ip_output.c revision 1.156 1 1.156 christos /* $NetBSD: ip_output.c,v 1.156 2005/09/11 21:57:24 christos Exp $ */
2 1.61 itojun
3 1.61 itojun /*
4 1.61 itojun * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 1.61 itojun * All rights reserved.
6 1.97 itojun *
7 1.61 itojun * Redistribution and use in source and binary forms, with or without
8 1.61 itojun * modification, are permitted provided that the following conditions
9 1.61 itojun * are met:
10 1.61 itojun * 1. Redistributions of source code must retain the above copyright
11 1.61 itojun * notice, this list of conditions and the following disclaimer.
12 1.61 itojun * 2. Redistributions in binary form must reproduce the above copyright
13 1.61 itojun * notice, this list of conditions and the following disclaimer in the
14 1.61 itojun * documentation and/or other materials provided with the distribution.
15 1.61 itojun * 3. Neither the name of the project nor the names of its contributors
16 1.61 itojun * may be used to endorse or promote products derived from this software
17 1.61 itojun * without specific prior written permission.
18 1.97 itojun *
19 1.61 itojun * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 1.61 itojun * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.61 itojun * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.61 itojun * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 1.61 itojun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.61 itojun * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.61 itojun * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.61 itojun * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.61 itojun * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.61 itojun * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.61 itojun * SUCH DAMAGE.
30 1.61 itojun */
31 1.54 thorpej
32 1.54 thorpej /*-
33 1.54 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 1.54 thorpej * All rights reserved.
35 1.54 thorpej *
36 1.54 thorpej * This code is derived from software contributed to The NetBSD Foundation
37 1.54 thorpej * by Public Access Networks Corporation ("Panix"). It was developed under
38 1.54 thorpej * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 1.54 thorpej *
40 1.54 thorpej * Redistribution and use in source and binary forms, with or without
41 1.54 thorpej * modification, are permitted provided that the following conditions
42 1.54 thorpej * are met:
43 1.54 thorpej * 1. Redistributions of source code must retain the above copyright
44 1.54 thorpej * notice, this list of conditions and the following disclaimer.
45 1.54 thorpej * 2. Redistributions in binary form must reproduce the above copyright
46 1.54 thorpej * notice, this list of conditions and the following disclaimer in the
47 1.54 thorpej * documentation and/or other materials provided with the distribution.
48 1.54 thorpej * 3. All advertising materials mentioning features or use of this software
49 1.54 thorpej * must display the following acknowledgement:
50 1.54 thorpej * This product includes software developed by the NetBSD
51 1.54 thorpej * Foundation, Inc. and its contributors.
52 1.54 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
53 1.54 thorpej * contributors may be used to endorse or promote products derived
54 1.54 thorpej * from this software without specific prior written permission.
55 1.54 thorpej *
56 1.54 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 1.54 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 1.54 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 1.54 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 1.54 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 1.54 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 1.54 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 1.54 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 1.54 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 1.54 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 1.54 thorpej * POSSIBILITY OF SUCH DAMAGE.
67 1.54 thorpej */
68 1.19 cgd
69 1.1 cgd /*
70 1.18 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 1.18 mycroft * The Regents of the University of California. All rights reserved.
72 1.1 cgd *
73 1.1 cgd * Redistribution and use in source and binary forms, with or without
74 1.1 cgd * modification, are permitted provided that the following conditions
75 1.1 cgd * are met:
76 1.1 cgd * 1. Redistributions of source code must retain the above copyright
77 1.1 cgd * notice, this list of conditions and the following disclaimer.
78 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
79 1.1 cgd * notice, this list of conditions and the following disclaimer in the
80 1.1 cgd * documentation and/or other materials provided with the distribution.
81 1.108 agc * 3. Neither the name of the University nor the names of its contributors
82 1.1 cgd * may be used to endorse or promote products derived from this software
83 1.1 cgd * without specific prior written permission.
84 1.1 cgd *
85 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 1.1 cgd * SUCH DAMAGE.
96 1.1 cgd *
97 1.19 cgd * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 1.1 cgd */
99 1.89 lukem
100 1.89 lukem #include <sys/cdefs.h>
101 1.156 christos __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.156 2005/09/11 21:57:24 christos Exp $");
102 1.42 scottr
103 1.50 mrg #include "opt_pfil_hooks.h"
104 1.128 jonathan #include "opt_inet.h"
105 1.62 thorpej #include "opt_ipsec.h"
106 1.42 scottr #include "opt_mrouting.h"
107 1.1 cgd
108 1.8 mycroft #include <sys/param.h>
109 1.8 mycroft #include <sys/malloc.h>
110 1.8 mycroft #include <sys/mbuf.h>
111 1.8 mycroft #include <sys/errno.h>
112 1.8 mycroft #include <sys/protosw.h>
113 1.8 mycroft #include <sys/socket.h>
114 1.8 mycroft #include <sys/socketvar.h>
115 1.118 itojun #ifdef FAST_IPSEC
116 1.118 itojun #include <sys/domain.h>
117 1.118 itojun #endif
118 1.28 christos #include <sys/systm.h>
119 1.61 itojun #include <sys/proc.h>
120 1.61 itojun
121 1.8 mycroft #include <net/if.h>
122 1.8 mycroft #include <net/route.h>
123 1.38 mrg #include <net/pfil.h>
124 1.1 cgd
125 1.8 mycroft #include <netinet/in.h>
126 1.8 mycroft #include <netinet/in_systm.h>
127 1.8 mycroft #include <netinet/ip.h>
128 1.8 mycroft #include <netinet/in_pcb.h>
129 1.8 mycroft #include <netinet/in_var.h>
130 1.8 mycroft #include <netinet/ip_var.h>
131 1.152 yamt #include <netinet/in_offload.h>
132 1.72 jdolecek
133 1.72 jdolecek #ifdef MROUTING
134 1.72 jdolecek #include <netinet/ip_mroute.h>
135 1.72 jdolecek #endif
136 1.32 mrg
137 1.28 christos #include <machine/stdarg.h>
138 1.28 christos
139 1.61 itojun #ifdef IPSEC
140 1.61 itojun #include <netinet6/ipsec.h>
141 1.61 itojun #include <netkey/key.h>
142 1.61 itojun #include <netkey/key_debug.h>
143 1.141 manu #ifdef IPSEC_NAT_T
144 1.141 manu #include <netinet/udp.h>
145 1.141 manu #endif
146 1.61 itojun #endif /*IPSEC*/
147 1.61 itojun
148 1.109 jonathan #ifdef FAST_IPSEC
149 1.109 jonathan #include <netipsec/ipsec.h>
150 1.109 jonathan #include <netipsec/key.h>
151 1.109 jonathan #include <netipsec/xform.h>
152 1.109 jonathan #endif /* FAST_IPSEC*/
153 1.109 jonathan
154 1.139 perry static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 1.139 perry static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 1.139 perry static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
157 1.156 christos static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
158 1.1 cgd
159 1.78 thorpej #ifdef PFIL_HOOKS
160 1.78 thorpej extern struct pfil_head inet_pfil_hook; /* XXX */
161 1.78 thorpej #endif
162 1.78 thorpej
163 1.151 yamt int ip_do_loopback_cksum = 0;
164 1.151 yamt
165 1.151 yamt #define IN_NEED_CHECKSUM(ifp, csum_flags) \
166 1.151 yamt (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
167 1.151 yamt (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
168 1.151 yamt (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
169 1.151 yamt (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
170 1.151 yamt
171 1.152 yamt struct ip_tso_output_args {
172 1.152 yamt struct ifnet *ifp;
173 1.152 yamt struct sockaddr *sa;
174 1.152 yamt struct rtentry *rt;
175 1.152 yamt };
176 1.152 yamt
177 1.152 yamt static int ip_tso_output_callback(void *, struct mbuf *);
178 1.152 yamt static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
179 1.152 yamt struct rtentry *);
180 1.152 yamt
181 1.152 yamt static int
182 1.152 yamt ip_tso_output_callback(void *vp, struct mbuf *m)
183 1.152 yamt {
184 1.152 yamt struct ip_tso_output_args *args = vp;
185 1.152 yamt struct ifnet *ifp = args->ifp;
186 1.152 yamt
187 1.152 yamt return (*ifp->if_output)(ifp, m, args->sa, args->rt);
188 1.152 yamt }
189 1.152 yamt
190 1.152 yamt static int
191 1.152 yamt ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
192 1.152 yamt struct rtentry *rt)
193 1.152 yamt {
194 1.152 yamt struct ip_tso_output_args args;
195 1.152 yamt
196 1.152 yamt args.ifp = ifp;
197 1.152 yamt args.sa = sa;
198 1.152 yamt args.rt = rt;
199 1.152 yamt
200 1.152 yamt return tcp4_segment(m, ip_tso_output_callback, &args);
201 1.152 yamt }
202 1.152 yamt
203 1.1 cgd /*
204 1.1 cgd * IP output. The packet in mbuf chain m contains a skeletal IP
205 1.1 cgd * header (with len, off, ttl, proto, tos, src, dst).
206 1.1 cgd * The mbuf chain containing the packet will be freed.
207 1.1 cgd * The mbuf opt, if present, will not be freed.
208 1.1 cgd */
209 1.12 mycroft int
210 1.28 christos ip_output(struct mbuf *m0, ...)
211 1.1 cgd {
212 1.110 itojun struct ip *ip;
213 1.71 augustss struct ifnet *ifp;
214 1.71 augustss struct mbuf *m = m0;
215 1.71 augustss int hlen = sizeof (struct ip);
216 1.110 itojun int len, error = 0;
217 1.1 cgd struct route iproute;
218 1.1 cgd struct sockaddr_in *dst;
219 1.1 cgd struct in_ifaddr *ia;
220 1.28 christos struct mbuf *opt;
221 1.28 christos struct route *ro;
222 1.86 thorpej int flags, sw_csum;
223 1.40 matt int *mtu_p;
224 1.96 itojun u_long mtu;
225 1.28 christos struct ip_moptions *imo;
226 1.116 itojun struct socket *so;
227 1.28 christos va_list ap;
228 1.61 itojun #ifdef IPSEC
229 1.61 itojun struct secpolicy *sp = NULL;
230 1.141 manu #ifdef IPSEC_NAT_T
231 1.141 manu int natt_frag = 0;
232 1.141 manu #endif
233 1.61 itojun #endif /*IPSEC*/
234 1.109 jonathan #ifdef FAST_IPSEC
235 1.116 itojun struct inpcb *inp;
236 1.109 jonathan struct m_tag *mtag;
237 1.109 jonathan struct secpolicy *sp = NULL;
238 1.109 jonathan struct tdb_ident *tdbi;
239 1.109 jonathan int s;
240 1.109 jonathan #endif
241 1.79 thorpej u_int16_t ip_len;
242 1.28 christos
243 1.102 darrenr len = 0;
244 1.28 christos va_start(ap, m0);
245 1.28 christos opt = va_arg(ap, struct mbuf *);
246 1.28 christos ro = va_arg(ap, struct route *);
247 1.28 christos flags = va_arg(ap, int);
248 1.28 christos imo = va_arg(ap, struct ip_moptions *);
249 1.116 itojun so = va_arg(ap, struct socket *);
250 1.40 matt if (flags & IP_RETURNMTU)
251 1.40 matt mtu_p = va_arg(ap, int *);
252 1.40 matt else
253 1.40 matt mtu_p = NULL;
254 1.28 christos va_end(ap);
255 1.28 christos
256 1.103 matt MCLAIM(m, &ip_tx_mowner);
257 1.116 itojun #ifdef FAST_IPSEC
258 1.121 jonathan if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
259 1.116 itojun inp = (struct inpcb *)so->so_pcb;
260 1.116 itojun else
261 1.116 itojun inp = NULL;
262 1.130 thorpej #endif /* FAST_IPSEC */
263 1.61 itojun
264 1.1 cgd #ifdef DIAGNOSTIC
265 1.1 cgd if ((m->m_flags & M_PKTHDR) == 0)
266 1.1 cgd panic("ip_output no HDR");
267 1.1 cgd #endif
268 1.1 cgd if (opt) {
269 1.1 cgd m = ip_insertoptions(m, opt, &len);
270 1.102 darrenr if (len >= sizeof(struct ip))
271 1.102 darrenr hlen = len;
272 1.1 cgd }
273 1.1 cgd ip = mtod(m, struct ip *);
274 1.1 cgd /*
275 1.1 cgd * Fill in IP header.
276 1.1 cgd */
277 1.18 mycroft if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
278 1.1 cgd ip->ip_v = IPVERSION;
279 1.100 itojun ip->ip_off = htons(0);
280 1.150 yamt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
281 1.150 yamt ip->ip_id = ip_newid();
282 1.150 yamt } else {
283 1.150 yamt
284 1.150 yamt /*
285 1.150 yamt * TSO capable interfaces (typically?) increment
286 1.150 yamt * ip_id for each segment.
287 1.150 yamt * "allocate" enough ids here to increase the chance
288 1.150 yamt * for them to be unique.
289 1.150 yamt *
290 1.150 yamt * note that the following calculation is not
291 1.150 yamt * needed to be precise. wasting some ip_id is fine.
292 1.150 yamt */
293 1.150 yamt
294 1.150 yamt unsigned int segsz = m->m_pkthdr.segsz;
295 1.150 yamt unsigned int datasz = ntohs(ip->ip_len) - hlen;
296 1.150 yamt unsigned int num = howmany(datasz, segsz);
297 1.150 yamt
298 1.150 yamt ip->ip_id = ip_newid_range(num);
299 1.150 yamt }
300 1.1 cgd ip->ip_hl = hlen >> 2;
301 1.18 mycroft ipstat.ips_localout++;
302 1.1 cgd } else {
303 1.1 cgd hlen = ip->ip_hl << 2;
304 1.1 cgd }
305 1.1 cgd /*
306 1.1 cgd * Route packet.
307 1.1 cgd */
308 1.1 cgd if (ro == 0) {
309 1.1 cgd ro = &iproute;
310 1.1 cgd bzero((caddr_t)ro, sizeof (*ro));
311 1.1 cgd }
312 1.24 mycroft dst = satosin(&ro->ro_dst);
313 1.1 cgd /*
314 1.1 cgd * If there is a cached route,
315 1.1 cgd * check that it is to the same destination
316 1.1 cgd * and is still up. If not, free it and try again.
317 1.92 itojun * The address family should also be checked in case of sharing the
318 1.92 itojun * cache with IPv6.
319 1.1 cgd */
320 1.1 cgd if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
321 1.92 itojun dst->sin_family != AF_INET ||
322 1.31 mycroft !in_hosteq(dst->sin_addr, ip->ip_dst))) {
323 1.1 cgd RTFREE(ro->ro_rt);
324 1.1 cgd ro->ro_rt = (struct rtentry *)0;
325 1.1 cgd }
326 1.1 cgd if (ro->ro_rt == 0) {
327 1.92 itojun bzero(dst, sizeof(*dst));
328 1.1 cgd dst->sin_family = AF_INET;
329 1.1 cgd dst->sin_len = sizeof(*dst);
330 1.1 cgd dst->sin_addr = ip->ip_dst;
331 1.1 cgd }
332 1.1 cgd /*
333 1.1 cgd * If routing to interface only,
334 1.1 cgd * short circuit routing lookup.
335 1.1 cgd */
336 1.1 cgd if (flags & IP_ROUTETOIF) {
337 1.29 mrg if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
338 1.18 mycroft ipstat.ips_noroute++;
339 1.1 cgd error = ENETUNREACH;
340 1.1 cgd goto bad;
341 1.1 cgd }
342 1.1 cgd ifp = ia->ia_ifp;
343 1.48 matt mtu = ifp->if_mtu;
344 1.18 mycroft ip->ip_ttl = 1;
345 1.98 itojun } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
346 1.98 itojun ip->ip_dst.s_addr == INADDR_BROADCAST) &&
347 1.98 itojun imo != NULL && imo->imo_multicast_ifp != NULL) {
348 1.98 itojun ifp = imo->imo_multicast_ifp;
349 1.98 itojun mtu = ifp->if_mtu;
350 1.99 itojun IFP_TO_IA(ifp, ia);
351 1.1 cgd } else {
352 1.1 cgd if (ro->ro_rt == 0)
353 1.1 cgd rtalloc(ro);
354 1.1 cgd if (ro->ro_rt == 0) {
355 1.18 mycroft ipstat.ips_noroute++;
356 1.1 cgd error = EHOSTUNREACH;
357 1.1 cgd goto bad;
358 1.1 cgd }
359 1.18 mycroft ia = ifatoia(ro->ro_rt->rt_ifa);
360 1.1 cgd ifp = ro->ro_rt->rt_ifp;
361 1.48 matt if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
362 1.48 matt mtu = ifp->if_mtu;
363 1.1 cgd ro->ro_rt->rt_use++;
364 1.1 cgd if (ro->ro_rt->rt_flags & RTF_GATEWAY)
365 1.24 mycroft dst = satosin(ro->ro_rt->rt_gateway);
366 1.1 cgd }
367 1.64 is if (IN_MULTICAST(ip->ip_dst.s_addr) ||
368 1.64 is (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
369 1.5 hpeyerl struct in_multi *inm;
370 1.5 hpeyerl
371 1.64 is m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
372 1.64 is M_BCAST : M_MCAST;
373 1.5 hpeyerl /*
374 1.5 hpeyerl * IP destination address is multicast. Make sure "dst"
375 1.5 hpeyerl * still points to the address in "ro". (It may have been
376 1.5 hpeyerl * changed to point to a gateway address, above.)
377 1.5 hpeyerl */
378 1.24 mycroft dst = satosin(&ro->ro_dst);
379 1.5 hpeyerl /*
380 1.5 hpeyerl * See if the caller provided any multicast options
381 1.5 hpeyerl */
382 1.98 itojun if (imo != NULL)
383 1.5 hpeyerl ip->ip_ttl = imo->imo_multicast_ttl;
384 1.98 itojun else
385 1.5 hpeyerl ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
386 1.98 itojun
387 1.98 itojun /*
388 1.98 itojun * if we don't know the outgoing ifp yet, we can't generate
389 1.98 itojun * output
390 1.98 itojun */
391 1.98 itojun if (!ifp) {
392 1.98 itojun ipstat.ips_noroute++;
393 1.98 itojun error = ENETUNREACH;
394 1.98 itojun goto bad;
395 1.98 itojun }
396 1.98 itojun
397 1.5 hpeyerl /*
398 1.95 thorpej * If the packet is multicast or broadcast, confirm that
399 1.95 thorpej * the outgoing interface can transmit it.
400 1.5 hpeyerl */
401 1.64 is if (((m->m_flags & M_MCAST) &&
402 1.64 is (ifp->if_flags & IFF_MULTICAST) == 0) ||
403 1.97 itojun ((m->m_flags & M_BCAST) &&
404 1.95 thorpej (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
405 1.18 mycroft ipstat.ips_noroute++;
406 1.5 hpeyerl error = ENETUNREACH;
407 1.5 hpeyerl goto bad;
408 1.5 hpeyerl }
409 1.5 hpeyerl /*
410 1.44 tls * If source address not specified yet, use an address
411 1.5 hpeyerl * of outgoing interface.
412 1.5 hpeyerl */
413 1.31 mycroft if (in_nullhost(ip->ip_src)) {
414 1.153 christos struct in_ifaddr *xia;
415 1.5 hpeyerl
416 1.153 christos IFP_TO_IA(ifp, xia);
417 1.153 christos if (!xia) {
418 1.91 itojun error = EADDRNOTAVAIL;
419 1.91 itojun goto bad;
420 1.91 itojun }
421 1.153 christos ip->ip_src = xia->ia_addr.sin_addr;
422 1.5 hpeyerl }
423 1.5 hpeyerl
424 1.5 hpeyerl IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
425 1.5 hpeyerl if (inm != NULL &&
426 1.5 hpeyerl (imo == NULL || imo->imo_multicast_loop)) {
427 1.5 hpeyerl /*
428 1.11 mycroft * If we belong to the destination multicast group
429 1.5 hpeyerl * on the outgoing interface, and the caller did not
430 1.5 hpeyerl * forbid loopback, loop back a copy.
431 1.5 hpeyerl */
432 1.5 hpeyerl ip_mloopback(ifp, m, dst);
433 1.5 hpeyerl }
434 1.5 hpeyerl #ifdef MROUTING
435 1.18 mycroft else {
436 1.5 hpeyerl /*
437 1.5 hpeyerl * If we are acting as a multicast router, perform
438 1.5 hpeyerl * multicast forwarding as if the packet had just
439 1.5 hpeyerl * arrived on the interface to which we are about
440 1.5 hpeyerl * to send. The multicast forwarding function
441 1.5 hpeyerl * recursively calls this function, using the
442 1.5 hpeyerl * IP_FORWARDING flag to prevent infinite recursion.
443 1.5 hpeyerl *
444 1.5 hpeyerl * Multicasts that are looped back by ip_mloopback(),
445 1.5 hpeyerl * above, will be forwarded by the ip_input() routine,
446 1.5 hpeyerl * if necessary.
447 1.5 hpeyerl */
448 1.18 mycroft extern struct socket *ip_mrouter;
449 1.22 cgd
450 1.18 mycroft if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
451 1.18 mycroft if (ip_mforward(m, ifp) != 0) {
452 1.18 mycroft m_freem(m);
453 1.18 mycroft goto done;
454 1.18 mycroft }
455 1.5 hpeyerl }
456 1.5 hpeyerl }
457 1.5 hpeyerl #endif
458 1.5 hpeyerl /*
459 1.5 hpeyerl * Multicasts with a time-to-live of zero may be looped-
460 1.5 hpeyerl * back, above, but must not be transmitted on a network.
461 1.5 hpeyerl * Also, multicasts addressed to the loopback interface
462 1.5 hpeyerl * are not sent -- the above call to ip_mloopback() will
463 1.5 hpeyerl * loop back a copy if this host actually belongs to the
464 1.5 hpeyerl * destination group on the loopback interface.
465 1.5 hpeyerl */
466 1.20 mycroft if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
467 1.5 hpeyerl m_freem(m);
468 1.5 hpeyerl goto done;
469 1.5 hpeyerl }
470 1.5 hpeyerl
471 1.5 hpeyerl goto sendit;
472 1.5 hpeyerl }
473 1.1 cgd #ifndef notdef
474 1.1 cgd /*
475 1.1 cgd * If source address not specified yet, use address
476 1.1 cgd * of outgoing interface.
477 1.1 cgd */
478 1.31 mycroft if (in_nullhost(ip->ip_src))
479 1.25 mycroft ip->ip_src = ia->ia_addr.sin_addr;
480 1.1 cgd #endif
481 1.59 hwr
482 1.59 hwr /*
483 1.97 itojun * packets with Class-D address as source are not valid per
484 1.59 hwr * RFC 1112
485 1.59 hwr */
486 1.59 hwr if (IN_MULTICAST(ip->ip_src.s_addr)) {
487 1.59 hwr ipstat.ips_odropped++;
488 1.59 hwr error = EADDRNOTAVAIL;
489 1.59 hwr goto bad;
490 1.59 hwr }
491 1.59 hwr
492 1.1 cgd /*
493 1.1 cgd * Look for broadcast address and
494 1.1 cgd * and verify user is allowed to send
495 1.1 cgd * such a packet.
496 1.1 cgd */
497 1.18 mycroft if (in_broadcast(dst->sin_addr, ifp)) {
498 1.1 cgd if ((ifp->if_flags & IFF_BROADCAST) == 0) {
499 1.1 cgd error = EADDRNOTAVAIL;
500 1.1 cgd goto bad;
501 1.1 cgd }
502 1.1 cgd if ((flags & IP_ALLOWBROADCAST) == 0) {
503 1.1 cgd error = EACCES;
504 1.1 cgd goto bad;
505 1.1 cgd }
506 1.1 cgd /* don't allow broadcast messages to be fragmented */
507 1.100 itojun if (ntohs(ip->ip_len) > ifp->if_mtu) {
508 1.1 cgd error = EMSGSIZE;
509 1.1 cgd goto bad;
510 1.1 cgd }
511 1.1 cgd m->m_flags |= M_BCAST;
512 1.18 mycroft } else
513 1.18 mycroft m->m_flags &= ~M_BCAST;
514 1.18 mycroft
515 1.60 mrg sendit:
516 1.76 thorpej /*
517 1.76 thorpej * If we're doing Path MTU Discovery, we need to set DF unless
518 1.76 thorpej * the route's MTU is locked.
519 1.76 thorpej */
520 1.76 thorpej if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
521 1.76 thorpej (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
522 1.100 itojun ip->ip_off |= htons(IP_DF);
523 1.76 thorpej
524 1.100 itojun /* Remember the current ip_len */
525 1.100 itojun ip_len = ntohs(ip->ip_len);
526 1.78 thorpej
527 1.61 itojun #ifdef IPSEC
528 1.61 itojun /* get SP for this packet */
529 1.61 itojun if (so == NULL)
530 1.110 itojun sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
531 1.110 itojun flags, &error);
532 1.130 thorpej else {
533 1.130 thorpej if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
534 1.130 thorpej IPSEC_DIR_OUTBOUND))
535 1.130 thorpej goto skip_ipsec;
536 1.66 itojun sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
537 1.130 thorpej }
538 1.61 itojun
539 1.61 itojun if (sp == NULL) {
540 1.61 itojun ipsecstat.out_inval++;
541 1.61 itojun goto bad;
542 1.61 itojun }
543 1.61 itojun
544 1.61 itojun error = 0;
545 1.61 itojun
546 1.61 itojun /* check policy */
547 1.61 itojun switch (sp->policy) {
548 1.61 itojun case IPSEC_POLICY_DISCARD:
549 1.61 itojun /*
550 1.61 itojun * This packet is just discarded.
551 1.61 itojun */
552 1.61 itojun ipsecstat.out_polvio++;
553 1.61 itojun goto bad;
554 1.61 itojun
555 1.61 itojun case IPSEC_POLICY_BYPASS:
556 1.61 itojun case IPSEC_POLICY_NONE:
557 1.61 itojun /* no need to do IPsec. */
558 1.61 itojun goto skip_ipsec;
559 1.97 itojun
560 1.61 itojun case IPSEC_POLICY_IPSEC:
561 1.61 itojun if (sp->req == NULL) {
562 1.61 itojun /* XXX should be panic ? */
563 1.61 itojun printf("ip_output: No IPsec request specified.\n");
564 1.61 itojun error = EINVAL;
565 1.61 itojun goto bad;
566 1.61 itojun }
567 1.61 itojun break;
568 1.61 itojun
569 1.61 itojun case IPSEC_POLICY_ENTRUST:
570 1.61 itojun default:
571 1.61 itojun printf("ip_output: Invalid policy found. %d\n", sp->policy);
572 1.61 itojun }
573 1.61 itojun
574 1.141 manu #ifdef IPSEC_NAT_T
575 1.141 manu /*
576 1.144 perry * NAT-T ESP fragmentation: don't do IPSec processing now,
577 1.144 perry * we'll do it on each fragmented packet.
578 1.141 manu */
579 1.141 manu if (sp->req->sav &&
580 1.141 manu ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
581 1.141 manu (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
582 1.141 manu if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
583 1.141 manu natt_frag = 1;
584 1.141 manu mtu = sp->req->sav->esp_frag;
585 1.141 manu goto skip_ipsec;
586 1.141 manu }
587 1.141 manu }
588 1.141 manu #endif /* IPSEC_NAT_T */
589 1.141 manu
590 1.78 thorpej /*
591 1.78 thorpej * ipsec4_output() expects ip_len and ip_off in network
592 1.78 thorpej * order. They have been set to network order above.
593 1.78 thorpej */
594 1.61 itojun
595 1.61 itojun {
596 1.61 itojun struct ipsec_output_state state;
597 1.61 itojun bzero(&state, sizeof(state));
598 1.61 itojun state.m = m;
599 1.61 itojun if (flags & IP_ROUTETOIF) {
600 1.61 itojun state.ro = &iproute;
601 1.61 itojun bzero(&iproute, sizeof(iproute));
602 1.61 itojun } else
603 1.61 itojun state.ro = ro;
604 1.61 itojun state.dst = (struct sockaddr *)dst;
605 1.61 itojun
606 1.86 thorpej /*
607 1.86 thorpej * We can't defer the checksum of payload data if
608 1.86 thorpej * we're about to encrypt/authenticate it.
609 1.86 thorpej *
610 1.86 thorpej * XXX When we support crypto offloading functions of
611 1.86 thorpej * XXX network interfaces, we need to reconsider this,
612 1.86 thorpej * XXX since it's likely that they'll support checksumming,
613 1.86 thorpej * XXX as well.
614 1.86 thorpej */
615 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
616 1.86 thorpej in_delayed_cksum(m);
617 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
618 1.86 thorpej }
619 1.86 thorpej
620 1.61 itojun error = ipsec4_output(&state, sp, flags);
621 1.61 itojun
622 1.61 itojun m = state.m;
623 1.61 itojun if (flags & IP_ROUTETOIF) {
624 1.61 itojun /*
625 1.61 itojun * if we have tunnel mode SA, we may need to ignore
626 1.61 itojun * IP_ROUTETOIF.
627 1.61 itojun */
628 1.61 itojun if (state.ro != &iproute || state.ro->ro_rt != NULL) {
629 1.61 itojun flags &= ~IP_ROUTETOIF;
630 1.61 itojun ro = state.ro;
631 1.61 itojun }
632 1.61 itojun } else
633 1.61 itojun ro = state.ro;
634 1.61 itojun dst = (struct sockaddr_in *)state.dst;
635 1.61 itojun if (error) {
636 1.61 itojun /* mbuf is already reclaimed in ipsec4_output. */
637 1.61 itojun m0 = NULL;
638 1.61 itojun switch (error) {
639 1.61 itojun case EHOSTUNREACH:
640 1.61 itojun case ENETUNREACH:
641 1.61 itojun case EMSGSIZE:
642 1.61 itojun case ENOBUFS:
643 1.61 itojun case ENOMEM:
644 1.61 itojun break;
645 1.61 itojun default:
646 1.61 itojun printf("ip4_output (ipsec): error code %d\n", error);
647 1.61 itojun /*fall through*/
648 1.61 itojun case ENOENT:
649 1.61 itojun /* don't show these error codes to the user */
650 1.61 itojun error = 0;
651 1.61 itojun break;
652 1.61 itojun }
653 1.61 itojun goto bad;
654 1.61 itojun }
655 1.61 itojun
656 1.61 itojun /* be sure to update variables that are affected by ipsec4_output() */
657 1.61 itojun ip = mtod(m, struct ip *);
658 1.61 itojun hlen = ip->ip_hl << 2;
659 1.78 thorpej ip_len = ntohs(ip->ip_len);
660 1.78 thorpej
661 1.61 itojun if (ro->ro_rt == NULL) {
662 1.61 itojun if ((flags & IP_ROUTETOIF) == 0) {
663 1.61 itojun printf("ip_output: "
664 1.61 itojun "can't update route after IPsec processing\n");
665 1.61 itojun error = EHOSTUNREACH; /*XXX*/
666 1.61 itojun goto bad;
667 1.61 itojun }
668 1.61 itojun } else {
669 1.61 itojun /* nobody uses ia beyond here */
670 1.133 itojun if (state.encap) {
671 1.90 itojun ifp = ro->ro_rt->rt_ifp;
672 1.133 itojun if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
673 1.133 itojun mtu = ifp->if_mtu;
674 1.133 itojun }
675 1.61 itojun }
676 1.90 itojun }
677 1.61 itojun skip_ipsec:
678 1.61 itojun #endif /*IPSEC*/
679 1.109 jonathan #ifdef FAST_IPSEC
680 1.109 jonathan /*
681 1.109 jonathan * Check the security policy (SP) for the packet and, if
682 1.109 jonathan * required, do IPsec-related processing. There are two
683 1.109 jonathan * cases here; the first time a packet is sent through
684 1.109 jonathan * it will be untagged and handled by ipsec4_checkpolicy.
685 1.109 jonathan * If the packet is resubmitted to ip_output (e.g. after
686 1.109 jonathan * AH, ESP, etc. processing), there will be a tag to bypass
687 1.109 jonathan * the lookup and related policy checking.
688 1.109 jonathan */
689 1.109 jonathan mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
690 1.109 jonathan s = splsoftnet();
691 1.109 jonathan if (mtag != NULL) {
692 1.109 jonathan tdbi = (struct tdb_ident *)(mtag + 1);
693 1.109 jonathan sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
694 1.109 jonathan if (sp == NULL)
695 1.109 jonathan error = -EINVAL; /* force silent drop */
696 1.109 jonathan m_tag_delete(m, mtag);
697 1.109 jonathan } else {
698 1.130 thorpej if (inp != NULL &&
699 1.130 thorpej IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
700 1.130 thorpej goto spd_done;
701 1.109 jonathan sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
702 1.109 jonathan &error, inp);
703 1.109 jonathan }
704 1.109 jonathan /*
705 1.109 jonathan * There are four return cases:
706 1.109 jonathan * sp != NULL apply IPsec policy
707 1.109 jonathan * sp == NULL, error == 0 no IPsec handling needed
708 1.109 jonathan * sp == NULL, error == -EINVAL discard packet w/o error
709 1.109 jonathan * sp == NULL, error != 0 discard packet, report error
710 1.109 jonathan */
711 1.109 jonathan if (sp != NULL) {
712 1.109 jonathan /* Loop detection, check if ipsec processing already done */
713 1.109 jonathan IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
714 1.109 jonathan for (mtag = m_tag_first(m); mtag != NULL;
715 1.109 jonathan mtag = m_tag_next(m, mtag)) {
716 1.109 jonathan #ifdef MTAG_ABI_COMPAT
717 1.109 jonathan if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
718 1.109 jonathan continue;
719 1.109 jonathan #endif
720 1.109 jonathan if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
721 1.109 jonathan mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
722 1.109 jonathan continue;
723 1.109 jonathan /*
724 1.109 jonathan * Check if policy has an SA associated with it.
725 1.109 jonathan * This can happen when an SP has yet to acquire
726 1.109 jonathan * an SA; e.g. on first reference. If it occurs,
727 1.109 jonathan * then we let ipsec4_process_packet do its thing.
728 1.109 jonathan */
729 1.109 jonathan if (sp->req->sav == NULL)
730 1.109 jonathan break;
731 1.109 jonathan tdbi = (struct tdb_ident *)(mtag + 1);
732 1.109 jonathan if (tdbi->spi == sp->req->sav->spi &&
733 1.109 jonathan tdbi->proto == sp->req->sav->sah->saidx.proto &&
734 1.109 jonathan bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
735 1.109 jonathan sizeof (union sockaddr_union)) == 0) {
736 1.109 jonathan /*
737 1.109 jonathan * No IPsec processing is needed, free
738 1.109 jonathan * reference to SP.
739 1.109 jonathan *
740 1.109 jonathan * NB: null pointer to avoid free at
741 1.109 jonathan * done: below.
742 1.109 jonathan */
743 1.109 jonathan KEY_FREESP(&sp), sp = NULL;
744 1.109 jonathan splx(s);
745 1.109 jonathan goto spd_done;
746 1.109 jonathan }
747 1.109 jonathan }
748 1.109 jonathan
749 1.109 jonathan /*
750 1.109 jonathan * Do delayed checksums now because we send before
751 1.109 jonathan * this is done in the normal processing path.
752 1.109 jonathan */
753 1.109 jonathan if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
754 1.109 jonathan in_delayed_cksum(m);
755 1.109 jonathan m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
756 1.109 jonathan }
757 1.109 jonathan
758 1.109 jonathan #ifdef __FreeBSD__
759 1.109 jonathan ip->ip_len = htons(ip->ip_len);
760 1.109 jonathan ip->ip_off = htons(ip->ip_off);
761 1.109 jonathan #endif
762 1.109 jonathan
763 1.109 jonathan /* NB: callee frees mbuf */
764 1.109 jonathan error = ipsec4_process_packet(m, sp->req, flags, 0);
765 1.109 jonathan /*
766 1.109 jonathan * Preserve KAME behaviour: ENOENT can be returned
767 1.109 jonathan * when an SA acquire is in progress. Don't propagate
768 1.109 jonathan * this to user-level; it confuses applications.
769 1.109 jonathan *
770 1.109 jonathan * XXX this will go away when the SADB is redone.
771 1.109 jonathan */
772 1.109 jonathan if (error == ENOENT)
773 1.109 jonathan error = 0;
774 1.109 jonathan splx(s);
775 1.109 jonathan goto done;
776 1.109 jonathan } else {
777 1.109 jonathan splx(s);
778 1.109 jonathan
779 1.109 jonathan if (error != 0) {
780 1.109 jonathan /*
781 1.109 jonathan * Hack: -EINVAL is used to signal that a packet
782 1.109 jonathan * should be silently discarded. This is typically
783 1.109 jonathan * because we asked key management for an SA and
784 1.109 jonathan * it was delayed (e.g. kicked up to IKE).
785 1.109 jonathan */
786 1.109 jonathan if (error == -EINVAL)
787 1.109 jonathan error = 0;
788 1.109 jonathan goto bad;
789 1.109 jonathan } else {
790 1.109 jonathan /* No IPsec processing for this packet. */
791 1.109 jonathan }
792 1.109 jonathan #ifdef notyet
793 1.109 jonathan /*
794 1.109 jonathan * If deferred crypto processing is needed, check that
795 1.109 jonathan * the interface supports it.
796 1.144 perry */
797 1.109 jonathan mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
798 1.109 jonathan if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
799 1.109 jonathan /* notify IPsec to do its own crypto */
800 1.109 jonathan ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
801 1.109 jonathan error = EHOSTUNREACH;
802 1.109 jonathan goto bad;
803 1.109 jonathan }
804 1.109 jonathan #endif
805 1.109 jonathan }
806 1.109 jonathan spd_done:
807 1.109 jonathan #endif /* FAST_IPSEC */
808 1.61 itojun
809 1.82 itojun #ifdef PFIL_HOOKS
810 1.82 itojun /*
811 1.82 itojun * Run through list of hooks for output packets.
812 1.82 itojun */
813 1.106 itojun if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
814 1.82 itojun goto done;
815 1.82 itojun if (m == NULL)
816 1.82 itojun goto done;
817 1.82 itojun
818 1.82 itojun ip = mtod(m, struct ip *);
819 1.106 itojun hlen = ip->ip_hl << 2;
820 1.82 itojun #endif /* PFIL_HOOKS */
821 1.82 itojun
822 1.146 matt m->m_pkthdr.csum_data |= hlen << 16;
823 1.146 matt
824 1.136 thorpej #if IFA_STATS
825 1.136 thorpej /*
826 1.136 thorpej * search for the source address structure to
827 1.136 thorpej * maintain output statistics.
828 1.136 thorpej */
829 1.136 thorpej INADDR_TO_IA(ip->ip_src, ia);
830 1.136 thorpej #endif
831 1.136 thorpej
832 1.138 thorpej /* Maybe skip checksums on loopback interfaces. */
833 1.151 yamt if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
834 1.138 thorpej m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
835 1.151 yamt }
836 1.104 yamt sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
837 1.1 cgd /*
838 1.147 matt * If small enough for mtu of path, or if using TCP segmentation
839 1.147 matt * offload, can just send directly.
840 1.1 cgd */
841 1.147 matt if (ip_len <= mtu ||
842 1.147 matt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
843 1.63 itojun #if IFA_STATS
844 1.63 itojun if (ia)
845 1.78 thorpej ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
846 1.63 itojun #endif
847 1.86 thorpej /*
848 1.86 thorpej * Always initialize the sum to 0! Some HW assisted
849 1.86 thorpej * checksumming requires this.
850 1.86 thorpej */
851 1.1 cgd ip->ip_sum = 0;
852 1.86 thorpej
853 1.149 matt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
854 1.147 matt /*
855 1.147 matt * Perform any checksums that the hardware can't do
856 1.147 matt * for us.
857 1.147 matt *
858 1.147 matt * XXX Does any hardware require the {th,uh}_sum
859 1.147 matt * XXX fields to be 0?
860 1.147 matt */
861 1.147 matt if (sw_csum & M_CSUM_IPv4) {
862 1.151 yamt KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
863 1.147 matt ip->ip_sum = in_cksum(m, hlen);
864 1.147 matt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
865 1.147 matt }
866 1.147 matt if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
867 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
868 1.151 yamt sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
869 1.151 yamt in_delayed_cksum(m);
870 1.151 yamt }
871 1.147 matt m->m_pkthdr.csum_flags &=
872 1.147 matt ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
873 1.147 matt }
874 1.146 matt }
875 1.86 thorpej
876 1.82 itojun #ifdef IPSEC
877 1.82 itojun /* clean ipsec history once it goes out of the node */
878 1.82 itojun ipsec_delaux(m);
879 1.82 itojun #endif
880 1.152 yamt
881 1.152 yamt if (__predict_true(
882 1.152 yamt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
883 1.152 yamt (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
884 1.152 yamt error =
885 1.152 yamt (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
886 1.152 yamt } else {
887 1.152 yamt error =
888 1.152 yamt ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
889 1.152 yamt }
890 1.1 cgd goto done;
891 1.1 cgd }
892 1.61 itojun
893 1.1 cgd /*
894 1.86 thorpej * We can't use HW checksumming if we're about to
895 1.86 thorpej * to fragment the packet.
896 1.86 thorpej *
897 1.86 thorpej * XXX Some hardware can do this.
898 1.86 thorpej */
899 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
900 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
901 1.151 yamt m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
902 1.151 yamt in_delayed_cksum(m);
903 1.151 yamt }
904 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
905 1.86 thorpej }
906 1.86 thorpej
907 1.86 thorpej /*
908 1.1 cgd * Too large for interface; fragment if possible.
909 1.1 cgd * Must be able to put at least 8 bytes per fragment.
910 1.1 cgd */
911 1.100 itojun if (ntohs(ip->ip_off) & IP_DF) {
912 1.40 matt if (flags & IP_RETURNMTU)
913 1.48 matt *mtu_p = mtu;
914 1.1 cgd error = EMSGSIZE;
915 1.18 mycroft ipstat.ips_cantfrag++;
916 1.1 cgd goto bad;
917 1.1 cgd }
918 1.110 itojun
919 1.110 itojun error = ip_fragment(m, ifp, mtu);
920 1.124 itojun if (error) {
921 1.124 itojun m = NULL;
922 1.1 cgd goto bad;
923 1.124 itojun }
924 1.110 itojun
925 1.119 itojun for (; m; m = m0) {
926 1.110 itojun m0 = m->m_nextpkt;
927 1.110 itojun m->m_nextpkt = 0;
928 1.110 itojun if (error == 0) {
929 1.110 itojun #if IFA_STATS
930 1.136 thorpej if (ia)
931 1.110 itojun ia->ia_ifa.ifa_data.ifad_outbytes +=
932 1.110 itojun ntohs(ip->ip_len);
933 1.110 itojun #endif
934 1.110 itojun #ifdef IPSEC
935 1.110 itojun /* clean ipsec history once it goes out of the node */
936 1.110 itojun ipsec_delaux(m);
937 1.141 manu
938 1.141 manu #ifdef IPSEC_NAT_T
939 1.144 perry /*
940 1.141 manu * If we get there, the packet has not been handeld by
941 1.144 perry * IPSec whereas it should have. Now that it has been
942 1.141 manu * fragmented, re-inject it in ip_output so that IPsec
943 1.141 manu * processing can occur.
944 1.141 manu */
945 1.141 manu if (natt_frag) {
946 1.144 perry error = ip_output(m, opt,
947 1.141 manu ro, flags, imo, so, mtu_p);
948 1.144 perry } else
949 1.141 manu #endif /* IPSEC_NAT_T */
950 1.141 manu #endif /* IPSEC */
951 1.141 manu {
952 1.141 manu KASSERT((m->m_pkthdr.csum_flags &
953 1.141 manu (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
954 1.141 manu error = (*ifp->if_output)(ifp, m, sintosa(dst),
955 1.141 manu ro->ro_rt);
956 1.141 manu }
957 1.110 itojun } else
958 1.110 itojun m_freem(m);
959 1.1 cgd }
960 1.1 cgd
961 1.110 itojun if (error == 0)
962 1.110 itojun ipstat.ips_fragmented++;
963 1.110 itojun done:
964 1.110 itojun if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
965 1.110 itojun RTFREE(ro->ro_rt);
966 1.110 itojun ro->ro_rt = 0;
967 1.110 itojun }
968 1.110 itojun
969 1.110 itojun #ifdef IPSEC
970 1.110 itojun if (sp != NULL) {
971 1.110 itojun KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
972 1.110 itojun printf("DP ip_output call free SP:%p\n", sp));
973 1.110 itojun key_freesp(sp);
974 1.110 itojun }
975 1.110 itojun #endif /* IPSEC */
976 1.110 itojun #ifdef FAST_IPSEC
977 1.110 itojun if (sp != NULL)
978 1.110 itojun KEY_FREESP(&sp);
979 1.110 itojun #endif /* FAST_IPSEC */
980 1.110 itojun
981 1.110 itojun return (error);
982 1.110 itojun bad:
983 1.110 itojun m_freem(m);
984 1.110 itojun goto done;
985 1.110 itojun }
986 1.110 itojun
987 1.113 itojun int
988 1.110 itojun ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
989 1.110 itojun {
990 1.110 itojun struct ip *ip, *mhip;
991 1.110 itojun struct mbuf *m0;
992 1.110 itojun int len, hlen, off;
993 1.110 itojun int mhlen, firstlen;
994 1.110 itojun struct mbuf **mnext;
995 1.135 manu int sw_csum = m->m_pkthdr.csum_flags;
996 1.48 matt int fragments = 0;
997 1.48 matt int s;
998 1.110 itojun int error = 0;
999 1.110 itojun
1000 1.110 itojun ip = mtod(m, struct ip *);
1001 1.110 itojun hlen = ip->ip_hl << 2;
1002 1.135 manu if (ifp != NULL)
1003 1.135 manu sw_csum &= ~ifp->if_csum_flags_tx;
1004 1.110 itojun
1005 1.110 itojun len = (mtu - hlen) &~ 7;
1006 1.124 itojun if (len < 8) {
1007 1.124 itojun m_freem(m);
1008 1.110 itojun return (EMSGSIZE);
1009 1.124 itojun }
1010 1.110 itojun
1011 1.110 itojun firstlen = len;
1012 1.110 itojun mnext = &m->m_nextpkt;
1013 1.1 cgd
1014 1.1 cgd /*
1015 1.1 cgd * Loop through length of segment after first fragment,
1016 1.1 cgd * make new header and copy data of each part and link onto chain.
1017 1.1 cgd */
1018 1.1 cgd m0 = m;
1019 1.1 cgd mhlen = sizeof (struct ip);
1020 1.100 itojun for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1021 1.1 cgd MGETHDR(m, M_DONTWAIT, MT_HEADER);
1022 1.1 cgd if (m == 0) {
1023 1.1 cgd error = ENOBUFS;
1024 1.18 mycroft ipstat.ips_odropped++;
1025 1.1 cgd goto sendorfree;
1026 1.1 cgd }
1027 1.103 matt MCLAIM(m, m0->m_owner);
1028 1.22 cgd *mnext = m;
1029 1.22 cgd mnext = &m->m_nextpkt;
1030 1.1 cgd m->m_data += max_linkhdr;
1031 1.1 cgd mhip = mtod(m, struct ip *);
1032 1.1 cgd *mhip = *ip;
1033 1.73 is /* we must inherit MCAST and BCAST flags */
1034 1.73 is m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1035 1.1 cgd if (hlen > sizeof (struct ip)) {
1036 1.1 cgd mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1037 1.1 cgd mhip->ip_hl = mhlen >> 2;
1038 1.1 cgd }
1039 1.1 cgd m->m_len = mhlen;
1040 1.122 itojun mhip->ip_off = ((off - hlen) >> 3) +
1041 1.122 itojun (ntohs(ip->ip_off) & ~IP_MF);
1042 1.122 itojun if (ip->ip_off & htons(IP_MF))
1043 1.1 cgd mhip->ip_off |= IP_MF;
1044 1.100 itojun if (off + len >= ntohs(ip->ip_len))
1045 1.100 itojun len = ntohs(ip->ip_len) - off;
1046 1.1 cgd else
1047 1.1 cgd mhip->ip_off |= IP_MF;
1048 1.100 itojun HTONS(mhip->ip_off);
1049 1.21 cgd mhip->ip_len = htons((u_int16_t)(len + mhlen));
1050 1.1 cgd m->m_next = m_copy(m0, off, len);
1051 1.1 cgd if (m->m_next == 0) {
1052 1.1 cgd error = ENOBUFS; /* ??? */
1053 1.18 mycroft ipstat.ips_odropped++;
1054 1.1 cgd goto sendorfree;
1055 1.1 cgd }
1056 1.1 cgd m->m_pkthdr.len = mhlen + len;
1057 1.1 cgd m->m_pkthdr.rcvif = (struct ifnet *)0;
1058 1.1 cgd mhip->ip_sum = 0;
1059 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
1060 1.104 yamt mhip->ip_sum = in_cksum(m, mhlen);
1061 1.104 yamt KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1062 1.104 yamt } else {
1063 1.104 yamt m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1064 1.148 thorpej m->m_pkthdr.csum_data |= mhlen << 16;
1065 1.104 yamt }
1066 1.1 cgd ipstat.ips_ofragments++;
1067 1.48 matt fragments++;
1068 1.1 cgd }
1069 1.1 cgd /*
1070 1.1 cgd * Update first fragment by trimming what's been copied out
1071 1.1 cgd * and updating header, then send each fragment (in order).
1072 1.1 cgd */
1073 1.1 cgd m = m0;
1074 1.100 itojun m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1075 1.1 cgd m->m_pkthdr.len = hlen + firstlen;
1076 1.21 cgd ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1077 1.100 itojun ip->ip_off |= htons(IP_MF);
1078 1.1 cgd ip->ip_sum = 0;
1079 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
1080 1.104 yamt ip->ip_sum = in_cksum(m, hlen);
1081 1.104 yamt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1082 1.104 yamt } else {
1083 1.104 yamt KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1084 1.148 thorpej KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1085 1.148 thorpej sizeof(struct ip));
1086 1.104 yamt }
1087 1.1 cgd sendorfree:
1088 1.48 matt /*
1089 1.48 matt * If there is no room for all the fragments, don't queue
1090 1.48 matt * any of them.
1091 1.48 matt */
1092 1.135 manu if (ifp != NULL) {
1093 1.135 manu s = splnet();
1094 1.135 manu if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1095 1.135 manu error == 0) {
1096 1.135 manu error = ENOBUFS;
1097 1.135 manu ipstat.ips_odropped++;
1098 1.135 manu IFQ_INC_DROPS(&ifp->if_snd);
1099 1.135 manu }
1100 1.135 manu splx(s);
1101 1.126 enami }
1102 1.124 itojun if (error) {
1103 1.125 itojun for (m = m0; m; m = m0) {
1104 1.124 itojun m0 = m->m_nextpkt;
1105 1.124 itojun m->m_nextpkt = NULL;
1106 1.124 itojun m_freem(m);
1107 1.124 itojun }
1108 1.124 itojun }
1109 1.1 cgd return (error);
1110 1.86 thorpej }
1111 1.86 thorpej
1112 1.86 thorpej /*
1113 1.86 thorpej * Process a delayed payload checksum calculation.
1114 1.86 thorpej */
1115 1.86 thorpej void
1116 1.86 thorpej in_delayed_cksum(struct mbuf *m)
1117 1.86 thorpej {
1118 1.86 thorpej struct ip *ip;
1119 1.86 thorpej u_int16_t csum, offset;
1120 1.86 thorpej
1121 1.86 thorpej ip = mtod(m, struct ip *);
1122 1.86 thorpej offset = ip->ip_hl << 2;
1123 1.86 thorpej csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1124 1.86 thorpej if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1125 1.86 thorpej csum = 0xffff;
1126 1.86 thorpej
1127 1.145 briggs offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1128 1.86 thorpej
1129 1.86 thorpej if ((offset + sizeof(u_int16_t)) > m->m_len) {
1130 1.87 yamt /* This happen when ip options were inserted
1131 1.86 thorpej printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1132 1.86 thorpej m->m_len, offset, ip->ip_p);
1133 1.87 yamt */
1134 1.86 thorpej m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1135 1.86 thorpej } else
1136 1.86 thorpej *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1137 1.1 cgd }
1138 1.47 kml
1139 1.47 kml /*
1140 1.47 kml * Determine the maximum length of the options to be inserted;
1141 1.47 kml * we would far rather allocate too much space rather than too little.
1142 1.47 kml */
1143 1.47 kml
1144 1.47 kml u_int
1145 1.140 perry ip_optlen(struct inpcb *inp)
1146 1.47 kml {
1147 1.47 kml struct mbuf *m = inp->inp_options;
1148 1.47 kml
1149 1.47 kml if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1150 1.101 itojun return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1151 1.47 kml else
1152 1.47 kml return 0;
1153 1.47 kml }
1154 1.47 kml
1155 1.1 cgd
1156 1.1 cgd /*
1157 1.1 cgd * Insert IP options into preformed packet.
1158 1.1 cgd * Adjust IP destination as required for IP source routing,
1159 1.1 cgd * as indicated by a non-zero in_addr at the start of the options.
1160 1.1 cgd */
1161 1.12 mycroft static struct mbuf *
1162 1.140 perry ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1163 1.1 cgd {
1164 1.71 augustss struct ipoption *p = mtod(opt, struct ipoption *);
1165 1.1 cgd struct mbuf *n;
1166 1.71 augustss struct ip *ip = mtod(m, struct ip *);
1167 1.1 cgd unsigned optlen;
1168 1.1 cgd
1169 1.1 cgd optlen = opt->m_len - sizeof(p->ipopt_dst);
1170 1.100 itojun if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1171 1.1 cgd return (m); /* XXX should fail */
1172 1.31 mycroft if (!in_nullhost(p->ipopt_dst))
1173 1.1 cgd ip->ip_dst = p->ipopt_dst;
1174 1.123 itojun if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1175 1.1 cgd MGETHDR(n, M_DONTWAIT, MT_HEADER);
1176 1.1 cgd if (n == 0)
1177 1.1 cgd return (m);
1178 1.103 matt MCLAIM(n, m->m_owner);
1179 1.155 yamt M_MOVE_PKTHDR(n, m);
1180 1.1 cgd m->m_len -= sizeof(struct ip);
1181 1.1 cgd m->m_data += sizeof(struct ip);
1182 1.1 cgd n->m_next = m;
1183 1.1 cgd m = n;
1184 1.1 cgd m->m_len = optlen + sizeof(struct ip);
1185 1.1 cgd m->m_data += max_linkhdr;
1186 1.1 cgd bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1187 1.1 cgd } else {
1188 1.1 cgd m->m_data -= optlen;
1189 1.1 cgd m->m_len += optlen;
1190 1.57 perry memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1191 1.1 cgd }
1192 1.87 yamt m->m_pkthdr.len += optlen;
1193 1.1 cgd ip = mtod(m, struct ip *);
1194 1.1 cgd bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1195 1.1 cgd *phlen = sizeof(struct ip) + optlen;
1196 1.100 itojun ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1197 1.1 cgd return (m);
1198 1.1 cgd }
1199 1.1 cgd
1200 1.1 cgd /*
1201 1.1 cgd * Copy options from ip to jp,
1202 1.1 cgd * omitting those not copied during fragmentation.
1203 1.1 cgd */
1204 1.12 mycroft int
1205 1.140 perry ip_optcopy(struct ip *ip, struct ip *jp)
1206 1.1 cgd {
1207 1.71 augustss u_char *cp, *dp;
1208 1.1 cgd int opt, optlen, cnt;
1209 1.1 cgd
1210 1.1 cgd cp = (u_char *)(ip + 1);
1211 1.1 cgd dp = (u_char *)(jp + 1);
1212 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1213 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
1214 1.1 cgd opt = cp[0];
1215 1.1 cgd if (opt == IPOPT_EOL)
1216 1.1 cgd break;
1217 1.18 mycroft if (opt == IPOPT_NOP) {
1218 1.18 mycroft /* Preserve for IP mcast tunnel's LSRR alignment. */
1219 1.18 mycroft *dp++ = IPOPT_NOP;
1220 1.1 cgd optlen = 1;
1221 1.18 mycroft continue;
1222 1.74 itojun }
1223 1.74 itojun #ifdef DIAGNOSTIC
1224 1.74 itojun if (cnt < IPOPT_OLEN + sizeof(*cp))
1225 1.74 itojun panic("malformed IPv4 option passed to ip_optcopy");
1226 1.74 itojun #endif
1227 1.74 itojun optlen = cp[IPOPT_OLEN];
1228 1.74 itojun #ifdef DIAGNOSTIC
1229 1.74 itojun if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1230 1.74 itojun panic("malformed IPv4 option passed to ip_optcopy");
1231 1.74 itojun #endif
1232 1.1 cgd /* bogus lengths should have been caught by ip_dooptions */
1233 1.1 cgd if (optlen > cnt)
1234 1.1 cgd optlen = cnt;
1235 1.1 cgd if (IPOPT_COPIED(opt)) {
1236 1.1 cgd bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1237 1.1 cgd dp += optlen;
1238 1.1 cgd }
1239 1.1 cgd }
1240 1.1 cgd for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1241 1.1 cgd *dp++ = IPOPT_EOL;
1242 1.1 cgd return (optlen);
1243 1.1 cgd }
1244 1.1 cgd
1245 1.1 cgd /*
1246 1.1 cgd * IP socket option processing.
1247 1.1 cgd */
1248 1.12 mycroft int
1249 1.140 perry ip_ctloutput(int op, struct socket *so, int level, int optname,
1250 1.140 perry struct mbuf **mp)
1251 1.1 cgd {
1252 1.71 augustss struct inpcb *inp = sotoinpcb(so);
1253 1.71 augustss struct mbuf *m = *mp;
1254 1.71 augustss int optval = 0;
1255 1.1 cgd int error = 0;
1256 1.109 jonathan #if defined(IPSEC) || defined(FAST_IPSEC)
1257 1.61 itojun struct proc *p = curproc; /*XXX*/
1258 1.61 itojun #endif
1259 1.1 cgd
1260 1.18 mycroft if (level != IPPROTO_IP) {
1261 1.1 cgd error = EINVAL;
1262 1.18 mycroft if (op == PRCO_SETOPT && *mp)
1263 1.18 mycroft (void) m_free(*mp);
1264 1.18 mycroft } else switch (op) {
1265 1.1 cgd
1266 1.1 cgd case PRCO_SETOPT:
1267 1.1 cgd switch (optname) {
1268 1.1 cgd case IP_OPTIONS:
1269 1.1 cgd #ifdef notyet
1270 1.1 cgd case IP_RETOPTS:
1271 1.1 cgd return (ip_pcbopts(optname, &inp->inp_options, m));
1272 1.1 cgd #else
1273 1.1 cgd return (ip_pcbopts(&inp->inp_options, m));
1274 1.1 cgd #endif
1275 1.1 cgd
1276 1.1 cgd case IP_TOS:
1277 1.1 cgd case IP_TTL:
1278 1.1 cgd case IP_RECVOPTS:
1279 1.1 cgd case IP_RECVRETOPTS:
1280 1.1 cgd case IP_RECVDSTADDR:
1281 1.37 thorpej case IP_RECVIF:
1282 1.27 cgd if (m == NULL || m->m_len != sizeof(int))
1283 1.1 cgd error = EINVAL;
1284 1.1 cgd else {
1285 1.1 cgd optval = *mtod(m, int *);
1286 1.1 cgd switch (optname) {
1287 1.1 cgd
1288 1.1 cgd case IP_TOS:
1289 1.1 cgd inp->inp_ip.ip_tos = optval;
1290 1.1 cgd break;
1291 1.1 cgd
1292 1.1 cgd case IP_TTL:
1293 1.1 cgd inp->inp_ip.ip_ttl = optval;
1294 1.1 cgd break;
1295 1.1 cgd #define OPTSET(bit) \
1296 1.1 cgd if (optval) \
1297 1.1 cgd inp->inp_flags |= bit; \
1298 1.1 cgd else \
1299 1.1 cgd inp->inp_flags &= ~bit;
1300 1.1 cgd
1301 1.1 cgd case IP_RECVOPTS:
1302 1.1 cgd OPTSET(INP_RECVOPTS);
1303 1.1 cgd break;
1304 1.1 cgd
1305 1.1 cgd case IP_RECVRETOPTS:
1306 1.1 cgd OPTSET(INP_RECVRETOPTS);
1307 1.1 cgd break;
1308 1.1 cgd
1309 1.1 cgd case IP_RECVDSTADDR:
1310 1.1 cgd OPTSET(INP_RECVDSTADDR);
1311 1.1 cgd break;
1312 1.37 thorpej
1313 1.37 thorpej case IP_RECVIF:
1314 1.37 thorpej OPTSET(INP_RECVIF);
1315 1.37 thorpej break;
1316 1.1 cgd }
1317 1.1 cgd }
1318 1.1 cgd break;
1319 1.1 cgd #undef OPTSET
1320 1.18 mycroft
1321 1.18 mycroft case IP_MULTICAST_IF:
1322 1.18 mycroft case IP_MULTICAST_TTL:
1323 1.18 mycroft case IP_MULTICAST_LOOP:
1324 1.18 mycroft case IP_ADD_MEMBERSHIP:
1325 1.18 mycroft case IP_DROP_MEMBERSHIP:
1326 1.18 mycroft error = ip_setmoptions(optname, &inp->inp_moptions, m);
1327 1.18 mycroft break;
1328 1.1 cgd
1329 1.41 lukem case IP_PORTRANGE:
1330 1.41 lukem if (m == 0 || m->m_len != sizeof(int))
1331 1.41 lukem error = EINVAL;
1332 1.41 lukem else {
1333 1.41 lukem optval = *mtod(m, int *);
1334 1.41 lukem
1335 1.41 lukem switch (optval) {
1336 1.41 lukem
1337 1.41 lukem case IP_PORTRANGE_DEFAULT:
1338 1.41 lukem case IP_PORTRANGE_HIGH:
1339 1.41 lukem inp->inp_flags &= ~(INP_LOWPORT);
1340 1.41 lukem break;
1341 1.41 lukem
1342 1.41 lukem case IP_PORTRANGE_LOW:
1343 1.41 lukem inp->inp_flags |= INP_LOWPORT;
1344 1.41 lukem break;
1345 1.41 lukem
1346 1.41 lukem default:
1347 1.41 lukem error = EINVAL;
1348 1.41 lukem break;
1349 1.41 lukem }
1350 1.41 lukem }
1351 1.41 lukem break;
1352 1.41 lukem
1353 1.109 jonathan #if defined(IPSEC) || defined(FAST_IPSEC)
1354 1.61 itojun case IP_IPSEC_POLICY:
1355 1.66 itojun {
1356 1.61 itojun caddr_t req = NULL;
1357 1.66 itojun size_t len = 0;
1358 1.61 itojun int priv = 0;
1359 1.66 itojun
1360 1.61 itojun #ifdef __NetBSD__
1361 1.61 itojun if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1362 1.61 itojun priv = 0;
1363 1.61 itojun else
1364 1.61 itojun priv = 1;
1365 1.61 itojun #else
1366 1.61 itojun priv = (in6p->in6p_socket->so_state & SS_PRIV);
1367 1.61 itojun #endif
1368 1.66 itojun if (m) {
1369 1.61 itojun req = mtod(m, caddr_t);
1370 1.61 itojun len = m->m_len;
1371 1.61 itojun }
1372 1.66 itojun error = ipsec4_set_policy(inp, optname, req, len, priv);
1373 1.61 itojun break;
1374 1.61 itojun }
1375 1.61 itojun #endif /*IPSEC*/
1376 1.61 itojun
1377 1.1 cgd default:
1378 1.18 mycroft error = ENOPROTOOPT;
1379 1.1 cgd break;
1380 1.1 cgd }
1381 1.1 cgd if (m)
1382 1.1 cgd (void)m_free(m);
1383 1.1 cgd break;
1384 1.1 cgd
1385 1.1 cgd case PRCO_GETOPT:
1386 1.1 cgd switch (optname) {
1387 1.1 cgd case IP_OPTIONS:
1388 1.1 cgd case IP_RETOPTS:
1389 1.1 cgd *mp = m = m_get(M_WAIT, MT_SOOPTS);
1390 1.103 matt MCLAIM(m, so->so_mowner);
1391 1.1 cgd if (inp->inp_options) {
1392 1.1 cgd m->m_len = inp->inp_options->m_len;
1393 1.1 cgd bcopy(mtod(inp->inp_options, caddr_t),
1394 1.1 cgd mtod(m, caddr_t), (unsigned)m->m_len);
1395 1.1 cgd } else
1396 1.1 cgd m->m_len = 0;
1397 1.1 cgd break;
1398 1.1 cgd
1399 1.1 cgd case IP_TOS:
1400 1.1 cgd case IP_TTL:
1401 1.1 cgd case IP_RECVOPTS:
1402 1.1 cgd case IP_RECVRETOPTS:
1403 1.1 cgd case IP_RECVDSTADDR:
1404 1.37 thorpej case IP_RECVIF:
1405 1.40 matt case IP_ERRORMTU:
1406 1.1 cgd *mp = m = m_get(M_WAIT, MT_SOOPTS);
1407 1.103 matt MCLAIM(m, so->so_mowner);
1408 1.1 cgd m->m_len = sizeof(int);
1409 1.1 cgd switch (optname) {
1410 1.1 cgd
1411 1.1 cgd case IP_TOS:
1412 1.1 cgd optval = inp->inp_ip.ip_tos;
1413 1.1 cgd break;
1414 1.1 cgd
1415 1.1 cgd case IP_TTL:
1416 1.1 cgd optval = inp->inp_ip.ip_ttl;
1417 1.40 matt break;
1418 1.40 matt
1419 1.40 matt case IP_ERRORMTU:
1420 1.40 matt optval = inp->inp_errormtu;
1421 1.1 cgd break;
1422 1.1 cgd
1423 1.1 cgd #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1424 1.1 cgd
1425 1.1 cgd case IP_RECVOPTS:
1426 1.1 cgd optval = OPTBIT(INP_RECVOPTS);
1427 1.1 cgd break;
1428 1.1 cgd
1429 1.1 cgd case IP_RECVRETOPTS:
1430 1.1 cgd optval = OPTBIT(INP_RECVRETOPTS);
1431 1.1 cgd break;
1432 1.1 cgd
1433 1.1 cgd case IP_RECVDSTADDR:
1434 1.1 cgd optval = OPTBIT(INP_RECVDSTADDR);
1435 1.37 thorpej break;
1436 1.37 thorpej
1437 1.37 thorpej case IP_RECVIF:
1438 1.37 thorpej optval = OPTBIT(INP_RECVIF);
1439 1.1 cgd break;
1440 1.1 cgd }
1441 1.1 cgd *mtod(m, int *) = optval;
1442 1.1 cgd break;
1443 1.61 itojun
1444 1.134 minoura #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1445 1.134 minoura /* XXX: code broken */
1446 1.61 itojun case IP_IPSEC_POLICY:
1447 1.66 itojun {
1448 1.66 itojun caddr_t req = NULL;
1449 1.80 itojun size_t len = 0;
1450 1.66 itojun
1451 1.66 itojun if (m) {
1452 1.66 itojun req = mtod(m, caddr_t);
1453 1.66 itojun len = m->m_len;
1454 1.66 itojun }
1455 1.66 itojun error = ipsec4_get_policy(inp, req, len, mp);
1456 1.61 itojun break;
1457 1.66 itojun }
1458 1.61 itojun #endif /*IPSEC*/
1459 1.18 mycroft
1460 1.18 mycroft case IP_MULTICAST_IF:
1461 1.18 mycroft case IP_MULTICAST_TTL:
1462 1.18 mycroft case IP_MULTICAST_LOOP:
1463 1.18 mycroft case IP_ADD_MEMBERSHIP:
1464 1.18 mycroft case IP_DROP_MEMBERSHIP:
1465 1.18 mycroft error = ip_getmoptions(optname, inp->inp_moptions, mp);
1466 1.103 matt if (*mp)
1467 1.103 matt MCLAIM(*mp, so->so_mowner);
1468 1.41 lukem break;
1469 1.41 lukem
1470 1.41 lukem case IP_PORTRANGE:
1471 1.41 lukem *mp = m = m_get(M_WAIT, MT_SOOPTS);
1472 1.103 matt MCLAIM(m, so->so_mowner);
1473 1.41 lukem m->m_len = sizeof(int);
1474 1.41 lukem
1475 1.41 lukem if (inp->inp_flags & INP_LOWPORT)
1476 1.41 lukem optval = IP_PORTRANGE_LOW;
1477 1.41 lukem else
1478 1.41 lukem optval = IP_PORTRANGE_DEFAULT;
1479 1.41 lukem
1480 1.41 lukem *mtod(m, int *) = optval;
1481 1.18 mycroft break;
1482 1.1 cgd
1483 1.1 cgd default:
1484 1.18 mycroft error = ENOPROTOOPT;
1485 1.1 cgd break;
1486 1.1 cgd }
1487 1.1 cgd break;
1488 1.1 cgd }
1489 1.1 cgd return (error);
1490 1.1 cgd }
1491 1.1 cgd
1492 1.1 cgd /*
1493 1.1 cgd * Set up IP options in pcb for insertion in output packets.
1494 1.1 cgd * Store in mbuf with pointer in pcbopt, adding pseudo-option
1495 1.1 cgd * with destination address if source routed.
1496 1.1 cgd */
1497 1.12 mycroft int
1498 1.1 cgd #ifdef notyet
1499 1.140 perry ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1500 1.1 cgd #else
1501 1.140 perry ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1502 1.1 cgd #endif
1503 1.1 cgd {
1504 1.71 augustss int cnt, optlen;
1505 1.71 augustss u_char *cp;
1506 1.1 cgd u_char opt;
1507 1.1 cgd
1508 1.1 cgd /* turn off any old options */
1509 1.1 cgd if (*pcbopt)
1510 1.1 cgd (void)m_free(*pcbopt);
1511 1.1 cgd *pcbopt = 0;
1512 1.1 cgd if (m == (struct mbuf *)0 || m->m_len == 0) {
1513 1.1 cgd /*
1514 1.1 cgd * Only turning off any previous options.
1515 1.1 cgd */
1516 1.1 cgd if (m)
1517 1.1 cgd (void)m_free(m);
1518 1.1 cgd return (0);
1519 1.1 cgd }
1520 1.1 cgd
1521 1.85 ragge #ifndef __vax__
1522 1.21 cgd if (m->m_len % sizeof(int32_t))
1523 1.1 cgd goto bad;
1524 1.1 cgd #endif
1525 1.1 cgd /*
1526 1.1 cgd * IP first-hop destination address will be stored before
1527 1.1 cgd * actual options; move other options back
1528 1.1 cgd * and clear it when none present.
1529 1.1 cgd */
1530 1.1 cgd if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1531 1.1 cgd goto bad;
1532 1.1 cgd cnt = m->m_len;
1533 1.1 cgd m->m_len += sizeof(struct in_addr);
1534 1.1 cgd cp = mtod(m, u_char *) + sizeof(struct in_addr);
1535 1.57 perry memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1536 1.1 cgd bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1537 1.1 cgd
1538 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
1539 1.1 cgd opt = cp[IPOPT_OPTVAL];
1540 1.1 cgd if (opt == IPOPT_EOL)
1541 1.1 cgd break;
1542 1.1 cgd if (opt == IPOPT_NOP)
1543 1.1 cgd optlen = 1;
1544 1.1 cgd else {
1545 1.74 itojun if (cnt < IPOPT_OLEN + sizeof(*cp))
1546 1.74 itojun goto bad;
1547 1.1 cgd optlen = cp[IPOPT_OLEN];
1548 1.74 itojun if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1549 1.1 cgd goto bad;
1550 1.1 cgd }
1551 1.1 cgd switch (opt) {
1552 1.1 cgd
1553 1.1 cgd default:
1554 1.1 cgd break;
1555 1.1 cgd
1556 1.1 cgd case IPOPT_LSRR:
1557 1.1 cgd case IPOPT_SSRR:
1558 1.1 cgd /*
1559 1.1 cgd * user process specifies route as:
1560 1.1 cgd * ->A->B->C->D
1561 1.1 cgd * D must be our final destination (but we can't
1562 1.1 cgd * check that since we may not have connected yet).
1563 1.1 cgd * A is first hop destination, which doesn't appear in
1564 1.1 cgd * actual IP option, but is stored before the options.
1565 1.1 cgd */
1566 1.1 cgd if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1567 1.1 cgd goto bad;
1568 1.1 cgd m->m_len -= sizeof(struct in_addr);
1569 1.1 cgd cnt -= sizeof(struct in_addr);
1570 1.1 cgd optlen -= sizeof(struct in_addr);
1571 1.1 cgd cp[IPOPT_OLEN] = optlen;
1572 1.1 cgd /*
1573 1.1 cgd * Move first hop before start of options.
1574 1.1 cgd */
1575 1.1 cgd bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1576 1.1 cgd sizeof(struct in_addr));
1577 1.1 cgd /*
1578 1.1 cgd * Then copy rest of options back
1579 1.1 cgd * to close up the deleted entry.
1580 1.1 cgd */
1581 1.132 christos (void)memmove(&cp[IPOPT_OFFSET+1],
1582 1.132 christos &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1583 1.132 christos (unsigned)cnt - (IPOPT_MINOFF - 1));
1584 1.1 cgd break;
1585 1.1 cgd }
1586 1.1 cgd }
1587 1.1 cgd if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1588 1.1 cgd goto bad;
1589 1.1 cgd *pcbopt = m;
1590 1.1 cgd return (0);
1591 1.1 cgd
1592 1.1 cgd bad:
1593 1.1 cgd (void)m_free(m);
1594 1.1 cgd return (EINVAL);
1595 1.1 cgd }
1596 1.5 hpeyerl
1597 1.5 hpeyerl /*
1598 1.81 itojun * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1599 1.81 itojun */
1600 1.81 itojun static struct ifnet *
1601 1.140 perry ip_multicast_if(struct in_addr *a, int *ifindexp)
1602 1.81 itojun {
1603 1.81 itojun int ifindex;
1604 1.111 itojun struct ifnet *ifp = NULL;
1605 1.110 itojun struct in_ifaddr *ia;
1606 1.81 itojun
1607 1.81 itojun if (ifindexp)
1608 1.81 itojun *ifindexp = 0;
1609 1.81 itojun if (ntohl(a->s_addr) >> 24 == 0) {
1610 1.81 itojun ifindex = ntohl(a->s_addr) & 0xffffff;
1611 1.129 itojun if (ifindex < 0 || if_indexlim <= ifindex)
1612 1.81 itojun return NULL;
1613 1.81 itojun ifp = ifindex2ifnet[ifindex];
1614 1.129 itojun if (!ifp)
1615 1.129 itojun return NULL;
1616 1.81 itojun if (ifindexp)
1617 1.81 itojun *ifindexp = ifindex;
1618 1.81 itojun } else {
1619 1.110 itojun LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1620 1.110 itojun if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1621 1.111 itojun (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1622 1.111 itojun ifp = ia->ia_ifp;
1623 1.110 itojun break;
1624 1.111 itojun }
1625 1.110 itojun }
1626 1.81 itojun }
1627 1.81 itojun return ifp;
1628 1.81 itojun }
1629 1.81 itojun
1630 1.156 christos static int
1631 1.156 christos ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1632 1.156 christos {
1633 1.156 christos u_int tval;
1634 1.156 christos
1635 1.156 christos if (m == NULL)
1636 1.156 christos return EINVAL;
1637 1.156 christos
1638 1.156 christos switch (m->m_len) {
1639 1.156 christos case sizeof(u_char):
1640 1.156 christos tval = *(mtod(m, u_char *));
1641 1.156 christos break;
1642 1.156 christos case sizeof(u_int):
1643 1.156 christos tval = *(mtod(m, u_int *));
1644 1.156 christos break;
1645 1.156 christos default:
1646 1.156 christos return EINVAL;
1647 1.156 christos }
1648 1.156 christos
1649 1.156 christos if (tval > maxval)
1650 1.156 christos return EINVAL;
1651 1.156 christos
1652 1.156 christos *val = tval;
1653 1.156 christos return 0;
1654 1.156 christos }
1655 1.156 christos
1656 1.81 itojun /*
1657 1.5 hpeyerl * Set the IP multicast options in response to user setsockopt().
1658 1.5 hpeyerl */
1659 1.5 hpeyerl int
1660 1.140 perry ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1661 1.5 hpeyerl {
1662 1.71 augustss int error = 0;
1663 1.71 augustss int i;
1664 1.5 hpeyerl struct in_addr addr;
1665 1.71 augustss struct ip_mreq *mreq;
1666 1.71 augustss struct ifnet *ifp;
1667 1.71 augustss struct ip_moptions *imo = *imop;
1668 1.5 hpeyerl struct route ro;
1669 1.71 augustss struct sockaddr_in *dst;
1670 1.81 itojun int ifindex;
1671 1.5 hpeyerl
1672 1.5 hpeyerl if (imo == NULL) {
1673 1.5 hpeyerl /*
1674 1.5 hpeyerl * No multicast option buffer attached to the pcb;
1675 1.5 hpeyerl * allocate one and initialize to default values.
1676 1.5 hpeyerl */
1677 1.22 cgd imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1678 1.5 hpeyerl M_WAITOK);
1679 1.5 hpeyerl
1680 1.5 hpeyerl if (imo == NULL)
1681 1.5 hpeyerl return (ENOBUFS);
1682 1.5 hpeyerl *imop = imo;
1683 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1684 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1685 1.5 hpeyerl imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1686 1.5 hpeyerl imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1687 1.5 hpeyerl imo->imo_num_memberships = 0;
1688 1.5 hpeyerl }
1689 1.5 hpeyerl
1690 1.5 hpeyerl switch (optname) {
1691 1.5 hpeyerl
1692 1.5 hpeyerl case IP_MULTICAST_IF:
1693 1.5 hpeyerl /*
1694 1.5 hpeyerl * Select the interface for outgoing multicast packets.
1695 1.5 hpeyerl */
1696 1.5 hpeyerl if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1697 1.5 hpeyerl error = EINVAL;
1698 1.5 hpeyerl break;
1699 1.5 hpeyerl }
1700 1.5 hpeyerl addr = *(mtod(m, struct in_addr *));
1701 1.5 hpeyerl /*
1702 1.5 hpeyerl * INADDR_ANY is used to remove a previous selection.
1703 1.11 mycroft * When no interface is selected, a default one is
1704 1.5 hpeyerl * chosen every time a multicast packet is sent.
1705 1.5 hpeyerl */
1706 1.31 mycroft if (in_nullhost(addr)) {
1707 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1708 1.5 hpeyerl break;
1709 1.5 hpeyerl }
1710 1.5 hpeyerl /*
1711 1.5 hpeyerl * The selected interface is identified by its local
1712 1.5 hpeyerl * IP address. Find the interface and confirm that
1713 1.11 mycroft * it supports multicasting.
1714 1.5 hpeyerl */
1715 1.81 itojun ifp = ip_multicast_if(&addr, &ifindex);
1716 1.5 hpeyerl if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1717 1.5 hpeyerl error = EADDRNOTAVAIL;
1718 1.5 hpeyerl break;
1719 1.5 hpeyerl }
1720 1.5 hpeyerl imo->imo_multicast_ifp = ifp;
1721 1.81 itojun if (ifindex)
1722 1.81 itojun imo->imo_multicast_addr = addr;
1723 1.81 itojun else
1724 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1725 1.5 hpeyerl break;
1726 1.5 hpeyerl
1727 1.5 hpeyerl case IP_MULTICAST_TTL:
1728 1.5 hpeyerl /*
1729 1.5 hpeyerl * Set the IP time-to-live for outgoing multicast packets.
1730 1.5 hpeyerl */
1731 1.156 christos error = ip_getoptval(m, &imo->imo_multicast_ttl, 255);
1732 1.5 hpeyerl break;
1733 1.11 mycroft
1734 1.5 hpeyerl case IP_MULTICAST_LOOP:
1735 1.5 hpeyerl /*
1736 1.5 hpeyerl * Set the loopback flag for outgoing multicast packets.
1737 1.5 hpeyerl * Must be zero or one.
1738 1.5 hpeyerl */
1739 1.156 christos error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1740 1.5 hpeyerl break;
1741 1.5 hpeyerl
1742 1.5 hpeyerl case IP_ADD_MEMBERSHIP:
1743 1.5 hpeyerl /*
1744 1.5 hpeyerl * Add a multicast group membership.
1745 1.5 hpeyerl * Group must be a valid IP multicast address.
1746 1.5 hpeyerl */
1747 1.5 hpeyerl if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1748 1.5 hpeyerl error = EINVAL;
1749 1.5 hpeyerl break;
1750 1.5 hpeyerl }
1751 1.5 hpeyerl mreq = mtod(m, struct ip_mreq *);
1752 1.23 mycroft if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1753 1.5 hpeyerl error = EINVAL;
1754 1.5 hpeyerl break;
1755 1.5 hpeyerl }
1756 1.5 hpeyerl /*
1757 1.5 hpeyerl * If no interface address was provided, use the interface of
1758 1.5 hpeyerl * the route to the given multicast address.
1759 1.5 hpeyerl */
1760 1.31 mycroft if (in_nullhost(mreq->imr_interface)) {
1761 1.53 ws bzero((caddr_t)&ro, sizeof(ro));
1762 1.5 hpeyerl ro.ro_rt = NULL;
1763 1.24 mycroft dst = satosin(&ro.ro_dst);
1764 1.5 hpeyerl dst->sin_len = sizeof(*dst);
1765 1.5 hpeyerl dst->sin_family = AF_INET;
1766 1.5 hpeyerl dst->sin_addr = mreq->imr_multiaddr;
1767 1.5 hpeyerl rtalloc(&ro);
1768 1.5 hpeyerl if (ro.ro_rt == NULL) {
1769 1.5 hpeyerl error = EADDRNOTAVAIL;
1770 1.5 hpeyerl break;
1771 1.5 hpeyerl }
1772 1.5 hpeyerl ifp = ro.ro_rt->rt_ifp;
1773 1.5 hpeyerl rtfree(ro.ro_rt);
1774 1.23 mycroft } else {
1775 1.81 itojun ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1776 1.5 hpeyerl }
1777 1.5 hpeyerl /*
1778 1.5 hpeyerl * See if we found an interface, and confirm that it
1779 1.5 hpeyerl * supports multicast.
1780 1.5 hpeyerl */
1781 1.11 mycroft if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1782 1.5 hpeyerl error = EADDRNOTAVAIL;
1783 1.5 hpeyerl break;
1784 1.5 hpeyerl }
1785 1.5 hpeyerl /*
1786 1.5 hpeyerl * See if the membership already exists or if all the
1787 1.5 hpeyerl * membership slots are full.
1788 1.11 mycroft */
1789 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i) {
1790 1.5 hpeyerl if (imo->imo_membership[i]->inm_ifp == ifp &&
1791 1.31 mycroft in_hosteq(imo->imo_membership[i]->inm_addr,
1792 1.31 mycroft mreq->imr_multiaddr))
1793 1.5 hpeyerl break;
1794 1.11 mycroft }
1795 1.5 hpeyerl if (i < imo->imo_num_memberships) {
1796 1.5 hpeyerl error = EADDRINUSE;
1797 1.5 hpeyerl break;
1798 1.5 hpeyerl }
1799 1.5 hpeyerl if (i == IP_MAX_MEMBERSHIPS) {
1800 1.11 mycroft error = ETOOMANYREFS;
1801 1.5 hpeyerl break;
1802 1.5 hpeyerl }
1803 1.5 hpeyerl /*
1804 1.5 hpeyerl * Everything looks good; add a new record to the multicast
1805 1.5 hpeyerl * address list for the given interface.
1806 1.5 hpeyerl */
1807 1.5 hpeyerl if ((imo->imo_membership[i] =
1808 1.5 hpeyerl in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1809 1.5 hpeyerl error = ENOBUFS;
1810 1.5 hpeyerl break;
1811 1.5 hpeyerl }
1812 1.5 hpeyerl ++imo->imo_num_memberships;
1813 1.5 hpeyerl break;
1814 1.5 hpeyerl
1815 1.5 hpeyerl case IP_DROP_MEMBERSHIP:
1816 1.5 hpeyerl /*
1817 1.5 hpeyerl * Drop a multicast group membership.
1818 1.5 hpeyerl * Group must be a valid IP multicast address.
1819 1.5 hpeyerl */
1820 1.5 hpeyerl if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1821 1.5 hpeyerl error = EINVAL;
1822 1.5 hpeyerl break;
1823 1.5 hpeyerl }
1824 1.5 hpeyerl mreq = mtod(m, struct ip_mreq *);
1825 1.23 mycroft if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1826 1.5 hpeyerl error = EINVAL;
1827 1.5 hpeyerl break;
1828 1.5 hpeyerl }
1829 1.5 hpeyerl /*
1830 1.5 hpeyerl * If an interface address was specified, get a pointer
1831 1.5 hpeyerl * to its ifnet structure.
1832 1.5 hpeyerl */
1833 1.31 mycroft if (in_nullhost(mreq->imr_interface))
1834 1.5 hpeyerl ifp = NULL;
1835 1.5 hpeyerl else {
1836 1.81 itojun ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1837 1.5 hpeyerl if (ifp == NULL) {
1838 1.5 hpeyerl error = EADDRNOTAVAIL;
1839 1.5 hpeyerl break;
1840 1.5 hpeyerl }
1841 1.5 hpeyerl }
1842 1.5 hpeyerl /*
1843 1.5 hpeyerl * Find the membership in the membership array.
1844 1.5 hpeyerl */
1845 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i) {
1846 1.5 hpeyerl if ((ifp == NULL ||
1847 1.5 hpeyerl imo->imo_membership[i]->inm_ifp == ifp) &&
1848 1.31 mycroft in_hosteq(imo->imo_membership[i]->inm_addr,
1849 1.31 mycroft mreq->imr_multiaddr))
1850 1.5 hpeyerl break;
1851 1.5 hpeyerl }
1852 1.5 hpeyerl if (i == imo->imo_num_memberships) {
1853 1.5 hpeyerl error = EADDRNOTAVAIL;
1854 1.5 hpeyerl break;
1855 1.5 hpeyerl }
1856 1.5 hpeyerl /*
1857 1.5 hpeyerl * Give up the multicast address record to which the
1858 1.5 hpeyerl * membership points.
1859 1.5 hpeyerl */
1860 1.11 mycroft in_delmulti(imo->imo_membership[i]);
1861 1.5 hpeyerl /*
1862 1.5 hpeyerl * Remove the gap in the membership array.
1863 1.5 hpeyerl */
1864 1.5 hpeyerl for (++i; i < imo->imo_num_memberships; ++i)
1865 1.5 hpeyerl imo->imo_membership[i-1] = imo->imo_membership[i];
1866 1.5 hpeyerl --imo->imo_num_memberships;
1867 1.5 hpeyerl break;
1868 1.5 hpeyerl
1869 1.5 hpeyerl default:
1870 1.5 hpeyerl error = EOPNOTSUPP;
1871 1.5 hpeyerl break;
1872 1.5 hpeyerl }
1873 1.5 hpeyerl
1874 1.5 hpeyerl /*
1875 1.5 hpeyerl * If all options have default values, no need to keep the mbuf.
1876 1.5 hpeyerl */
1877 1.5 hpeyerl if (imo->imo_multicast_ifp == NULL &&
1878 1.5 hpeyerl imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1879 1.5 hpeyerl imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1880 1.5 hpeyerl imo->imo_num_memberships == 0) {
1881 1.5 hpeyerl free(*imop, M_IPMOPTS);
1882 1.5 hpeyerl *imop = NULL;
1883 1.5 hpeyerl }
1884 1.5 hpeyerl
1885 1.5 hpeyerl return (error);
1886 1.5 hpeyerl }
1887 1.5 hpeyerl
1888 1.5 hpeyerl /*
1889 1.5 hpeyerl * Return the IP multicast options in response to user getsockopt().
1890 1.5 hpeyerl */
1891 1.5 hpeyerl int
1892 1.140 perry ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1893 1.5 hpeyerl {
1894 1.5 hpeyerl u_char *ttl;
1895 1.5 hpeyerl u_char *loop;
1896 1.5 hpeyerl struct in_addr *addr;
1897 1.5 hpeyerl struct in_ifaddr *ia;
1898 1.5 hpeyerl
1899 1.5 hpeyerl *mp = m_get(M_WAIT, MT_SOOPTS);
1900 1.5 hpeyerl
1901 1.5 hpeyerl switch (optname) {
1902 1.5 hpeyerl
1903 1.5 hpeyerl case IP_MULTICAST_IF:
1904 1.5 hpeyerl addr = mtod(*mp, struct in_addr *);
1905 1.5 hpeyerl (*mp)->m_len = sizeof(struct in_addr);
1906 1.5 hpeyerl if (imo == NULL || imo->imo_multicast_ifp == NULL)
1907 1.31 mycroft *addr = zeroin_addr;
1908 1.81 itojun else if (imo->imo_multicast_addr.s_addr) {
1909 1.81 itojun /* return the value user has set */
1910 1.81 itojun *addr = imo->imo_multicast_addr;
1911 1.81 itojun } else {
1912 1.5 hpeyerl IFP_TO_IA(imo->imo_multicast_ifp, ia);
1913 1.31 mycroft *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1914 1.5 hpeyerl }
1915 1.5 hpeyerl return (0);
1916 1.5 hpeyerl
1917 1.5 hpeyerl case IP_MULTICAST_TTL:
1918 1.5 hpeyerl ttl = mtod(*mp, u_char *);
1919 1.5 hpeyerl (*mp)->m_len = 1;
1920 1.31 mycroft *ttl = imo ? imo->imo_multicast_ttl
1921 1.31 mycroft : IP_DEFAULT_MULTICAST_TTL;
1922 1.5 hpeyerl return (0);
1923 1.5 hpeyerl
1924 1.5 hpeyerl case IP_MULTICAST_LOOP:
1925 1.5 hpeyerl loop = mtod(*mp, u_char *);
1926 1.5 hpeyerl (*mp)->m_len = 1;
1927 1.31 mycroft *loop = imo ? imo->imo_multicast_loop
1928 1.31 mycroft : IP_DEFAULT_MULTICAST_LOOP;
1929 1.5 hpeyerl return (0);
1930 1.5 hpeyerl
1931 1.5 hpeyerl default:
1932 1.5 hpeyerl return (EOPNOTSUPP);
1933 1.5 hpeyerl }
1934 1.5 hpeyerl }
1935 1.5 hpeyerl
1936 1.5 hpeyerl /*
1937 1.5 hpeyerl * Discard the IP multicast options.
1938 1.5 hpeyerl */
1939 1.5 hpeyerl void
1940 1.140 perry ip_freemoptions(struct ip_moptions *imo)
1941 1.5 hpeyerl {
1942 1.71 augustss int i;
1943 1.5 hpeyerl
1944 1.5 hpeyerl if (imo != NULL) {
1945 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i)
1946 1.5 hpeyerl in_delmulti(imo->imo_membership[i]);
1947 1.5 hpeyerl free(imo, M_IPMOPTS);
1948 1.5 hpeyerl }
1949 1.5 hpeyerl }
1950 1.5 hpeyerl
1951 1.5 hpeyerl /*
1952 1.5 hpeyerl * Routine called from ip_output() to loop back a copy of an IP multicast
1953 1.5 hpeyerl * packet to the input queue of a specified interface. Note that this
1954 1.5 hpeyerl * calls the output routine of the loopback "driver", but with an interface
1955 1.137 peter * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1956 1.5 hpeyerl */
1957 1.12 mycroft static void
1958 1.140 perry ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1959 1.5 hpeyerl {
1960 1.71 augustss struct ip *ip;
1961 1.5 hpeyerl struct mbuf *copym;
1962 1.5 hpeyerl
1963 1.5 hpeyerl copym = m_copy(m, 0, M_COPYALL);
1964 1.70 itojun if (copym != NULL
1965 1.65 itojun && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1966 1.65 itojun copym = m_pullup(copym, sizeof(struct ip));
1967 1.5 hpeyerl if (copym != NULL) {
1968 1.5 hpeyerl /*
1969 1.5 hpeyerl * We don't bother to fragment if the IP length is greater
1970 1.5 hpeyerl * than the interface's MTU. Can this possibly matter?
1971 1.5 hpeyerl */
1972 1.5 hpeyerl ip = mtod(copym, struct ip *);
1973 1.93 itojun
1974 1.93 itojun if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1975 1.94 thorpej in_delayed_cksum(copym);
1976 1.93 itojun copym->m_pkthdr.csum_flags &=
1977 1.93 itojun ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1978 1.93 itojun }
1979 1.93 itojun
1980 1.5 hpeyerl ip->ip_sum = 0;
1981 1.5 hpeyerl ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1982 1.24 mycroft (void) looutput(ifp, copym, sintosa(dst), NULL);
1983 1.5 hpeyerl }
1984 1.5 hpeyerl }
1985