ip_mroute.c revision 1.95 1 /* $NetBSD: ip_mroute.c,v 1.95 2005/08/03 18:20:11 gdt Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Stephen Deering of Stanford University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
35 */
36
37 /*
38 * Copyright (c) 1989 Stephen Deering
39 *
40 * This code is derived from software contributed to Berkeley by
41 * Stephen Deering of Stanford University.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
72 */
73
74 /*
75 * IP multicast forwarding procedures
76 *
77 * Written by David Waitzman, BBN Labs, August 1988.
78 * Modified by Steve Deering, Stanford, February 1989.
79 * Modified by Mark J. Steiglitz, Stanford, May, 1991
80 * Modified by Van Jacobson, LBL, January 1993
81 * Modified by Ajit Thyagarajan, PARC, August 1993
82 * Modified by Bill Fenner, PARC, April 1994
83 * Modified by Charles M. Hannum, NetBSD, May 1995.
84 * Modified by Ahmed Helmy, SGI, June 1996
85 * Modified by George Edmond Eddy (Rusty), ISI, February 1998
86 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
87 * Modified by Hitoshi Asaeda, WIDE, August 2000
88 * Modified by Pavlin Radoslavov, ICSI, October 2002
89 *
90 * MROUTING Revision: 1.2
91 * and PIM-SMv2 and PIM-DM support, advanced API support,
92 * bandwidth metering and signaling
93 */
94
95 #include <sys/cdefs.h>
96 __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.95 2005/08/03 18:20:11 gdt Exp $");
97
98 #include "opt_inet.h"
99 #include "opt_ipsec.h"
100 #include "opt_pim.h"
101
102 #ifdef PIM
103 #define _PIM_VT 1
104 #endif
105
106 #include <sys/param.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/protosw.h>
113 #include <sys/errno.h>
114 #include <sys/time.h>
115 #include <sys/kernel.h>
116 #include <sys/ioctl.h>
117 #include <sys/syslog.h>
118
119 #include <net/if.h>
120 #include <net/route.h>
121 #include <net/raw_cb.h>
122
123 #include <netinet/in.h>
124 #include <netinet/in_var.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/udp.h>
130 #include <netinet/igmp.h>
131 #include <netinet/igmp_var.h>
132 #include <netinet/ip_mroute.h>
133 #ifdef PIM
134 #include <netinet/pim.h>
135 #include <netinet/pim_var.h>
136 #endif
137 #include <netinet/ip_encap.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #endif
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #endif
148
149 #include <machine/stdarg.h>
150
151 #define IP_MULTICASTOPTS 0
152 #define M_PULLUP(m, len) \
153 do { \
154 if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
155 (m) = m_pullup((m), (len)); \
156 } while (/*CONSTCOND*/ 0)
157
158 /*
159 * Globals. All but ip_mrouter and ip_mrtproto could be static,
160 * except for netstat or debugging purposes.
161 */
162 struct socket *ip_mrouter = NULL;
163 int ip_mrtproto = IGMP_DVMRP; /* for netstat only */
164
165 #define NO_RTE_FOUND 0x1
166 #define RTE_FOUND 0x2
167
168 #define MFCHASH(a, g) \
169 ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
170 ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
171 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
172 u_long mfchash;
173
174 u_char nexpire[MFCTBLSIZ];
175 struct vif viftable[MAXVIFS];
176 struct mrtstat mrtstat;
177 u_int mrtdebug = 0; /* debug level */
178 #define DEBUG_MFC 0x02
179 #define DEBUG_FORWARD 0x04
180 #define DEBUG_EXPIRE 0x08
181 #define DEBUG_XMIT 0x10
182 #define DEBUG_PIM 0x20
183
184 #define VIFI_INVALID ((vifi_t) -1)
185
186 u_int tbfdebug = 0; /* tbf debug level */
187 #ifdef RSVP_ISI
188 u_int rsvpdebug = 0; /* rsvp debug level */
189 extern struct socket *ip_rsvpd;
190 extern int rsvp_on;
191 #endif /* RSVP_ISI */
192
193 /* vif attachment using sys/netinet/ip_encap.c */
194 static void vif_input(struct mbuf *, ...);
195 static int vif_encapcheck(struct mbuf *, int, int, void *);
196
197 static const struct protosw vif_protosw =
198 { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR,
199 vif_input, rip_output, 0, rip_ctloutput,
200 rip_usrreq,
201 0, 0, 0, 0,
202 };
203
204 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
205 #define UPCALL_EXPIRE 6 /* number of timeouts */
206
207 /*
208 * Define the token bucket filter structures
209 */
210
211 #define TBF_REPROCESS (hz / 100) /* 100x / second */
212
213 static int get_sg_cnt(struct sioc_sg_req *);
214 static int get_vif_cnt(struct sioc_vif_req *);
215 static int ip_mrouter_init(struct socket *, struct mbuf *);
216 static int get_version(struct mbuf *);
217 static int set_assert(struct mbuf *);
218 static int get_assert(struct mbuf *);
219 static int add_vif(struct mbuf *);
220 static int del_vif(struct mbuf *);
221 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
222 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
223 static void expire_mfc(struct mfc *);
224 static int add_mfc(struct mbuf *);
225 #ifdef UPCALL_TIMING
226 static void collate(struct timeval *);
227 #endif
228 static int del_mfc(struct mbuf *);
229 static int set_api_config(struct mbuf *); /* chose API capabilities */
230 static int get_api_support(struct mbuf *);
231 static int get_api_config(struct mbuf *);
232 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
233 static void expire_upcalls(void *);
234 #ifdef RSVP_ISI
235 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
236 #else
237 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
238 #endif
239 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
240 static void encap_send(struct ip *, struct vif *, struct mbuf *);
241 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
242 static void tbf_queue(struct vif *, struct mbuf *);
243 static void tbf_process_q(struct vif *);
244 static void tbf_reprocess_q(void *);
245 static int tbf_dq_sel(struct vif *, struct ip *);
246 static void tbf_send_packet(struct vif *, struct mbuf *);
247 static void tbf_update_tokens(struct vif *);
248 static int priority(struct vif *, struct ip *);
249
250 /*
251 * Bandwidth monitoring
252 */
253 static void free_bw_list(struct bw_meter *);
254 static int add_bw_upcall(struct mbuf *);
255 static int del_bw_upcall(struct mbuf *);
256 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
257 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
258 static void bw_upcalls_send(void);
259 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
260 static void unschedule_bw_meter(struct bw_meter *);
261 static void bw_meter_process(void);
262 static void expire_bw_upcalls_send(void *);
263 static void expire_bw_meter_process(void *);
264
265 #ifdef PIM
266 static int pim_register_send(struct ip *, struct vif *,
267 struct mbuf *, struct mfc *);
268 static int pim_register_send_rp(struct ip *, struct vif *,
269 struct mbuf *, struct mfc *);
270 static int pim_register_send_upcall(struct ip *, struct vif *,
271 struct mbuf *, struct mfc *);
272 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
273 #endif
274
275 /*
276 * 'Interfaces' associated with decapsulator (so we can tell
277 * packets that went through it from ones that get reflected
278 * by a broken gateway). These interfaces are never linked into
279 * the system ifnet list & no routes point to them. I.e., packets
280 * can't be sent this way. They only exist as a placeholder for
281 * multicast source verification.
282 */
283 #if 0
284 struct ifnet multicast_decap_if[MAXVIFS];
285 #endif
286
287 #define ENCAP_TTL 64
288 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
289
290 /* prototype IP hdr for encapsulated packets */
291 struct ip multicast_encap_iphdr = {
292 #if BYTE_ORDER == LITTLE_ENDIAN
293 sizeof(struct ip) >> 2, IPVERSION,
294 #else
295 IPVERSION, sizeof(struct ip) >> 2,
296 #endif
297 0, /* tos */
298 sizeof(struct ip), /* total length */
299 0, /* id */
300 0, /* frag offset */
301 ENCAP_TTL, ENCAP_PROTO,
302 0, /* checksum */
303 };
304
305 /*
306 * Bandwidth meter variables and constants
307 */
308
309 /*
310 * Pending timeouts are stored in a hash table, the key being the
311 * expiration time. Periodically, the entries are analysed and processed.
312 */
313 #define BW_METER_BUCKETS 1024
314 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
315 struct callout bw_meter_ch;
316 #define BW_METER_PERIOD (hz) /* periodical handling of bw meters */
317
318 /*
319 * Pending upcalls are stored in a vector which is flushed when
320 * full, or periodically
321 */
322 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
323 static u_int bw_upcalls_n; /* # of pending upcalls */
324 struct callout bw_upcalls_ch;
325 #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */
326
327 #ifdef PIM
328 struct pimstat pimstat;
329
330 /*
331 * Note: the PIM Register encapsulation adds the following in front of a
332 * data packet:
333 *
334 * struct pim_encap_hdr {
335 * struct ip ip;
336 * struct pim_encap_pimhdr pim;
337 * }
338 *
339 */
340
341 struct pim_encap_pimhdr {
342 struct pim pim;
343 uint32_t flags;
344 };
345
346 static struct ip pim_encap_iphdr = {
347 #if BYTE_ORDER == LITTLE_ENDIAN
348 sizeof(struct ip) >> 2,
349 IPVERSION,
350 #else
351 IPVERSION,
352 sizeof(struct ip) >> 2,
353 #endif
354 0, /* tos */
355 sizeof(struct ip), /* total length */
356 0, /* id */
357 0, /* frag offset */
358 ENCAP_TTL,
359 IPPROTO_PIM,
360 0, /* checksum */
361 };
362
363 static struct pim_encap_pimhdr pim_encap_pimhdr = {
364 {
365 PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
366 0, /* reserved */
367 0, /* checksum */
368 },
369 0 /* flags */
370 };
371
372 static struct ifnet multicast_register_if;
373 static vifi_t reg_vif_num = VIFI_INVALID;
374 #endif /* PIM */
375
376
377 /*
378 * Private variables.
379 */
380 static vifi_t numvifs = 0;
381
382 static struct callout expire_upcalls_ch;
383
384 /*
385 * whether or not special PIM assert processing is enabled.
386 */
387 static int pim_assert;
388 /*
389 * Rate limit for assert notification messages, in usec
390 */
391 #define ASSERT_MSG_TIME 3000000
392
393 /*
394 * Kernel multicast routing API capabilities and setup.
395 * If more API capabilities are added to the kernel, they should be
396 * recorded in `mrt_api_support'.
397 */
398 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
399 MRT_MFC_FLAGS_BORDER_VIF |
400 MRT_MFC_RP |
401 MRT_MFC_BW_UPCALL);
402 static u_int32_t mrt_api_config = 0;
403
404 /*
405 * Find a route for a given origin IP address and Multicast group address
406 * Type of service parameter to be added in the future!!!
407 * Statistics are updated by the caller if needed
408 * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
409 */
410 static struct mfc *
411 mfc_find(struct in_addr *o, struct in_addr *g)
412 {
413 struct mfc *rt;
414
415 LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
416 if (in_hosteq(rt->mfc_origin, *o) &&
417 in_hosteq(rt->mfc_mcastgrp, *g) &&
418 (rt->mfc_stall == NULL))
419 break;
420 }
421
422 return (rt);
423 }
424
425 /*
426 * Macros to compute elapsed time efficiently
427 * Borrowed from Van Jacobson's scheduling code
428 */
429 #define TV_DELTA(a, b, delta) do { \
430 int xxs; \
431 delta = (a).tv_usec - (b).tv_usec; \
432 xxs = (a).tv_sec - (b).tv_sec; \
433 switch (xxs) { \
434 case 2: \
435 delta += 1000000; \
436 /* fall through */ \
437 case 1: \
438 delta += 1000000; \
439 /* fall through */ \
440 case 0: \
441 break; \
442 default: \
443 delta += (1000000 * xxs); \
444 break; \
445 } \
446 } while (/*CONSTCOND*/ 0)
447
448 #ifdef UPCALL_TIMING
449 u_int32_t upcall_data[51];
450 #endif /* UPCALL_TIMING */
451
452 /*
453 * Handle MRT setsockopt commands to modify the multicast routing tables.
454 */
455 int
456 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
457 {
458 int error;
459
460 if (optname != MRT_INIT && so != ip_mrouter)
461 error = ENOPROTOOPT;
462 else
463 switch (optname) {
464 case MRT_INIT:
465 error = ip_mrouter_init(so, *m);
466 break;
467 case MRT_DONE:
468 error = ip_mrouter_done();
469 break;
470 case MRT_ADD_VIF:
471 error = add_vif(*m);
472 break;
473 case MRT_DEL_VIF:
474 error = del_vif(*m);
475 break;
476 case MRT_ADD_MFC:
477 error = add_mfc(*m);
478 break;
479 case MRT_DEL_MFC:
480 error = del_mfc(*m);
481 break;
482 case MRT_ASSERT:
483 error = set_assert(*m);
484 break;
485 case MRT_API_CONFIG:
486 error = set_api_config(*m);
487 break;
488 case MRT_ADD_BW_UPCALL:
489 error = add_bw_upcall(*m);
490 break;
491 case MRT_DEL_BW_UPCALL:
492 error = del_bw_upcall(*m);
493 break;
494 default:
495 error = ENOPROTOOPT;
496 break;
497 }
498
499 if (*m)
500 m_free(*m);
501 return (error);
502 }
503
504 /*
505 * Handle MRT getsockopt commands
506 */
507 int
508 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
509 {
510 int error;
511
512 if (so != ip_mrouter)
513 error = ENOPROTOOPT;
514 else {
515 *m = m_get(M_WAIT, MT_SOOPTS);
516 MCLAIM(*m, so->so_mowner);
517
518 switch (optname) {
519 case MRT_VERSION:
520 error = get_version(*m);
521 break;
522 case MRT_ASSERT:
523 error = get_assert(*m);
524 break;
525 case MRT_API_SUPPORT:
526 error = get_api_support(*m);
527 break;
528 case MRT_API_CONFIG:
529 error = get_api_config(*m);
530 break;
531 default:
532 error = ENOPROTOOPT;
533 break;
534 }
535
536 if (error)
537 m_free(*m);
538 }
539
540 return (error);
541 }
542
543 /*
544 * Handle ioctl commands to obtain information from the cache
545 */
546 int
547 mrt_ioctl(struct socket *so, u_long cmd, caddr_t data)
548 {
549 int error;
550
551 if (so != ip_mrouter)
552 error = EINVAL;
553 else
554 switch (cmd) {
555 case SIOCGETVIFCNT:
556 error = get_vif_cnt((struct sioc_vif_req *)data);
557 break;
558 case SIOCGETSGCNT:
559 error = get_sg_cnt((struct sioc_sg_req *)data);
560 break;
561 default:
562 error = EINVAL;
563 break;
564 }
565
566 return (error);
567 }
568
569 /*
570 * returns the packet, byte, rpf-failure count for the source group provided
571 */
572 static int
573 get_sg_cnt(struct sioc_sg_req *req)
574 {
575 int s;
576 struct mfc *rt;
577
578 s = splsoftnet();
579 rt = mfc_find(&req->src, &req->grp);
580 if (rt == NULL) {
581 splx(s);
582 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
583 return (EADDRNOTAVAIL);
584 }
585 req->pktcnt = rt->mfc_pkt_cnt;
586 req->bytecnt = rt->mfc_byte_cnt;
587 req->wrong_if = rt->mfc_wrong_if;
588 splx(s);
589
590 return (0);
591 }
592
593 /*
594 * returns the input and output packet and byte counts on the vif provided
595 */
596 static int
597 get_vif_cnt(struct sioc_vif_req *req)
598 {
599 vifi_t vifi = req->vifi;
600
601 if (vifi >= numvifs)
602 return (EINVAL);
603
604 req->icount = viftable[vifi].v_pkt_in;
605 req->ocount = viftable[vifi].v_pkt_out;
606 req->ibytes = viftable[vifi].v_bytes_in;
607 req->obytes = viftable[vifi].v_bytes_out;
608
609 return (0);
610 }
611
612 /*
613 * Enable multicast routing
614 */
615 static int
616 ip_mrouter_init(struct socket *so, struct mbuf *m)
617 {
618 int *v;
619
620 if (mrtdebug)
621 log(LOG_DEBUG,
622 "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
623 so->so_type, so->so_proto->pr_protocol);
624
625 if (so->so_type != SOCK_RAW ||
626 so->so_proto->pr_protocol != IPPROTO_IGMP)
627 return (EOPNOTSUPP);
628
629 if (m == NULL || m->m_len < sizeof(int))
630 return (EINVAL);
631
632 v = mtod(m, int *);
633 if (*v != 1)
634 return (EINVAL);
635
636 if (ip_mrouter != NULL)
637 return (EADDRINUSE);
638
639 ip_mrouter = so;
640
641 mfchashtbl =
642 hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash);
643 bzero((caddr_t)nexpire, sizeof(nexpire));
644
645 pim_assert = 0;
646
647 callout_init(&expire_upcalls_ch);
648 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
649 expire_upcalls, NULL);
650
651 callout_init(&bw_upcalls_ch);
652 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
653 expire_bw_upcalls_send, NULL);
654
655 callout_init(&bw_meter_ch);
656 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
657 expire_bw_meter_process, NULL);
658
659 if (mrtdebug)
660 log(LOG_DEBUG, "ip_mrouter_init\n");
661
662 return (0);
663 }
664
665 /*
666 * Disable multicast routing
667 */
668 int
669 ip_mrouter_done(void)
670 {
671 vifi_t vifi;
672 struct vif *vifp;
673 int i;
674 int s;
675
676 s = splsoftnet();
677
678 /* Clear out all the vifs currently in use. */
679 for (vifi = 0; vifi < numvifs; vifi++) {
680 vifp = &viftable[vifi];
681 if (!in_nullhost(vifp->v_lcl_addr))
682 reset_vif(vifp);
683 }
684
685 numvifs = 0;
686 pim_assert = 0;
687 mrt_api_config = 0;
688
689 callout_stop(&expire_upcalls_ch);
690 callout_stop(&bw_upcalls_ch);
691 callout_stop(&bw_meter_ch);
692
693 /*
694 * Free all multicast forwarding cache entries.
695 */
696 for (i = 0; i < MFCTBLSIZ; i++) {
697 struct mfc *rt, *nrt;
698
699 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
700 nrt = LIST_NEXT(rt, mfc_hash);
701
702 expire_mfc(rt);
703 }
704 }
705
706 bzero((caddr_t)nexpire, sizeof(nexpire));
707 free(mfchashtbl, M_MRTABLE);
708 mfchashtbl = NULL;
709
710 bw_upcalls_n = 0;
711 bzero(bw_meter_timers, sizeof(bw_meter_timers));
712
713 /* Reset de-encapsulation cache. */
714
715 ip_mrouter = NULL;
716
717 splx(s);
718
719 if (mrtdebug)
720 log(LOG_DEBUG, "ip_mrouter_done\n");
721
722 return (0);
723 }
724
725 void
726 ip_mrouter_detach(struct ifnet *ifp)
727 {
728 int vifi, i;
729 struct vif *vifp;
730 struct mfc *rt;
731 struct rtdetq *rte;
732
733 /* XXX not sure about side effect to userland routing daemon */
734 for (vifi = 0; vifi < numvifs; vifi++) {
735 vifp = &viftable[vifi];
736 if (vifp->v_ifp == ifp)
737 reset_vif(vifp);
738 }
739 for (i = 0; i < MFCTBLSIZ; i++) {
740 if (nexpire[i] == 0)
741 continue;
742 LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
743 for (rte = rt->mfc_stall; rte; rte = rte->next) {
744 if (rte->ifp == ifp)
745 rte->ifp = NULL;
746 }
747 }
748 }
749 }
750
751 static int
752 get_version(struct mbuf *m)
753 {
754 int *v = mtod(m, int *);
755
756 *v = 0x0305; /* XXX !!!! */
757 m->m_len = sizeof(int);
758 return (0);
759 }
760
761 /*
762 * Set PIM assert processing global
763 */
764 static int
765 set_assert(struct mbuf *m)
766 {
767 int *i;
768
769 if (m == NULL || m->m_len < sizeof(int))
770 return (EINVAL);
771
772 i = mtod(m, int *);
773 pim_assert = !!*i;
774 return (0);
775 }
776
777 /*
778 * Get PIM assert processing global
779 */
780 static int
781 get_assert(struct mbuf *m)
782 {
783 int *i = mtod(m, int *);
784
785 *i = pim_assert;
786 m->m_len = sizeof(int);
787 return (0);
788 }
789
790 /*
791 * Configure API capabilities
792 */
793 static int
794 set_api_config(struct mbuf *m)
795 {
796 int i;
797 u_int32_t *apival;
798
799 if (m == NULL || m->m_len < sizeof(u_int32_t))
800 return (EINVAL);
801
802 apival = mtod(m, u_int32_t *);
803
804 /*
805 * We can set the API capabilities only if it is the first operation
806 * after MRT_INIT. I.e.:
807 * - there are no vifs installed
808 * - pim_assert is not enabled
809 * - the MFC table is empty
810 */
811 if (numvifs > 0) {
812 *apival = 0;
813 return (EPERM);
814 }
815 if (pim_assert) {
816 *apival = 0;
817 return (EPERM);
818 }
819 for (i = 0; i < MFCTBLSIZ; i++) {
820 if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
821 *apival = 0;
822 return (EPERM);
823 }
824 }
825
826 mrt_api_config = *apival & mrt_api_support;
827 *apival = mrt_api_config;
828
829 return (0);
830 }
831
832 /*
833 * Get API capabilities
834 */
835 static int
836 get_api_support(struct mbuf *m)
837 {
838 u_int32_t *apival;
839
840 if (m == NULL || m->m_len < sizeof(u_int32_t))
841 return (EINVAL);
842
843 apival = mtod(m, u_int32_t *);
844
845 *apival = mrt_api_support;
846
847 return (0);
848 }
849
850 /*
851 * Get API configured capabilities
852 */
853 static int
854 get_api_config(struct mbuf *m)
855 {
856 u_int32_t *apival;
857
858 if (m == NULL || m->m_len < sizeof(u_int32_t))
859 return (EINVAL);
860
861 apival = mtod(m, u_int32_t *);
862
863 *apival = mrt_api_config;
864
865 return (0);
866 }
867
868 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
869
870 /*
871 * Add a vif to the vif table
872 */
873 static int
874 add_vif(struct mbuf *m)
875 {
876 struct vifctl *vifcp;
877 struct vif *vifp;
878 struct ifaddr *ifa;
879 struct ifnet *ifp;
880 struct ifreq ifr;
881 int error, s;
882
883 if (m == NULL || m->m_len < sizeof(struct vifctl))
884 return (EINVAL);
885
886 vifcp = mtod(m, struct vifctl *);
887 if (vifcp->vifc_vifi >= MAXVIFS)
888 return (EINVAL);
889 if (in_nullhost(vifcp->vifc_lcl_addr))
890 return (EADDRNOTAVAIL);
891
892 vifp = &viftable[vifcp->vifc_vifi];
893 if (!in_nullhost(vifp->v_lcl_addr))
894 return (EADDRINUSE);
895
896 /* Find the interface with an address in AF_INET family. */
897 #ifdef PIM
898 if (vifcp->vifc_flags & VIFF_REGISTER) {
899 /*
900 * XXX: Because VIFF_REGISTER does not really need a valid
901 * local interface (e.g. it could be 127.0.0.2), we don't
902 * check its address.
903 */
904 ifp = NULL;
905 } else
906 #endif
907 {
908 sin.sin_addr = vifcp->vifc_lcl_addr;
909 ifa = ifa_ifwithaddr(sintosa(&sin));
910 if (ifa == NULL)
911 return (EADDRNOTAVAIL);
912 ifp = ifa->ifa_ifp;
913 }
914
915 if (vifcp->vifc_flags & VIFF_TUNNEL) {
916 if (vifcp->vifc_flags & VIFF_SRCRT) {
917 log(LOG_ERR, "source routed tunnels not supported\n");
918 return (EOPNOTSUPP);
919 }
920
921 /* attach this vif to decapsulator dispatch table */
922 /*
923 * XXX Use addresses in registration so that matching
924 * can be done with radix tree in decapsulator. But,
925 * we need to check inner header for multicast, so
926 * this requires both radix tree lookup and then a
927 * function to check, and this is not supported yet.
928 */
929 vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
930 vif_encapcheck, &vif_protosw, vifp);
931 if (!vifp->v_encap_cookie)
932 return (EINVAL);
933
934 /* Create a fake encapsulation interface. */
935 ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK);
936 bzero(ifp, sizeof(*ifp));
937 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
938 "mdecap%d", vifcp->vifc_vifi);
939
940 /* Prepare cached route entry. */
941 bzero(&vifp->v_route, sizeof(vifp->v_route));
942 #ifdef PIM
943 } else if (vifcp->vifc_flags & VIFF_REGISTER) {
944 ifp = &multicast_register_if;
945 if (mrtdebug)
946 log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
947 (void *)ifp);
948 if (reg_vif_num == VIFI_INVALID) {
949 bzero(ifp, sizeof(*ifp));
950 snprintf(ifp->if_xname, sizeof(ifp->if_xname),
951 "register_vif");
952 ifp->if_flags = IFF_LOOPBACK;
953 bzero(&vifp->v_route, sizeof(vifp->v_route));
954 reg_vif_num = vifcp->vifc_vifi;
955 }
956 #endif
957 } else {
958 /* Make sure the interface supports multicast. */
959 if ((ifp->if_flags & IFF_MULTICAST) == 0)
960 return (EOPNOTSUPP);
961
962 /* Enable promiscuous reception of all IP multicasts. */
963 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
964 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
965 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
966 error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
967 if (error)
968 return (error);
969 }
970
971 s = splsoftnet();
972
973 /* Define parameters for the tbf structure. */
974 vifp->tbf_q = NULL;
975 vifp->tbf_t = &vifp->tbf_q;
976 microtime(&vifp->tbf_last_pkt_t);
977 vifp->tbf_n_tok = 0;
978 vifp->tbf_q_len = 0;
979 vifp->tbf_max_q_len = MAXQSIZE;
980
981 vifp->v_flags = vifcp->vifc_flags;
982 vifp->v_threshold = vifcp->vifc_threshold;
983 /* scaling up here allows division by 1024 in critical code */
984 vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000;
985 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
986 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
987 vifp->v_ifp = ifp;
988 /* Initialize per vif pkt counters. */
989 vifp->v_pkt_in = 0;
990 vifp->v_pkt_out = 0;
991 vifp->v_bytes_in = 0;
992 vifp->v_bytes_out = 0;
993
994 callout_init(&vifp->v_repq_ch);
995
996 #ifdef RSVP_ISI
997 vifp->v_rsvp_on = 0;
998 vifp->v_rsvpd = NULL;
999 #endif /* RSVP_ISI */
1000
1001 splx(s);
1002
1003 /* Adjust numvifs up if the vifi is higher than numvifs. */
1004 if (numvifs <= vifcp->vifc_vifi)
1005 numvifs = vifcp->vifc_vifi + 1;
1006
1007 if (mrtdebug)
1008 log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
1009 vifcp->vifc_vifi,
1010 ntohl(vifcp->vifc_lcl_addr.s_addr),
1011 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
1012 ntohl(vifcp->vifc_rmt_addr.s_addr),
1013 vifcp->vifc_threshold,
1014 vifcp->vifc_rate_limit);
1015
1016 return (0);
1017 }
1018
1019 void
1020 reset_vif(struct vif *vifp)
1021 {
1022 struct mbuf *m, *n;
1023 struct ifnet *ifp;
1024 struct ifreq ifr;
1025
1026 callout_stop(&vifp->v_repq_ch);
1027
1028 /* detach this vif from decapsulator dispatch table */
1029 encap_detach(vifp->v_encap_cookie);
1030 vifp->v_encap_cookie = NULL;
1031
1032 /*
1033 * Free packets queued at the interface
1034 */
1035 for (m = vifp->tbf_q; m != NULL; m = n) {
1036 n = m->m_nextpkt;
1037 m_freem(m);
1038 }
1039
1040 if (vifp->v_flags & VIFF_TUNNEL)
1041 free(vifp->v_ifp, M_MRTABLE);
1042 else if (vifp->v_flags & VIFF_REGISTER) {
1043 #ifdef PIM
1044 reg_vif_num = VIFI_INVALID;
1045 #endif
1046 } else {
1047 satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
1048 satosin(&ifr.ifr_addr)->sin_family = AF_INET;
1049 satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
1050 ifp = vifp->v_ifp;
1051 (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
1052 }
1053 bzero((caddr_t)vifp, sizeof(*vifp));
1054 }
1055
1056 /*
1057 * Delete a vif from the vif table
1058 */
1059 static int
1060 del_vif(struct mbuf *m)
1061 {
1062 vifi_t *vifip;
1063 struct vif *vifp;
1064 vifi_t vifi;
1065 int s;
1066
1067 if (m == NULL || m->m_len < sizeof(vifi_t))
1068 return (EINVAL);
1069
1070 vifip = mtod(m, vifi_t *);
1071 if (*vifip >= numvifs)
1072 return (EINVAL);
1073
1074 vifp = &viftable[*vifip];
1075 if (in_nullhost(vifp->v_lcl_addr))
1076 return (EADDRNOTAVAIL);
1077
1078 s = splsoftnet();
1079
1080 reset_vif(vifp);
1081
1082 /* Adjust numvifs down */
1083 for (vifi = numvifs; vifi > 0; vifi--)
1084 if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
1085 break;
1086 numvifs = vifi;
1087
1088 splx(s);
1089
1090 if (mrtdebug)
1091 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
1092
1093 return (0);
1094 }
1095
1096 /*
1097 * update an mfc entry without resetting counters and S,G addresses.
1098 */
1099 static void
1100 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1101 {
1102 int i;
1103
1104 rt->mfc_parent = mfccp->mfcc_parent;
1105 for (i = 0; i < numvifs; i++) {
1106 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1107 rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1108 MRT_MFC_FLAGS_ALL;
1109 }
1110 /* set the RP address */
1111 if (mrt_api_config & MRT_MFC_RP)
1112 rt->mfc_rp = mfccp->mfcc_rp;
1113 else
1114 rt->mfc_rp = zeroin_addr;
1115 }
1116
1117 /*
1118 * fully initialize an mfc entry from the parameter.
1119 */
1120 static void
1121 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1122 {
1123 rt->mfc_origin = mfccp->mfcc_origin;
1124 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
1125
1126 update_mfc_params(rt, mfccp);
1127
1128 /* initialize pkt counters per src-grp */
1129 rt->mfc_pkt_cnt = 0;
1130 rt->mfc_byte_cnt = 0;
1131 rt->mfc_wrong_if = 0;
1132 timerclear(&rt->mfc_last_assert);
1133 }
1134
1135 static void
1136 expire_mfc(struct mfc *rt)
1137 {
1138 struct rtdetq *rte, *nrte;
1139
1140 free_bw_list(rt->mfc_bw_meter);
1141
1142 for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1143 nrte = rte->next;
1144 m_freem(rte->m);
1145 free(rte, M_MRTABLE);
1146 }
1147
1148 LIST_REMOVE(rt, mfc_hash);
1149 free(rt, M_MRTABLE);
1150 }
1151
1152 /*
1153 * Add an mfc entry
1154 */
1155 static int
1156 add_mfc(struct mbuf *m)
1157 {
1158 struct mfcctl2 mfcctl2;
1159 struct mfcctl2 *mfccp;
1160 struct mfc *rt;
1161 u_int32_t hash = 0;
1162 struct rtdetq *rte, *nrte;
1163 u_short nstl;
1164 int s;
1165 int mfcctl_size = sizeof(struct mfcctl);
1166
1167 if (mrt_api_config & MRT_API_FLAGS_ALL)
1168 mfcctl_size = sizeof(struct mfcctl2);
1169
1170 if (m == NULL || m->m_len < mfcctl_size)
1171 return (EINVAL);
1172
1173 /*
1174 * select data size depending on API version.
1175 */
1176 if (mrt_api_config & MRT_API_FLAGS_ALL) {
1177 struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
1178 bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2));
1179 } else {
1180 struct mfcctl *mp = mtod(m, struct mfcctl *);
1181 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1182 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1183 sizeof(mfcctl2) - sizeof(struct mfcctl));
1184 }
1185 mfccp = &mfcctl2;
1186
1187 s = splsoftnet();
1188 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1189
1190 /* If an entry already exists, just update the fields */
1191 if (rt) {
1192 if (mrtdebug & DEBUG_MFC)
1193 log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1194 ntohl(mfccp->mfcc_origin.s_addr),
1195 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1196 mfccp->mfcc_parent);
1197
1198 update_mfc_params(rt, mfccp);
1199
1200 splx(s);
1201 return (0);
1202 }
1203
1204 /*
1205 * Find the entry for which the upcall was made and update
1206 */
1207 nstl = 0;
1208 hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1209 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1210 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1211 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1212 rt->mfc_stall != NULL) {
1213 if (nstl++)
1214 log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n",
1215 "multiple kernel entries",
1216 ntohl(mfccp->mfcc_origin.s_addr),
1217 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1218 mfccp->mfcc_parent, rt->mfc_stall);
1219
1220 if (mrtdebug & DEBUG_MFC)
1221 log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n",
1222 ntohl(mfccp->mfcc_origin.s_addr),
1223 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1224 mfccp->mfcc_parent, rt->mfc_stall);
1225
1226 rte = rt->mfc_stall;
1227 init_mfc_params(rt, mfccp);
1228 rt->mfc_stall = NULL;
1229
1230 rt->mfc_expire = 0; /* Don't clean this guy up */
1231 nexpire[hash]--;
1232
1233 /* free packets Qed at the end of this entry */
1234 for (; rte != NULL; rte = nrte) {
1235 nrte = rte->next;
1236 if (rte->ifp) {
1237 #ifdef RSVP_ISI
1238 ip_mdq(rte->m, rte->ifp, rt, -1);
1239 #else
1240 ip_mdq(rte->m, rte->ifp, rt);
1241 #endif /* RSVP_ISI */
1242 }
1243 m_freem(rte->m);
1244 #ifdef UPCALL_TIMING
1245 collate(&rte->t);
1246 #endif /* UPCALL_TIMING */
1247 free(rte, M_MRTABLE);
1248 }
1249 }
1250 }
1251
1252 /*
1253 * It is possible that an entry is being inserted without an upcall
1254 */
1255 if (nstl == 0) {
1256 /*
1257 * No mfc; make a new one
1258 */
1259 if (mrtdebug & DEBUG_MFC)
1260 log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1261 ntohl(mfccp->mfcc_origin.s_addr),
1262 ntohl(mfccp->mfcc_mcastgrp.s_addr),
1263 mfccp->mfcc_parent);
1264
1265 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1266 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1267 in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1268 init_mfc_params(rt, mfccp);
1269 if (rt->mfc_expire)
1270 nexpire[hash]--;
1271 rt->mfc_expire = 0;
1272 break; /* XXX */
1273 }
1274 }
1275 if (rt == NULL) { /* no upcall, so make a new entry */
1276 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1277 M_NOWAIT);
1278 if (rt == NULL) {
1279 splx(s);
1280 return (ENOBUFS);
1281 }
1282
1283 init_mfc_params(rt, mfccp);
1284 rt->mfc_expire = 0;
1285 rt->mfc_stall = NULL;
1286 rt->mfc_bw_meter = NULL;
1287
1288 /* insert new entry at head of hash chain */
1289 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1290 }
1291 }
1292
1293 splx(s);
1294 return (0);
1295 }
1296
1297 #ifdef UPCALL_TIMING
1298 /*
1299 * collect delay statistics on the upcalls
1300 */
1301 static void
1302 collate(struct timeval *t)
1303 {
1304 u_int32_t d;
1305 struct timeval tp;
1306 u_int32_t delta;
1307
1308 microtime(&tp);
1309
1310 if (timercmp(t, &tp, <)) {
1311 TV_DELTA(tp, *t, delta);
1312
1313 d = delta >> 10;
1314 if (d > 50)
1315 d = 50;
1316
1317 ++upcall_data[d];
1318 }
1319 }
1320 #endif /* UPCALL_TIMING */
1321
1322 /*
1323 * Delete an mfc entry
1324 */
1325 static int
1326 del_mfc(struct mbuf *m)
1327 {
1328 struct mfcctl2 mfcctl2;
1329 struct mfcctl2 *mfccp;
1330 struct mfc *rt;
1331 int s;
1332 int mfcctl_size = sizeof(struct mfcctl);
1333 struct mfcctl *mp = mtod(m, struct mfcctl *);
1334
1335 /*
1336 * XXX: for deleting MFC entries the information in entries
1337 * of size "struct mfcctl" is sufficient.
1338 */
1339
1340 if (m == NULL || m->m_len < mfcctl_size)
1341 return (EINVAL);
1342
1343 bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1344 bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1345 sizeof(mfcctl2) - sizeof(struct mfcctl));
1346
1347 mfccp = &mfcctl2;
1348
1349 if (mrtdebug & DEBUG_MFC)
1350 log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1351 ntohl(mfccp->mfcc_origin.s_addr),
1352 ntohl(mfccp->mfcc_mcastgrp.s_addr));
1353
1354 s = splsoftnet();
1355
1356 rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1357 if (rt == NULL) {
1358 splx(s);
1359 return (EADDRNOTAVAIL);
1360 }
1361
1362 /*
1363 * free the bw_meter entries
1364 */
1365 free_bw_list(rt->mfc_bw_meter);
1366 rt->mfc_bw_meter = NULL;
1367
1368 LIST_REMOVE(rt, mfc_hash);
1369 free(rt, M_MRTABLE);
1370
1371 splx(s);
1372 return (0);
1373 }
1374
1375 static int
1376 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1377 {
1378 if (s) {
1379 if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1380 (struct mbuf *)NULL) != 0) {
1381 sorwakeup(s);
1382 return (0);
1383 }
1384 }
1385 m_freem(mm);
1386 return (-1);
1387 }
1388
1389 /*
1390 * IP multicast forwarding function. This function assumes that the packet
1391 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1392 * pointed to by "ifp", and the packet is to be relayed to other networks
1393 * that have members of the packet's destination IP multicast group.
1394 *
1395 * The packet is returned unscathed to the caller, unless it is
1396 * erroneous, in which case a non-zero return value tells the caller to
1397 * discard it.
1398 */
1399
1400 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1401 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1402
1403 int
1404 #ifdef RSVP_ISI
1405 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1406 #else
1407 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1408 #endif /* RSVP_ISI */
1409 {
1410 struct ip *ip = mtod(m, struct ip *);
1411 struct mfc *rt;
1412 static int srctun = 0;
1413 struct mbuf *mm;
1414 int s;
1415 vifi_t vifi;
1416
1417 if (mrtdebug & DEBUG_FORWARD)
1418 log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1419 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1420
1421 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1422 ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1423 /*
1424 * Packet arrived via a physical interface or
1425 * an encapsulated tunnel or a register_vif.
1426 */
1427 } else {
1428 /*
1429 * Packet arrived through a source-route tunnel.
1430 * Source-route tunnels are no longer supported.
1431 */
1432 if ((srctun++ % 1000) == 0)
1433 log(LOG_ERR,
1434 "ip_mforward: received source-routed packet from %x\n",
1435 ntohl(ip->ip_src.s_addr));
1436
1437 return (1);
1438 }
1439
1440 #ifdef RSVP_ISI
1441 if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1442 if (ip->ip_ttl < 255)
1443 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1444 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1445 struct vif *vifp = viftable + vifi;
1446 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n",
1447 ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1448 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1449 vifp->v_ifp->if_xname);
1450 }
1451 return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1452 }
1453 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1454 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1455 ntohl(ip->ip_src), ntohl(ip->ip_dst));
1456 }
1457 #endif /* RSVP_ISI */
1458
1459 /*
1460 * Don't forward a packet with time-to-live of zero or one,
1461 * or a packet destined to a local-only group.
1462 */
1463 if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1464 return (0);
1465
1466 /*
1467 * Determine forwarding vifs from the forwarding cache table
1468 */
1469 s = splsoftnet();
1470 ++mrtstat.mrts_mfc_lookups;
1471 rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1472
1473 /* Entry exists, so forward if necessary */
1474 if (rt != NULL) {
1475 splx(s);
1476 #ifdef RSVP_ISI
1477 return (ip_mdq(m, ifp, rt, -1));
1478 #else
1479 return (ip_mdq(m, ifp, rt));
1480 #endif /* RSVP_ISI */
1481 } else {
1482 /*
1483 * If we don't have a route for packet's origin,
1484 * Make a copy of the packet & send message to routing daemon
1485 */
1486
1487 struct mbuf *mb0;
1488 struct rtdetq *rte;
1489 u_int32_t hash;
1490 int hlen = ip->ip_hl << 2;
1491 #ifdef UPCALL_TIMING
1492 struct timeval tp;
1493
1494 microtime(&tp);
1495 #endif /* UPCALL_TIMING */
1496
1497 ++mrtstat.mrts_mfc_misses;
1498
1499 mrtstat.mrts_no_route++;
1500 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1501 log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1502 ntohl(ip->ip_src.s_addr),
1503 ntohl(ip->ip_dst.s_addr));
1504
1505 /*
1506 * Allocate mbufs early so that we don't do extra work if we are
1507 * just going to fail anyway. Make sure to pullup the header so
1508 * that other people can't step on it.
1509 */
1510 rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE,
1511 M_NOWAIT);
1512 if (rte == NULL) {
1513 splx(s);
1514 return (ENOBUFS);
1515 }
1516 mb0 = m_copy(m, 0, M_COPYALL);
1517 M_PULLUP(mb0, hlen);
1518 if (mb0 == NULL) {
1519 free(rte, M_MRTABLE);
1520 splx(s);
1521 return (ENOBUFS);
1522 }
1523
1524 /* is there an upcall waiting for this flow? */
1525 hash = MFCHASH(ip->ip_src, ip->ip_dst);
1526 LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1527 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1528 in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1529 rt->mfc_stall != NULL)
1530 break;
1531 }
1532
1533 if (rt == NULL) {
1534 int i;
1535 struct igmpmsg *im;
1536
1537 /*
1538 * Locate the vifi for the incoming interface for
1539 * this packet.
1540 * If none found, drop packet.
1541 */
1542 for (vifi = 0; vifi < numvifs &&
1543 viftable[vifi].v_ifp != ifp; vifi++)
1544 ;
1545 if (vifi >= numvifs) /* vif not found, drop packet */
1546 goto non_fatal;
1547
1548 /* no upcall, so make a new entry */
1549 rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1550 M_NOWAIT);
1551 if (rt == NULL)
1552 goto fail;
1553
1554 /*
1555 * Make a copy of the header to send to the user level
1556 * process
1557 */
1558 mm = m_copy(m, 0, hlen);
1559 M_PULLUP(mm, hlen);
1560 if (mm == NULL)
1561 goto fail1;
1562
1563 /*
1564 * Send message to routing daemon to install
1565 * a route into the kernel table
1566 */
1567
1568 im = mtod(mm, struct igmpmsg *);
1569 im->im_msgtype = IGMPMSG_NOCACHE;
1570 im->im_mbz = 0;
1571 im->im_vif = vifi;
1572
1573 mrtstat.mrts_upcalls++;
1574
1575 sin.sin_addr = ip->ip_src;
1576 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1577 log(LOG_WARNING,
1578 "ip_mforward: ip_mrouter socket queue full\n");
1579 ++mrtstat.mrts_upq_sockfull;
1580 fail1:
1581 free(rt, M_MRTABLE);
1582 fail:
1583 free(rte, M_MRTABLE);
1584 m_freem(mb0);
1585 splx(s);
1586 return (ENOBUFS);
1587 }
1588
1589 /* insert new entry at head of hash chain */
1590 rt->mfc_origin = ip->ip_src;
1591 rt->mfc_mcastgrp = ip->ip_dst;
1592 rt->mfc_pkt_cnt = 0;
1593 rt->mfc_byte_cnt = 0;
1594 rt->mfc_wrong_if = 0;
1595 rt->mfc_expire = UPCALL_EXPIRE;
1596 nexpire[hash]++;
1597 for (i = 0; i < numvifs; i++) {
1598 rt->mfc_ttls[i] = 0;
1599 rt->mfc_flags[i] = 0;
1600 }
1601 rt->mfc_parent = -1;
1602
1603 /* clear the RP address */
1604 rt->mfc_rp = zeroin_addr;
1605
1606 rt->mfc_bw_meter = NULL;
1607
1608 /* link into table */
1609 LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1610 /* Add this entry to the end of the queue */
1611 rt->mfc_stall = rte;
1612 } else {
1613 /* determine if q has overflowed */
1614 struct rtdetq **p;
1615 int npkts = 0;
1616
1617 /*
1618 * XXX ouch! we need to append to the list, but we
1619 * only have a pointer to the front, so we have to
1620 * scan the entire list every time.
1621 */
1622 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1623 if (++npkts > MAX_UPQ) {
1624 mrtstat.mrts_upq_ovflw++;
1625 non_fatal:
1626 free(rte, M_MRTABLE);
1627 m_freem(mb0);
1628 splx(s);
1629 return (0);
1630 }
1631
1632 /* Add this entry to the end of the queue */
1633 *p = rte;
1634 }
1635
1636 rte->next = NULL;
1637 rte->m = mb0;
1638 rte->ifp = ifp;
1639 #ifdef UPCALL_TIMING
1640 rte->t = tp;
1641 #endif /* UPCALL_TIMING */
1642
1643 splx(s);
1644
1645 return (0);
1646 }
1647 }
1648
1649
1650 /*ARGSUSED*/
1651 static void
1652 expire_upcalls(void *v)
1653 {
1654 int i;
1655 int s;
1656
1657 s = splsoftnet();
1658
1659 for (i = 0; i < MFCTBLSIZ; i++) {
1660 struct mfc *rt, *nrt;
1661
1662 if (nexpire[i] == 0)
1663 continue;
1664
1665 for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1666 nrt = LIST_NEXT(rt, mfc_hash);
1667
1668 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1669 continue;
1670 nexpire[i]--;
1671
1672 /*
1673 * free the bw_meter entries
1674 */
1675 while (rt->mfc_bw_meter != NULL) {
1676 struct bw_meter *x = rt->mfc_bw_meter;
1677
1678 rt->mfc_bw_meter = x->bm_mfc_next;
1679 free(x, M_BWMETER);
1680 }
1681
1682 ++mrtstat.mrts_cache_cleanups;
1683 if (mrtdebug & DEBUG_EXPIRE)
1684 log(LOG_DEBUG,
1685 "expire_upcalls: expiring (%x %x)\n",
1686 ntohl(rt->mfc_origin.s_addr),
1687 ntohl(rt->mfc_mcastgrp.s_addr));
1688
1689 expire_mfc(rt);
1690 }
1691 }
1692
1693 splx(s);
1694 callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT,
1695 expire_upcalls, NULL);
1696 }
1697
1698 /*
1699 * Packet forwarding routine once entry in the cache is made
1700 */
1701 static int
1702 #ifdef RSVP_ISI
1703 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1704 #else
1705 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1706 #endif /* RSVP_ISI */
1707 {
1708 struct ip *ip = mtod(m, struct ip *);
1709 vifi_t vifi;
1710 struct vif *vifp;
1711 int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1712
1713 /*
1714 * Macro to send packet on vif. Since RSVP packets don't get counted on
1715 * input, they shouldn't get counted on output, so statistics keeping is
1716 * separate.
1717 */
1718 #define MC_SEND(ip, vifp, m) do { \
1719 if ((vifp)->v_flags & VIFF_TUNNEL) \
1720 encap_send((ip), (vifp), (m)); \
1721 else \
1722 phyint_send((ip), (vifp), (m)); \
1723 } while (/*CONSTCOND*/ 0)
1724
1725 #ifdef RSVP_ISI
1726 /*
1727 * If xmt_vif is not -1, send on only the requested vif.
1728 *
1729 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1730 */
1731 if (xmt_vif < numvifs) {
1732 #ifdef PIM
1733 if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1734 pim_register_send(ip, viftable + xmt_vif, m, rt);
1735 else
1736 #endif
1737 MC_SEND(ip, viftable + xmt_vif, m);
1738 return (1);
1739 }
1740 #endif /* RSVP_ISI */
1741
1742 /*
1743 * Don't forward if it didn't arrive from the parent vif for its origin.
1744 */
1745 vifi = rt->mfc_parent;
1746 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1747 /* came in the wrong interface */
1748 if (mrtdebug & DEBUG_FORWARD)
1749 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1750 ifp, vifi,
1751 vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1752 ++mrtstat.mrts_wrong_if;
1753 ++rt->mfc_wrong_if;
1754 /*
1755 * If we are doing PIM assert processing, send a message
1756 * to the routing daemon.
1757 *
1758 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1759 * can complete the SPT switch, regardless of the type
1760 * of the iif (broadcast media, GRE tunnel, etc).
1761 */
1762 if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1763 struct timeval now;
1764 u_int32_t delta;
1765
1766 #ifdef PIM
1767 if (ifp == &multicast_register_if)
1768 pimstat.pims_rcv_registers_wrongiif++;
1769 #endif
1770
1771 /* Get vifi for the incoming packet */
1772 for (vifi = 0;
1773 vifi < numvifs && viftable[vifi].v_ifp != ifp;
1774 vifi++)
1775 ;
1776 if (vifi >= numvifs) {
1777 /* The iif is not found: ignore the packet. */
1778 return (0);
1779 }
1780
1781 if (rt->mfc_flags[vifi] &
1782 MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1783 /* WRONGVIF disabled: ignore the packet */
1784 return (0);
1785 }
1786
1787 microtime(&now);
1788
1789 TV_DELTA(rt->mfc_last_assert, now, delta);
1790
1791 if (delta > ASSERT_MSG_TIME) {
1792 struct igmpmsg *im;
1793 int hlen = ip->ip_hl << 2;
1794 struct mbuf *mm = m_copy(m, 0, hlen);
1795
1796 M_PULLUP(mm, hlen);
1797 if (mm == NULL)
1798 return (ENOBUFS);
1799
1800 rt->mfc_last_assert = now;
1801
1802 im = mtod(mm, struct igmpmsg *);
1803 im->im_msgtype = IGMPMSG_WRONGVIF;
1804 im->im_mbz = 0;
1805 im->im_vif = vifi;
1806
1807 mrtstat.mrts_upcalls++;
1808
1809 sin.sin_addr = im->im_src;
1810 if (socket_send(ip_mrouter, mm, &sin) < 0) {
1811 log(LOG_WARNING,
1812 "ip_mforward: ip_mrouter socket queue full\n");
1813 ++mrtstat.mrts_upq_sockfull;
1814 return (ENOBUFS);
1815 }
1816 }
1817 }
1818 return (0);
1819 }
1820
1821 /* If I sourced this packet, it counts as output, else it was input. */
1822 if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1823 viftable[vifi].v_pkt_out++;
1824 viftable[vifi].v_bytes_out += plen;
1825 } else {
1826 viftable[vifi].v_pkt_in++;
1827 viftable[vifi].v_bytes_in += plen;
1828 }
1829 rt->mfc_pkt_cnt++;
1830 rt->mfc_byte_cnt += plen;
1831
1832 /*
1833 * For each vif, decide if a copy of the packet should be forwarded.
1834 * Forward if:
1835 * - the ttl exceeds the vif's threshold
1836 * - there are group members downstream on interface
1837 */
1838 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1839 if ((rt->mfc_ttls[vifi] > 0) &&
1840 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1841 vifp->v_pkt_out++;
1842 vifp->v_bytes_out += plen;
1843 #ifdef PIM
1844 if (vifp->v_flags & VIFF_REGISTER)
1845 pim_register_send(ip, vifp, m, rt);
1846 else
1847 #endif
1848 MC_SEND(ip, vifp, m);
1849 }
1850
1851 /*
1852 * Perform upcall-related bw measuring.
1853 */
1854 if (rt->mfc_bw_meter != NULL) {
1855 struct bw_meter *x;
1856 struct timeval now;
1857
1858 microtime(&now);
1859 for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1860 bw_meter_receive_packet(x, plen, &now);
1861 }
1862
1863 return (0);
1864 }
1865
1866 #ifdef RSVP_ISI
1867 /*
1868 * check if a vif number is legal/ok. This is used by ip_output.
1869 */
1870 int
1871 legal_vif_num(int vif)
1872 {
1873 if (vif >= 0 && vif < numvifs)
1874 return (1);
1875 else
1876 return (0);
1877 }
1878 #endif /* RSVP_ISI */
1879
1880 static void
1881 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1882 {
1883 struct mbuf *mb_copy;
1884 int hlen = ip->ip_hl << 2;
1885
1886 /*
1887 * Make a new reference to the packet; make sure that
1888 * the IP header is actually copied, not just referenced,
1889 * so that ip_output() only scribbles on the copy.
1890 */
1891 mb_copy = m_copy(m, 0, M_COPYALL);
1892 M_PULLUP(mb_copy, hlen);
1893 if (mb_copy == NULL)
1894 return;
1895
1896 if (vifp->v_rate_limit <= 0)
1897 tbf_send_packet(vifp, mb_copy);
1898 else
1899 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *),
1900 ntohs(ip->ip_len));
1901 }
1902
1903 static void
1904 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1905 {
1906 struct mbuf *mb_copy;
1907 struct ip *ip_copy;
1908 int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1909
1910 /* Take care of delayed checksums */
1911 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1912 in_delayed_cksum(m);
1913 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1914 }
1915
1916 /*
1917 * copy the old packet & pullup it's IP header into the
1918 * new mbuf so we can modify it. Try to fill the new
1919 * mbuf since if we don't the ethernet driver will.
1920 */
1921 MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1922 if (mb_copy == NULL)
1923 return;
1924 mb_copy->m_data += max_linkhdr;
1925 mb_copy->m_pkthdr.len = len;
1926 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1927
1928 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1929 m_freem(mb_copy);
1930 return;
1931 }
1932 i = MHLEN - max_linkhdr;
1933 if (i > len)
1934 i = len;
1935 mb_copy = m_pullup(mb_copy, i);
1936 if (mb_copy == NULL)
1937 return;
1938
1939 /*
1940 * fill in the encapsulating IP header.
1941 */
1942 ip_copy = mtod(mb_copy, struct ip *);
1943 *ip_copy = multicast_encap_iphdr;
1944 ip_copy->ip_id = ip_newid();
1945 ip_copy->ip_len = htons(len);
1946 ip_copy->ip_src = vifp->v_lcl_addr;
1947 ip_copy->ip_dst = vifp->v_rmt_addr;
1948
1949 /*
1950 * turn the encapsulated IP header back into a valid one.
1951 */
1952 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1953 --ip->ip_ttl;
1954 ip->ip_sum = 0;
1955 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1956 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1957 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1958
1959 if (vifp->v_rate_limit <= 0)
1960 tbf_send_packet(vifp, mb_copy);
1961 else
1962 tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len));
1963 }
1964
1965 /*
1966 * De-encapsulate a packet and feed it back through ip input.
1967 */
1968 static void
1969 vif_input(struct mbuf *m, ...)
1970 {
1971 int off, proto;
1972 va_list ap;
1973 struct vif *vifp;
1974 int s;
1975 struct ifqueue *ifq;
1976
1977 va_start(ap, m);
1978 off = va_arg(ap, int);
1979 proto = va_arg(ap, int);
1980 va_end(ap);
1981
1982 vifp = (struct vif *)encap_getarg(m);
1983 if (!vifp || proto != ENCAP_PROTO) {
1984 m_freem(m);
1985 mrtstat.mrts_bad_tunnel++;
1986 return;
1987 }
1988
1989 m_adj(m, off);
1990 m->m_pkthdr.rcvif = vifp->v_ifp;
1991 ifq = &ipintrq;
1992 s = splnet();
1993 if (IF_QFULL(ifq)) {
1994 IF_DROP(ifq);
1995 m_freem(m);
1996 } else {
1997 IF_ENQUEUE(ifq, m);
1998 /*
1999 * normally we would need a "schednetisr(NETISR_IP)"
2000 * here but we were called by ip_input and it is going
2001 * to loop back & try to dequeue the packet we just
2002 * queued as soon as we return so we avoid the
2003 * unnecessary software interrrupt.
2004 */
2005 }
2006 splx(s);
2007 }
2008
2009 /*
2010 * Check if the packet should be received on the vif denoted by arg.
2011 * (The encap selection code will call this once per vif since each is
2012 * registered separately.)
2013 */
2014 static int
2015 vif_encapcheck(struct mbuf *m, int off, int proto, void *arg)
2016 {
2017 struct vif *vifp;
2018 struct ip ip;
2019
2020 #ifdef DIAGNOSTIC
2021 if (!arg || proto != IPPROTO_IPV4)
2022 panic("unexpected arg in vif_encapcheck");
2023 #endif
2024
2025 /*
2026 * Accept the packet only if the inner heaader is multicast
2027 * and the outer header matches a tunnel-mode vif. Order
2028 * checks in the hope that common non-matching packets will be
2029 * rejected quickly. Assume that unicast IPv4 traffic in a
2030 * parallel tunnel (e.g. gif(4)) is unlikely.
2031 */
2032
2033 /* Obtain the outer IP header and the vif pointer. */
2034 m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip);
2035 vifp = (struct vif *)arg;
2036
2037 /*
2038 * The outer source must match the vif's remote peer address.
2039 * For a multicast router with several tunnels, this is the
2040 * only check that will fail on packets in other tunnels,
2041 * assuming the local address is the same.
2042 */
2043 if (!in_hosteq(vifp->v_rmt_addr, ip.ip_src))
2044 return 0;
2045
2046 /* The outer destination must match the vif's local address. */
2047 if (!in_hosteq(vifp->v_lcl_addr, ip.ip_dst))
2048 return 0;
2049
2050 /* The vif must be of tunnel type. */
2051 if ((vifp->v_flags & VIFF_TUNNEL) == 0)
2052 return 0;
2053
2054 /* Check that the inner destination is multicast. */
2055 m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip);
2056 if (!IN_MULTICAST(ip.ip_dst.s_addr))
2057 return 0;
2058
2059 /*
2060 * We have checked that both the outer src and dst addresses
2061 * match the vif, and that the inner destination is multicast
2062 * (224/5). By claiming more than 64, we intend to
2063 * preferentially take packets that also match a parallel
2064 * gif(4).
2065 */
2066 return 32 + 32 + 5;
2067 }
2068
2069 /*
2070 * Token bucket filter module
2071 */
2072 static void
2073 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_int32_t len)
2074 {
2075
2076 if (len > MAX_BKT_SIZE) {
2077 /* drop if packet is too large */
2078 mrtstat.mrts_pkt2large++;
2079 m_freem(m);
2080 return;
2081 }
2082
2083 tbf_update_tokens(vifp);
2084
2085 /*
2086 * If there are enough tokens, and the queue is empty, send this packet
2087 * out immediately. Otherwise, try to insert it on this vif's queue.
2088 */
2089 if (vifp->tbf_q_len == 0) {
2090 if (len <= vifp->tbf_n_tok) {
2091 vifp->tbf_n_tok -= len;
2092 tbf_send_packet(vifp, m);
2093 } else {
2094 /* queue packet and timeout till later */
2095 tbf_queue(vifp, m);
2096 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2097 tbf_reprocess_q, vifp);
2098 }
2099 } else {
2100 if (vifp->tbf_q_len >= vifp->tbf_max_q_len &&
2101 !tbf_dq_sel(vifp, ip)) {
2102 /* queue full, and couldn't make room */
2103 mrtstat.mrts_q_overflow++;
2104 m_freem(m);
2105 } else {
2106 /* queue length low enough, or made room */
2107 tbf_queue(vifp, m);
2108 tbf_process_q(vifp);
2109 }
2110 }
2111 }
2112
2113 /*
2114 * adds a packet to the queue at the interface
2115 */
2116 static void
2117 tbf_queue(struct vif *vifp, struct mbuf *m)
2118 {
2119 int s = splsoftnet();
2120
2121 /* insert at tail */
2122 *vifp->tbf_t = m;
2123 vifp->tbf_t = &m->m_nextpkt;
2124 vifp->tbf_q_len++;
2125
2126 splx(s);
2127 }
2128
2129
2130 /*
2131 * processes the queue at the interface
2132 */
2133 static void
2134 tbf_process_q(struct vif *vifp)
2135 {
2136 struct mbuf *m;
2137 int len;
2138 int s = splsoftnet();
2139
2140 /*
2141 * Loop through the queue at the interface and send as many packets
2142 * as possible.
2143 */
2144 for (m = vifp->tbf_q; m != NULL; m = vifp->tbf_q) {
2145 len = ntohs(mtod(m, struct ip *)->ip_len);
2146
2147 /* determine if the packet can be sent */
2148 if (len <= vifp->tbf_n_tok) {
2149 /* if so,
2150 * reduce no of tokens, dequeue the packet,
2151 * send the packet.
2152 */
2153 if ((vifp->tbf_q = m->m_nextpkt) == NULL)
2154 vifp->tbf_t = &vifp->tbf_q;
2155 --vifp->tbf_q_len;
2156
2157 m->m_nextpkt = NULL;
2158 vifp->tbf_n_tok -= len;
2159 tbf_send_packet(vifp, m);
2160 } else
2161 break;
2162 }
2163 splx(s);
2164 }
2165
2166 static void
2167 tbf_reprocess_q(void *arg)
2168 {
2169 struct vif *vifp = arg;
2170
2171 if (ip_mrouter == NULL)
2172 return;
2173
2174 tbf_update_tokens(vifp);
2175 tbf_process_q(vifp);
2176
2177 if (vifp->tbf_q_len != 0)
2178 callout_reset(&vifp->v_repq_ch, TBF_REPROCESS,
2179 tbf_reprocess_q, vifp);
2180 }
2181
2182 /* function that will selectively discard a member of the queue
2183 * based on the precedence value and the priority
2184 */
2185 static int
2186 tbf_dq_sel(struct vif *vifp, struct ip *ip)
2187 {
2188 u_int p;
2189 struct mbuf **mp, *m;
2190 int s = splsoftnet();
2191
2192 p = priority(vifp, ip);
2193
2194 for (mp = &vifp->tbf_q, m = *mp;
2195 m != NULL;
2196 mp = &m->m_nextpkt, m = *mp) {
2197 if (p > priority(vifp, mtod(m, struct ip *))) {
2198 if ((*mp = m->m_nextpkt) == NULL)
2199 vifp->tbf_t = mp;
2200 --vifp->tbf_q_len;
2201
2202 m_freem(m);
2203 mrtstat.mrts_drop_sel++;
2204 splx(s);
2205 return (1);
2206 }
2207 }
2208 splx(s);
2209 return (0);
2210 }
2211
2212 static void
2213 tbf_send_packet(struct vif *vifp, struct mbuf *m)
2214 {
2215 int error;
2216 int s = splsoftnet();
2217
2218 if (vifp->v_flags & VIFF_TUNNEL) {
2219 /* If tunnel options */
2220 ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
2221 IP_FORWARDING, (struct ip_moptions *)NULL,
2222 (struct socket *)NULL);
2223 } else {
2224 /* if physical interface option, extract the options and then send */
2225 struct ip_moptions imo;
2226
2227 imo.imo_multicast_ifp = vifp->v_ifp;
2228 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
2229 imo.imo_multicast_loop = 1;
2230 #ifdef RSVP_ISI
2231 imo.imo_multicast_vif = -1;
2232 #endif
2233
2234 error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL,
2235 IP_FORWARDING|IP_MULTICASTOPTS, &imo,
2236 (struct socket *)NULL);
2237
2238 if (mrtdebug & DEBUG_XMIT)
2239 log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
2240 (long)(vifp - viftable), error);
2241 }
2242 splx(s);
2243 }
2244
2245 /* determine the current time and then
2246 * the elapsed time (between the last time and time now)
2247 * in milliseconds & update the no. of tokens in the bucket
2248 */
2249 static void
2250 tbf_update_tokens(struct vif *vifp)
2251 {
2252 struct timeval tp;
2253 u_int32_t tm;
2254 int s = splsoftnet();
2255
2256 microtime(&tp);
2257
2258 TV_DELTA(tp, vifp->tbf_last_pkt_t, tm);
2259
2260 /*
2261 * This formula is actually
2262 * "time in seconds" * "bytes/second".
2263 *
2264 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
2265 *
2266 * The (1000/1024) was introduced in add_vif to optimize
2267 * this divide into a shift.
2268 */
2269 vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192;
2270 vifp->tbf_last_pkt_t = tp;
2271
2272 if (vifp->tbf_n_tok > MAX_BKT_SIZE)
2273 vifp->tbf_n_tok = MAX_BKT_SIZE;
2274
2275 splx(s);
2276 }
2277
2278 static int
2279 priority(struct vif *vifp, struct ip *ip)
2280 {
2281 int prio = 50; /* the lowest priority -- default case */
2282
2283 /* temporary hack; may add general packet classifier some day */
2284
2285 /*
2286 * The UDP port space is divided up into four priority ranges:
2287 * [0, 16384) : unclassified - lowest priority
2288 * [16384, 32768) : audio - highest priority
2289 * [32768, 49152) : whiteboard - medium priority
2290 * [49152, 65536) : video - low priority
2291 */
2292 if (ip->ip_p == IPPROTO_UDP) {
2293 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
2294
2295 switch (ntohs(udp->uh_dport) & 0xc000) {
2296 case 0x4000:
2297 prio = 70;
2298 break;
2299 case 0x8000:
2300 prio = 60;
2301 break;
2302 case 0xc000:
2303 prio = 55;
2304 break;
2305 }
2306
2307 if (tbfdebug > 1)
2308 log(LOG_DEBUG, "port %x prio %d\n",
2309 ntohs(udp->uh_dport), prio);
2310 }
2311
2312 return (prio);
2313 }
2314
2315 /*
2316 * End of token bucket filter modifications
2317 */
2318 #ifdef RSVP_ISI
2319 int
2320 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
2321 {
2322 int vifi, s;
2323
2324 if (rsvpdebug)
2325 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2326 so->so_type, so->so_proto->pr_protocol);
2327
2328 if (so->so_type != SOCK_RAW ||
2329 so->so_proto->pr_protocol != IPPROTO_RSVP)
2330 return (EOPNOTSUPP);
2331
2332 /* Check mbuf. */
2333 if (m == NULL || m->m_len != sizeof(int)) {
2334 return (EINVAL);
2335 }
2336 vifi = *(mtod(m, int *));
2337
2338 if (rsvpdebug)
2339 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
2340 vifi, rsvp_on);
2341
2342 s = splsoftnet();
2343
2344 /* Check vif. */
2345 if (!legal_vif_num(vifi)) {
2346 splx(s);
2347 return (EADDRNOTAVAIL);
2348 }
2349
2350 /* Check if socket is available. */
2351 if (viftable[vifi].v_rsvpd != NULL) {
2352 splx(s);
2353 return (EADDRINUSE);
2354 }
2355
2356 viftable[vifi].v_rsvpd = so;
2357 /*
2358 * This may seem silly, but we need to be sure we don't over-increment
2359 * the RSVP counter, in case something slips up.
2360 */
2361 if (!viftable[vifi].v_rsvp_on) {
2362 viftable[vifi].v_rsvp_on = 1;
2363 rsvp_on++;
2364 }
2365
2366 splx(s);
2367 return (0);
2368 }
2369
2370 int
2371 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
2372 {
2373 int vifi, s;
2374
2375 if (rsvpdebug)
2376 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2377 so->so_type, so->so_proto->pr_protocol);
2378
2379 if (so->so_type != SOCK_RAW ||
2380 so->so_proto->pr_protocol != IPPROTO_RSVP)
2381 return (EOPNOTSUPP);
2382
2383 /* Check mbuf. */
2384 if (m == NULL || m->m_len != sizeof(int)) {
2385 return (EINVAL);
2386 }
2387 vifi = *(mtod(m, int *));
2388
2389 s = splsoftnet();
2390
2391 /* Check vif. */
2392 if (!legal_vif_num(vifi)) {
2393 splx(s);
2394 return (EADDRNOTAVAIL);
2395 }
2396
2397 if (rsvpdebug)
2398 printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
2399 viftable[vifi].v_rsvpd, so);
2400
2401 viftable[vifi].v_rsvpd = NULL;
2402 /*
2403 * This may seem silly, but we need to be sure we don't over-decrement
2404 * the RSVP counter, in case something slips up.
2405 */
2406 if (viftable[vifi].v_rsvp_on) {
2407 viftable[vifi].v_rsvp_on = 0;
2408 rsvp_on--;
2409 }
2410
2411 splx(s);
2412 return (0);
2413 }
2414
2415 void
2416 ip_rsvp_force_done(struct socket *so)
2417 {
2418 int vifi, s;
2419
2420 /* Don't bother if it is not the right type of socket. */
2421 if (so->so_type != SOCK_RAW ||
2422 so->so_proto->pr_protocol != IPPROTO_RSVP)
2423 return;
2424
2425 s = splsoftnet();
2426
2427 /*
2428 * The socket may be attached to more than one vif...this
2429 * is perfectly legal.
2430 */
2431 for (vifi = 0; vifi < numvifs; vifi++) {
2432 if (viftable[vifi].v_rsvpd == so) {
2433 viftable[vifi].v_rsvpd = NULL;
2434 /*
2435 * This may seem silly, but we need to be sure we don't
2436 * over-decrement the RSVP counter, in case something
2437 * slips up.
2438 */
2439 if (viftable[vifi].v_rsvp_on) {
2440 viftable[vifi].v_rsvp_on = 0;
2441 rsvp_on--;
2442 }
2443 }
2444 }
2445
2446 splx(s);
2447 return;
2448 }
2449
2450 void
2451 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2452 {
2453 int vifi, s;
2454 struct ip *ip = mtod(m, struct ip *);
2455 static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
2456
2457 if (rsvpdebug)
2458 printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2459
2460 /*
2461 * Can still get packets with rsvp_on = 0 if there is a local member
2462 * of the group to which the RSVP packet is addressed. But in this
2463 * case we want to throw the packet away.
2464 */
2465 if (!rsvp_on) {
2466 m_freem(m);
2467 return;
2468 }
2469
2470 /*
2471 * If the old-style non-vif-associated socket is set, then use
2472 * it and ignore the new ones.
2473 */
2474 if (ip_rsvpd != NULL) {
2475 if (rsvpdebug)
2476 printf("rsvp_input: "
2477 "Sending packet up old-style socket\n");
2478 rip_input(m); /*XXX*/
2479 return;
2480 }
2481
2482 s = splsoftnet();
2483
2484 if (rsvpdebug)
2485 printf("rsvp_input: check vifs\n");
2486
2487 /* Find which vif the packet arrived on. */
2488 for (vifi = 0; vifi < numvifs; vifi++) {
2489 if (viftable[vifi].v_ifp == ifp)
2490 break;
2491 }
2492
2493 if (vifi == numvifs) {
2494 /* Can't find vif packet arrived on. Drop packet. */
2495 if (rsvpdebug)
2496 printf("rsvp_input: "
2497 "Can't find vif for packet...dropping it.\n");
2498 m_freem(m);
2499 splx(s);
2500 return;
2501 }
2502
2503 if (rsvpdebug)
2504 printf("rsvp_input: check socket\n");
2505
2506 if (viftable[vifi].v_rsvpd == NULL) {
2507 /*
2508 * drop packet, since there is no specific socket for this
2509 * interface
2510 */
2511 if (rsvpdebug)
2512 printf("rsvp_input: No socket defined for vif %d\n",
2513 vifi);
2514 m_freem(m);
2515 splx(s);
2516 return;
2517 }
2518
2519 rsvp_src.sin_addr = ip->ip_src;
2520
2521 if (rsvpdebug && m)
2522 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2523 m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2524
2525 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2526 if (rsvpdebug)
2527 printf("rsvp_input: Failed to append to socket\n");
2528 else
2529 if (rsvpdebug)
2530 printf("rsvp_input: send packet up\n");
2531
2532 splx(s);
2533 }
2534 #endif /* RSVP_ISI */
2535
2536 /*
2537 * Code for bandwidth monitors
2538 */
2539
2540 /*
2541 * Define common interface for timeval-related methods
2542 */
2543 #define BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2544 #define BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2545 #define BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2546
2547 static uint32_t
2548 compute_bw_meter_flags(struct bw_upcall *req)
2549 {
2550 uint32_t flags = 0;
2551
2552 if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2553 flags |= BW_METER_UNIT_PACKETS;
2554 if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2555 flags |= BW_METER_UNIT_BYTES;
2556 if (req->bu_flags & BW_UPCALL_GEQ)
2557 flags |= BW_METER_GEQ;
2558 if (req->bu_flags & BW_UPCALL_LEQ)
2559 flags |= BW_METER_LEQ;
2560
2561 return flags;
2562 }
2563
2564 /*
2565 * Add a bw_meter entry
2566 */
2567 static int
2568 add_bw_upcall(struct mbuf *m)
2569 {
2570 int s;
2571 struct mfc *mfc;
2572 struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2573 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2574 struct timeval now;
2575 struct bw_meter *x;
2576 uint32_t flags;
2577 struct bw_upcall *req;
2578
2579 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2580 return EINVAL;
2581
2582 req = mtod(m, struct bw_upcall *);
2583
2584 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2585 return EOPNOTSUPP;
2586
2587 /* Test if the flags are valid */
2588 if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2589 return EINVAL;
2590 if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2591 return EINVAL;
2592 if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2593 == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2594 return EINVAL;
2595
2596 /* Test if the threshold time interval is valid */
2597 if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2598 return EINVAL;
2599
2600 flags = compute_bw_meter_flags(req);
2601
2602 /*
2603 * Find if we have already same bw_meter entry
2604 */
2605 s = splsoftnet();
2606 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2607 if (mfc == NULL) {
2608 splx(s);
2609 return EADDRNOTAVAIL;
2610 }
2611 for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2612 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2613 &req->bu_threshold.b_time, ==)) &&
2614 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2615 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2616 (x->bm_flags & BW_METER_USER_FLAGS) == flags) {
2617 splx(s);
2618 return 0; /* XXX Already installed */
2619 }
2620 }
2621
2622 /* Allocate the new bw_meter entry */
2623 x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2624 if (x == NULL) {
2625 splx(s);
2626 return ENOBUFS;
2627 }
2628
2629 /* Set the new bw_meter entry */
2630 x->bm_threshold.b_time = req->bu_threshold.b_time;
2631 microtime(&now);
2632 x->bm_start_time = now;
2633 x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2634 x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2635 x->bm_measured.b_packets = 0;
2636 x->bm_measured.b_bytes = 0;
2637 x->bm_flags = flags;
2638 x->bm_time_next = NULL;
2639 x->bm_time_hash = BW_METER_BUCKETS;
2640
2641 /* Add the new bw_meter entry to the front of entries for this MFC */
2642 x->bm_mfc = mfc;
2643 x->bm_mfc_next = mfc->mfc_bw_meter;
2644 mfc->mfc_bw_meter = x;
2645 schedule_bw_meter(x, &now);
2646 splx(s);
2647
2648 return 0;
2649 }
2650
2651 static void
2652 free_bw_list(struct bw_meter *list)
2653 {
2654 while (list != NULL) {
2655 struct bw_meter *x = list;
2656
2657 list = list->bm_mfc_next;
2658 unschedule_bw_meter(x);
2659 free(x, M_BWMETER);
2660 }
2661 }
2662
2663 /*
2664 * Delete one or multiple bw_meter entries
2665 */
2666 static int
2667 del_bw_upcall(struct mbuf *m)
2668 {
2669 int s;
2670 struct mfc *mfc;
2671 struct bw_meter *x;
2672 struct bw_upcall *req;
2673
2674 if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2675 return EINVAL;
2676
2677 req = mtod(m, struct bw_upcall *);
2678
2679 if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2680 return EOPNOTSUPP;
2681
2682 s = splsoftnet();
2683 /* Find the corresponding MFC entry */
2684 mfc = mfc_find(&req->bu_src, &req->bu_dst);
2685 if (mfc == NULL) {
2686 splx(s);
2687 return EADDRNOTAVAIL;
2688 } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2689 /*
2690 * Delete all bw_meter entries for this mfc
2691 */
2692 struct bw_meter *list;
2693
2694 list = mfc->mfc_bw_meter;
2695 mfc->mfc_bw_meter = NULL;
2696 free_bw_list(list);
2697 splx(s);
2698 return 0;
2699 } else { /* Delete a single bw_meter entry */
2700 struct bw_meter *prev;
2701 uint32_t flags = 0;
2702
2703 flags = compute_bw_meter_flags(req);
2704
2705 /* Find the bw_meter entry to delete */
2706 for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2707 prev = x, x = x->bm_mfc_next) {
2708 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2709 &req->bu_threshold.b_time, ==)) &&
2710 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
2711 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2712 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2713 break;
2714 }
2715 if (x != NULL) { /* Delete entry from the list for this MFC */
2716 if (prev != NULL)
2717 prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/
2718 else
2719 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
2720
2721 unschedule_bw_meter(x);
2722 splx(s);
2723 /* Free the bw_meter entry */
2724 free(x, M_BWMETER);
2725 return 0;
2726 } else {
2727 splx(s);
2728 return EINVAL;
2729 }
2730 }
2731 /* NOTREACHED */
2732 }
2733
2734 /*
2735 * Perform bandwidth measurement processing that may result in an upcall
2736 */
2737 static void
2738 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2739 {
2740 struct timeval delta;
2741
2742 delta = *nowp;
2743 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2744
2745 if (x->bm_flags & BW_METER_GEQ) {
2746 /*
2747 * Processing for ">=" type of bw_meter entry
2748 */
2749 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2750 /* Reset the bw_meter entry */
2751 x->bm_start_time = *nowp;
2752 x->bm_measured.b_packets = 0;
2753 x->bm_measured.b_bytes = 0;
2754 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2755 }
2756
2757 /* Record that a packet is received */
2758 x->bm_measured.b_packets++;
2759 x->bm_measured.b_bytes += plen;
2760
2761 /*
2762 * Test if we should deliver an upcall
2763 */
2764 if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2765 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2766 (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
2767 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2768 (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
2769 /* Prepare an upcall for delivery */
2770 bw_meter_prepare_upcall(x, nowp);
2771 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2772 }
2773 }
2774 } else if (x->bm_flags & BW_METER_LEQ) {
2775 /*
2776 * Processing for "<=" type of bw_meter entry
2777 */
2778 if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2779 /*
2780 * We are behind time with the multicast forwarding table
2781 * scanning for "<=" type of bw_meter entries, so test now
2782 * if we should deliver an upcall.
2783 */
2784 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2785 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
2786 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2787 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
2788 /* Prepare an upcall for delivery */
2789 bw_meter_prepare_upcall(x, nowp);
2790 }
2791 /* Reschedule the bw_meter entry */
2792 unschedule_bw_meter(x);
2793 schedule_bw_meter(x, nowp);
2794 }
2795
2796 /* Record that a packet is received */
2797 x->bm_measured.b_packets++;
2798 x->bm_measured.b_bytes += plen;
2799
2800 /*
2801 * Test if we should restart the measuring interval
2802 */
2803 if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2804 x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2805 (x->bm_flags & BW_METER_UNIT_BYTES &&
2806 x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2807 /* Don't restart the measuring interval */
2808 } else {
2809 /* Do restart the measuring interval */
2810 /*
2811 * XXX: note that we don't unschedule and schedule, because this
2812 * might be too much overhead per packet. Instead, when we process
2813 * all entries for a given timer hash bin, we check whether it is
2814 * really a timeout. If not, we reschedule at that time.
2815 */
2816 x->bm_start_time = *nowp;
2817 x->bm_measured.b_packets = 0;
2818 x->bm_measured.b_bytes = 0;
2819 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2820 }
2821 }
2822 }
2823
2824 /*
2825 * Prepare a bandwidth-related upcall
2826 */
2827 static void
2828 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2829 {
2830 struct timeval delta;
2831 struct bw_upcall *u;
2832
2833 /*
2834 * Compute the measured time interval
2835 */
2836 delta = *nowp;
2837 BW_TIMEVALDECR(&delta, &x->bm_start_time);
2838
2839 /*
2840 * If there are too many pending upcalls, deliver them now
2841 */
2842 if (bw_upcalls_n >= BW_UPCALLS_MAX)
2843 bw_upcalls_send();
2844
2845 /*
2846 * Set the bw_upcall entry
2847 */
2848 u = &bw_upcalls[bw_upcalls_n++];
2849 u->bu_src = x->bm_mfc->mfc_origin;
2850 u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2851 u->bu_threshold.b_time = x->bm_threshold.b_time;
2852 u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2853 u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2854 u->bu_measured.b_time = delta;
2855 u->bu_measured.b_packets = x->bm_measured.b_packets;
2856 u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2857 u->bu_flags = 0;
2858 if (x->bm_flags & BW_METER_UNIT_PACKETS)
2859 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2860 if (x->bm_flags & BW_METER_UNIT_BYTES)
2861 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2862 if (x->bm_flags & BW_METER_GEQ)
2863 u->bu_flags |= BW_UPCALL_GEQ;
2864 if (x->bm_flags & BW_METER_LEQ)
2865 u->bu_flags |= BW_UPCALL_LEQ;
2866 }
2867
2868 /*
2869 * Send the pending bandwidth-related upcalls
2870 */
2871 static void
2872 bw_upcalls_send(void)
2873 {
2874 struct mbuf *m;
2875 int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2876 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2877 static struct igmpmsg igmpmsg = { 0, /* unused1 */
2878 0, /* unused2 */
2879 IGMPMSG_BW_UPCALL,/* im_msgtype */
2880 0, /* im_mbz */
2881 0, /* im_vif */
2882 0, /* unused3 */
2883 { 0 }, /* im_src */
2884 { 0 } }; /* im_dst */
2885
2886 if (bw_upcalls_n == 0)
2887 return; /* No pending upcalls */
2888
2889 bw_upcalls_n = 0;
2890
2891 /*
2892 * Allocate a new mbuf, initialize it with the header and
2893 * the payload for the pending calls.
2894 */
2895 MGETHDR(m, M_DONTWAIT, MT_HEADER);
2896 if (m == NULL) {
2897 log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2898 return;
2899 }
2900
2901 m->m_len = m->m_pkthdr.len = 0;
2902 m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
2903 m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
2904
2905 /*
2906 * Send the upcalls
2907 * XXX do we need to set the address in k_igmpsrc ?
2908 */
2909 mrtstat.mrts_upcalls++;
2910 if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2911 log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
2912 ++mrtstat.mrts_upq_sockfull;
2913 }
2914 }
2915
2916 /*
2917 * Compute the timeout hash value for the bw_meter entries
2918 */
2919 #define BW_METER_TIMEHASH(bw_meter, hash) \
2920 do { \
2921 struct timeval next_timeval = (bw_meter)->bm_start_time; \
2922 \
2923 BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2924 (hash) = next_timeval.tv_sec; \
2925 if (next_timeval.tv_usec) \
2926 (hash)++; /* XXX: make sure we don't timeout early */ \
2927 (hash) %= BW_METER_BUCKETS; \
2928 } while (/*CONSTCOND*/ 0)
2929
2930 /*
2931 * Schedule a timer to process periodically bw_meter entry of type "<="
2932 * by linking the entry in the proper hash bucket.
2933 */
2934 static void
2935 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2936 {
2937 int time_hash;
2938
2939 if (!(x->bm_flags & BW_METER_LEQ))
2940 return; /* XXX: we schedule timers only for "<=" entries */
2941
2942 /*
2943 * Reset the bw_meter entry
2944 */
2945 x->bm_start_time = *nowp;
2946 x->bm_measured.b_packets = 0;
2947 x->bm_measured.b_bytes = 0;
2948 x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2949
2950 /*
2951 * Compute the timeout hash value and insert the entry
2952 */
2953 BW_METER_TIMEHASH(x, time_hash);
2954 x->bm_time_next = bw_meter_timers[time_hash];
2955 bw_meter_timers[time_hash] = x;
2956 x->bm_time_hash = time_hash;
2957 }
2958
2959 /*
2960 * Unschedule the periodic timer that processes bw_meter entry of type "<="
2961 * by removing the entry from the proper hash bucket.
2962 */
2963 static void
2964 unschedule_bw_meter(struct bw_meter *x)
2965 {
2966 int time_hash;
2967 struct bw_meter *prev, *tmp;
2968
2969 if (!(x->bm_flags & BW_METER_LEQ))
2970 return; /* XXX: we schedule timers only for "<=" entries */
2971
2972 /*
2973 * Compute the timeout hash value and delete the entry
2974 */
2975 time_hash = x->bm_time_hash;
2976 if (time_hash >= BW_METER_BUCKETS)
2977 return; /* Entry was not scheduled */
2978
2979 for (prev = NULL, tmp = bw_meter_timers[time_hash];
2980 tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2981 if (tmp == x)
2982 break;
2983
2984 if (tmp == NULL)
2985 panic("unschedule_bw_meter: bw_meter entry not found");
2986
2987 if (prev != NULL)
2988 prev->bm_time_next = x->bm_time_next;
2989 else
2990 bw_meter_timers[time_hash] = x->bm_time_next;
2991
2992 x->bm_time_next = NULL;
2993 x->bm_time_hash = BW_METER_BUCKETS;
2994 }
2995
2996 /*
2997 * Process all "<=" type of bw_meter that should be processed now,
2998 * and for each entry prepare an upcall if necessary. Each processed
2999 * entry is rescheduled again for the (periodic) processing.
3000 *
3001 * This is run periodically (once per second normally). On each round,
3002 * all the potentially matching entries are in the hash slot that we are
3003 * looking at.
3004 */
3005 static void
3006 bw_meter_process(void)
3007 {
3008 int s;
3009 static uint32_t last_tv_sec; /* last time we processed this */
3010
3011 uint32_t loops;
3012 int i;
3013 struct timeval now, process_endtime;
3014
3015 microtime(&now);
3016 if (last_tv_sec == now.tv_sec)
3017 return; /* nothing to do */
3018
3019 loops = now.tv_sec - last_tv_sec;
3020 last_tv_sec = now.tv_sec;
3021 if (loops > BW_METER_BUCKETS)
3022 loops = BW_METER_BUCKETS;
3023
3024 s = splsoftnet();
3025 /*
3026 * Process all bins of bw_meter entries from the one after the last
3027 * processed to the current one. On entry, i points to the last bucket
3028 * visited, so we need to increment i at the beginning of the loop.
3029 */
3030 for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
3031 struct bw_meter *x, *tmp_list;
3032
3033 if (++i >= BW_METER_BUCKETS)
3034 i = 0;
3035
3036 /* Disconnect the list of bw_meter entries from the bin */
3037 tmp_list = bw_meter_timers[i];
3038 bw_meter_timers[i] = NULL;
3039
3040 /* Process the list of bw_meter entries */
3041 while (tmp_list != NULL) {
3042 x = tmp_list;
3043 tmp_list = tmp_list->bm_time_next;
3044
3045 /* Test if the time interval is over */
3046 process_endtime = x->bm_start_time;
3047 BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
3048 if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
3049 /* Not yet: reschedule, but don't reset */
3050 int time_hash;
3051
3052 BW_METER_TIMEHASH(x, time_hash);
3053 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
3054 /*
3055 * XXX: somehow the bin processing is a bit ahead of time.
3056 * Put the entry in the next bin.
3057 */
3058 if (++time_hash >= BW_METER_BUCKETS)
3059 time_hash = 0;
3060 }
3061 x->bm_time_next = bw_meter_timers[time_hash];
3062 bw_meter_timers[time_hash] = x;
3063 x->bm_time_hash = time_hash;
3064
3065 continue;
3066 }
3067
3068 /*
3069 * Test if we should deliver an upcall
3070 */
3071 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
3072 (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
3073 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
3074 (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
3075 /* Prepare an upcall for delivery */
3076 bw_meter_prepare_upcall(x, &now);
3077 }
3078
3079 /*
3080 * Reschedule for next processing
3081 */
3082 schedule_bw_meter(x, &now);
3083 }
3084 }
3085
3086 /* Send all upcalls that are pending delivery */
3087 bw_upcalls_send();
3088
3089 splx(s);
3090 }
3091
3092 /*
3093 * A periodic function for sending all upcalls that are pending delivery
3094 */
3095 static void
3096 expire_bw_upcalls_send(void *unused)
3097 {
3098 int s;
3099
3100 s = splsoftnet();
3101 bw_upcalls_send();
3102 splx(s);
3103
3104 callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
3105 expire_bw_upcalls_send, NULL);
3106 }
3107
3108 /*
3109 * A periodic function for periodic scanning of the multicast forwarding
3110 * table for processing all "<=" bw_meter entries.
3111 */
3112 static void
3113 expire_bw_meter_process(void *unused)
3114 {
3115 if (mrt_api_config & MRT_MFC_BW_UPCALL)
3116 bw_meter_process();
3117
3118 callout_reset(&bw_meter_ch, BW_METER_PERIOD,
3119 expire_bw_meter_process, NULL);
3120 }
3121
3122 /*
3123 * End of bandwidth monitoring code
3124 */
3125
3126 #ifdef PIM
3127 /*
3128 * Send the packet up to the user daemon, or eventually do kernel encapsulation
3129 */
3130 static int
3131 pim_register_send(struct ip *ip, struct vif *vifp,
3132 struct mbuf *m, struct mfc *rt)
3133 {
3134 struct mbuf *mb_copy, *mm;
3135
3136 if (mrtdebug & DEBUG_PIM)
3137 log(LOG_DEBUG, "pim_register_send: ");
3138
3139 mb_copy = pim_register_prepare(ip, m);
3140 if (mb_copy == NULL)
3141 return ENOBUFS;
3142
3143 /*
3144 * Send all the fragments. Note that the mbuf for each fragment
3145 * is freed by the sending machinery.
3146 */
3147 for (mm = mb_copy; mm; mm = mb_copy) {
3148 mb_copy = mm->m_nextpkt;
3149 mm->m_nextpkt = NULL;
3150 mm = m_pullup(mm, sizeof(struct ip));
3151 if (mm != NULL) {
3152 ip = mtod(mm, struct ip *);
3153 if ((mrt_api_config & MRT_MFC_RP) &&
3154 !in_nullhost(rt->mfc_rp)) {
3155 pim_register_send_rp(ip, vifp, mm, rt);
3156 } else {
3157 pim_register_send_upcall(ip, vifp, mm, rt);
3158 }
3159 }
3160 }
3161
3162 return 0;
3163 }
3164
3165 /*
3166 * Return a copy of the data packet that is ready for PIM Register
3167 * encapsulation.
3168 * XXX: Note that in the returned copy the IP header is a valid one.
3169 */
3170 static struct mbuf *
3171 pim_register_prepare(struct ip *ip, struct mbuf *m)
3172 {
3173 struct mbuf *mb_copy = NULL;
3174 int mtu;
3175
3176 /* Take care of delayed checksums */
3177 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
3178 in_delayed_cksum(m);
3179 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
3180 }
3181
3182 /*
3183 * Copy the old packet & pullup its IP header into the
3184 * new mbuf so we can modify it.
3185 */
3186 mb_copy = m_copy(m, 0, M_COPYALL);
3187 if (mb_copy == NULL)
3188 return NULL;
3189 mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
3190 if (mb_copy == NULL)
3191 return NULL;
3192
3193 /* take care of the TTL */
3194 ip = mtod(mb_copy, struct ip *);
3195 --ip->ip_ttl;
3196
3197 /* Compute the MTU after the PIM Register encapsulation */
3198 mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
3199
3200 if (ntohs(ip->ip_len) <= mtu) {
3201 /* Turn the IP header into a valid one */
3202 ip->ip_sum = 0;
3203 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
3204 } else {
3205 /* Fragment the packet */
3206 if (ip_fragment(mb_copy, NULL, mtu) != 0) {
3207 /* XXX: mb_copy was freed by ip_fragment() */
3208 return NULL;
3209 }
3210 }
3211 return mb_copy;
3212 }
3213
3214 /*
3215 * Send an upcall with the data packet to the user-level process.
3216 */
3217 static int
3218 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
3219 struct mbuf *mb_copy, struct mfc *rt)
3220 {
3221 struct mbuf *mb_first;
3222 int len = ntohs(ip->ip_len);
3223 struct igmpmsg *im;
3224 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
3225
3226 /*
3227 * Add a new mbuf with an upcall header
3228 */
3229 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3230 if (mb_first == NULL) {
3231 m_freem(mb_copy);
3232 return ENOBUFS;
3233 }
3234 mb_first->m_data += max_linkhdr;
3235 mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
3236 mb_first->m_len = sizeof(struct igmpmsg);
3237 mb_first->m_next = mb_copy;
3238
3239 /* Send message to routing daemon */
3240 im = mtod(mb_first, struct igmpmsg *);
3241 im->im_msgtype = IGMPMSG_WHOLEPKT;
3242 im->im_mbz = 0;
3243 im->im_vif = vifp - viftable;
3244 im->im_src = ip->ip_src;
3245 im->im_dst = ip->ip_dst;
3246
3247 k_igmpsrc.sin_addr = ip->ip_src;
3248
3249 mrtstat.mrts_upcalls++;
3250
3251 if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
3252 if (mrtdebug & DEBUG_PIM)
3253 log(LOG_WARNING,
3254 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
3255 ++mrtstat.mrts_upq_sockfull;
3256 return ENOBUFS;
3257 }
3258
3259 /* Keep statistics */
3260 pimstat.pims_snd_registers_msgs++;
3261 pimstat.pims_snd_registers_bytes += len;
3262
3263 return 0;
3264 }
3265
3266 /*
3267 * Encapsulate the data packet in PIM Register message and send it to the RP.
3268 */
3269 static int
3270 pim_register_send_rp(struct ip *ip, struct vif *vifp,
3271 struct mbuf *mb_copy, struct mfc *rt)
3272 {
3273 struct mbuf *mb_first;
3274 struct ip *ip_outer;
3275 struct pim_encap_pimhdr *pimhdr;
3276 int len = ntohs(ip->ip_len);
3277 vifi_t vifi = rt->mfc_parent;
3278
3279 if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
3280 m_freem(mb_copy);
3281 return EADDRNOTAVAIL; /* The iif vif is invalid */
3282 }
3283
3284 /*
3285 * Add a new mbuf with the encapsulating header
3286 */
3287 MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
3288 if (mb_first == NULL) {
3289 m_freem(mb_copy);
3290 return ENOBUFS;
3291 }
3292 mb_first->m_data += max_linkhdr;
3293 mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
3294 mb_first->m_next = mb_copy;
3295
3296 mb_first->m_pkthdr.len = len + mb_first->m_len;
3297
3298 /*
3299 * Fill in the encapsulating IP and PIM header
3300 */
3301 ip_outer = mtod(mb_first, struct ip *);
3302 *ip_outer = pim_encap_iphdr;
3303 ip_outer->ip_id = ip_newid();
3304 ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
3305 sizeof(pim_encap_pimhdr));
3306 ip_outer->ip_src = viftable[vifi].v_lcl_addr;
3307 ip_outer->ip_dst = rt->mfc_rp;
3308 /*
3309 * Copy the inner header TOS to the outer header, and take care of the
3310 * IP_DF bit.
3311 */
3312 ip_outer->ip_tos = ip->ip_tos;
3313 if (ntohs(ip->ip_off) & IP_DF)
3314 ip_outer->ip_off |= IP_DF;
3315 pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
3316 + sizeof(pim_encap_iphdr));
3317 *pimhdr = pim_encap_pimhdr;
3318 /* If the iif crosses a border, set the Border-bit */
3319 if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
3320 pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
3321
3322 mb_first->m_data += sizeof(pim_encap_iphdr);
3323 pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
3324 mb_first->m_data -= sizeof(pim_encap_iphdr);
3325
3326 if (vifp->v_rate_limit == 0)
3327 tbf_send_packet(vifp, mb_first);
3328 else
3329 tbf_control(vifp, mb_first, ip, ntohs(ip_outer->ip_len));
3330
3331 /* Keep statistics */
3332 pimstat.pims_snd_registers_msgs++;
3333 pimstat.pims_snd_registers_bytes += len;
3334
3335 return 0;
3336 }
3337
3338 /*
3339 * PIM-SMv2 and PIM-DM messages processing.
3340 * Receives and verifies the PIM control messages, and passes them
3341 * up to the listening socket, using rip_input().
3342 * The only message with special processing is the PIM_REGISTER message
3343 * (used by PIM-SM): the PIM header is stripped off, and the inner packet
3344 * is passed to if_simloop().
3345 */
3346 void
3347 pim_input(struct mbuf *m, ...)
3348 {
3349 struct ip *ip = mtod(m, struct ip *);
3350 struct pim *pim;
3351 int minlen;
3352 int datalen;
3353 int ip_tos;
3354 int proto;
3355 int iphlen;
3356 va_list ap;
3357
3358 va_start(ap, m);
3359 iphlen = va_arg(ap, int);
3360 proto = va_arg(ap, int);
3361 va_end(ap);
3362
3363 datalen = ntohs(ip->ip_len) - iphlen;
3364
3365 /* Keep statistics */
3366 pimstat.pims_rcv_total_msgs++;
3367 pimstat.pims_rcv_total_bytes += datalen;
3368
3369 /*
3370 * Validate lengths
3371 */
3372 if (datalen < PIM_MINLEN) {
3373 pimstat.pims_rcv_tooshort++;
3374 log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
3375 datalen, (u_long)ip->ip_src.s_addr);
3376 m_freem(m);
3377 return;
3378 }
3379
3380 /*
3381 * If the packet is at least as big as a REGISTER, go agead
3382 * and grab the PIM REGISTER header size, to avoid another
3383 * possible m_pullup() later.
3384 *
3385 * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8
3386 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
3387 */
3388 minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
3389 /*
3390 * Get the IP and PIM headers in contiguous memory, and
3391 * possibly the PIM REGISTER header.
3392 */
3393 if ((m->m_flags & M_EXT || m->m_len < minlen) &&
3394 (m = m_pullup(m, minlen)) == NULL) {
3395 log(LOG_ERR, "pim_input: m_pullup failure\n");
3396 return;
3397 }
3398 /* m_pullup() may have given us a new mbuf so reset ip. */
3399 ip = mtod(m, struct ip *);
3400 ip_tos = ip->ip_tos;
3401
3402 /* adjust mbuf to point to the PIM header */
3403 m->m_data += iphlen;
3404 m->m_len -= iphlen;
3405 pim = mtod(m, struct pim *);
3406
3407 /*
3408 * Validate checksum. If PIM REGISTER, exclude the data packet.
3409 *
3410 * XXX: some older PIMv2 implementations don't make this distinction,
3411 * so for compatibility reason perform the checksum over part of the
3412 * message, and if error, then over the whole message.
3413 */
3414 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
3415 /* do nothing, checksum okay */
3416 } else if (in_cksum(m, datalen)) {
3417 pimstat.pims_rcv_badsum++;
3418 if (mrtdebug & DEBUG_PIM)
3419 log(LOG_DEBUG, "pim_input: invalid checksum");
3420 m_freem(m);
3421 return;
3422 }
3423
3424 /* PIM version check */
3425 if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
3426 pimstat.pims_rcv_badversion++;
3427 log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
3428 PIM_VT_V(pim->pim_vt), PIM_VERSION);
3429 m_freem(m);
3430 return;
3431 }
3432
3433 /* restore mbuf back to the outer IP */
3434 m->m_data -= iphlen;
3435 m->m_len += iphlen;
3436
3437 if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
3438 /*
3439 * Since this is a REGISTER, we'll make a copy of the register
3440 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
3441 * routing daemon.
3442 */
3443 int s;
3444 struct sockaddr_in dst = { sizeof(dst), AF_INET };
3445 struct mbuf *mcp;
3446 struct ip *encap_ip;
3447 u_int32_t *reghdr;
3448 struct ifnet *vifp;
3449
3450 s = splsoftnet();
3451 if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3452 splx(s);
3453 if (mrtdebug & DEBUG_PIM)
3454 log(LOG_DEBUG,
3455 "pim_input: register vif not set: %d\n", reg_vif_num);
3456 m_freem(m);
3457 return;
3458 }
3459 /* XXX need refcnt? */
3460 vifp = viftable[reg_vif_num].v_ifp;
3461 splx(s);
3462
3463 /*
3464 * Validate length
3465 */
3466 if (datalen < PIM_REG_MINLEN) {
3467 pimstat.pims_rcv_tooshort++;
3468 pimstat.pims_rcv_badregisters++;
3469 log(LOG_ERR,
3470 "pim_input: register packet size too small %d from %lx\n",
3471 datalen, (u_long)ip->ip_src.s_addr);
3472 m_freem(m);
3473 return;
3474 }
3475
3476 reghdr = (u_int32_t *)(pim + 1);
3477 encap_ip = (struct ip *)(reghdr + 1);
3478
3479 if (mrtdebug & DEBUG_PIM) {
3480 log(LOG_DEBUG,
3481 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
3482 (u_long)ntohl(encap_ip->ip_src.s_addr),
3483 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3484 ntohs(encap_ip->ip_len));
3485 }
3486
3487 /* verify the version number of the inner packet */
3488 if (encap_ip->ip_v != IPVERSION) {
3489 pimstat.pims_rcv_badregisters++;
3490 if (mrtdebug & DEBUG_PIM) {
3491 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
3492 "of the inner packet\n", encap_ip->ip_v);
3493 }
3494 m_freem(m);
3495 return;
3496 }
3497
3498 /* verify the inner packet is destined to a mcast group */
3499 if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3500 pimstat.pims_rcv_badregisters++;
3501 if (mrtdebug & DEBUG_PIM)
3502 log(LOG_DEBUG,
3503 "pim_input: inner packet of register is not "
3504 "multicast %lx\n",
3505 (u_long)ntohl(encap_ip->ip_dst.s_addr));
3506 m_freem(m);
3507 return;
3508 }
3509
3510 /* If a NULL_REGISTER, pass it to the daemon */
3511 if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3512 goto pim_input_to_daemon;
3513
3514 /*
3515 * Copy the TOS from the outer IP header to the inner IP header.
3516 */
3517 if (encap_ip->ip_tos != ip_tos) {
3518 /* Outer TOS -> inner TOS */
3519 encap_ip->ip_tos = ip_tos;
3520 /* Recompute the inner header checksum. Sigh... */
3521
3522 /* adjust mbuf to point to the inner IP header */
3523 m->m_data += (iphlen + PIM_MINLEN);
3524 m->m_len -= (iphlen + PIM_MINLEN);
3525
3526 encap_ip->ip_sum = 0;
3527 encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3528
3529 /* restore mbuf to point back to the outer IP header */
3530 m->m_data -= (iphlen + PIM_MINLEN);
3531 m->m_len += (iphlen + PIM_MINLEN);
3532 }
3533
3534 /*
3535 * Decapsulate the inner IP packet and loopback to forward it
3536 * as a normal multicast packet. Also, make a copy of the
3537 * outer_iphdr + pimhdr + reghdr + encap_iphdr
3538 * to pass to the daemon later, so it can take the appropriate
3539 * actions (e.g., send back PIM_REGISTER_STOP).
3540 * XXX: here m->m_data points to the outer IP header.
3541 */
3542 mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3543 if (mcp == NULL) {
3544 log(LOG_ERR,
3545 "pim_input: pim register: could not copy register head\n");
3546 m_freem(m);
3547 return;
3548 }
3549
3550 /* Keep statistics */
3551 /* XXX: registers_bytes include only the encap. mcast pkt */
3552 pimstat.pims_rcv_registers_msgs++;
3553 pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3554
3555 /*
3556 * forward the inner ip packet; point m_data at the inner ip.
3557 */
3558 m_adj(m, iphlen + PIM_MINLEN);
3559
3560 if (mrtdebug & DEBUG_PIM) {
3561 log(LOG_DEBUG,
3562 "pim_input: forwarding decapsulated register: "
3563 "src %lx, dst %lx, vif %d\n",
3564 (u_long)ntohl(encap_ip->ip_src.s_addr),
3565 (u_long)ntohl(encap_ip->ip_dst.s_addr),
3566 reg_vif_num);
3567 }
3568 /* NB: vifp was collected above; can it change on us? */
3569 looutput(vifp, m, (struct sockaddr *)&dst, (struct rtentry *)NULL);
3570
3571 /* prepare the register head to send to the mrouting daemon */
3572 m = mcp;
3573 }
3574
3575 pim_input_to_daemon:
3576 /*
3577 * Pass the PIM message up to the daemon; if it is a Register message,
3578 * pass the 'head' only up to the daemon. This includes the
3579 * outer IP header, PIM header, PIM-Register header and the
3580 * inner IP header.
3581 * XXX: the outer IP header pkt size of a Register is not adjust to
3582 * reflect the fact that the inner multicast data is truncated.
3583 */
3584 rip_input(m, iphlen, proto);
3585
3586 return;
3587 }
3588 #endif /* PIM */
3589