ip_output.c revision 1.231 1 1.231 christos /* $NetBSD: ip_output.c,v 1.231 2014/10/11 21:12:51 christos Exp $ */
2 1.61 itojun
3 1.61 itojun /*
4 1.61 itojun * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 1.61 itojun * All rights reserved.
6 1.97 itojun *
7 1.61 itojun * Redistribution and use in source and binary forms, with or without
8 1.61 itojun * modification, are permitted provided that the following conditions
9 1.61 itojun * are met:
10 1.61 itojun * 1. Redistributions of source code must retain the above copyright
11 1.61 itojun * notice, this list of conditions and the following disclaimer.
12 1.61 itojun * 2. Redistributions in binary form must reproduce the above copyright
13 1.61 itojun * notice, this list of conditions and the following disclaimer in the
14 1.61 itojun * documentation and/or other materials provided with the distribution.
15 1.61 itojun * 3. Neither the name of the project nor the names of its contributors
16 1.61 itojun * may be used to endorse or promote products derived from this software
17 1.61 itojun * without specific prior written permission.
18 1.97 itojun *
19 1.61 itojun * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 1.61 itojun * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.61 itojun * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.61 itojun * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 1.61 itojun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.61 itojun * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.61 itojun * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.61 itojun * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.61 itojun * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.61 itojun * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.61 itojun * SUCH DAMAGE.
30 1.61 itojun */
31 1.54 thorpej
32 1.54 thorpej /*-
33 1.54 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 1.54 thorpej * All rights reserved.
35 1.54 thorpej *
36 1.54 thorpej * This code is derived from software contributed to The NetBSD Foundation
37 1.54 thorpej * by Public Access Networks Corporation ("Panix"). It was developed under
38 1.54 thorpej * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 1.54 thorpej *
40 1.54 thorpej * Redistribution and use in source and binary forms, with or without
41 1.54 thorpej * modification, are permitted provided that the following conditions
42 1.54 thorpej * are met:
43 1.54 thorpej * 1. Redistributions of source code must retain the above copyright
44 1.54 thorpej * notice, this list of conditions and the following disclaimer.
45 1.54 thorpej * 2. Redistributions in binary form must reproduce the above copyright
46 1.54 thorpej * notice, this list of conditions and the following disclaimer in the
47 1.54 thorpej * documentation and/or other materials provided with the distribution.
48 1.54 thorpej *
49 1.54 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 1.54 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 1.54 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 1.54 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 1.54 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 1.54 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 1.54 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 1.54 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 1.54 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 1.54 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 1.54 thorpej * POSSIBILITY OF SUCH DAMAGE.
60 1.54 thorpej */
61 1.19 cgd
62 1.1 cgd /*
63 1.18 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 1.18 mycroft * The Regents of the University of California. All rights reserved.
65 1.1 cgd *
66 1.1 cgd * Redistribution and use in source and binary forms, with or without
67 1.1 cgd * modification, are permitted provided that the following conditions
68 1.1 cgd * are met:
69 1.1 cgd * 1. Redistributions of source code must retain the above copyright
70 1.1 cgd * notice, this list of conditions and the following disclaimer.
71 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
72 1.1 cgd * notice, this list of conditions and the following disclaimer in the
73 1.1 cgd * documentation and/or other materials provided with the distribution.
74 1.108 agc * 3. Neither the name of the University nor the names of its contributors
75 1.1 cgd * may be used to endorse or promote products derived from this software
76 1.1 cgd * without specific prior written permission.
77 1.1 cgd *
78 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 1.1 cgd * SUCH DAMAGE.
89 1.1 cgd *
90 1.19 cgd * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 1.1 cgd */
92 1.89 lukem
93 1.89 lukem #include <sys/cdefs.h>
94 1.231 christos __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.231 2014/10/11 21:12:51 christos Exp $");
95 1.42 scottr
96 1.128 jonathan #include "opt_inet.h"
97 1.62 thorpej #include "opt_ipsec.h"
98 1.42 scottr #include "opt_mrouting.h"
99 1.1 cgd
100 1.8 mycroft #include <sys/param.h>
101 1.215 rmind #include <sys/kmem.h>
102 1.8 mycroft #include <sys/mbuf.h>
103 1.8 mycroft #include <sys/protosw.h>
104 1.8 mycroft #include <sys/socket.h>
105 1.8 mycroft #include <sys/socketvar.h>
106 1.162 christos #include <sys/kauth.h>
107 1.220 christos #ifdef IPSEC
108 1.118 itojun #include <sys/domain.h>
109 1.118 itojun #endif
110 1.28 christos #include <sys/systm.h>
111 1.61 itojun
112 1.8 mycroft #include <net/if.h>
113 1.8 mycroft #include <net/route.h>
114 1.38 mrg #include <net/pfil.h>
115 1.1 cgd
116 1.8 mycroft #include <netinet/in.h>
117 1.8 mycroft #include <netinet/in_systm.h>
118 1.8 mycroft #include <netinet/ip.h>
119 1.8 mycroft #include <netinet/in_pcb.h>
120 1.8 mycroft #include <netinet/in_var.h>
121 1.8 mycroft #include <netinet/ip_var.h>
122 1.194 thorpej #include <netinet/ip_private.h>
123 1.152 yamt #include <netinet/in_offload.h>
124 1.217 christos #include <netinet/portalgo.h>
125 1.219 christos #include <netinet/udp.h>
126 1.72 jdolecek
127 1.72 jdolecek #ifdef MROUTING
128 1.72 jdolecek #include <netinet/ip_mroute.h>
129 1.72 jdolecek #endif
130 1.32 mrg
131 1.109 jonathan #include <netipsec/ipsec.h>
132 1.109 jonathan #include <netipsec/key.h>
133 1.160 christos
134 1.226 rmind static int ip_pcbopts(struct inpcb *, const struct sockopt *);
135 1.139 perry static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
136 1.139 perry static struct ifnet *ip_multicast_if(struct in_addr *, int *);
137 1.180 dyoung static void ip_mloopback(struct ifnet *, struct mbuf *,
138 1.180 dyoung const struct sockaddr_in *);
139 1.1 cgd
140 1.224 rmind extern pfil_head_t *inet_pfil_hook; /* XXX */
141 1.78 thorpej
142 1.151 yamt int ip_do_loopback_cksum = 0;
143 1.151 yamt
144 1.1 cgd /*
145 1.1 cgd * IP output. The packet in mbuf chain m contains a skeletal IP
146 1.1 cgd * header (with len, off, ttl, proto, tos, src, dst).
147 1.1 cgd * The mbuf chain containing the packet will be freed.
148 1.1 cgd * The mbuf opt, if present, will not be freed.
149 1.1 cgd */
150 1.12 mycroft int
151 1.28 christos ip_output(struct mbuf *m0, ...)
152 1.1 cgd {
153 1.186 dyoung struct rtentry *rt;
154 1.110 itojun struct ip *ip;
155 1.71 augustss struct ifnet *ifp;
156 1.71 augustss struct mbuf *m = m0;
157 1.71 augustss int hlen = sizeof (struct ip);
158 1.110 itojun int len, error = 0;
159 1.1 cgd struct route iproute;
160 1.180 dyoung const struct sockaddr_in *dst;
161 1.1 cgd struct in_ifaddr *ia;
162 1.28 christos struct mbuf *opt;
163 1.28 christos struct route *ro;
164 1.226 rmind int flags, sw_csum;
165 1.96 itojun u_long mtu;
166 1.28 christos struct ip_moptions *imo;
167 1.116 itojun struct socket *so;
168 1.28 christos va_list ap;
169 1.229 christos #ifdef IPSEC
170 1.109 jonathan struct secpolicy *sp = NULL;
171 1.229 christos #endif
172 1.221 rmind bool natt_frag = false;
173 1.230 rmind bool rtmtu_nolock;
174 1.180 dyoung union {
175 1.180 dyoung struct sockaddr dst;
176 1.180 dyoung struct sockaddr_in dst4;
177 1.180 dyoung } u;
178 1.180 dyoung struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
179 1.180 dyoung * to the nexthop
180 1.180 dyoung */
181 1.28 christos
182 1.102 darrenr len = 0;
183 1.28 christos va_start(ap, m0);
184 1.28 christos opt = va_arg(ap, struct mbuf *);
185 1.28 christos ro = va_arg(ap, struct route *);
186 1.28 christos flags = va_arg(ap, int);
187 1.28 christos imo = va_arg(ap, struct ip_moptions *);
188 1.116 itojun so = va_arg(ap, struct socket *);
189 1.28 christos va_end(ap);
190 1.28 christos
191 1.103 matt MCLAIM(m, &ip_tx_mowner);
192 1.61 itojun
193 1.226 rmind KASSERT((m->m_flags & M_PKTHDR) != 0);
194 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
195 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
196 1.226 rmind (M_CSUM_TCPv4|M_CSUM_UDPv4));
197 1.163 tron
198 1.1 cgd if (opt) {
199 1.1 cgd m = ip_insertoptions(m, opt, &len);
200 1.102 darrenr if (len >= sizeof(struct ip))
201 1.102 darrenr hlen = len;
202 1.1 cgd }
203 1.1 cgd ip = mtod(m, struct ip *);
204 1.226 rmind
205 1.1 cgd /*
206 1.1 cgd * Fill in IP header.
207 1.1 cgd */
208 1.18 mycroft if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
209 1.1 cgd ip->ip_v = IPVERSION;
210 1.100 itojun ip->ip_off = htons(0);
211 1.192 matt /* ip->ip_id filled in after we find out source ia */
212 1.1 cgd ip->ip_hl = hlen >> 2;
213 1.194 thorpej IP_STATINC(IP_STAT_LOCALOUT);
214 1.1 cgd } else {
215 1.1 cgd hlen = ip->ip_hl << 2;
216 1.1 cgd }
217 1.226 rmind
218 1.1 cgd /*
219 1.1 cgd * Route packet.
220 1.1 cgd */
221 1.230 rmind if (ro == NULL) {
222 1.230 rmind memset(&iproute, 0, sizeof(iproute));
223 1.1 cgd ro = &iproute;
224 1.230 rmind }
225 1.180 dyoung sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
226 1.180 dyoung dst = satocsin(rtcache_getdst(ro));
227 1.226 rmind
228 1.1 cgd /*
229 1.226 rmind * If there is a cached route, check that it is to the same
230 1.226 rmind * destination and is still up. If not, free it and try again.
231 1.226 rmind * The address family should also be checked in case of sharing
232 1.226 rmind * the cache with IPv6.
233 1.1 cgd */
234 1.226 rmind if (dst && (dst->sin_family != AF_INET ||
235 1.226 rmind !in_hosteq(dst->sin_addr, ip->ip_dst)))
236 1.171 joerg rtcache_free(ro);
237 1.190 dyoung
238 1.190 dyoung if ((rt = rtcache_validate(ro)) == NULL &&
239 1.190 dyoung (rt = rtcache_update(ro, 1)) == NULL) {
240 1.180 dyoung dst = &u.dst4;
241 1.180 dyoung rtcache_setdst(ro, &u.dst);
242 1.1 cgd }
243 1.226 rmind
244 1.1 cgd /*
245 1.226 rmind * If routing to interface only, short circuit routing lookup.
246 1.1 cgd */
247 1.1 cgd if (flags & IP_ROUTETOIF) {
248 1.180 dyoung if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
249 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
250 1.1 cgd error = ENETUNREACH;
251 1.1 cgd goto bad;
252 1.1 cgd }
253 1.1 cgd ifp = ia->ia_ifp;
254 1.48 matt mtu = ifp->if_mtu;
255 1.18 mycroft ip->ip_ttl = 1;
256 1.98 itojun } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
257 1.98 itojun ip->ip_dst.s_addr == INADDR_BROADCAST) &&
258 1.98 itojun imo != NULL && imo->imo_multicast_ifp != NULL) {
259 1.98 itojun ifp = imo->imo_multicast_ifp;
260 1.98 itojun mtu = ifp->if_mtu;
261 1.99 itojun IFP_TO_IA(ifp, ia);
262 1.1 cgd } else {
263 1.186 dyoung if (rt == NULL)
264 1.190 dyoung rt = rtcache_init(ro);
265 1.190 dyoung if (rt == NULL) {
266 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
267 1.1 cgd error = EHOSTUNREACH;
268 1.1 cgd goto bad;
269 1.1 cgd }
270 1.186 dyoung ia = ifatoia(rt->rt_ifa);
271 1.186 dyoung ifp = rt->rt_ifp;
272 1.186 dyoung if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
273 1.48 matt mtu = ifp->if_mtu;
274 1.186 dyoung rt->rt_use++;
275 1.186 dyoung if (rt->rt_flags & RTF_GATEWAY)
276 1.186 dyoung dst = satosin(rt->rt_gateway);
277 1.1 cgd }
278 1.230 rmind rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
279 1.226 rmind
280 1.64 is if (IN_MULTICAST(ip->ip_dst.s_addr) ||
281 1.64 is (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
282 1.228 rmind bool inmgroup;
283 1.5 hpeyerl
284 1.64 is m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
285 1.64 is M_BCAST : M_MCAST;
286 1.5 hpeyerl /*
287 1.5 hpeyerl * See if the caller provided any multicast options
288 1.5 hpeyerl */
289 1.98 itojun if (imo != NULL)
290 1.5 hpeyerl ip->ip_ttl = imo->imo_multicast_ttl;
291 1.98 itojun else
292 1.5 hpeyerl ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
293 1.98 itojun
294 1.98 itojun /*
295 1.98 itojun * if we don't know the outgoing ifp yet, we can't generate
296 1.98 itojun * output
297 1.98 itojun */
298 1.98 itojun if (!ifp) {
299 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
300 1.98 itojun error = ENETUNREACH;
301 1.98 itojun goto bad;
302 1.98 itojun }
303 1.98 itojun
304 1.5 hpeyerl /*
305 1.95 thorpej * If the packet is multicast or broadcast, confirm that
306 1.95 thorpej * the outgoing interface can transmit it.
307 1.5 hpeyerl */
308 1.64 is if (((m->m_flags & M_MCAST) &&
309 1.64 is (ifp->if_flags & IFF_MULTICAST) == 0) ||
310 1.97 itojun ((m->m_flags & M_BCAST) &&
311 1.95 thorpej (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
312 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
313 1.5 hpeyerl error = ENETUNREACH;
314 1.5 hpeyerl goto bad;
315 1.5 hpeyerl }
316 1.5 hpeyerl /*
317 1.44 tls * If source address not specified yet, use an address
318 1.5 hpeyerl * of outgoing interface.
319 1.5 hpeyerl */
320 1.31 mycroft if (in_nullhost(ip->ip_src)) {
321 1.153 christos struct in_ifaddr *xia;
322 1.230 rmind struct ifaddr *xifa;
323 1.5 hpeyerl
324 1.153 christos IFP_TO_IA(ifp, xia);
325 1.153 christos if (!xia) {
326 1.91 itojun error = EADDRNOTAVAIL;
327 1.91 itojun goto bad;
328 1.91 itojun }
329 1.166 dyoung xifa = &xia->ia_ifa;
330 1.166 dyoung if (xifa->ifa_getifa != NULL) {
331 1.180 dyoung xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
332 1.166 dyoung }
333 1.153 christos ip->ip_src = xia->ia_addr.sin_addr;
334 1.5 hpeyerl }
335 1.5 hpeyerl
336 1.228 rmind inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
337 1.228 rmind if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
338 1.5 hpeyerl /*
339 1.11 mycroft * If we belong to the destination multicast group
340 1.5 hpeyerl * on the outgoing interface, and the caller did not
341 1.5 hpeyerl * forbid loopback, loop back a copy.
342 1.5 hpeyerl */
343 1.180 dyoung ip_mloopback(ifp, m, &u.dst4);
344 1.5 hpeyerl }
345 1.5 hpeyerl #ifdef MROUTING
346 1.18 mycroft else {
347 1.5 hpeyerl /*
348 1.5 hpeyerl * If we are acting as a multicast router, perform
349 1.5 hpeyerl * multicast forwarding as if the packet had just
350 1.5 hpeyerl * arrived on the interface to which we are about
351 1.5 hpeyerl * to send. The multicast forwarding function
352 1.5 hpeyerl * recursively calls this function, using the
353 1.5 hpeyerl * IP_FORWARDING flag to prevent infinite recursion.
354 1.5 hpeyerl *
355 1.5 hpeyerl * Multicasts that are looped back by ip_mloopback(),
356 1.5 hpeyerl * above, will be forwarded by the ip_input() routine,
357 1.5 hpeyerl * if necessary.
358 1.5 hpeyerl */
359 1.18 mycroft extern struct socket *ip_mrouter;
360 1.22 cgd
361 1.18 mycroft if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
362 1.18 mycroft if (ip_mforward(m, ifp) != 0) {
363 1.18 mycroft m_freem(m);
364 1.18 mycroft goto done;
365 1.18 mycroft }
366 1.5 hpeyerl }
367 1.5 hpeyerl }
368 1.5 hpeyerl #endif
369 1.5 hpeyerl /*
370 1.5 hpeyerl * Multicasts with a time-to-live of zero may be looped-
371 1.5 hpeyerl * back, above, but must not be transmitted on a network.
372 1.5 hpeyerl * Also, multicasts addressed to the loopback interface
373 1.5 hpeyerl * are not sent -- the above call to ip_mloopback() will
374 1.5 hpeyerl * loop back a copy if this host actually belongs to the
375 1.5 hpeyerl * destination group on the loopback interface.
376 1.5 hpeyerl */
377 1.20 mycroft if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
378 1.5 hpeyerl m_freem(m);
379 1.5 hpeyerl goto done;
380 1.5 hpeyerl }
381 1.5 hpeyerl goto sendit;
382 1.5 hpeyerl }
383 1.230 rmind
384 1.1 cgd /*
385 1.1 cgd * If source address not specified yet, use address
386 1.1 cgd * of outgoing interface.
387 1.1 cgd */
388 1.166 dyoung if (in_nullhost(ip->ip_src)) {
389 1.230 rmind struct ifaddr *xifa;
390 1.230 rmind
391 1.166 dyoung xifa = &ia->ia_ifa;
392 1.166 dyoung if (xifa->ifa_getifa != NULL)
393 1.180 dyoung ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
394 1.25 mycroft ip->ip_src = ia->ia_addr.sin_addr;
395 1.166 dyoung }
396 1.59 hwr
397 1.59 hwr /*
398 1.97 itojun * packets with Class-D address as source are not valid per
399 1.59 hwr * RFC 1112
400 1.59 hwr */
401 1.59 hwr if (IN_MULTICAST(ip->ip_src.s_addr)) {
402 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
403 1.59 hwr error = EADDRNOTAVAIL;
404 1.59 hwr goto bad;
405 1.59 hwr }
406 1.59 hwr
407 1.1 cgd /*
408 1.230 rmind * Look for broadcast address and and verify user is allowed to
409 1.230 rmind * send such a packet.
410 1.1 cgd */
411 1.18 mycroft if (in_broadcast(dst->sin_addr, ifp)) {
412 1.1 cgd if ((ifp->if_flags & IFF_BROADCAST) == 0) {
413 1.1 cgd error = EADDRNOTAVAIL;
414 1.1 cgd goto bad;
415 1.1 cgd }
416 1.1 cgd if ((flags & IP_ALLOWBROADCAST) == 0) {
417 1.1 cgd error = EACCES;
418 1.1 cgd goto bad;
419 1.1 cgd }
420 1.1 cgd /* don't allow broadcast messages to be fragmented */
421 1.100 itojun if (ntohs(ip->ip_len) > ifp->if_mtu) {
422 1.1 cgd error = EMSGSIZE;
423 1.1 cgd goto bad;
424 1.1 cgd }
425 1.1 cgd m->m_flags |= M_BCAST;
426 1.18 mycroft } else
427 1.18 mycroft m->m_flags &= ~M_BCAST;
428 1.18 mycroft
429 1.60 mrg sendit:
430 1.192 matt if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
431 1.192 matt if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
432 1.192 matt ip->ip_id = 0;
433 1.192 matt } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
434 1.192 matt ip->ip_id = ip_newid(ia);
435 1.192 matt } else {
436 1.192 matt
437 1.192 matt /*
438 1.192 matt * TSO capable interfaces (typically?) increment
439 1.192 matt * ip_id for each segment.
440 1.192 matt * "allocate" enough ids here to increase the chance
441 1.192 matt * for them to be unique.
442 1.192 matt *
443 1.192 matt * note that the following calculation is not
444 1.192 matt * needed to be precise. wasting some ip_id is fine.
445 1.192 matt */
446 1.192 matt
447 1.192 matt unsigned int segsz = m->m_pkthdr.segsz;
448 1.192 matt unsigned int datasz = ntohs(ip->ip_len) - hlen;
449 1.192 matt unsigned int num = howmany(datasz, segsz);
450 1.192 matt
451 1.192 matt ip->ip_id = ip_newid_range(ia, num);
452 1.192 matt }
453 1.192 matt }
454 1.230 rmind
455 1.76 thorpej /*
456 1.76 thorpej * If we're doing Path MTU Discovery, we need to set DF unless
457 1.76 thorpej * the route's MTU is locked.
458 1.76 thorpej */
459 1.230 rmind if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
460 1.100 itojun ip->ip_off |= htons(IP_DF);
461 1.230 rmind }
462 1.76 thorpej
463 1.220 christos #ifdef IPSEC
464 1.229 christos if (ipsec_used) {
465 1.230 rmind bool ipsec_done = false;
466 1.230 rmind
467 1.229 christos /* Perform IPsec processing, if any. */
468 1.229 christos error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
469 1.230 rmind &ipsec_done);
470 1.230 rmind if (error || ipsec_done)
471 1.229 christos goto done;
472 1.221 rmind }
473 1.109 jonathan #endif
474 1.109 jonathan
475 1.82 itojun /*
476 1.82 itojun * Run through list of hooks for output packets.
477 1.82 itojun */
478 1.230 rmind error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
479 1.230 rmind if (error)
480 1.82 itojun goto done;
481 1.82 itojun if (m == NULL)
482 1.82 itojun goto done;
483 1.82 itojun
484 1.82 itojun ip = mtod(m, struct ip *);
485 1.106 itojun hlen = ip->ip_hl << 2;
486 1.82 itojun
487 1.146 matt m->m_pkthdr.csum_data |= hlen << 16;
488 1.146 matt
489 1.136 thorpej #if IFA_STATS
490 1.136 thorpej /*
491 1.136 thorpej * search for the source address structure to
492 1.136 thorpej * maintain output statistics.
493 1.136 thorpej */
494 1.136 thorpej INADDR_TO_IA(ip->ip_src, ia);
495 1.136 thorpej #endif
496 1.136 thorpej
497 1.138 thorpej /* Maybe skip checksums on loopback interfaces. */
498 1.151 yamt if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
499 1.138 thorpej m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
500 1.151 yamt }
501 1.104 yamt sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
502 1.1 cgd /*
503 1.147 matt * If small enough for mtu of path, or if using TCP segmentation
504 1.147 matt * offload, can just send directly.
505 1.1 cgd */
506 1.218 kefren if (ntohs(ip->ip_len) <= mtu ||
507 1.147 matt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
508 1.230 rmind const struct sockaddr *sa;
509 1.230 rmind
510 1.63 itojun #if IFA_STATS
511 1.63 itojun if (ia)
512 1.218 kefren ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
513 1.63 itojun #endif
514 1.86 thorpej /*
515 1.86 thorpej * Always initialize the sum to 0! Some HW assisted
516 1.86 thorpej * checksumming requires this.
517 1.86 thorpej */
518 1.1 cgd ip->ip_sum = 0;
519 1.86 thorpej
520 1.149 matt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
521 1.147 matt /*
522 1.147 matt * Perform any checksums that the hardware can't do
523 1.147 matt * for us.
524 1.147 matt *
525 1.147 matt * XXX Does any hardware require the {th,uh}_sum
526 1.147 matt * XXX fields to be 0?
527 1.147 matt */
528 1.147 matt if (sw_csum & M_CSUM_IPv4) {
529 1.151 yamt KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
530 1.147 matt ip->ip_sum = in_cksum(m, hlen);
531 1.147 matt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
532 1.147 matt }
533 1.147 matt if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
534 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
535 1.151 yamt sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
536 1.151 yamt in_delayed_cksum(m);
537 1.151 yamt }
538 1.147 matt m->m_pkthdr.csum_flags &=
539 1.147 matt ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
540 1.147 matt }
541 1.146 matt }
542 1.86 thorpej
543 1.230 rmind sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
544 1.152 yamt if (__predict_true(
545 1.152 yamt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
546 1.152 yamt (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
547 1.208 yamt KERNEL_LOCK(1, NULL);
548 1.230 rmind error = (*ifp->if_output)(ifp, m, sa, rt);
549 1.208 yamt KERNEL_UNLOCK_ONE(NULL);
550 1.152 yamt } else {
551 1.230 rmind error = ip_tso_output(ifp, m, sa, rt);
552 1.152 yamt }
553 1.1 cgd goto done;
554 1.1 cgd }
555 1.61 itojun
556 1.1 cgd /*
557 1.86 thorpej * We can't use HW checksumming if we're about to
558 1.86 thorpej * to fragment the packet.
559 1.86 thorpej *
560 1.86 thorpej * XXX Some hardware can do this.
561 1.86 thorpej */
562 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
563 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
564 1.151 yamt m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
565 1.151 yamt in_delayed_cksum(m);
566 1.151 yamt }
567 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
568 1.86 thorpej }
569 1.86 thorpej
570 1.86 thorpej /*
571 1.1 cgd * Too large for interface; fragment if possible.
572 1.1 cgd * Must be able to put at least 8 bytes per fragment.
573 1.1 cgd */
574 1.100 itojun if (ntohs(ip->ip_off) & IP_DF) {
575 1.226 rmind if (flags & IP_RETURNMTU) {
576 1.227 rmind struct inpcb *inp;
577 1.227 rmind
578 1.227 rmind KASSERT(so && solocked(so));
579 1.227 rmind inp = sotoinpcb(so);
580 1.226 rmind inp->inp_errormtu = mtu;
581 1.226 rmind }
582 1.1 cgd error = EMSGSIZE;
583 1.194 thorpej IP_STATINC(IP_STAT_CANTFRAG);
584 1.1 cgd goto bad;
585 1.1 cgd }
586 1.110 itojun
587 1.110 itojun error = ip_fragment(m, ifp, mtu);
588 1.124 itojun if (error) {
589 1.124 itojun m = NULL;
590 1.1 cgd goto bad;
591 1.124 itojun }
592 1.110 itojun
593 1.119 itojun for (; m; m = m0) {
594 1.110 itojun m0 = m->m_nextpkt;
595 1.110 itojun m->m_nextpkt = 0;
596 1.230 rmind if (error) {
597 1.230 rmind m_freem(m);
598 1.230 rmind continue;
599 1.230 rmind }
600 1.110 itojun #if IFA_STATS
601 1.230 rmind if (ia)
602 1.230 rmind ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
603 1.110 itojun #endif
604 1.230 rmind /*
605 1.230 rmind * If we get there, the packet has not been handled by
606 1.230 rmind * IPsec whereas it should have. Now that it has been
607 1.230 rmind * fragmented, re-inject it in ip_output so that IPsec
608 1.230 rmind * processing can occur.
609 1.230 rmind */
610 1.230 rmind if (natt_frag) {
611 1.230 rmind error = ip_output(m, opt, ro,
612 1.230 rmind flags | IP_RAWOUTPUT | IP_NOIPNEWID,
613 1.230 rmind imo, so);
614 1.230 rmind } else {
615 1.230 rmind KASSERT((m->m_pkthdr.csum_flags &
616 1.230 rmind (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
617 1.230 rmind KERNEL_LOCK(1, NULL);
618 1.230 rmind error = (*ifp->if_output)(ifp, m,
619 1.230 rmind (m->m_flags & M_MCAST) ?
620 1.230 rmind sintocsa(rdst) : sintocsa(dst), rt);
621 1.230 rmind KERNEL_UNLOCK_ONE(NULL);
622 1.230 rmind }
623 1.1 cgd }
624 1.230 rmind if (error == 0) {
625 1.194 thorpej IP_STATINC(IP_STAT_FRAGMENTED);
626 1.230 rmind }
627 1.110 itojun done:
628 1.230 rmind if (ro == &iproute) {
629 1.230 rmind rtcache_free(&iproute);
630 1.230 rmind }
631 1.229 christos #ifdef IPSEC
632 1.221 rmind if (sp) {
633 1.110 itojun KEY_FREESP(&sp);
634 1.229 christos }
635 1.221 rmind #endif
636 1.221 rmind return error;
637 1.110 itojun bad:
638 1.110 itojun m_freem(m);
639 1.110 itojun goto done;
640 1.110 itojun }
641 1.110 itojun
642 1.113 itojun int
643 1.110 itojun ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
644 1.110 itojun {
645 1.110 itojun struct ip *ip, *mhip;
646 1.110 itojun struct mbuf *m0;
647 1.110 itojun int len, hlen, off;
648 1.110 itojun int mhlen, firstlen;
649 1.110 itojun struct mbuf **mnext;
650 1.135 manu int sw_csum = m->m_pkthdr.csum_flags;
651 1.48 matt int fragments = 0;
652 1.48 matt int s;
653 1.110 itojun int error = 0;
654 1.110 itojun
655 1.110 itojun ip = mtod(m, struct ip *);
656 1.110 itojun hlen = ip->ip_hl << 2;
657 1.135 manu if (ifp != NULL)
658 1.135 manu sw_csum &= ~ifp->if_csum_flags_tx;
659 1.110 itojun
660 1.110 itojun len = (mtu - hlen) &~ 7;
661 1.124 itojun if (len < 8) {
662 1.124 itojun m_freem(m);
663 1.110 itojun return (EMSGSIZE);
664 1.124 itojun }
665 1.110 itojun
666 1.110 itojun firstlen = len;
667 1.110 itojun mnext = &m->m_nextpkt;
668 1.1 cgd
669 1.1 cgd /*
670 1.1 cgd * Loop through length of segment after first fragment,
671 1.1 cgd * make new header and copy data of each part and link onto chain.
672 1.1 cgd */
673 1.1 cgd m0 = m;
674 1.1 cgd mhlen = sizeof (struct ip);
675 1.100 itojun for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
676 1.1 cgd MGETHDR(m, M_DONTWAIT, MT_HEADER);
677 1.1 cgd if (m == 0) {
678 1.1 cgd error = ENOBUFS;
679 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
680 1.1 cgd goto sendorfree;
681 1.1 cgd }
682 1.103 matt MCLAIM(m, m0->m_owner);
683 1.22 cgd *mnext = m;
684 1.22 cgd mnext = &m->m_nextpkt;
685 1.1 cgd m->m_data += max_linkhdr;
686 1.1 cgd mhip = mtod(m, struct ip *);
687 1.1 cgd *mhip = *ip;
688 1.73 is /* we must inherit MCAST and BCAST flags */
689 1.73 is m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
690 1.1 cgd if (hlen > sizeof (struct ip)) {
691 1.1 cgd mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
692 1.1 cgd mhip->ip_hl = mhlen >> 2;
693 1.1 cgd }
694 1.1 cgd m->m_len = mhlen;
695 1.122 itojun mhip->ip_off = ((off - hlen) >> 3) +
696 1.122 itojun (ntohs(ip->ip_off) & ~IP_MF);
697 1.122 itojun if (ip->ip_off & htons(IP_MF))
698 1.1 cgd mhip->ip_off |= IP_MF;
699 1.100 itojun if (off + len >= ntohs(ip->ip_len))
700 1.100 itojun len = ntohs(ip->ip_len) - off;
701 1.1 cgd else
702 1.1 cgd mhip->ip_off |= IP_MF;
703 1.100 itojun HTONS(mhip->ip_off);
704 1.21 cgd mhip->ip_len = htons((u_int16_t)(len + mhlen));
705 1.182 dyoung m->m_next = m_copym(m0, off, len, M_DONTWAIT);
706 1.1 cgd if (m->m_next == 0) {
707 1.1 cgd error = ENOBUFS; /* ??? */
708 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
709 1.1 cgd goto sendorfree;
710 1.1 cgd }
711 1.1 cgd m->m_pkthdr.len = mhlen + len;
712 1.212 christos m->m_pkthdr.rcvif = NULL;
713 1.1 cgd mhip->ip_sum = 0;
714 1.210 yamt KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
715 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
716 1.104 yamt mhip->ip_sum = in_cksum(m, mhlen);
717 1.104 yamt } else {
718 1.210 yamt /*
719 1.210 yamt * checksum is hw-offloaded or not necessary.
720 1.210 yamt */
721 1.210 yamt m->m_pkthdr.csum_flags |=
722 1.210 yamt m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
723 1.148 thorpej m->m_pkthdr.csum_data |= mhlen << 16;
724 1.210 yamt KASSERT(!(ifp != NULL &&
725 1.210 yamt IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
726 1.210 yamt || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
727 1.104 yamt }
728 1.194 thorpej IP_STATINC(IP_STAT_OFRAGMENTS);
729 1.48 matt fragments++;
730 1.1 cgd }
731 1.1 cgd /*
732 1.1 cgd * Update first fragment by trimming what's been copied out
733 1.1 cgd * and updating header, then send each fragment (in order).
734 1.1 cgd */
735 1.1 cgd m = m0;
736 1.100 itojun m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
737 1.1 cgd m->m_pkthdr.len = hlen + firstlen;
738 1.21 cgd ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
739 1.100 itojun ip->ip_off |= htons(IP_MF);
740 1.1 cgd ip->ip_sum = 0;
741 1.210 yamt if (sw_csum & M_CSUM_IPv4) {
742 1.210 yamt ip->ip_sum = in_cksum(m, hlen);
743 1.210 yamt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
744 1.210 yamt } else {
745 1.210 yamt /*
746 1.210 yamt * checksum is hw-offloaded or not necessary.
747 1.210 yamt */
748 1.210 yamt KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4))
749 1.210 yamt || (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
750 1.210 yamt KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
751 1.210 yamt sizeof(struct ip));
752 1.104 yamt }
753 1.1 cgd sendorfree:
754 1.48 matt /*
755 1.48 matt * If there is no room for all the fragments, don't queue
756 1.48 matt * any of them.
757 1.48 matt */
758 1.135 manu if (ifp != NULL) {
759 1.135 manu s = splnet();
760 1.135 manu if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
761 1.135 manu error == 0) {
762 1.135 manu error = ENOBUFS;
763 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
764 1.135 manu IFQ_INC_DROPS(&ifp->if_snd);
765 1.135 manu }
766 1.135 manu splx(s);
767 1.126 enami }
768 1.124 itojun if (error) {
769 1.125 itojun for (m = m0; m; m = m0) {
770 1.124 itojun m0 = m->m_nextpkt;
771 1.124 itojun m->m_nextpkt = NULL;
772 1.124 itojun m_freem(m);
773 1.124 itojun }
774 1.124 itojun }
775 1.1 cgd return (error);
776 1.86 thorpej }
777 1.86 thorpej
778 1.86 thorpej /*
779 1.86 thorpej * Process a delayed payload checksum calculation.
780 1.86 thorpej */
781 1.86 thorpej void
782 1.86 thorpej in_delayed_cksum(struct mbuf *m)
783 1.86 thorpej {
784 1.86 thorpej struct ip *ip;
785 1.86 thorpej u_int16_t csum, offset;
786 1.86 thorpej
787 1.86 thorpej ip = mtod(m, struct ip *);
788 1.86 thorpej offset = ip->ip_hl << 2;
789 1.86 thorpej csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
790 1.86 thorpej if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
791 1.86 thorpej csum = 0xffff;
792 1.86 thorpej
793 1.145 briggs offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
794 1.86 thorpej
795 1.86 thorpej if ((offset + sizeof(u_int16_t)) > m->m_len) {
796 1.87 yamt /* This happen when ip options were inserted
797 1.86 thorpej printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
798 1.86 thorpej m->m_len, offset, ip->ip_p);
799 1.87 yamt */
800 1.179 christos m_copyback(m, offset, sizeof(csum), (void *) &csum);
801 1.86 thorpej } else
802 1.179 christos *(u_int16_t *)(mtod(m, char *) + offset) = csum;
803 1.1 cgd }
804 1.47 kml
805 1.47 kml /*
806 1.47 kml * Determine the maximum length of the options to be inserted;
807 1.47 kml * we would far rather allocate too much space rather than too little.
808 1.47 kml */
809 1.47 kml
810 1.47 kml u_int
811 1.140 perry ip_optlen(struct inpcb *inp)
812 1.47 kml {
813 1.47 kml struct mbuf *m = inp->inp_options;
814 1.47 kml
815 1.226 rmind if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
816 1.101 itojun return (m->m_len - offsetof(struct ipoption, ipopt_dst));
817 1.226 rmind }
818 1.226 rmind return 0;
819 1.47 kml }
820 1.47 kml
821 1.1 cgd /*
822 1.1 cgd * Insert IP options into preformed packet.
823 1.1 cgd * Adjust IP destination as required for IP source routing,
824 1.1 cgd * as indicated by a non-zero in_addr at the start of the options.
825 1.1 cgd */
826 1.12 mycroft static struct mbuf *
827 1.140 perry ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
828 1.1 cgd {
829 1.71 augustss struct ipoption *p = mtod(opt, struct ipoption *);
830 1.1 cgd struct mbuf *n;
831 1.71 augustss struct ip *ip = mtod(m, struct ip *);
832 1.1 cgd unsigned optlen;
833 1.1 cgd
834 1.1 cgd optlen = opt->m_len - sizeof(p->ipopt_dst);
835 1.100 itojun if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
836 1.1 cgd return (m); /* XXX should fail */
837 1.31 mycroft if (!in_nullhost(p->ipopt_dst))
838 1.1 cgd ip->ip_dst = p->ipopt_dst;
839 1.123 itojun if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
840 1.1 cgd MGETHDR(n, M_DONTWAIT, MT_HEADER);
841 1.1 cgd if (n == 0)
842 1.1 cgd return (m);
843 1.103 matt MCLAIM(n, m->m_owner);
844 1.155 yamt M_MOVE_PKTHDR(n, m);
845 1.1 cgd m->m_len -= sizeof(struct ip);
846 1.1 cgd m->m_data += sizeof(struct ip);
847 1.1 cgd n->m_next = m;
848 1.1 cgd m = n;
849 1.1 cgd m->m_len = optlen + sizeof(struct ip);
850 1.1 cgd m->m_data += max_linkhdr;
851 1.179 christos bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
852 1.1 cgd } else {
853 1.1 cgd m->m_data -= optlen;
854 1.1 cgd m->m_len += optlen;
855 1.179 christos memmove(mtod(m, void *), ip, sizeof(struct ip));
856 1.1 cgd }
857 1.87 yamt m->m_pkthdr.len += optlen;
858 1.1 cgd ip = mtod(m, struct ip *);
859 1.179 christos bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
860 1.1 cgd *phlen = sizeof(struct ip) + optlen;
861 1.100 itojun ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
862 1.1 cgd return (m);
863 1.1 cgd }
864 1.1 cgd
865 1.1 cgd /*
866 1.1 cgd * Copy options from ip to jp,
867 1.1 cgd * omitting those not copied during fragmentation.
868 1.1 cgd */
869 1.12 mycroft int
870 1.140 perry ip_optcopy(struct ip *ip, struct ip *jp)
871 1.1 cgd {
872 1.71 augustss u_char *cp, *dp;
873 1.1 cgd int opt, optlen, cnt;
874 1.1 cgd
875 1.1 cgd cp = (u_char *)(ip + 1);
876 1.1 cgd dp = (u_char *)(jp + 1);
877 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
878 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
879 1.1 cgd opt = cp[0];
880 1.1 cgd if (opt == IPOPT_EOL)
881 1.1 cgd break;
882 1.18 mycroft if (opt == IPOPT_NOP) {
883 1.18 mycroft /* Preserve for IP mcast tunnel's LSRR alignment. */
884 1.18 mycroft *dp++ = IPOPT_NOP;
885 1.1 cgd optlen = 1;
886 1.18 mycroft continue;
887 1.74 itojun }
888 1.226 rmind
889 1.226 rmind KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
890 1.74 itojun optlen = cp[IPOPT_OLEN];
891 1.226 rmind KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
892 1.226 rmind
893 1.226 rmind /* Invalid lengths should have been caught by ip_dooptions. */
894 1.1 cgd if (optlen > cnt)
895 1.1 cgd optlen = cnt;
896 1.1 cgd if (IPOPT_COPIED(opt)) {
897 1.179 christos bcopy((void *)cp, (void *)dp, (unsigned)optlen);
898 1.1 cgd dp += optlen;
899 1.1 cgd }
900 1.1 cgd }
901 1.1 cgd for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
902 1.1 cgd *dp++ = IPOPT_EOL;
903 1.1 cgd return (optlen);
904 1.1 cgd }
905 1.1 cgd
906 1.1 cgd /*
907 1.1 cgd * IP socket option processing.
908 1.1 cgd */
909 1.12 mycroft int
910 1.197 plunky ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
911 1.1 cgd {
912 1.71 augustss struct inpcb *inp = sotoinpcb(so);
913 1.226 rmind struct ip *ip = &inp->inp_ip;
914 1.226 rmind int inpflags = inp->inp_flags;
915 1.226 rmind int optval = 0, error = 0;
916 1.1 cgd
917 1.197 plunky if (sopt->sopt_level != IPPROTO_IP) {
918 1.197 plunky if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
919 1.184 dyoung return 0;
920 1.184 dyoung return ENOPROTOOPT;
921 1.184 dyoung }
922 1.184 dyoung
923 1.184 dyoung switch (op) {
924 1.1 cgd case PRCO_SETOPT:
925 1.197 plunky switch (sopt->sopt_name) {
926 1.1 cgd case IP_OPTIONS:
927 1.1 cgd #ifdef notyet
928 1.1 cgd case IP_RETOPTS:
929 1.1 cgd #endif
930 1.226 rmind error = ip_pcbopts(inp, sopt);
931 1.197 plunky break;
932 1.1 cgd
933 1.1 cgd case IP_TOS:
934 1.1 cgd case IP_TTL:
935 1.205 minskim case IP_MINTTL:
936 1.223 christos case IP_PKTINFO:
937 1.1 cgd case IP_RECVOPTS:
938 1.1 cgd case IP_RECVRETOPTS:
939 1.1 cgd case IP_RECVDSTADDR:
940 1.37 thorpej case IP_RECVIF:
941 1.223 christos case IP_RECVPKTINFO:
942 1.204 minskim case IP_RECVTTL:
943 1.197 plunky error = sockopt_getint(sopt, &optval);
944 1.197 plunky if (error)
945 1.197 plunky break;
946 1.197 plunky
947 1.197 plunky switch (sopt->sopt_name) {
948 1.197 plunky case IP_TOS:
949 1.226 rmind ip->ip_tos = optval;
950 1.197 plunky break;
951 1.197 plunky
952 1.197 plunky case IP_TTL:
953 1.226 rmind ip->ip_ttl = optval;
954 1.197 plunky break;
955 1.205 minskim
956 1.205 minskim case IP_MINTTL:
957 1.205 minskim if (optval > 0 && optval <= MAXTTL)
958 1.205 minskim inp->inp_ip_minttl = optval;
959 1.205 minskim else
960 1.205 minskim error = EINVAL;
961 1.205 minskim break;
962 1.1 cgd #define OPTSET(bit) \
963 1.1 cgd if (optval) \
964 1.226 rmind inpflags |= bit; \
965 1.1 cgd else \
966 1.226 rmind inpflags &= ~bit;
967 1.1 cgd
968 1.223 christos case IP_PKTINFO:
969 1.223 christos OPTSET(INP_PKTINFO);
970 1.223 christos break;
971 1.223 christos
972 1.197 plunky case IP_RECVOPTS:
973 1.197 plunky OPTSET(INP_RECVOPTS);
974 1.197 plunky break;
975 1.197 plunky
976 1.223 christos case IP_RECVPKTINFO:
977 1.223 christos OPTSET(INP_RECVPKTINFO);
978 1.223 christos break;
979 1.223 christos
980 1.197 plunky case IP_RECVRETOPTS:
981 1.197 plunky OPTSET(INP_RECVRETOPTS);
982 1.197 plunky break;
983 1.197 plunky
984 1.197 plunky case IP_RECVDSTADDR:
985 1.197 plunky OPTSET(INP_RECVDSTADDR);
986 1.197 plunky break;
987 1.197 plunky
988 1.197 plunky case IP_RECVIF:
989 1.197 plunky OPTSET(INP_RECVIF);
990 1.197 plunky break;
991 1.204 minskim
992 1.204 minskim case IP_RECVTTL:
993 1.204 minskim OPTSET(INP_RECVTTL);
994 1.204 minskim break;
995 1.1 cgd }
996 1.197 plunky break;
997 1.1 cgd #undef OPTSET
998 1.18 mycroft
999 1.18 mycroft case IP_MULTICAST_IF:
1000 1.18 mycroft case IP_MULTICAST_TTL:
1001 1.18 mycroft case IP_MULTICAST_LOOP:
1002 1.18 mycroft case IP_ADD_MEMBERSHIP:
1003 1.18 mycroft case IP_DROP_MEMBERSHIP:
1004 1.231 christos error = ip_setmoptions(&inp->inp_moptions, sopt);
1005 1.18 mycroft break;
1006 1.1 cgd
1007 1.41 lukem case IP_PORTRANGE:
1008 1.197 plunky error = sockopt_getint(sopt, &optval);
1009 1.197 plunky if (error)
1010 1.197 plunky break;
1011 1.197 plunky
1012 1.197 plunky switch (optval) {
1013 1.197 plunky case IP_PORTRANGE_DEFAULT:
1014 1.197 plunky case IP_PORTRANGE_HIGH:
1015 1.226 rmind inpflags &= ~(INP_LOWPORT);
1016 1.197 plunky break;
1017 1.41 lukem
1018 1.197 plunky case IP_PORTRANGE_LOW:
1019 1.226 rmind inpflags |= INP_LOWPORT;
1020 1.197 plunky break;
1021 1.41 lukem
1022 1.197 plunky default:
1023 1.197 plunky error = EINVAL;
1024 1.197 plunky break;
1025 1.41 lukem }
1026 1.41 lukem break;
1027 1.41 lukem
1028 1.216 christos case IP_PORTALGO:
1029 1.216 christos error = sockopt_getint(sopt, &optval);
1030 1.216 christos if (error)
1031 1.216 christos break;
1032 1.216 christos
1033 1.217 christos error = portalgo_algo_index_select(
1034 1.216 christos (struct inpcb_hdr *)inp, optval);
1035 1.216 christos break;
1036 1.216 christos
1037 1.220 christos #if defined(IPSEC)
1038 1.61 itojun case IP_IPSEC_POLICY:
1039 1.229 christos if (ipsec_enabled) {
1040 1.229 christos error = ipsec4_set_policy(inp, sopt->sopt_name,
1041 1.229 christos sopt->sopt_data, sopt->sopt_size,
1042 1.229 christos curlwp->l_cred);
1043 1.229 christos break;
1044 1.229 christos }
1045 1.229 christos /*FALLTHROUGH*/
1046 1.229 christos #endif /* IPSEC */
1047 1.61 itojun
1048 1.1 cgd default:
1049 1.18 mycroft error = ENOPROTOOPT;
1050 1.1 cgd break;
1051 1.1 cgd }
1052 1.1 cgd break;
1053 1.1 cgd
1054 1.1 cgd case PRCO_GETOPT:
1055 1.197 plunky switch (sopt->sopt_name) {
1056 1.1 cgd case IP_OPTIONS:
1057 1.226 rmind case IP_RETOPTS: {
1058 1.226 rmind struct mbuf *mopts = inp->inp_options;
1059 1.226 rmind
1060 1.226 rmind if (mopts) {
1061 1.197 plunky struct mbuf *m;
1062 1.197 plunky
1063 1.226 rmind m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1064 1.199 plunky if (m == NULL) {
1065 1.199 plunky error = ENOBUFS;
1066 1.199 plunky break;
1067 1.199 plunky }
1068 1.197 plunky error = sockopt_setmbuf(sopt, m);
1069 1.197 plunky }
1070 1.1 cgd break;
1071 1.226 rmind }
1072 1.223 christos case IP_PKTINFO:
1073 1.1 cgd case IP_TOS:
1074 1.1 cgd case IP_TTL:
1075 1.205 minskim case IP_MINTTL:
1076 1.1 cgd case IP_RECVOPTS:
1077 1.1 cgd case IP_RECVRETOPTS:
1078 1.1 cgd case IP_RECVDSTADDR:
1079 1.37 thorpej case IP_RECVIF:
1080 1.223 christos case IP_RECVPKTINFO:
1081 1.204 minskim case IP_RECVTTL:
1082 1.40 matt case IP_ERRORMTU:
1083 1.197 plunky switch (sopt->sopt_name) {
1084 1.1 cgd case IP_TOS:
1085 1.226 rmind optval = ip->ip_tos;
1086 1.1 cgd break;
1087 1.1 cgd
1088 1.1 cgd case IP_TTL:
1089 1.226 rmind optval = ip->ip_ttl;
1090 1.40 matt break;
1091 1.40 matt
1092 1.205 minskim case IP_MINTTL:
1093 1.205 minskim optval = inp->inp_ip_minttl;
1094 1.205 minskim break;
1095 1.205 minskim
1096 1.40 matt case IP_ERRORMTU:
1097 1.40 matt optval = inp->inp_errormtu;
1098 1.1 cgd break;
1099 1.1 cgd
1100 1.226 rmind #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1101 1.1 cgd
1102 1.223 christos case IP_PKTINFO:
1103 1.223 christos optval = OPTBIT(INP_PKTINFO);
1104 1.223 christos break;
1105 1.223 christos
1106 1.1 cgd case IP_RECVOPTS:
1107 1.1 cgd optval = OPTBIT(INP_RECVOPTS);
1108 1.1 cgd break;
1109 1.1 cgd
1110 1.223 christos case IP_RECVPKTINFO:
1111 1.223 christos optval = OPTBIT(INP_RECVPKTINFO);
1112 1.223 christos break;
1113 1.223 christos
1114 1.1 cgd case IP_RECVRETOPTS:
1115 1.1 cgd optval = OPTBIT(INP_RECVRETOPTS);
1116 1.1 cgd break;
1117 1.1 cgd
1118 1.1 cgd case IP_RECVDSTADDR:
1119 1.1 cgd optval = OPTBIT(INP_RECVDSTADDR);
1120 1.37 thorpej break;
1121 1.37 thorpej
1122 1.37 thorpej case IP_RECVIF:
1123 1.37 thorpej optval = OPTBIT(INP_RECVIF);
1124 1.1 cgd break;
1125 1.204 minskim
1126 1.204 minskim case IP_RECVTTL:
1127 1.204 minskim optval = OPTBIT(INP_RECVTTL);
1128 1.204 minskim break;
1129 1.1 cgd }
1130 1.197 plunky error = sockopt_setint(sopt, optval);
1131 1.1 cgd break;
1132 1.61 itojun
1133 1.220 christos #if 0 /* defined(IPSEC) */
1134 1.61 itojun case IP_IPSEC_POLICY:
1135 1.66 itojun {
1136 1.197 plunky struct mbuf *m = NULL;
1137 1.66 itojun
1138 1.197 plunky /* XXX this will return EINVAL as sopt is empty */
1139 1.197 plunky error = ipsec4_get_policy(inp, sopt->sopt_data,
1140 1.197 plunky sopt->sopt_size, &m);
1141 1.197 plunky if (error == 0)
1142 1.197 plunky error = sockopt_setmbuf(sopt, m);
1143 1.61 itojun break;
1144 1.66 itojun }
1145 1.61 itojun #endif /*IPSEC*/
1146 1.18 mycroft
1147 1.18 mycroft case IP_MULTICAST_IF:
1148 1.18 mycroft case IP_MULTICAST_TTL:
1149 1.18 mycroft case IP_MULTICAST_LOOP:
1150 1.18 mycroft case IP_ADD_MEMBERSHIP:
1151 1.18 mycroft case IP_DROP_MEMBERSHIP:
1152 1.231 christos error = ip_getmoptions(inp->inp_moptions, sopt);
1153 1.41 lukem break;
1154 1.41 lukem
1155 1.41 lukem case IP_PORTRANGE:
1156 1.226 rmind if (inpflags & INP_LOWPORT)
1157 1.41 lukem optval = IP_PORTRANGE_LOW;
1158 1.41 lukem else
1159 1.41 lukem optval = IP_PORTRANGE_DEFAULT;
1160 1.197 plunky error = sockopt_setint(sopt, optval);
1161 1.18 mycroft break;
1162 1.1 cgd
1163 1.216 christos case IP_PORTALGO:
1164 1.226 rmind optval = inp->inp_portalgo;
1165 1.216 christos error = sockopt_setint(sopt, optval);
1166 1.216 christos break;
1167 1.216 christos
1168 1.1 cgd default:
1169 1.18 mycroft error = ENOPROTOOPT;
1170 1.1 cgd break;
1171 1.1 cgd }
1172 1.1 cgd break;
1173 1.1 cgd }
1174 1.226 rmind
1175 1.226 rmind if (!error) {
1176 1.226 rmind inp->inp_flags = inpflags;
1177 1.226 rmind }
1178 1.226 rmind return error;
1179 1.1 cgd }
1180 1.1 cgd
1181 1.1 cgd /*
1182 1.1 cgd * Set up IP options in pcb for insertion in output packets.
1183 1.1 cgd * Store in mbuf with pointer in pcbopt, adding pseudo-option
1184 1.1 cgd * with destination address if source routed.
1185 1.1 cgd */
1186 1.226 rmind static int
1187 1.226 rmind ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1188 1.1 cgd {
1189 1.200 plunky struct mbuf *m;
1190 1.200 plunky const u_char *cp;
1191 1.200 plunky u_char *dp;
1192 1.200 plunky int cnt;
1193 1.200 plunky
1194 1.226 rmind /* Turn off any old options. */
1195 1.226 rmind if (inp->inp_options) {
1196 1.226 rmind m_free(inp->inp_options);
1197 1.226 rmind }
1198 1.226 rmind inp->inp_options = NULL;
1199 1.226 rmind if ((cnt = sopt->sopt_size) == 0) {
1200 1.226 rmind /* Only turning off any previous options. */
1201 1.226 rmind return 0;
1202 1.226 rmind }
1203 1.200 plunky cp = sopt->sopt_data;
1204 1.1 cgd
1205 1.85 ragge #ifndef __vax__
1206 1.200 plunky if (cnt % sizeof(int32_t))
1207 1.200 plunky return (EINVAL);
1208 1.1 cgd #endif
1209 1.200 plunky
1210 1.200 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
1211 1.200 plunky if (m == NULL)
1212 1.200 plunky return (ENOBUFS);
1213 1.200 plunky
1214 1.200 plunky dp = mtod(m, u_char *);
1215 1.200 plunky memset(dp, 0, sizeof(struct in_addr));
1216 1.200 plunky dp += sizeof(struct in_addr);
1217 1.200 plunky m->m_len = sizeof(struct in_addr);
1218 1.200 plunky
1219 1.1 cgd /*
1220 1.200 plunky * IP option list according to RFC791. Each option is of the form
1221 1.200 plunky *
1222 1.200 plunky * [optval] [olen] [(olen - 2) data bytes]
1223 1.200 plunky *
1224 1.226 rmind * We validate the list and copy options to an mbuf for prepending
1225 1.200 plunky * to data packets. The IP first-hop destination address will be
1226 1.200 plunky * stored before actual options and is zero if unset.
1227 1.1 cgd */
1228 1.200 plunky while (cnt > 0) {
1229 1.226 rmind uint8_t optval, olen, offset;
1230 1.226 rmind
1231 1.200 plunky optval = cp[IPOPT_OPTVAL];
1232 1.1 cgd
1233 1.200 plunky if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1234 1.200 plunky olen = 1;
1235 1.200 plunky } else {
1236 1.200 plunky if (cnt < IPOPT_OLEN + 1)
1237 1.74 itojun goto bad;
1238 1.200 plunky
1239 1.200 plunky olen = cp[IPOPT_OLEN];
1240 1.200 plunky if (olen < IPOPT_OLEN + 1 || olen > cnt)
1241 1.1 cgd goto bad;
1242 1.1 cgd }
1243 1.1 cgd
1244 1.200 plunky if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1245 1.1 cgd /*
1246 1.1 cgd * user process specifies route as:
1247 1.1 cgd * ->A->B->C->D
1248 1.1 cgd * D must be our final destination (but we can't
1249 1.1 cgd * check that since we may not have connected yet).
1250 1.1 cgd * A is first hop destination, which doesn't appear in
1251 1.1 cgd * actual IP option, but is stored before the options.
1252 1.1 cgd */
1253 1.200 plunky if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1254 1.1 cgd goto bad;
1255 1.200 plunky
1256 1.200 plunky offset = cp[IPOPT_OFFSET];
1257 1.200 plunky memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1258 1.200 plunky sizeof(struct in_addr));
1259 1.200 plunky
1260 1.200 plunky cp += sizeof(struct in_addr);
1261 1.1 cgd cnt -= sizeof(struct in_addr);
1262 1.200 plunky olen -= sizeof(struct in_addr);
1263 1.200 plunky
1264 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1265 1.200 plunky goto bad;
1266 1.200 plunky
1267 1.200 plunky memcpy(dp, cp, olen);
1268 1.200 plunky dp[IPOPT_OPTVAL] = optval;
1269 1.200 plunky dp[IPOPT_OLEN] = olen;
1270 1.200 plunky dp[IPOPT_OFFSET] = offset;
1271 1.200 plunky break;
1272 1.200 plunky } else {
1273 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1274 1.200 plunky goto bad;
1275 1.200 plunky
1276 1.200 plunky memcpy(dp, cp, olen);
1277 1.1 cgd break;
1278 1.1 cgd }
1279 1.200 plunky
1280 1.200 plunky dp += olen;
1281 1.200 plunky m->m_len += olen;
1282 1.200 plunky
1283 1.200 plunky if (optval == IPOPT_EOL)
1284 1.200 plunky break;
1285 1.200 plunky
1286 1.200 plunky cp += olen;
1287 1.200 plunky cnt -= olen;
1288 1.1 cgd }
1289 1.200 plunky
1290 1.226 rmind inp->inp_options = m;
1291 1.226 rmind return 0;
1292 1.1 cgd bad:
1293 1.1 cgd (void)m_free(m);
1294 1.226 rmind return EINVAL;
1295 1.1 cgd }
1296 1.5 hpeyerl
1297 1.5 hpeyerl /*
1298 1.81 itojun * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1299 1.81 itojun */
1300 1.81 itojun static struct ifnet *
1301 1.140 perry ip_multicast_if(struct in_addr *a, int *ifindexp)
1302 1.81 itojun {
1303 1.81 itojun int ifindex;
1304 1.111 itojun struct ifnet *ifp = NULL;
1305 1.110 itojun struct in_ifaddr *ia;
1306 1.81 itojun
1307 1.81 itojun if (ifindexp)
1308 1.81 itojun *ifindexp = 0;
1309 1.81 itojun if (ntohl(a->s_addr) >> 24 == 0) {
1310 1.81 itojun ifindex = ntohl(a->s_addr) & 0xffffff;
1311 1.225 rmind ifp = if_byindex(ifindex);
1312 1.129 itojun if (!ifp)
1313 1.129 itojun return NULL;
1314 1.81 itojun if (ifindexp)
1315 1.81 itojun *ifindexp = ifindex;
1316 1.81 itojun } else {
1317 1.110 itojun LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1318 1.110 itojun if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1319 1.111 itojun (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1320 1.111 itojun ifp = ia->ia_ifp;
1321 1.110 itojun break;
1322 1.111 itojun }
1323 1.110 itojun }
1324 1.81 itojun }
1325 1.81 itojun return ifp;
1326 1.81 itojun }
1327 1.81 itojun
1328 1.156 christos static int
1329 1.198 plunky ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1330 1.156 christos {
1331 1.156 christos u_int tval;
1332 1.197 plunky u_char cval;
1333 1.197 plunky int error;
1334 1.156 christos
1335 1.197 plunky if (sopt == NULL)
1336 1.156 christos return EINVAL;
1337 1.156 christos
1338 1.197 plunky switch (sopt->sopt_size) {
1339 1.156 christos case sizeof(u_char):
1340 1.197 plunky error = sockopt_get(sopt, &cval, sizeof(u_char));
1341 1.197 plunky tval = cval;
1342 1.156 christos break;
1343 1.197 plunky
1344 1.156 christos case sizeof(u_int):
1345 1.197 plunky error = sockopt_get(sopt, &tval, sizeof(u_int));
1346 1.156 christos break;
1347 1.197 plunky
1348 1.156 christos default:
1349 1.197 plunky error = EINVAL;
1350 1.156 christos }
1351 1.156 christos
1352 1.197 plunky if (error)
1353 1.197 plunky return error;
1354 1.197 plunky
1355 1.156 christos if (tval > maxval)
1356 1.156 christos return EINVAL;
1357 1.156 christos
1358 1.156 christos *val = tval;
1359 1.156 christos return 0;
1360 1.156 christos }
1361 1.156 christos
1362 1.81 itojun /*
1363 1.5 hpeyerl * Set the IP multicast options in response to user setsockopt().
1364 1.5 hpeyerl */
1365 1.231 christos int
1366 1.231 christos ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1367 1.5 hpeyerl {
1368 1.231 christos struct ip_moptions *imo = *pimo;
1369 1.5 hpeyerl struct in_addr addr;
1370 1.197 plunky struct ip_mreq lmreq, *mreq;
1371 1.71 augustss struct ifnet *ifp;
1372 1.215 rmind int i, ifindex, error = 0;
1373 1.5 hpeyerl
1374 1.226 rmind if (!imo) {
1375 1.5 hpeyerl /*
1376 1.5 hpeyerl * No multicast option buffer attached to the pcb;
1377 1.5 hpeyerl * allocate one and initialize to default values.
1378 1.5 hpeyerl */
1379 1.215 rmind imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1380 1.5 hpeyerl if (imo == NULL)
1381 1.215 rmind return ENOBUFS;
1382 1.199 plunky
1383 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1384 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1385 1.5 hpeyerl imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1386 1.5 hpeyerl imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1387 1.5 hpeyerl imo->imo_num_memberships = 0;
1388 1.231 christos *pimo = imo;
1389 1.5 hpeyerl }
1390 1.5 hpeyerl
1391 1.197 plunky switch (sopt->sopt_name) {
1392 1.5 hpeyerl case IP_MULTICAST_IF:
1393 1.5 hpeyerl /*
1394 1.5 hpeyerl * Select the interface for outgoing multicast packets.
1395 1.5 hpeyerl */
1396 1.197 plunky error = sockopt_get(sopt, &addr, sizeof(addr));
1397 1.197 plunky if (error)
1398 1.5 hpeyerl break;
1399 1.197 plunky
1400 1.5 hpeyerl /*
1401 1.5 hpeyerl * INADDR_ANY is used to remove a previous selection.
1402 1.11 mycroft * When no interface is selected, a default one is
1403 1.5 hpeyerl * chosen every time a multicast packet is sent.
1404 1.5 hpeyerl */
1405 1.31 mycroft if (in_nullhost(addr)) {
1406 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1407 1.5 hpeyerl break;
1408 1.5 hpeyerl }
1409 1.5 hpeyerl /*
1410 1.5 hpeyerl * The selected interface is identified by its local
1411 1.5 hpeyerl * IP address. Find the interface and confirm that
1412 1.11 mycroft * it supports multicasting.
1413 1.5 hpeyerl */
1414 1.81 itojun ifp = ip_multicast_if(&addr, &ifindex);
1415 1.5 hpeyerl if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1416 1.5 hpeyerl error = EADDRNOTAVAIL;
1417 1.5 hpeyerl break;
1418 1.5 hpeyerl }
1419 1.5 hpeyerl imo->imo_multicast_ifp = ifp;
1420 1.81 itojun if (ifindex)
1421 1.81 itojun imo->imo_multicast_addr = addr;
1422 1.81 itojun else
1423 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1424 1.5 hpeyerl break;
1425 1.5 hpeyerl
1426 1.5 hpeyerl case IP_MULTICAST_TTL:
1427 1.5 hpeyerl /*
1428 1.5 hpeyerl * Set the IP time-to-live for outgoing multicast packets.
1429 1.5 hpeyerl */
1430 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1431 1.5 hpeyerl break;
1432 1.11 mycroft
1433 1.5 hpeyerl case IP_MULTICAST_LOOP:
1434 1.5 hpeyerl /*
1435 1.5 hpeyerl * Set the loopback flag for outgoing multicast packets.
1436 1.5 hpeyerl * Must be zero or one.
1437 1.5 hpeyerl */
1438 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1439 1.5 hpeyerl break;
1440 1.5 hpeyerl
1441 1.5 hpeyerl case IP_ADD_MEMBERSHIP:
1442 1.5 hpeyerl /*
1443 1.5 hpeyerl * Add a multicast group membership.
1444 1.5 hpeyerl * Group must be a valid IP multicast address.
1445 1.5 hpeyerl */
1446 1.197 plunky error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1447 1.197 plunky if (error)
1448 1.5 hpeyerl break;
1449 1.197 plunky
1450 1.197 plunky mreq = &lmreq;
1451 1.197 plunky
1452 1.23 mycroft if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1453 1.5 hpeyerl error = EINVAL;
1454 1.5 hpeyerl break;
1455 1.5 hpeyerl }
1456 1.5 hpeyerl /*
1457 1.5 hpeyerl * If no interface address was provided, use the interface of
1458 1.5 hpeyerl * the route to the given multicast address.
1459 1.5 hpeyerl */
1460 1.31 mycroft if (in_nullhost(mreq->imr_interface)) {
1461 1.186 dyoung struct rtentry *rt;
1462 1.180 dyoung union {
1463 1.180 dyoung struct sockaddr dst;
1464 1.180 dyoung struct sockaddr_in dst4;
1465 1.180 dyoung } u;
1466 1.180 dyoung struct route ro;
1467 1.180 dyoung
1468 1.176 dyoung memset(&ro, 0, sizeof(ro));
1469 1.180 dyoung
1470 1.180 dyoung sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
1471 1.180 dyoung rtcache_setdst(&ro, &u.dst);
1472 1.190 dyoung ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
1473 1.186 dyoung : NULL;
1474 1.171 joerg rtcache_free(&ro);
1475 1.23 mycroft } else {
1476 1.81 itojun ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1477 1.5 hpeyerl }
1478 1.5 hpeyerl /*
1479 1.5 hpeyerl * See if we found an interface, and confirm that it
1480 1.5 hpeyerl * supports multicast.
1481 1.5 hpeyerl */
1482 1.11 mycroft if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1483 1.5 hpeyerl error = EADDRNOTAVAIL;
1484 1.5 hpeyerl break;
1485 1.5 hpeyerl }
1486 1.5 hpeyerl /*
1487 1.5 hpeyerl * See if the membership already exists or if all the
1488 1.5 hpeyerl * membership slots are full.
1489 1.11 mycroft */
1490 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i) {
1491 1.5 hpeyerl if (imo->imo_membership[i]->inm_ifp == ifp &&
1492 1.31 mycroft in_hosteq(imo->imo_membership[i]->inm_addr,
1493 1.31 mycroft mreq->imr_multiaddr))
1494 1.5 hpeyerl break;
1495 1.11 mycroft }
1496 1.5 hpeyerl if (i < imo->imo_num_memberships) {
1497 1.5 hpeyerl error = EADDRINUSE;
1498 1.5 hpeyerl break;
1499 1.5 hpeyerl }
1500 1.5 hpeyerl if (i == IP_MAX_MEMBERSHIPS) {
1501 1.11 mycroft error = ETOOMANYREFS;
1502 1.5 hpeyerl break;
1503 1.5 hpeyerl }
1504 1.5 hpeyerl /*
1505 1.5 hpeyerl * Everything looks good; add a new record to the multicast
1506 1.5 hpeyerl * address list for the given interface.
1507 1.5 hpeyerl */
1508 1.5 hpeyerl if ((imo->imo_membership[i] =
1509 1.5 hpeyerl in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1510 1.5 hpeyerl error = ENOBUFS;
1511 1.5 hpeyerl break;
1512 1.5 hpeyerl }
1513 1.5 hpeyerl ++imo->imo_num_memberships;
1514 1.5 hpeyerl break;
1515 1.5 hpeyerl
1516 1.5 hpeyerl case IP_DROP_MEMBERSHIP:
1517 1.5 hpeyerl /*
1518 1.5 hpeyerl * Drop a multicast group membership.
1519 1.5 hpeyerl * Group must be a valid IP multicast address.
1520 1.5 hpeyerl */
1521 1.197 plunky error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
1522 1.197 plunky if (error)
1523 1.5 hpeyerl break;
1524 1.197 plunky
1525 1.197 plunky mreq = &lmreq;
1526 1.197 plunky
1527 1.23 mycroft if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1528 1.5 hpeyerl error = EINVAL;
1529 1.5 hpeyerl break;
1530 1.5 hpeyerl }
1531 1.5 hpeyerl /*
1532 1.5 hpeyerl * If an interface address was specified, get a pointer
1533 1.5 hpeyerl * to its ifnet structure.
1534 1.5 hpeyerl */
1535 1.31 mycroft if (in_nullhost(mreq->imr_interface))
1536 1.5 hpeyerl ifp = NULL;
1537 1.5 hpeyerl else {
1538 1.81 itojun ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1539 1.5 hpeyerl if (ifp == NULL) {
1540 1.5 hpeyerl error = EADDRNOTAVAIL;
1541 1.5 hpeyerl break;
1542 1.5 hpeyerl }
1543 1.5 hpeyerl }
1544 1.5 hpeyerl /*
1545 1.5 hpeyerl * Find the membership in the membership array.
1546 1.5 hpeyerl */
1547 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i) {
1548 1.5 hpeyerl if ((ifp == NULL ||
1549 1.5 hpeyerl imo->imo_membership[i]->inm_ifp == ifp) &&
1550 1.31 mycroft in_hosteq(imo->imo_membership[i]->inm_addr,
1551 1.31 mycroft mreq->imr_multiaddr))
1552 1.5 hpeyerl break;
1553 1.5 hpeyerl }
1554 1.5 hpeyerl if (i == imo->imo_num_memberships) {
1555 1.5 hpeyerl error = EADDRNOTAVAIL;
1556 1.5 hpeyerl break;
1557 1.5 hpeyerl }
1558 1.5 hpeyerl /*
1559 1.5 hpeyerl * Give up the multicast address record to which the
1560 1.5 hpeyerl * membership points.
1561 1.5 hpeyerl */
1562 1.11 mycroft in_delmulti(imo->imo_membership[i]);
1563 1.5 hpeyerl /*
1564 1.5 hpeyerl * Remove the gap in the membership array.
1565 1.5 hpeyerl */
1566 1.5 hpeyerl for (++i; i < imo->imo_num_memberships; ++i)
1567 1.5 hpeyerl imo->imo_membership[i-1] = imo->imo_membership[i];
1568 1.5 hpeyerl --imo->imo_num_memberships;
1569 1.5 hpeyerl break;
1570 1.5 hpeyerl
1571 1.5 hpeyerl default:
1572 1.5 hpeyerl error = EOPNOTSUPP;
1573 1.5 hpeyerl break;
1574 1.5 hpeyerl }
1575 1.5 hpeyerl
1576 1.5 hpeyerl /*
1577 1.5 hpeyerl * If all options have default values, no need to keep the mbuf.
1578 1.5 hpeyerl */
1579 1.5 hpeyerl if (imo->imo_multicast_ifp == NULL &&
1580 1.5 hpeyerl imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1581 1.5 hpeyerl imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1582 1.5 hpeyerl imo->imo_num_memberships == 0) {
1583 1.215 rmind kmem_free(imo, sizeof(*imo));
1584 1.231 christos *pimo = NULL;
1585 1.5 hpeyerl }
1586 1.5 hpeyerl
1587 1.215 rmind return error;
1588 1.5 hpeyerl }
1589 1.5 hpeyerl
1590 1.5 hpeyerl /*
1591 1.5 hpeyerl * Return the IP multicast options in response to user getsockopt().
1592 1.5 hpeyerl */
1593 1.231 christos int
1594 1.231 christos ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1595 1.5 hpeyerl {
1596 1.197 plunky struct in_addr addr;
1597 1.5 hpeyerl struct in_ifaddr *ia;
1598 1.197 plunky uint8_t optval;
1599 1.226 rmind int error = 0;
1600 1.5 hpeyerl
1601 1.197 plunky switch (sopt->sopt_name) {
1602 1.5 hpeyerl case IP_MULTICAST_IF:
1603 1.5 hpeyerl if (imo == NULL || imo->imo_multicast_ifp == NULL)
1604 1.197 plunky addr = zeroin_addr;
1605 1.81 itojun else if (imo->imo_multicast_addr.s_addr) {
1606 1.81 itojun /* return the value user has set */
1607 1.197 plunky addr = imo->imo_multicast_addr;
1608 1.81 itojun } else {
1609 1.5 hpeyerl IFP_TO_IA(imo->imo_multicast_ifp, ia);
1610 1.197 plunky addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1611 1.5 hpeyerl }
1612 1.197 plunky error = sockopt_set(sopt, &addr, sizeof(addr));
1613 1.197 plunky break;
1614 1.5 hpeyerl
1615 1.5 hpeyerl case IP_MULTICAST_TTL:
1616 1.197 plunky optval = imo ? imo->imo_multicast_ttl
1617 1.197 plunky : IP_DEFAULT_MULTICAST_TTL;
1618 1.197 plunky
1619 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1620 1.197 plunky break;
1621 1.5 hpeyerl
1622 1.5 hpeyerl case IP_MULTICAST_LOOP:
1623 1.197 plunky optval = imo ? imo->imo_multicast_loop
1624 1.197 plunky : IP_DEFAULT_MULTICAST_LOOP;
1625 1.197 plunky
1626 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1627 1.197 plunky break;
1628 1.5 hpeyerl
1629 1.5 hpeyerl default:
1630 1.197 plunky error = EOPNOTSUPP;
1631 1.5 hpeyerl }
1632 1.197 plunky
1633 1.226 rmind return error;
1634 1.5 hpeyerl }
1635 1.5 hpeyerl
1636 1.5 hpeyerl /*
1637 1.5 hpeyerl * Discard the IP multicast options.
1638 1.5 hpeyerl */
1639 1.5 hpeyerl void
1640 1.140 perry ip_freemoptions(struct ip_moptions *imo)
1641 1.5 hpeyerl {
1642 1.71 augustss int i;
1643 1.5 hpeyerl
1644 1.5 hpeyerl if (imo != NULL) {
1645 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i)
1646 1.5 hpeyerl in_delmulti(imo->imo_membership[i]);
1647 1.215 rmind kmem_free(imo, sizeof(*imo));
1648 1.5 hpeyerl }
1649 1.5 hpeyerl }
1650 1.5 hpeyerl
1651 1.5 hpeyerl /*
1652 1.5 hpeyerl * Routine called from ip_output() to loop back a copy of an IP multicast
1653 1.5 hpeyerl * packet to the input queue of a specified interface. Note that this
1654 1.5 hpeyerl * calls the output routine of the loopback "driver", but with an interface
1655 1.137 peter * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1656 1.5 hpeyerl */
1657 1.12 mycroft static void
1658 1.180 dyoung ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1659 1.5 hpeyerl {
1660 1.71 augustss struct ip *ip;
1661 1.5 hpeyerl struct mbuf *copym;
1662 1.5 hpeyerl
1663 1.183 dyoung copym = m_copypacket(m, M_DONTWAIT);
1664 1.70 itojun if (copym != NULL
1665 1.65 itojun && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1666 1.65 itojun copym = m_pullup(copym, sizeof(struct ip));
1667 1.180 dyoung if (copym == NULL)
1668 1.180 dyoung return;
1669 1.180 dyoung /*
1670 1.180 dyoung * We don't bother to fragment if the IP length is greater
1671 1.180 dyoung * than the interface's MTU. Can this possibly matter?
1672 1.180 dyoung */
1673 1.180 dyoung ip = mtod(copym, struct ip *);
1674 1.93 itojun
1675 1.180 dyoung if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1676 1.180 dyoung in_delayed_cksum(copym);
1677 1.180 dyoung copym->m_pkthdr.csum_flags &=
1678 1.180 dyoung ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1679 1.180 dyoung }
1680 1.93 itojun
1681 1.180 dyoung ip->ip_sum = 0;
1682 1.180 dyoung ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1683 1.180 dyoung (void)looutput(ifp, copym, sintocsa(dst), NULL);
1684 1.5 hpeyerl }
1685