 pim_register_send(ip, vifp, m, rt);
1889 else
1890 #endif
1891 MC_SEND(ip, vifp, m);
1892 }
1893
1894 /*
1895 * Perform upcall-related bw measuring.
1896 */
1897 if (rt->mfc_bw_meter != NULL) {
1898 struct bw_meter *x;
1899 struct timeval now;
1900
1901 microtime(&now);
1902 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1903 bw_meter_receive_packet(x, plen, &now);
1904 }
1905
1906 return (0);
1907 }
1908
1909 #ifdef RSVP_ISI
1910 /*
1911 * check if a vif number is legal/ok. This is used by ip_output.
1912 */
1913 int
1914 legal_vif_num(vif)
1915 int vif;
1916 {
1917 if (vif >= 0 && vif < numvifs)
1918 return (1);
1919 else
1920 return (0);
1921 }
1922 #endif /* RSVP_ISI */
1923
1924 static void
1925 phyint_send(ip, vifp, m)
1926 struct ip *ip;
1927 struct vif *vifp;
1928 struct mbuf *m;
1929 {
1930 struct mbuf *mb_copy;
1931 int hlen = ip->ip_hl << 2;
1932
1933 /*
1934 * Make a new reference to the packet; make sure that
1935 * the IP header is actually copied, not just referenced,
1936 * so that ip_output() only scribbles on the copy.
1937 */
1938 mb_copy = m_copy(m, 0, M_COPYALL);
1939 M_PULLUP(mb_copy, hlen);
1940 if (mb_copy == NULL)
1941 return;
1942
1943 if (vifp->v_rate_limit <= 0)
1944 tbf_send_packet(vifp, mb_copy);
1945 else
1946 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1947 ntohs(ip->ip_len));
1948 }
1949
1950 static void
1951 encap_send(ip, vifp, m)
1952 struct ip *ip;
1953 struct vif *vifp;
1954 struct mbuf *m;
1955 {
1956 struct mbuf *mb_copy;
1957 struct ip *ip_copy;
1958 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1959
1960 /* Take care of delayed checksums */
1961 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1962 in_delayed_cksum(m);
1963 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1964 }
1965
1966 /*
1967 * copy the old packet & pullup it's IP header into the
1968 * new mbuf so we can modify it. Try to fill the new
1969 * mbuf since if we don't the ethernet driver will.
1970 */
1971 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1972 if (mb_copy == NULL)
1973 return;
1974 mb_copy->m_data += max_linkhdr;
1975 mb_copy->m_pkthdr.len = len;
1976 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1977
1978 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1979 m_freem(mb_copy);
1980 return;
1981 }
1982 i = MHLEN - max_linkhdr;
1983 if (i > len)
1984 i = len;
1985 mb_copy = m_pullup(mb_copy, i);
1986 if (mb_copy == NULL)
1987 return;
1988
1989 /*
1990 * fill in the encapsulating IP header.
1991 */
1992 ip_copy = mtod(mb_copy, struct ip *);
1993 *ip_copy = multicast_encap_iphdr;
1994 ip_copy->ip_id = ip_newid();
1995 ip_copy->ip_len = htons(len);
1996 ip_copy->ip_src = vifp->v_lcl_addr;
1997 ip_copy->ip_dst = vifp->v_rmt_addr;
1998
1999 /*
2000 * turn the encapsulated IP header back into a valid one.
2001 */
2002 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
2003 --ip->ip_ttl;
2004 ip->ip_sum = 0;
2005 mb_copy->m_data += sizeof(multicast_encap_iphdr);
2006 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2007 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
2008
2009 if (vifp->v_rate_limit <= 0)
2010 tbf_send_packet(vifp, mb_copy);
2011 else
2012 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
2013 }
2014
2015 /*
2016 * De-encapsulate a packet and feed it back through ip input.
2017 */
2018 static void
2019 vif_input(struct mbuf *m, ...)
2020 {
2021 int off, proto;
2022 va_list ap;
2023 struct vif *vifp;
2024 int s;
2025 struct ifqueue *ifq;
2026
2027 va_start(ap, m);
2028 off = va_arg(ap, int);
2029 proto = va_arg(ap, int);
2030 va_end(ap);
2031
2032 vifp = (struct vif *)encap_getarg(m);
2033 if (!vifp || proto != AF_INET) {
2034 m_freem(m);
2035 mrtstat.mrts_bad_tunnel++;
2036 return;
2037 }
2038
2039 m_adj(m, off);
2040 m->m_pkthdr.rcvif = vifp->v_ifp;
2041 ifq = &ipintrq;
2042 s = splnet();
2043 if (IF_QFULL(ifq)) {
2044 IF_DROP(ifq);
2045 m_freem(m);
2046 } else {
2047 IF_ENQUEUE(ifq, m);
2048 /*
2049 * normally we would need a "schednetisr(NETISR_IP)"
2050 * here but we were called by ip_input and it is going
2051 * to loop back & try to dequeue the packet we just
2052 * queued as soon as we return so we avoid the
2053 * unnecessary software interrrupt.
2054 */
2055 }
2056 splx(s);
2057 }
2058
2059 /*
2060 * Check if the packet should be grabbed by us.
2061 */
2062 static int
2063 vif_encapcheck(m, off, proto, arg)
2064 const struct mbuf *m;
2065 int off;
2066 int proto;
2067 void *arg;
2068 {
2069 struct vif *vifp;
2070 struct ip ip;
2071
2072 #ifdef DIAGNOSTIC
2073 if (!arg || proto != IPPROTO_IPV4)
2074 panic("unexpected arg in vif_encapcheck");
2075 #endif
2076
2077 /*
2078 * do not grab the packet if it's not to a multicast destination or if
2079 * we don't have an encapsulating tunnel with the source.
2080 * Note: This code assumes that the remote site IP address
2081 * uniquely identifies the tunnel (i.e., that this site has
2082 * at most one tunnel with the remote site).
2083 */
2084
2085 /* LINTED const cast */
2086 m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
2087 if (!IN_MULTICAST(ip.ip_dst.s_addr))
2088 return 0;
2089
2090 /* LINTED const cast */
2091 m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
2092 if (!in_hosteq(ip.ip_src, last_encap_src)) {
2093 vifp = (struct vif *)arg;
2094 if (vifp->v_flags & VIFF_TUNNEL &&
2095 in_hosteq(vifp->v_rmt_addr, ip.ip_src))
2096 ;
2097 else
2098 return 0;
2099 last_encap_vif = vifp;
2100 last_encap_src = ip.ip_src;
2101 } else
2102 vifp = last_encap_vif;
2103
2104 /* 32bit match, since we have checked ip_src only */
2105 return 32;
2106 }
2107
2108 /*
2109 * Token bucket filter module
2110 */
2111 static void
2112 tbf_control(vifp, m, ip, len)
2113 struct vif *vifp;
2114 struct mbuf *m;
2115 struct ip *ip;
2116 u_int32_t len;
2117 {
2118
2119 if (len > MAX_BKT_SIZE) {
2120 /* drop if packet is too large */
2121 mrtstat.mrts_pkt2large++;
2122 m_freem(m);
2123 return;
2124 }
2125
2126 tbf_update_tokens(vifp);
2127
2128 /*
2129 * If there are enough tokens, and the queue is empty, send this packet
2130 * out immediately. Otherwise, try to insert it on this vif's queue.
2131 */
2132 if (vifp->tbf_q_len == 0) {
2133 if (len <= vifp->tbf_n_tok) {
2134 vifp->tbf_n_tok -= len;
2135 tbf_send_packet(vifp, m);
2136 } else {
2137 /* queue packet and timeout till later */
2138 tbf_queue(vifp, m);
2139 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2140 tbf_reprocess_q, vifp);
2141 }
2142 } else {
2143 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
2144 !tbf_dq_sel(vifp, ip)) {
2145 /* queue full, and couldn't make room */
2146 mrtstat.mrts_q_overflow++;
2147 m_freem(m);
2148 } else {
2149 /* queue length low enough, or made room */
2150 tbf_queue(vifp, m);
2151 tbf_process_q(vifp);
2152 }
2153 }
2154 }
2155
2156 /*
2157 * adds a packet to the queue at the interface
2158 */
2159 static void
2160 tbf_queue(vifp, m)
2161 struct vif *vifp;
2162 struct mbuf *m;
2163 {
2164 int s = splsoftnet();
2165
2166 /* insert at tail */
2167 *vifp->tbf_t = m;
2168 vifp->tbf_t = &m->m_nextpkt;
2169 vifp->tbf_q_len++;
2170
2171 splx(s);
2172 }
2173
2174
2175 /*
2176 * processes the queue at the interface
2177 */
2178 static void
2179 tbf_process_q(vifp)
2180 struct vif *vifp;
2181 {
2182 struct mbuf *m;
2183 int len;
2184 int s = splsoftnet();
2185
2186 /*
2187 * Loop through the queue at the interface and send as many packets
2188 * as possible.
2189 */
2190 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2191 len = ntohs(mtod(m, struct ip *)->ip_len);
2192
2193 /* determine if the packet can be sent */
2194 if (len <= vifp->tbf_n_tok) {
2195 /* if so,
2196 * reduce no of tokens, dequeue the packet,
2197 * send the packet.
2198 */
2199 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2200 vifp->tbf_t = &vifp->tbf_q;
2201 --vifp->tbf_q_len;
2202
2203 m->m_nextpkt = NULL;
2204 vifp->tbf_n_tok -= len;
2205 tbf_send_packet(vifp, m);
2206 } else
2207 break;
2208 }
2209 splx(s);
2210 }
2211
2212 static void
2213 tbf_reprocess_q(arg)
2214 void *arg;
2215 {
2216 struct vif *vifp = arg;
2217
2218 if (ip_mrouter == NULL)
2219 return;
2220
2221 tbf_update_tokens(vifp);
2222 tbf_process_q(vifp);
2223
2224 if (vifp->tbf_q_len != 0)
2225 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2226 tbf_reprocess_q, vifp);
2227 }
2228
2229 /* function that will selectively discard a member of the queue
2230 * based on the precedence value and the priority
2231 */
2232 static int
2233 tbf_dq_sel(vifp, ip)
2234 struct vif *vifp;
2235 struct ip *ip;
2236 {
2237 u_int p;
2238 struct mbuf **mp, *m;
2239 int s = splsoftnet();
2240
2241 p = priority(vifp, ip);
2242
2243 for (mp = &vifp->tbf_q, m = *mp;
2244 m != NULL;
2245 mp = &m->m_nextpkt, m = *mp) {
2246 if (p > priority(vifp, mtod(m, struct ip *))) {
2247 if ((*mp = m->m_nextpkt) == NULL)
2248 vifp->tbf_t = mp;
2249 --vifp->tbf_q_len;
2250
2251 m_freem(m);
2252 mrtstat.mrts_drop_sel++;
2253 splx(s);
2254 return (1);
2255 }
2256 }
2257 splx(s);
2258 return (0);
2259 }
2260
2261 static void
2262 tbf_send_packet(vifp, m)
2263 struct vif *vifp;
2264 struct mbuf *m;
2265 {
2266 int error;
2267 int s = splsoftnet();
2268
2269 if (vifp->v_flags & VIFF_TUNNEL) {
2270 /* If tunnel options */
2271 ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
2272 IP_FORWARDING, (struct ip_moptions *)NULL,
2273 (struct socket *)NULL);
2274 } else {
2275 /* if physical interface option, extract the options and then send */
2276 struct ip_moptions imo;
2277
2278 imo.imo_multicast_ifp = vifp->v_ifp;
2279 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2280 imo.imo_multicast_loop = 1;
2281 #ifdef RSVP_ISI
2282 imo.imo_multicast_vif = -1;
2283 #endif
2284
2285 error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL,
2286 IP_FORWARDING|IP_MULTICASTOPTS, &imo,
2287 (struct socket *)NULL);
2288
2289 if (mrtdebug & DEBUG_XMIT)
2290 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2291 (long)(vifp - viftable), error);
2292 }
2293 splx(s);
2294 }
2295
2296 /* determine the current time and then
2297 * the elapsed time (between the last time and time now)
2298 * in milliseconds & update the no. of tokens in the bucket
2299 */
2300 static void
2301 tbf_update_tokens(vifp)
2302 struct vif *vifp;
2303 {
2304 struct timeval tp;
2305 u_int32_t tm;
2306 int s = splsoftnet();
2307
2308 microtime(&tp);
2309
2310 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2311
2312 /*
2313 * This formula is actually
2314 * "time in seconds" * "bytes/second".
2315 *
2316 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2317 *
2318 * The (1000/1024) was introduced in add_vif to optimize
2319 * this divide into a shift.
2320 */
2321 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2322 vifp->tbf_last_pkt_t = tp;
2323
2324 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2325 vifp->tbf_n_tok = MAX_BKT_SIZE;
2326
2327 splx(s);
2328 }
2329
2330 static int
2331 priority(vifp, ip)
2332 struct vif *vifp;
2333 struct ip *ip;
2334 {
2335 int prio = 50; /* the lowest priority -- default case */
2336
2337 /* temporary hack; may add general packet classifier some day */
2338
2339 /*
2340 * The UDP port space is divided up into four priority ranges:
2341 * [0, 16384) : unclassified - lowest priority
2342 * [16384, 32768) : audio - highest priority
2343 * [32768, 49152) : whiteboard - medium priority
2344 * [49152, 65536) : video - low priority
2345 */
2346 if (ip->ip_p == IPPROTO_UDP) {
2347 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2348
2349 switch (ntohs(udp->uh_dport) & 0xc000) {
2350 case 0x4000:
2351 prio = 70;
2352 break;
2353 case 0x8000:
2354 prio = 60;
2355 break;
2356 case 0xc000:
2357 prio = 55;
2358 break;
2359 }
2360
2361 if (tbfdebug > 1)
2362 log(LOG_DEBUG, "port %x prio %d\n",
2363 ntohs(udp->uh_dport), prio);
2364 }
2365
2366 return (prio);
2367 }
2368
2369 /*
2370 * End of token bucket filter modifications
2371 */
2372 #ifdef RSVP_ISI
2373 int
2374 ip_rsvp_vif_init(so, m)
2375 struct socket *so;
2376 struct mbuf *m;
2377 {
2378 int vifi, s;
2379
2380 if (rsvpdebug)
2381 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2382 so->so_type, so->so_proto->pr_protocol);
2383
2384 if (so->so_type != SOCK_RAW ||
2385 so->so_proto->pr_protocol != IPPROTO_RSVP)
2386 return (EOPNOTSUPP);
2387
2388 /* Check mbuf. */
2389 if (m == NULL || m->m_len != sizeof(int)) {
2390 return (EINVAL);
2391 }
2392 vifi = *(mtod(m, int *));
2393
2394 if (rsvpdebug)
2395 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
2396 vifi, rsvp_on);
2397
2398 s = splsoftnet();
2399
2400 /* Check vif. */
2401 if (!legal_vif_num(vifi)) {
2402 splx(s);
2403 return (EADDRNOTAVAIL);
2404 }
2405
2406 /* Check if socket is available. */
2407 if (viftable[vifi].v_rsvpd != NULL) {
2408 splx(s);
2409 return (EADDRINUSE);
2410 }
2411
2412 viftable[vifi].v_rsvpd = so;
2413 /*
2414 * This may seem silly, but we need to be sure we don't over-increment
2415 * the RSVP counter, in case something slips up.
2416 */
2417 if (!viftable[vifi].v_rsvp_on) {
2418 viftable[vifi].v_rsvp_on = 1;
2419 rsvp_on++;
2420 }
2421
2422 splx(s);
2423 return (0);
2424 }
2425
2426 int
2427 ip_rsvp_vif_done(so, m)
2428 struct socket *so;
2429 struct mbuf *m;
2430 {
2431 int vifi, s;
2432
2433 if (rsvpdebug)
2434 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2435 so->so_type, so->so_proto->pr_protocol);
2436
2437 if (so->so_type != SOCK_RAW ||
2438 so->so_proto->pr_protocol != IPPROTO_RSVP)
2439 return (EOPNOTSUPP);
2440
2441 /* Check mbuf. */
2442 if (m == NULL || m->m_len != sizeof(int)) {
2443 return (EINVAL);
2444 }
2445 vifi = *(mtod(m, int *));
2446
2447 s = splsoftnet();
2448
2449 /* Check vif. */
2450 if (!legal_vif_num(vifi)) {
2451 splx(s);
2452 return (EADDRNOTAVAIL);
2453 }
2454
2455 if (rsvpdebug)
2456 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2457 viftable[vifi].v_rsvpd, so);
2458
2459 viftable[vifi].v_rsvpd = NULL;
2460 /*
2461 * This may seem silly, but we need to be sure we don't over-decrement
2462 * the RSVP counter, in case something slips up.
2463 */
2464 if (viftable[vifi].v_rsvp_on) {
2465 viftable[vifi].v_rsvp_on = 0;
2466 rsvp_on--;
2467 }
2468
2469 splx(s);
2470 return (0);
2471 }
2472
2473 void
2474 ip_rsvp_force_done(so)
2475 struct socket *so;
2476 {
2477 int vifi, s;
2478
2479 /* Don't bother if it is not the right type of socket. */
2480 if (so->so_type != SOCK_RAW ||
2481 so->so_proto->pr_protocol != IPPROTO_RSVP)
2482 return;
2483
2484 s = splsoftnet();
2485
2486 /*
2487 * The socket may be attached to more than one vif...this
2488 * is perfectly legal.
2489 */
2490 for (vifi = 0; vifi < numvifs; vifi++) {
2491 if (viftable[vifi].v_rsvpd == so) {
2492 viftable[vifi].v_rsvpd = NULL;
2493 /*
2494 * This may seem silly, but we need to be sure we don't
2495 * over-decrement the RSVP counter, in case something
2496 * slips up.
2497 */
2498 if (viftable[vifi].v_rsvp_on) {
2499 viftable[vifi].v_rsvp_on = 0;
2500 rsvp_on--;
2501 }
2502 }
2503 }
2504
2505 splx(s);
2506 return;
2507 }
2508
2509 void
2510 rsvp_input(m, ifp)
2511 struct mbuf *m;
2512 struct ifnet *ifp;
2513 {
2514 int vifi, s;
2515 struct ip *ip = mtod(m, struct ip *);
2516 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
2517
2518 if (rsvpdebug)
2519 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2520
2521 /*
2522 * Can still get packets with rsvp_on = 0 if there is a local member
2523 * of the group to which the RSVP packet is addressed. But in this
2524 * case we want to throw the packet away.
2525 */
2526 if (!rsvp_on) {
2527 m_freem(m);
2528 return;
2529 }
2530
2531 /*
2532 * If the old-style non-vif-associated socket is set, then use
2533 * it and ignore the new ones.
2534 */
2535 if (ip_rsvpd != NULL) {
2536 if (rsvpdebug)
2537 printf("rsvp_input: "
2538 "Sending packet up old-style socket\n");
2539 rip_input(m); /*XXX*/
2540 return;
2541 }
2542
2543 s = splsoftnet();
2544
2545 if (rsvpdebug)
2546 printf("rsvp_input: check vifs\n");
2547
2548 /* Find which vif the packet arrived on. */
2549 for (vifi = 0; vifi < numvifs; vifi++) {
2550 if (viftable[vifi].v_ifp == ifp)
2551 break;
2552 }
2553
2554 if (vifi == numvifs) {
2555 /* Can't find vif packet arrived on. Drop packet. */
2556 if (rsvpdebug)
2557 printf("rsvp_input: "
2558 "Can't find vif for packet...dropping it.\n");
2559 m_freem(m);
2560 splx(s);
2561 return;
2562 }
2563
2564 if (rsvpdebug)
2565 printf("rsvp_input: check socket\n");
2566
2567 if (viftable[vifi].v_rsvpd == NULL) {
2568 /*
2569 * drop packet, since there is no specific socket for this
2570 * interface
2571 */
2572 if (rsvpdebug)
2573 printf("rsvp_input: No socket defined for vif %d\n",
2574 vifi);
2575 m_freem(m);
2576 splx(s);
2577 return;
2578 }
2579
2580 rsvp_src.sin_addr = ip->ip_src;
2581
2582 if (rsvpdebug && m)
2583 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2584 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2585
2586 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2587 if (rsvpdebug)
2588 printf("rsvp_input: Failed to append to socket\n");
2589 else
2590 if (rsvpdebug)
2591 printf("rsvp_input: send packet up\n");
2592
2593 splx(s);
2594 }
2595 #endif /* RSVP_ISI */
2596
2597 /*
2598 * Code for bandwidth monitors
2599 */
2600
2601 /*
2602 * Define common interface for timeval-related methods
2603 */
2604 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2605 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2606 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2607
2608 static uint32_t
2609 compute_bw_meter_flags(struct bw_upcall *req)
2610 {
2611 uint32_t flags = 0;
2612
2613 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2614 flags |= BW_METER_UNIT_PACKETS;
2615 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2616 flags |= BW_METER_UNIT_BYTES;
2617 if (req->bu_flags & BW_UPCALL_GEQ)
2618 flags |= BW_METER_GEQ;
2619 if (req->bu_flags & BW_UPCALL_LEQ)
2620 flags |= BW_METER_LEQ;
2621
2622 return flags;
2623 }
2624
2625 /*
2626 * Add a bw_meter entry
2627 */
2628 static int
2629 add_bw_upcall(struct mbuf *m)
2630 {
2631 int s;
2632 struct mfc *mfc;
2633 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2634 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2635 struct timeval now;
2636 struct bw_meter *x;
2637 uint32_t flags;
2638 struct bw_upcall *req;
2639
2640 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2641 return EINVAL;
2642
2643 req = mtod(m, struct bw_upcall *);
2644
2645 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2646 return EOPNOTSUPP;
2647
2648 /* Test if the flags are valid */
2649 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2650 return EINVAL;
2651 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2652 return EINVAL;
2653 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2654 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2655 return EINVAL;
2656
2657 /* Test if the threshold time interval is valid */
2658 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2659 return EINVAL;
2660
2661 flags = compute_bw_meter_flags(req);
2662
2663 /*
2664 * Find if we have already same bw_meter entry
2665 */
2666 s = splsoftnet();
2667 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2668 if (mfc == NULL) {
2669 splx(s);
2670 return EADDRNOTAVAIL;
2671 }
2672 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2673 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2674 &req->bu_threshold.b_time, ==)) &&
2675 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2676 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2677 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2678 splx(s);
2679 return 0; /* XXX Already installed */
2680 }
2681 }
2682
2683 /* Allocate the new bw_meter entry */
2684 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2685 if (x == NULL) {
2686 splx(s);
2687 return ENOBUFS;
2688 }
2689
2690 /* Set the new bw_meter entry */
2691 x->bm_threshold.b_time = req->bu_threshold.b_time;
2692 microtime(&now);
2693 x->bm_start_time = now;
2694 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2695 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2696 x->bm_measured.b_packets = 0;
2697 x->bm_measured.b_bytes = 0;
2698 x->bm_flags = flags;
2699 x->bm_time_next = NULL;
2700 x->bm_time_hash = BW_METER_BUCKETS;
2701
2702 /* Add the new bw_meter entry to the front of entries for this MFC */
2703 x->bm_mfc = mfc;
2704 x->bm_mfc_next = mfc->mfc_bw_meter;
2705 mfc->mfc_bw_meter = x;
2706 schedule_bw_meter(x, &now);
2707 splx(s);
2708
2709 return 0;
2710 }
2711
2712 static void
2713 free_bw_list(struct bw_meter *list)
2714 {
2715 while (list != NULL) {
2716 struct bw_meter *x = list;
2717
2718 list = list->bm_mfc_next;
2719 unschedule_bw_meter(x);
2720 free(x, M_BWMETER);
2721 }
2722 }
2723
2724 /*
2725 * Delete one or multiple bw_meter entries
2726 */
2727 static int
2728 del_bw_upcall(struct mbuf *m)
2729 {
2730 int s;
2731 struct mfc *mfc;
2732 struct bw_meter *x;
2733 struct bw_upcall *req;
2734
2735 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2736 return EINVAL;
2737
2738 req = mtod(m, struct bw_upcall *);
2739
2740 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2741 return EOPNOTSUPP;
2742
2743 s = splsoftnet();
2744 /* Find the corresponding MFC entry */
2745 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2746 if (mfc == NULL) {
2747 splx(s);
2748 return EADDRNOTAVAIL;
2749 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2750 /*
2751 * Delete all bw_meter entries for this mfc
2752 */
2753 struct bw_meter *list;
2754
2755 list = mfc->mfc_bw_meter;
2756 mfc->mfc_bw_meter = NULL;
2757 free_bw_list(list);
2758 splx(s);
2759 return 0;
2760 } else { /* Delete a single bw_meter entry */
2761 struct bw_meter *prev;
2762 uint32_t flags = 0;
2763
2764 flags = compute_bw_meter_flags(req);
2765
2766 /* Find the bw_meter entry to delete */
2767 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2768 prev = x, x = x->bm_mfc_next) {
2769 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2770 &req->bu_threshold.b_time, ==)) &&
2771 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2772 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2773 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2774 break;
2775 }
2776 if (x != NULL) { /* Delete entry from the list for this MFC */
2777 if (prev != NULL)
2778 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2779 else
2780 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2781
2782 unschedule_bw_meter(x);
2783 splx(s);
2784 /* Free the bw_meter entry */
2785 free(x, M_BWMETER);
2786 return 0;
2787 } else {
2788 splx(s);
2789 return EINVAL;
2790 }
2791 }
2792 /* NOTREACHED */
2793 }
2794
2795 /*
2796 * Perform bandwidth measurement processing that may result in an upcall
2797 */
2798 static void
2799 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2800 {
2801 struct timeval delta;
2802
2803 delta = *nowp;
2804 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2805
2806 if (x->bm_flags & BW_METER_GEQ) {
2807 /*
2808 * Processing for ">=" type of bw_meter entry
2809 */
2810 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2811 /* Reset the bw_meter entry */
2812 x->bm_start_time = *nowp;
2813 x->bm_measured.b_packets = 0;
2814 x->bm_measured.b_bytes = 0;
2815 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2816 }
2817
2818 /* Record that a packet is received */
2819 x->bm_measured.b_packets++;
2820 x->bm_measured.b_bytes += plen;
2821
2822 /*
2823 * Test if we should deliver an upcall
2824 */
2825 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2826 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2827 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2828 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2829 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2830 /* Prepare an upcall for delivery */
2831 bw_meter_prepare_upcall(x, nowp);
2832 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2833 }
2834 }
2835 } else if (x->bm_flags & BW_METER_LEQ) {
2836 /*
2837 * Processing for "<=" type of bw_meter entry
2838 */
2839 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2840 /*
2841 * We are behind time with the multicast forwarding table
2842 * scanning for "<=" type of bw_meter entries, so test now
2843 * if we should deliver an upcall.
2844 */
2845 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2846 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2847 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2848 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2849 /* Prepare an upcall for delivery */
2850 bw_meter_prepare_upcall(x, nowp);
2851 }
2852 /* Reschedule the bw_meter entry */
2853 unschedule_bw_meter(x);
2854 schedule_bw_meter(x, nowp);
2855 }
2856
2857 /* Record that a packet is received */
2858 x->bm_measured.b_packets++;
2859 x->bm_measured.b_bytes += plen;
2860
2861 /*
2862 * Test if we should restart the measuring interval
2863 */
2864 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2865 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2866 (x->bm_flags & BW_METER_UNIT_BYTES &&
2867 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2868 /* Don't restart the measuring interval */
2869 } else {
2870 /* Do restart the measuring interval */
2871 /*
2872 * XXX: note that we don't unschedule and schedule, because this
2873 * might be too much overhead per packet. Instead, when we process
2874 * all entries for a given timer hash bin, we check whether it is
2875 * really a timeout. If not, we reschedule at that time.
2876 */
2877 x->bm_start_time = *nowp;
2878 x->bm_measured.b_packets = 0;
2879 x->bm_measured.b_bytes = 0;
2880 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2881 }
2882 }
2883 }
2884
2885 /*
2886 * Prepare a bandwidth-related upcall
2887 */
2888 static void
2889 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2890 {
2891 struct timeval delta;
2892 struct bw_upcall *u;
2893
2894 /*
2895 * Compute the measured time interval
2896 */
2897 delta = *nowp;
2898 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2899
2900 /*
2901 * If there are too many pending upcalls, deliver them now
2902 */
2903 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2904 bw_upcalls_send();
2905
2906 /*
2907 * Set the bw_upcall entry
2908 */
2909 u = &bw_upcalls[bw_upcalls_n++];
2910 u->bu_src = x->bm_mfc->mfc_origin;
2911 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2912 u->bu_threshold.b_time = x->bm_threshold.b_time;
2913 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2914 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2915 u->bu_measured.b_time = delta;
2916 u->bu_measured.b_packets = x->bm_measured.b_packets;
2917 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2918 u->bu_flags = 0;
2919 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2920 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2921 if (x->bm_flags & BW_METER_UNIT_BYTES)
2922 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2923 if (x->bm_flags & BW_METER_GEQ)
2924 u->bu_flags |= BW_UPCALL_GEQ;
2925 if (x->bm_flags & BW_METER_LEQ)
2926 u->bu_flags |= BW_UPCALL_LEQ;
2927 }
2928
2929 /*
2930 * Send the pending bandwidth-related upcalls
2931 */
2932 static void
2933 bw_upcalls_send(void)
2934 {
2935 struct mbuf *m;
2936 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2937 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2938 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2939 0, /* unused2 */
2940 IGMPMSG_BW_UPCALL,/* im_msgtype */
2941 0, /* im_mbz */
2942 0, /* im_vif */
2943 0, /* unused3 */
2944 { 0 }, /* im_src */
2945 { 0 } }; /* im_dst */
2946
2947 if (bw_upcalls_n == 0)
2948 return; /* No pending upcalls */
2949
2950 bw_upcalls_n = 0;
2951
2952 /*
2953 * Allocate a new mbuf, initialize it with the header and
2954 * the payload for the pending calls.
2955 */
2956 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2957 if (m == NULL) {
2958 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2959 return;
2960 }
2961
2962 m->m_len = m->m_pkthdr.len = 0;
2963 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2964 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2965
2966 /*
2967 * Send the upcalls
2968 * XXX do we need to set the address in k_igmpsrc ?
2969 */
2970 mrtstat.mrts_upcalls++;
2971 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2972 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2973 ++mrtstat.mrts_upq_sockfull;
2974 }
2975 }
2976
2977 /*
2978 * Compute the timeout hash value for the bw_meter entries
2979 */
2980 #define BW_METER_TIMEHASH(bw_meter, hash) \
2981 do { \
2982 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2983 \
2984 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2985 (hash) = next_timeval.tv_sec; \
2986 if (next_timeval.tv_usec) \
2987 (hash)++; /* XXX: make sure we don't timeout early */ \
2988 (hash) %= BW_METER_BUCKETS; \
2989 } while (/*CONSTCOND*/ 0)
2990
2991 /*
2992 * Schedule a timer to process periodically bw_meter entry of type "<="
2993 * by linking the entry in the proper hash bucket.
2994 */
2995 static void
2996 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2997 {
2998 int time_hash;
2999
3000 if (!(x->bm_flags & BW_METER_LEQ))
3001 return; /* XXX: we schedule timers only for "<=" entries */
3002
3003 /*
3004 * Reset the bw_meter entry
3005 */
3006 x->bm_start_time = *nowp;
3007 x->bm_measured.b_packets = 0;
3008 x->bm_measured.b_bytes = 0;
3009 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
3010
3011 /*
3012 * Compute the timeout hash value and insert the entry
3013 */
3014 BW_METER_TIMEHASH(x, time_hash);
3015 x->bm_time_next = bw_meter_timers[time_hash];
3016 bw_meter_timers[time_hash] = x;
3017 x->bm_time_hash = time_hash;
3018 }
3019
3020 /*
3021 * Unschedule the periodic timer that processes bw_meter entry of type "<="
3022 * by removing the entry from the proper hash bucket.
3023 */
3024 static void
3025 unschedule_bw_meter(struct bw_meter *x)
3026 {
3027 int time_hash;
3028 struct bw_meter *prev, *tmp;
3029
3030 if (!(x->bm_flags & BW_METER_LEQ))
3031 return; /* XXX: we schedule timers only for "<=" entries */
3032
3033 /*
3034 * Compute the timeout hash value and delete the entry
3035 */
3036 time_hash = x->bm_time_hash;
3037 if (time_hash >= BW_METER_BUCKETS)
3038 return; /* Entry was not scheduled */
3039
3040 for (prev = NULL, tmp = bw_meter_timers[time_hash];
3041 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
3042 if (tmp == x)
3043 break;
3044
3045 if (tmp == NULL)
3046 panic("unschedule_bw_meter: bw_meter entry not found");
3047
3048 if (prev != NULL)
3049 prev->bm_time_next = x->bm_time_next;
3050 else
3051 bw_meter_timers[time_hash] = x->bm_time_next;
3052
3053 x->bm_time_next = NULL;
3054 x->bm_time_hash = BW_METER_BUCKETS;
3055 }
3056
3057 /*
3058 * Process all "<=" type of bw_meter that should be processed now,
3059 * and for each entry prepare an upcall if necessary. Each processed
3060 * entry is rescheduled again for the (periodic) processing.
3061 *
3062 * This is run periodically (once per second normally). On each round,
3063 * all the potentially matching entries are in the hash slot that we are
3064 * looking at.
3065 */
3066 static void
3067 bw_meter_process()
3068 {
3069 int s;
3070 static uint32_t last_tv_sec; /* last time we processed this */
3071
3072 uint32_t loops;
3073 int i;
3074 struct timeval now, process_endtime;
3075
3076 microtime(&now);
3077 if (last_tv_sec == now.tv_sec)
3078 return; /* nothing to do */
3079
3080 loops = now.tv_sec - last_tv_sec;
3081 last_tv_sec = now.tv_sec;
3082 if (loops > BW_METER_BUCKETS)
3083 loops = BW_METER_BUCKETS;
3084
3085 s = splsoftnet();
3086 /*
3087 * Process all bins of bw_meter entries from the one after the last
3088 * processed to the current one. On entry, i points to the last bucket
3089 * visited, so we need to increment i at the beginning of the loop.
3090 */
3091 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
3092 struct bw_meter *x, *tmp_list;
3093
3094 if (++i >= BW_METER_BUCKETS)
3095 i = 0;
3096
3097 /* Disconnect the list of bw_meter entries from the bin */
3098 tmp_list = bw_meter_timers[i];
3099 bw_meter_timers[i] = NULL;
3100
3101 /* Process the list of bw_meter entries */
3102 while (tmp_list != NULL) {
3103 x = tmp_list;
3104 tmp_list = tmp_list->bm_time_next;
3105
3106 /* Test if the time interval is over */
3107 process_endtime = x->bm_start_time;
3108 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
3109 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
3110 /* Not yet: reschedule, but don't reset */
3111 int time_hash;
3112
3113 BW_METER_TIMEHASH(x, time_hash);
3114 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
3115 /*
3116 * XXX: somehow the bin processing is a bit ahead of time.
3117 * Put the entry in the next bin.
3118 */
3119 if (++time_hash >= BW_METER_BUCKETS)
3120 time_hash = 0;
3121 }
3122 x->bm_time_next = bw_meter_timers[time_hash];
3123 bw_meter_timers[time_hash] = x;
3124 x->bm_time_hash = time_hash;
3125
3126 continue;
3127 }
3128
3129 /*
3130 * Test if we should deliver an upcall
3131 */
3132 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
3133 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
3134 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
3135 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
3136 /* Prepare an upcall for delivery */
3137 bw_meter_prepare_upcall(x, &now);
3138 }
3139
3140 /*
3141 * Reschedule for next processing
3142 */
3143 schedule_bw_meter(x, &now);
3144 }
3145 }
3146
3147 /* Send all upcalls that are pending delivery */
3148 bw_upcalls_send();
3149
3150 splx(s);
3151 }
3152
3153 /*
3154 * A periodic function for sending all upcalls that are pending delivery
3155 */
3156 static void
3157 expire_bw_upcalls_send(void *unused)
3158 {
3159 int s;
3160
3161 s = splsoftnet();
3162 bw_upcalls_send();
3163 splx(s);
3164
3165 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3166 expire_bw_upcalls_send, NULL);
3167 }
3168
3169 /*
3170 * A periodic function for periodic scanning of the multicast forwarding
3171 * table for processing all "<=" bw_meter entries.
3172 */
3173 static void
3174 expire_bw_meter_process(void *unused)
3175 {
3176 if (mrt_api_config & MRT_MFC_BW_UPCALL)
3177 bw_meter_process();
3178
3179 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
3180 expire_bw_meter_process, NULL);
3181 }
3182
3183 /*
3184 * End of bandwidth monitoring code
3185 */
3186
3187 #ifdef PIM
3188 /*
3189 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3190 */
3191 static int
3192 pim_register_send(struct ip *ip, struct vif *vifp,
3193 struct mbuf *m, struct mfc *rt)
3194 {
3195 struct mbuf *mb_copy, *mm;
3196
3197 if (mrtdebug & DEBUG_PIM)
3198 log(LOG_DEBUG, "pim_register_send: ");
3199
3200 mb_copy = pim_register_prepare(ip, m);
3201 if (mb_copy == NULL)
3202 return ENOBUFS;
3203
3204 /*
3205 * Send all the fragments. Note that the mbuf for each fragment
3206 * is freed by the sending machinery.
3207 */
3208 for (mm = mb_copy; mm; mm = mb_copy) {
3209 mb_copy = mm->m_nextpkt;
3210 mm->m_nextpkt = NULL;
3211 mm = m_pullup(mm, sizeof(struct ip));
3212 if (mm != NULL) {
3213 ip = mtod(mm, struct ip *);
3214 if ((mrt_api_config & MRT_MFC_RP) &&
3215 !in_nullhost(rt->mfc_rp)) {
3216 pim_register_send_rp(ip, vifp, mm, rt);
3217 } else {
3218 pim_register_send_upcall(ip, vifp, mm, rt);
3219 }
3220 }
3221 }
3222
3223 return 0;
3224 }
3225
3226 /*
3227 * Return a copy of the data packet that is ready for PIM Register
3228 * encapsulation.
3229 * XXX: Note that in the returned copy the IP header is a valid one.
3230 */
3231 static struct mbuf *
3232 pim_register_prepare(struct ip *ip, struct mbuf *m)
3233 {
3234 struct mbuf *mb_copy = NULL;
3235 int mtu;
3236
3237 /* Take care of delayed checksums */
3238 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3239 in_delayed_cksum(m);
3240 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3241 }
3242
3243 /*
3244 * Copy the old packet & pullup its IP header into the
3245 * new mbuf so we can modify it.
3246 */
3247 mb_copy = m_copy(m, 0, M_COPYALL);
3248 if (mb_copy == NULL)
3249 return NULL;
3250 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3251 if (mb_copy == NULL)
3252 return NULL;
3253
3254 /* take care of the TTL */
3255 ip = mtod(mb_copy, struct ip *);
3256 --ip->ip_ttl;
3257
3258 /* Compute the MTU after the PIM Register encapsulation */
3259 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3260
3261 if (ntohs(ip->ip_len) <= mtu) {
3262 /* Turn the IP header into a valid one */
3263 ip->ip_sum = 0;
3264 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3265 } else {
3266 /* Fragment the packet */
3267 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3268 /* XXX: mb_copy was freed by ip_fragment() */
3269 return NULL;
3270 }
3271 }
3272 return mb_copy;
3273 }
3274
3275 /*
3276 * Send an upcall with the data packet to the user-level process.
3277 */
3278 static int
3279 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3280 struct mbuf *mb_copy, struct mfc *rt)
3281 {
3282 struct mbuf *mb_first;
3283 int len = ntohs(ip->ip_len);
3284 struct igmpmsg *im;
3285 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3286
3287 /*
3288 * Add a new mbuf with an upcall header
3289 */
3290 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3291 if (mb_first == NULL) {
3292 m_freem(mb_copy);
3293 return ENOBUFS;
3294 }
3295 mb_first->m_data += max_linkhdr;
3296 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3297 mb_first->m_len = sizeof(struct igmpmsg);
3298 mb_first->m_next = mb_copy;
3299
3300 /* Send message to routing daemon */
3301 im = mtod(mb_first, struct igmpmsg *);
3302 im->im_msgtype = IGMPMSG_WHOLEPKT;
3303 im->im_mbz = 0;
3304 im->im_vif = vifp - viftable;
3305 im->im_src = ip->ip_src;
3306 im->im_dst = ip->ip_dst;
3307
3308 k_igmpsrc.sin_addr = ip->ip_src;
3309
3310 mrtstat.mrts_upcalls++;
3311
3312 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3313 if (mrtdebug & DEBUG_PIM)
3314 log(LOG_WARNING,
3315 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3316 ++mrtstat.mrts_upq_sockfull;
3317 return ENOBUFS;
3318 }
3319
3320 /* Keep statistics */
3321 pimstat.pims_snd_registers_msgs++;
3322 pimstat.pims_snd_registers_bytes += len;
3323
3324 return 0;
3325 }
3326
3327 /*
3328 * Encapsulate the data packet in PIM Register message and send it to the RP.
3329 */
3330 static int
3331 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3332 struct mbuf *mb_copy, struct mfc *rt)
3333 {
3334 struct mbuf *mb_first;
3335 struct ip *ip_outer;
3336 struct pim_encap_pimhdr *pimhdr;
3337 int len = ntohs(ip->ip_len);
3338 vifi_t vifi = rt->mfc_parent;
3339
3340 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3341 m_freem(mb_copy);
3342 return EADDRNOTAVAIL; /* The iif vif is invalid */
3343 }
3344
3345 /*
3346 * Add a new mbuf with the encapsulating header
3347 */
3348 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3349 if (mb_first == NULL) {
3350 m_freem(mb_copy);
3351 return ENOBUFS;
3352 }
3353 mb_first->m_data += max_linkhdr;
3354 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3355 mb_first->m_next = mb_copy;
3356
3357 mb_first->m_pkthdr.len = len + mb_first->m_len;
3358
3359 /*
3360 * Fill in the encapsulating IP and PIM header
3361 */
3362 ip_outer = mtod(mb_first, struct ip *);
3363 *ip_outer = pim_encap_iphdr;
3364 ip_outer->ip_id = ip_newid();
3365 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3366 sizeof(pim_encap_pimhdr));
3367 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3368 ip_outer->ip_dst = rt->mfc_rp;
3369 /*
3370 * Copy the inner header TOS to the outer header, and take care of the
3371 * IP_DF bit.
3372 */
3373 ip_outer->ip_tos = ip->ip_tos;
3374 if (ntohs(ip->ip_off) & IP_DF)
3375 ip_outer->ip_off |= IP_DF;
3376 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3377 + sizeof(pim_encap_iphdr));
3378 *pimhdr = pim_encap_pimhdr;
3379 /* If the iif crosses a border, set the Border-bit */
3380 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3381 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3382
3383 mb_first->m_data += sizeof(pim_encap_iphdr);
3384 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3385 mb_first->m_data -= sizeof(pim_encap_iphdr);
3386
3387 if (vifp->v_rate_limit == 0)
3388 tbf_send_packet(vifp, mb_first);
3389 else
3390 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3391
3392 /* Keep statistics */
3393 pimstat.pims_snd_registers_msgs++;
3394 pimstat.pims_snd_registers_bytes += len;
3395
3396 return 0;
3397 }
3398
3399 /*
3400 * PIM-SMv2 and PIM-DM messages processing.
3401 * Receives and verifies the PIM control messages, and passes them
3402 * up to the listening socket, using rip_input().
3403 * The only message with special processing is the PIM_REGISTER message
3404 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3405 * is passed to if_simloop().
3406 */
3407 void
3408 pim_input(struct mbuf *m, ...)
3409 {
3410 struct ip *ip = mtod(m, struct ip *);
3411 struct pim *pim;
3412 int minlen;
3413 int datalen;
3414 int ip_tos;
3415 int proto;
3416 int iphlen;
3417 va_list ap;
3418
3419 va_start(ap, m);
3420 iphlen = va_arg(ap, int);
3421 proto = va_arg(ap, int);
3422 va_end(ap);
3423
3424 datalen = ntohs(ip->ip_len) - iphlen;
3425
3426 /* Keep statistics */
3427 pimstat.pims_rcv_total_msgs++;
3428 pimstat.pims_rcv_total_bytes += datalen;
3429
3430 /*
3431 * Validate lengths
3432 */
3433 if (datalen < PIM_MINLEN) {
3434 pimstat.pims_rcv_tooshort++;
3435 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3436 datalen, (u_long)ip->ip_src.s_addr);
3437 m_freem(m);
3438 return;
3439 }
3440
3441 /*
3442 * If the packet is at least as big as a REGISTER, go agead
3443 * and grab the PIM REGISTER header size, to avoid another
3444 * possible m_pullup() later.
3445 *
3446 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3447 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3448 */
3449 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3450 /*
3451 * Get the IP and PIM headers in contiguous memory, and
3452 * possibly the PIM REGISTER header.
3453 */
3454 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3455 (m = m_pullup(m, minlen)) == NULL) {
3456 log(LOG_ERR, "pim_input: m_pullup failure\n");
3457 return;
3458 }
3459 /* m_pullup() may have given us a new mbuf so reset ip. */
3460 ip = mtod(m, struct ip *);
3461 ip_tos = ip->ip_tos;
3462
3463 /* adjust mbuf to point to the PIM header */
3464 m->m_data += iphlen;
3465 m->m_len -= iphlen;
3466 pim = mtod(m, struct pim *);
3467
3468 /*
3469 * Validate checksum. If PIM REGISTER, exclude the data packet.
3470 *
3471 * XXX: some older PIMv2 implementations don't make this distinction,
3472 * so for compatibility reason perform the checksum over part of the
3473 * message, and if error, then over the whole message.
3474 */
3475 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3476 /* do nothing, checksum okay */
3477 } else if (in_cksum(m, datalen)) {
3478 pimstat.pims_rcv_badsum++;
3479 if (mrtdebug & DEBUG_PIM)
3480 log(LOG_DEBUG, "pim_input: invalid checksum");
3481 m_freem(m);
3482 return;
3483 }
3484
3485 /* PIM version check */
3486 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3487 pimstat.pims_rcv_badversion++;
3488 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3489 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3490 m_freem(m);
3491 return;
3492 }
3493
3494 /* restore mbuf back to the outer IP */
3495 m->m_data -= iphlen;
3496 m->m_len += iphlen;
3497
3498 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3499 /*
3500 * Since this is a REGISTER, we'll make a copy of the register
3501 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3502 * routing daemon.
3503 */
3504 int s;
3505 struct sockaddr_in dst = { sizeof(dst), AF_INET };
3506 struct mbuf *mcp;
3507 struct ip *encap_ip;
3508 u_int32_t *reghdr;
3509 struct ifnet *vifp;
3510
3511 s = splsoftnet();
3512 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3513 splx(s);
3514 if (mrtdebug & DEBUG_PIM)
3515 log(LOG_DEBUG,
3516 "pim_input: register vif not set: %d\n", reg_vif_num);
3517 m_freem(m);
3518 return;
3519 }
3520 /* XXX need refcnt? */
3521 vifp = viftable[reg_vif_num].v_ifp;
3522 splx(s);
3523
3524 /*
3525 * Validate length
3526 */
3527 if (datalen < PIM_REG_MINLEN) {
3528 pimstat.pims_rcv_tooshort++;
3529 pimstat.pims_rcv_badregisters++;
3530 log(LOG_ERR,
3531 "pim_input: register packet size too small %d from %lx\n",
3532 datalen, (u_long)ip->ip_src.s_addr);
3533 m_freem(m);
3534 return;
3535 }
3536
3537 reghdr = (u_int32_t *)(pim + 1);
3538 encap_ip = (struct ip *)(reghdr + 1);
3539
3540 if (mrtdebug & DEBUG_PIM) {
3541 log(LOG_DEBUG,
3542 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3543 (u_long)ntohl(encap_ip->ip_src.s_addr),
3544 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3545 ntohs(encap_ip->ip_len));
3546 }
3547
3548 /* verify the version number of the inner packet */
3549 if (encap_ip->ip_v != IPVERSION) {
3550 pimstat.pims_rcv_badregisters++;
3551 if (mrtdebug & DEBUG_PIM) {
3552 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3553 "of the inner packet\n", encap_ip->ip_v);
3554 }
3555 m_freem(m);
3556 return;
3557 }
3558
3559 /* verify the inner packet is destined to a mcast group */
3560 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3561 pimstat.pims_rcv_badregisters++;
3562 if (mrtdebug & DEBUG_PIM)
3563 log(LOG_DEBUG,
3564 "pim_input: inner packet of register is not "
3565 "multicast %lx\n",
3566 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3567 m_freem(m);
3568 return;
3569 }
3570
3571 /* If a NULL_REGISTER, pass it to the daemon */
3572 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3573 goto pim_input_to_daemon;
3574
3575 /*
3576 * Copy the TOS from the outer IP header to the inner IP header.
3577 */
3578 if (encap_ip->ip_tos != ip_tos) {
3579 /* Outer TOS -> inner TOS */
3580 encap_ip->ip_tos = ip_tos;
3581 /* Recompute the inner header checksum. Sigh... */
3582
3583 /* adjust mbuf to point to the inner IP header */
3584 m->m_data += (iphlen + PIM_MINLEN);
3585 m->m_len -= (iphlen + PIM_MINLEN);
3586
3587 encap_ip->ip_sum = 0;
3588 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3589
3590 /* restore mbuf to point back to the outer IP header */
3591 m->m_data -= (iphlen + PIM_MINLEN);
3592 m->m_len += (iphlen + PIM_MINLEN);
3593 }
3594
3595 /*
3596 * Decapsulate the inner IP packet and loopback to forward it
3597 * as a normal multicast packet. Also, make a copy of the
3598 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3599 * to pass to the daemon later, so it can take the appropriate
3600 * actions (e.g., send back PIM_REGISTER_STOP).
3601 * XXX: here m->m_data points to the outer IP header.
3602 */
3603 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3604 if (mcp == NULL) {
3605 log(LOG_ERR,
3606 "pim_input: pim register: could not copy register head\n");
3607 m_freem(m);
3608 return;
3609 }
3610
3611 /* Keep statistics */
3612 /* XXX: registers_bytes include only the encap. mcast pkt */
3613 pimstat.pims_rcv_registers_msgs++;
3614 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3615
3616 /*
3617 * forward the inner ip packet; point m_data at the inner ip.
3618 */
3619 m_adj(m, iphlen + PIM_MINLEN);
3620
3621 if (mrtdebug & DEBUG_PIM) {
3622 log(LOG_DEBUG,
3623 "pim_input: forwarding decapsulated register: "
3624 "src %lx, dst %lx, vif %d\n",
3625 (u_long)ntohl(encap_ip->ip_src.s_addr),
3626 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3627 reg_vif_num);
3628 }
3629 /* NB: vifp was collected above; can it change on us? */
3630 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
3631
3632 /* prepare the register head to send to the mrouting daemon */
3633 m = mcp;
3634 }
3635
3636 pim_input_to_daemon:
3637 /*
3638 * Pass the PIM message up to the daemon; if it is a Register message,
3639 * pass the 'head' only up to the daemon. This includes the
3640 * outer IP header, PIM header, PIM-Register header and the
3641 * inner IP header.
3642 * XXX: the outer IP header pkt size of a Register is not adjust to
3643 * reflect the fact that the inner multicast data is truncated.
3644 */
3645 rip_input(m, iphlen, proto);
3646
3647 return;
3648 }
3649 #endif /* PIM */
3650