ip_output.c revision 1.244 1 1.244 ozaki /* $NetBSD: ip_output.c,v 1.244 2015/07/17 02:21:08 ozaki-r Exp $ */
2 1.61 itojun
3 1.61 itojun /*
4 1.61 itojun * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 1.61 itojun * All rights reserved.
6 1.97 itojun *
7 1.61 itojun * Redistribution and use in source and binary forms, with or without
8 1.61 itojun * modification, are permitted provided that the following conditions
9 1.61 itojun * are met:
10 1.61 itojun * 1. Redistributions of source code must retain the above copyright
11 1.61 itojun * notice, this list of conditions and the following disclaimer.
12 1.61 itojun * 2. Redistributions in binary form must reproduce the above copyright
13 1.61 itojun * notice, this list of conditions and the following disclaimer in the
14 1.61 itojun * documentation and/or other materials provided with the distribution.
15 1.61 itojun * 3. Neither the name of the project nor the names of its contributors
16 1.61 itojun * may be used to endorse or promote products derived from this software
17 1.61 itojun * without specific prior written permission.
18 1.97 itojun *
19 1.61 itojun * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 1.61 itojun * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.61 itojun * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.61 itojun * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 1.61 itojun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.61 itojun * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.61 itojun * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.61 itojun * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.61 itojun * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.61 itojun * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.61 itojun * SUCH DAMAGE.
30 1.61 itojun */
31 1.54 thorpej
32 1.54 thorpej /*-
33 1.54 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 1.54 thorpej * All rights reserved.
35 1.54 thorpej *
36 1.54 thorpej * This code is derived from software contributed to The NetBSD Foundation
37 1.54 thorpej * by Public Access Networks Corporation ("Panix"). It was developed under
38 1.54 thorpej * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 1.54 thorpej *
40 1.54 thorpej * Redistribution and use in source and binary forms, with or without
41 1.54 thorpej * modification, are permitted provided that the following conditions
42 1.54 thorpej * are met:
43 1.54 thorpej * 1. Redistributions of source code must retain the above copyright
44 1.54 thorpej * notice, this list of conditions and the following disclaimer.
45 1.54 thorpej * 2. Redistributions in binary form must reproduce the above copyright
46 1.54 thorpej * notice, this list of conditions and the following disclaimer in the
47 1.54 thorpej * documentation and/or other materials provided with the distribution.
48 1.54 thorpej *
49 1.54 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 1.54 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 1.54 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 1.54 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 1.54 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 1.54 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 1.54 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 1.54 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 1.54 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 1.54 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 1.54 thorpej * POSSIBILITY OF SUCH DAMAGE.
60 1.54 thorpej */
61 1.19 cgd
62 1.1 cgd /*
63 1.18 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 1.18 mycroft * The Regents of the University of California. All rights reserved.
65 1.1 cgd *
66 1.1 cgd * Redistribution and use in source and binary forms, with or without
67 1.1 cgd * modification, are permitted provided that the following conditions
68 1.1 cgd * are met:
69 1.1 cgd * 1. Redistributions of source code must retain the above copyright
70 1.1 cgd * notice, this list of conditions and the following disclaimer.
71 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
72 1.1 cgd * notice, this list of conditions and the following disclaimer in the
73 1.1 cgd * documentation and/or other materials provided with the distribution.
74 1.108 agc * 3. Neither the name of the University nor the names of its contributors
75 1.1 cgd * may be used to endorse or promote products derived from this software
76 1.1 cgd * without specific prior written permission.
77 1.1 cgd *
78 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 1.1 cgd * SUCH DAMAGE.
89 1.1 cgd *
90 1.19 cgd * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 1.1 cgd */
92 1.89 lukem
93 1.89 lukem #include <sys/cdefs.h>
94 1.244 ozaki __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.244 2015/07/17 02:21:08 ozaki-r Exp $");
95 1.42 scottr
96 1.128 jonathan #include "opt_inet.h"
97 1.62 thorpej #include "opt_ipsec.h"
98 1.42 scottr #include "opt_mrouting.h"
99 1.236 ozaki #include "opt_net_mpsafe.h"
100 1.239 ozaki #include "opt_mpls.h"
101 1.1 cgd
102 1.8 mycroft #include <sys/param.h>
103 1.215 rmind #include <sys/kmem.h>
104 1.8 mycroft #include <sys/mbuf.h>
105 1.8 mycroft #include <sys/protosw.h>
106 1.8 mycroft #include <sys/socket.h>
107 1.8 mycroft #include <sys/socketvar.h>
108 1.162 christos #include <sys/kauth.h>
109 1.220 christos #ifdef IPSEC
110 1.118 itojun #include <sys/domain.h>
111 1.118 itojun #endif
112 1.28 christos #include <sys/systm.h>
113 1.61 itojun
114 1.8 mycroft #include <net/if.h>
115 1.239 ozaki #include <net/if_types.h>
116 1.8 mycroft #include <net/route.h>
117 1.38 mrg #include <net/pfil.h>
118 1.1 cgd
119 1.8 mycroft #include <netinet/in.h>
120 1.8 mycroft #include <netinet/in_systm.h>
121 1.8 mycroft #include <netinet/ip.h>
122 1.8 mycroft #include <netinet/in_pcb.h>
123 1.8 mycroft #include <netinet/in_var.h>
124 1.8 mycroft #include <netinet/ip_var.h>
125 1.194 thorpej #include <netinet/ip_private.h>
126 1.152 yamt #include <netinet/in_offload.h>
127 1.217 christos #include <netinet/portalgo.h>
128 1.219 christos #include <netinet/udp.h>
129 1.72 jdolecek
130 1.232 christos #ifdef INET6
131 1.232 christos #include <netinet6/ip6_var.h>
132 1.232 christos #endif
133 1.232 christos
134 1.72 jdolecek #ifdef MROUTING
135 1.72 jdolecek #include <netinet/ip_mroute.h>
136 1.72 jdolecek #endif
137 1.32 mrg
138 1.235 ozaki #ifdef IPSEC
139 1.109 jonathan #include <netipsec/ipsec.h>
140 1.109 jonathan #include <netipsec/key.h>
141 1.235 ozaki #endif
142 1.160 christos
143 1.239 ozaki #ifdef MPLS
144 1.239 ozaki #include <netmpls/mpls.h>
145 1.239 ozaki #include <netmpls/mpls_var.h>
146 1.239 ozaki #endif
147 1.239 ozaki
148 1.226 rmind static int ip_pcbopts(struct inpcb *, const struct sockopt *);
149 1.139 perry static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
150 1.139 perry static struct ifnet *ip_multicast_if(struct in_addr *, int *);
151 1.180 dyoung static void ip_mloopback(struct ifnet *, struct mbuf *,
152 1.180 dyoung const struct sockaddr_in *);
153 1.1 cgd
154 1.224 rmind extern pfil_head_t *inet_pfil_hook; /* XXX */
155 1.78 thorpej
156 1.151 yamt int ip_do_loopback_cksum = 0;
157 1.151 yamt
158 1.239 ozaki static bool
159 1.239 ozaki ip_hresolv_needed(const struct ifnet * const ifp)
160 1.239 ozaki {
161 1.239 ozaki switch (ifp->if_type) {
162 1.239 ozaki case IFT_ARCNET:
163 1.239 ozaki case IFT_ATM:
164 1.239 ozaki case IFT_ECONET:
165 1.239 ozaki case IFT_ETHER:
166 1.239 ozaki case IFT_FDDI:
167 1.239 ozaki case IFT_HIPPI:
168 1.239 ozaki case IFT_IEEE1394:
169 1.242 ozaki case IFT_ISO88025:
170 1.243 ozaki case IFT_SLIP:
171 1.239 ozaki return true;
172 1.239 ozaki default:
173 1.239 ozaki return false;
174 1.239 ozaki }
175 1.239 ozaki }
176 1.239 ozaki
177 1.239 ozaki static int
178 1.239 ozaki klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
179 1.239 ozaki const struct sockaddr * const dst, struct rtentry *rt)
180 1.239 ozaki {
181 1.239 ozaki int error;
182 1.239 ozaki
183 1.239 ozaki #ifndef NET_MPSAFE
184 1.239 ozaki KERNEL_LOCK(1, NULL);
185 1.239 ozaki #endif
186 1.239 ozaki
187 1.239 ozaki error = (*ifp->if_output)(ifp, m, dst, rt);
188 1.239 ozaki
189 1.239 ozaki #ifndef NET_MPSAFE
190 1.239 ozaki KERNEL_UNLOCK_ONE(NULL);
191 1.239 ozaki #endif
192 1.239 ozaki
193 1.239 ozaki return error;
194 1.239 ozaki }
195 1.239 ozaki
196 1.239 ozaki /*
197 1.239 ozaki * Send an IP packet to a host.
198 1.239 ozaki *
199 1.239 ozaki * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
200 1.239 ozaki * calling ifp's output routine.
201 1.239 ozaki */
202 1.239 ozaki int
203 1.239 ozaki ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
204 1.244 ozaki const struct sockaddr * const dst, struct rtentry *rt00)
205 1.239 ozaki {
206 1.239 ozaki int error = 0;
207 1.239 ozaki struct ifnet *ifp = ifp0;
208 1.244 ozaki struct rtentry *rt, *rt0, *gwrt;
209 1.244 ozaki
210 1.244 ozaki #define RTFREE_IF_NEEDED(_rt) \
211 1.244 ozaki if ((_rt) != NULL && (_rt) != rt00) \
212 1.244 ozaki rtfree((_rt));
213 1.239 ozaki
214 1.244 ozaki rt0 = rt00;
215 1.239 ozaki retry:
216 1.239 ozaki if (!ip_hresolv_needed(ifp)) {
217 1.239 ozaki rt = rt0;
218 1.239 ozaki goto out;
219 1.239 ozaki }
220 1.239 ozaki
221 1.239 ozaki if (rt0 == NULL) {
222 1.239 ozaki rt = NULL;
223 1.239 ozaki goto out;
224 1.239 ozaki }
225 1.239 ozaki
226 1.239 ozaki rt = rt0;
227 1.239 ozaki
228 1.239 ozaki /*
229 1.239 ozaki * The following block is highly questionable. How did we get here
230 1.239 ozaki * with a !RTF_UP route? Does rtalloc1() always return an RTF_UP
231 1.239 ozaki * route?
232 1.239 ozaki */
233 1.239 ozaki if ((rt->rt_flags & RTF_UP) == 0) {
234 1.239 ozaki rt = rtalloc1(dst, 1);
235 1.239 ozaki if (rt == NULL) {
236 1.239 ozaki error = EHOSTUNREACH;
237 1.239 ozaki goto bad;
238 1.239 ozaki }
239 1.239 ozaki rt0 = rt;
240 1.239 ozaki if (rt->rt_ifp != ifp) {
241 1.239 ozaki ifp = rt->rt_ifp;
242 1.239 ozaki goto retry;
243 1.239 ozaki }
244 1.239 ozaki }
245 1.239 ozaki
246 1.239 ozaki if ((rt->rt_flags & RTF_GATEWAY) == 0)
247 1.239 ozaki goto out;
248 1.239 ozaki
249 1.244 ozaki gwrt = rt_get_gwroute(rt);
250 1.244 ozaki RTFREE_IF_NEEDED(rt);
251 1.244 ozaki rt = gwrt;
252 1.239 ozaki if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
253 1.239 ozaki if (rt != NULL) {
254 1.244 ozaki RTFREE_IF_NEEDED(rt);
255 1.239 ozaki rt = rt0;
256 1.239 ozaki }
257 1.239 ozaki if (rt == NULL) {
258 1.239 ozaki error = EHOSTUNREACH;
259 1.239 ozaki goto bad;
260 1.239 ozaki }
261 1.244 ozaki gwrt = rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
262 1.244 ozaki RTFREE_IF_NEEDED(rt);
263 1.244 ozaki rt = gwrt;
264 1.239 ozaki if (rt == NULL) {
265 1.239 ozaki error = EHOSTUNREACH;
266 1.239 ozaki goto bad;
267 1.239 ozaki }
268 1.239 ozaki /* the "G" test below also prevents rt == rt0 */
269 1.239 ozaki if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
270 1.239 ozaki rt0->rt_gwroute = NULL;
271 1.239 ozaki error = EHOSTUNREACH;
272 1.239 ozaki goto bad;
273 1.239 ozaki }
274 1.239 ozaki }
275 1.239 ozaki if ((rt->rt_flags & RTF_REJECT) != 0) {
276 1.239 ozaki if (rt->rt_rmx.rmx_expire == 0 ||
277 1.239 ozaki time_second < rt->rt_rmx.rmx_expire) {
278 1.239 ozaki error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
279 1.239 ozaki goto bad;
280 1.239 ozaki }
281 1.239 ozaki }
282 1.239 ozaki
283 1.239 ozaki out:
284 1.239 ozaki #ifdef MPLS
285 1.239 ozaki if (rt0 != NULL && rt_gettag(rt0) != NULL &&
286 1.239 ozaki rt_gettag(rt0)->sa_family == AF_MPLS &&
287 1.239 ozaki (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
288 1.239 ozaki ifp->if_type == IFT_ETHER) {
289 1.239 ozaki union mpls_shim msh;
290 1.239 ozaki msh.s_addr = MPLS_GETSADDR(rt0);
291 1.239 ozaki if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
292 1.239 ozaki struct m_tag *mtag;
293 1.239 ozaki /*
294 1.239 ozaki * XXX tentative solution to tell ether_output
295 1.239 ozaki * it's MPLS. Need some more efficient solution.
296 1.239 ozaki */
297 1.239 ozaki mtag = m_tag_get(PACKET_TAG_MPLS,
298 1.239 ozaki sizeof(int) /* dummy */,
299 1.239 ozaki M_NOWAIT);
300 1.239 ozaki if (mtag == NULL) {
301 1.239 ozaki error = ENOMEM;
302 1.239 ozaki goto bad;
303 1.239 ozaki }
304 1.239 ozaki m_tag_prepend(m, mtag);
305 1.239 ozaki }
306 1.239 ozaki }
307 1.239 ozaki #endif
308 1.239 ozaki
309 1.244 ozaki error = klock_if_output(ifp, m, dst, rt);
310 1.244 ozaki goto exit;
311 1.244 ozaki
312 1.239 ozaki bad:
313 1.239 ozaki if (m != NULL)
314 1.239 ozaki m_freem(m);
315 1.244 ozaki exit:
316 1.244 ozaki RTFREE_IF_NEEDED(rt);
317 1.239 ozaki
318 1.239 ozaki return error;
319 1.244 ozaki
320 1.244 ozaki #undef RTFREE_IF_NEEDED
321 1.239 ozaki }
322 1.239 ozaki
323 1.1 cgd /*
324 1.1 cgd * IP output. The packet in mbuf chain m contains a skeletal IP
325 1.1 cgd * header (with len, off, ttl, proto, tos, src, dst).
326 1.1 cgd * The mbuf chain containing the packet will be freed.
327 1.1 cgd * The mbuf opt, if present, will not be freed.
328 1.1 cgd */
329 1.12 mycroft int
330 1.28 christos ip_output(struct mbuf *m0, ...)
331 1.1 cgd {
332 1.186 dyoung struct rtentry *rt;
333 1.110 itojun struct ip *ip;
334 1.71 augustss struct ifnet *ifp;
335 1.71 augustss struct mbuf *m = m0;
336 1.71 augustss int hlen = sizeof (struct ip);
337 1.110 itojun int len, error = 0;
338 1.1 cgd struct route iproute;
339 1.180 dyoung const struct sockaddr_in *dst;
340 1.1 cgd struct in_ifaddr *ia;
341 1.234 roy int isbroadcast;
342 1.28 christos struct mbuf *opt;
343 1.28 christos struct route *ro;
344 1.226 rmind int flags, sw_csum;
345 1.96 itojun u_long mtu;
346 1.28 christos struct ip_moptions *imo;
347 1.116 itojun struct socket *so;
348 1.28 christos va_list ap;
349 1.229 christos #ifdef IPSEC
350 1.109 jonathan struct secpolicy *sp = NULL;
351 1.229 christos #endif
352 1.221 rmind bool natt_frag = false;
353 1.230 rmind bool rtmtu_nolock;
354 1.180 dyoung union {
355 1.180 dyoung struct sockaddr dst;
356 1.180 dyoung struct sockaddr_in dst4;
357 1.180 dyoung } u;
358 1.180 dyoung struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
359 1.180 dyoung * to the nexthop
360 1.180 dyoung */
361 1.28 christos
362 1.102 darrenr len = 0;
363 1.28 christos va_start(ap, m0);
364 1.28 christos opt = va_arg(ap, struct mbuf *);
365 1.28 christos ro = va_arg(ap, struct route *);
366 1.28 christos flags = va_arg(ap, int);
367 1.28 christos imo = va_arg(ap, struct ip_moptions *);
368 1.116 itojun so = va_arg(ap, struct socket *);
369 1.28 christos va_end(ap);
370 1.28 christos
371 1.103 matt MCLAIM(m, &ip_tx_mowner);
372 1.61 itojun
373 1.226 rmind KASSERT((m->m_flags & M_PKTHDR) != 0);
374 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
375 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
376 1.226 rmind (M_CSUM_TCPv4|M_CSUM_UDPv4));
377 1.163 tron
378 1.1 cgd if (opt) {
379 1.1 cgd m = ip_insertoptions(m, opt, &len);
380 1.102 darrenr if (len >= sizeof(struct ip))
381 1.102 darrenr hlen = len;
382 1.1 cgd }
383 1.1 cgd ip = mtod(m, struct ip *);
384 1.226 rmind
385 1.1 cgd /*
386 1.1 cgd * Fill in IP header.
387 1.1 cgd */
388 1.18 mycroft if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
389 1.1 cgd ip->ip_v = IPVERSION;
390 1.100 itojun ip->ip_off = htons(0);
391 1.192 matt /* ip->ip_id filled in after we find out source ia */
392 1.1 cgd ip->ip_hl = hlen >> 2;
393 1.194 thorpej IP_STATINC(IP_STAT_LOCALOUT);
394 1.1 cgd } else {
395 1.1 cgd hlen = ip->ip_hl << 2;
396 1.1 cgd }
397 1.226 rmind
398 1.1 cgd /*
399 1.1 cgd * Route packet.
400 1.1 cgd */
401 1.230 rmind if (ro == NULL) {
402 1.230 rmind memset(&iproute, 0, sizeof(iproute));
403 1.1 cgd ro = &iproute;
404 1.230 rmind }
405 1.180 dyoung sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
406 1.180 dyoung dst = satocsin(rtcache_getdst(ro));
407 1.226 rmind
408 1.1 cgd /*
409 1.226 rmind * If there is a cached route, check that it is to the same
410 1.226 rmind * destination and is still up. If not, free it and try again.
411 1.226 rmind * The address family should also be checked in case of sharing
412 1.226 rmind * the cache with IPv6.
413 1.1 cgd */
414 1.226 rmind if (dst && (dst->sin_family != AF_INET ||
415 1.226 rmind !in_hosteq(dst->sin_addr, ip->ip_dst)))
416 1.171 joerg rtcache_free(ro);
417 1.190 dyoung
418 1.190 dyoung if ((rt = rtcache_validate(ro)) == NULL &&
419 1.190 dyoung (rt = rtcache_update(ro, 1)) == NULL) {
420 1.180 dyoung dst = &u.dst4;
421 1.238 ozaki error = rtcache_setdst(ro, &u.dst);
422 1.238 ozaki if (error != 0)
423 1.238 ozaki goto bad;
424 1.1 cgd }
425 1.226 rmind
426 1.1 cgd /*
427 1.226 rmind * If routing to interface only, short circuit routing lookup.
428 1.1 cgd */
429 1.1 cgd if (flags & IP_ROUTETOIF) {
430 1.180 dyoung if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
431 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
432 1.1 cgd error = ENETUNREACH;
433 1.1 cgd goto bad;
434 1.1 cgd }
435 1.1 cgd ifp = ia->ia_ifp;
436 1.48 matt mtu = ifp->if_mtu;
437 1.18 mycroft ip->ip_ttl = 1;
438 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
439 1.98 itojun } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
440 1.98 itojun ip->ip_dst.s_addr == INADDR_BROADCAST) &&
441 1.98 itojun imo != NULL && imo->imo_multicast_ifp != NULL) {
442 1.98 itojun ifp = imo->imo_multicast_ifp;
443 1.98 itojun mtu = ifp->if_mtu;
444 1.99 itojun IFP_TO_IA(ifp, ia);
445 1.234 roy isbroadcast = 0;
446 1.1 cgd } else {
447 1.186 dyoung if (rt == NULL)
448 1.190 dyoung rt = rtcache_init(ro);
449 1.190 dyoung if (rt == NULL) {
450 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
451 1.1 cgd error = EHOSTUNREACH;
452 1.1 cgd goto bad;
453 1.1 cgd }
454 1.186 dyoung ia = ifatoia(rt->rt_ifa);
455 1.186 dyoung ifp = rt->rt_ifp;
456 1.186 dyoung if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
457 1.48 matt mtu = ifp->if_mtu;
458 1.186 dyoung rt->rt_use++;
459 1.186 dyoung if (rt->rt_flags & RTF_GATEWAY)
460 1.186 dyoung dst = satosin(rt->rt_gateway);
461 1.234 roy if (rt->rt_flags & RTF_HOST)
462 1.234 roy isbroadcast = rt->rt_flags & RTF_BROADCAST;
463 1.234 roy else
464 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
465 1.1 cgd }
466 1.230 rmind rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
467 1.226 rmind
468 1.64 is if (IN_MULTICAST(ip->ip_dst.s_addr) ||
469 1.64 is (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
470 1.228 rmind bool inmgroup;
471 1.5 hpeyerl
472 1.64 is m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
473 1.237 ozaki M_BCAST : M_MCAST;
474 1.5 hpeyerl /*
475 1.5 hpeyerl * See if the caller provided any multicast options
476 1.5 hpeyerl */
477 1.98 itojun if (imo != NULL)
478 1.5 hpeyerl ip->ip_ttl = imo->imo_multicast_ttl;
479 1.98 itojun else
480 1.5 hpeyerl ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
481 1.98 itojun
482 1.98 itojun /*
483 1.98 itojun * if we don't know the outgoing ifp yet, we can't generate
484 1.98 itojun * output
485 1.98 itojun */
486 1.98 itojun if (!ifp) {
487 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
488 1.98 itojun error = ENETUNREACH;
489 1.98 itojun goto bad;
490 1.98 itojun }
491 1.98 itojun
492 1.5 hpeyerl /*
493 1.95 thorpej * If the packet is multicast or broadcast, confirm that
494 1.95 thorpej * the outgoing interface can transmit it.
495 1.5 hpeyerl */
496 1.64 is if (((m->m_flags & M_MCAST) &&
497 1.64 is (ifp->if_flags & IFF_MULTICAST) == 0) ||
498 1.97 itojun ((m->m_flags & M_BCAST) &&
499 1.95 thorpej (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
500 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
501 1.5 hpeyerl error = ENETUNREACH;
502 1.5 hpeyerl goto bad;
503 1.5 hpeyerl }
504 1.5 hpeyerl /*
505 1.44 tls * If source address not specified yet, use an address
506 1.5 hpeyerl * of outgoing interface.
507 1.5 hpeyerl */
508 1.31 mycroft if (in_nullhost(ip->ip_src)) {
509 1.153 christos struct in_ifaddr *xia;
510 1.230 rmind struct ifaddr *xifa;
511 1.5 hpeyerl
512 1.153 christos IFP_TO_IA(ifp, xia);
513 1.153 christos if (!xia) {
514 1.91 itojun error = EADDRNOTAVAIL;
515 1.91 itojun goto bad;
516 1.91 itojun }
517 1.166 dyoung xifa = &xia->ia_ifa;
518 1.166 dyoung if (xifa->ifa_getifa != NULL) {
519 1.180 dyoung xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
520 1.240 roy if (xia == NULL) {
521 1.241 roy error = EADDRNOTAVAIL;
522 1.240 roy goto bad;
523 1.240 roy }
524 1.166 dyoung }
525 1.153 christos ip->ip_src = xia->ia_addr.sin_addr;
526 1.5 hpeyerl }
527 1.5 hpeyerl
528 1.228 rmind inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
529 1.228 rmind if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
530 1.5 hpeyerl /*
531 1.11 mycroft * If we belong to the destination multicast group
532 1.5 hpeyerl * on the outgoing interface, and the caller did not
533 1.5 hpeyerl * forbid loopback, loop back a copy.
534 1.5 hpeyerl */
535 1.180 dyoung ip_mloopback(ifp, m, &u.dst4);
536 1.5 hpeyerl }
537 1.5 hpeyerl #ifdef MROUTING
538 1.18 mycroft else {
539 1.5 hpeyerl /*
540 1.5 hpeyerl * If we are acting as a multicast router, perform
541 1.5 hpeyerl * multicast forwarding as if the packet had just
542 1.5 hpeyerl * arrived on the interface to which we are about
543 1.5 hpeyerl * to send. The multicast forwarding function
544 1.5 hpeyerl * recursively calls this function, using the
545 1.5 hpeyerl * IP_FORWARDING flag to prevent infinite recursion.
546 1.5 hpeyerl *
547 1.5 hpeyerl * Multicasts that are looped back by ip_mloopback(),
548 1.5 hpeyerl * above, will be forwarded by the ip_input() routine,
549 1.5 hpeyerl * if necessary.
550 1.5 hpeyerl */
551 1.18 mycroft extern struct socket *ip_mrouter;
552 1.22 cgd
553 1.18 mycroft if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
554 1.18 mycroft if (ip_mforward(m, ifp) != 0) {
555 1.18 mycroft m_freem(m);
556 1.18 mycroft goto done;
557 1.18 mycroft }
558 1.5 hpeyerl }
559 1.5 hpeyerl }
560 1.5 hpeyerl #endif
561 1.5 hpeyerl /*
562 1.5 hpeyerl * Multicasts with a time-to-live of zero may be looped-
563 1.5 hpeyerl * back, above, but must not be transmitted on a network.
564 1.5 hpeyerl * Also, multicasts addressed to the loopback interface
565 1.5 hpeyerl * are not sent -- the above call to ip_mloopback() will
566 1.5 hpeyerl * loop back a copy if this host actually belongs to the
567 1.5 hpeyerl * destination group on the loopback interface.
568 1.5 hpeyerl */
569 1.20 mycroft if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
570 1.5 hpeyerl m_freem(m);
571 1.5 hpeyerl goto done;
572 1.5 hpeyerl }
573 1.5 hpeyerl goto sendit;
574 1.5 hpeyerl }
575 1.230 rmind
576 1.1 cgd /*
577 1.1 cgd * If source address not specified yet, use address
578 1.1 cgd * of outgoing interface.
579 1.1 cgd */
580 1.166 dyoung if (in_nullhost(ip->ip_src)) {
581 1.230 rmind struct ifaddr *xifa;
582 1.230 rmind
583 1.166 dyoung xifa = &ia->ia_ifa;
584 1.240 roy if (xifa->ifa_getifa != NULL) {
585 1.180 dyoung ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
586 1.240 roy if (ia == NULL) {
587 1.240 roy error = EADDRNOTAVAIL;
588 1.240 roy goto bad;
589 1.240 roy }
590 1.240 roy }
591 1.25 mycroft ip->ip_src = ia->ia_addr.sin_addr;
592 1.166 dyoung }
593 1.59 hwr
594 1.59 hwr /*
595 1.97 itojun * packets with Class-D address as source are not valid per
596 1.59 hwr * RFC 1112
597 1.59 hwr */
598 1.59 hwr if (IN_MULTICAST(ip->ip_src.s_addr)) {
599 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
600 1.59 hwr error = EADDRNOTAVAIL;
601 1.59 hwr goto bad;
602 1.59 hwr }
603 1.59 hwr
604 1.1 cgd /*
605 1.230 rmind * Look for broadcast address and and verify user is allowed to
606 1.230 rmind * send such a packet.
607 1.1 cgd */
608 1.234 roy if (isbroadcast) {
609 1.1 cgd if ((ifp->if_flags & IFF_BROADCAST) == 0) {
610 1.1 cgd error = EADDRNOTAVAIL;
611 1.1 cgd goto bad;
612 1.1 cgd }
613 1.1 cgd if ((flags & IP_ALLOWBROADCAST) == 0) {
614 1.1 cgd error = EACCES;
615 1.1 cgd goto bad;
616 1.1 cgd }
617 1.1 cgd /* don't allow broadcast messages to be fragmented */
618 1.100 itojun if (ntohs(ip->ip_len) > ifp->if_mtu) {
619 1.1 cgd error = EMSGSIZE;
620 1.1 cgd goto bad;
621 1.1 cgd }
622 1.1 cgd m->m_flags |= M_BCAST;
623 1.18 mycroft } else
624 1.18 mycroft m->m_flags &= ~M_BCAST;
625 1.18 mycroft
626 1.60 mrg sendit:
627 1.192 matt if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
628 1.192 matt if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
629 1.192 matt ip->ip_id = 0;
630 1.192 matt } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
631 1.192 matt ip->ip_id = ip_newid(ia);
632 1.192 matt } else {
633 1.192 matt
634 1.192 matt /*
635 1.192 matt * TSO capable interfaces (typically?) increment
636 1.192 matt * ip_id for each segment.
637 1.192 matt * "allocate" enough ids here to increase the chance
638 1.192 matt * for them to be unique.
639 1.192 matt *
640 1.192 matt * note that the following calculation is not
641 1.192 matt * needed to be precise. wasting some ip_id is fine.
642 1.192 matt */
643 1.192 matt
644 1.192 matt unsigned int segsz = m->m_pkthdr.segsz;
645 1.192 matt unsigned int datasz = ntohs(ip->ip_len) - hlen;
646 1.192 matt unsigned int num = howmany(datasz, segsz);
647 1.192 matt
648 1.192 matt ip->ip_id = ip_newid_range(ia, num);
649 1.192 matt }
650 1.192 matt }
651 1.230 rmind
652 1.76 thorpej /*
653 1.76 thorpej * If we're doing Path MTU Discovery, we need to set DF unless
654 1.76 thorpej * the route's MTU is locked.
655 1.76 thorpej */
656 1.230 rmind if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
657 1.100 itojun ip->ip_off |= htons(IP_DF);
658 1.230 rmind }
659 1.76 thorpej
660 1.220 christos #ifdef IPSEC
661 1.229 christos if (ipsec_used) {
662 1.230 rmind bool ipsec_done = false;
663 1.230 rmind
664 1.229 christos /* Perform IPsec processing, if any. */
665 1.229 christos error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
666 1.230 rmind &ipsec_done);
667 1.230 rmind if (error || ipsec_done)
668 1.229 christos goto done;
669 1.221 rmind }
670 1.109 jonathan #endif
671 1.109 jonathan
672 1.82 itojun /*
673 1.82 itojun * Run through list of hooks for output packets.
674 1.82 itojun */
675 1.230 rmind error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
676 1.230 rmind if (error)
677 1.82 itojun goto done;
678 1.82 itojun if (m == NULL)
679 1.82 itojun goto done;
680 1.82 itojun
681 1.82 itojun ip = mtod(m, struct ip *);
682 1.106 itojun hlen = ip->ip_hl << 2;
683 1.82 itojun
684 1.146 matt m->m_pkthdr.csum_data |= hlen << 16;
685 1.146 matt
686 1.136 thorpej #if IFA_STATS
687 1.136 thorpej /*
688 1.136 thorpej * search for the source address structure to
689 1.136 thorpej * maintain output statistics.
690 1.136 thorpej */
691 1.136 thorpej INADDR_TO_IA(ip->ip_src, ia);
692 1.136 thorpej #endif
693 1.136 thorpej
694 1.138 thorpej /* Maybe skip checksums on loopback interfaces. */
695 1.151 yamt if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
696 1.138 thorpej m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
697 1.151 yamt }
698 1.104 yamt sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
699 1.1 cgd /*
700 1.147 matt * If small enough for mtu of path, or if using TCP segmentation
701 1.147 matt * offload, can just send directly.
702 1.1 cgd */
703 1.218 kefren if (ntohs(ip->ip_len) <= mtu ||
704 1.147 matt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
705 1.230 rmind const struct sockaddr *sa;
706 1.230 rmind
707 1.63 itojun #if IFA_STATS
708 1.63 itojun if (ia)
709 1.218 kefren ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
710 1.63 itojun #endif
711 1.86 thorpej /*
712 1.86 thorpej * Always initialize the sum to 0! Some HW assisted
713 1.86 thorpej * checksumming requires this.
714 1.86 thorpej */
715 1.1 cgd ip->ip_sum = 0;
716 1.86 thorpej
717 1.149 matt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
718 1.147 matt /*
719 1.147 matt * Perform any checksums that the hardware can't do
720 1.147 matt * for us.
721 1.147 matt *
722 1.147 matt * XXX Does any hardware require the {th,uh}_sum
723 1.147 matt * XXX fields to be 0?
724 1.147 matt */
725 1.147 matt if (sw_csum & M_CSUM_IPv4) {
726 1.151 yamt KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
727 1.147 matt ip->ip_sum = in_cksum(m, hlen);
728 1.147 matt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
729 1.147 matt }
730 1.147 matt if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
731 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
732 1.151 yamt sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
733 1.151 yamt in_delayed_cksum(m);
734 1.151 yamt }
735 1.147 matt m->m_pkthdr.csum_flags &=
736 1.147 matt ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
737 1.147 matt }
738 1.146 matt }
739 1.86 thorpej
740 1.230 rmind sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
741 1.152 yamt if (__predict_true(
742 1.152 yamt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
743 1.152 yamt (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
744 1.239 ozaki error = ip_hresolv_output(ifp, m, sa, rt);
745 1.152 yamt } else {
746 1.230 rmind error = ip_tso_output(ifp, m, sa, rt);
747 1.152 yamt }
748 1.1 cgd goto done;
749 1.1 cgd }
750 1.61 itojun
751 1.1 cgd /*
752 1.86 thorpej * We can't use HW checksumming if we're about to
753 1.86 thorpej * to fragment the packet.
754 1.86 thorpej *
755 1.86 thorpej * XXX Some hardware can do this.
756 1.86 thorpej */
757 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
758 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
759 1.151 yamt m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
760 1.151 yamt in_delayed_cksum(m);
761 1.151 yamt }
762 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
763 1.86 thorpej }
764 1.86 thorpej
765 1.86 thorpej /*
766 1.1 cgd * Too large for interface; fragment if possible.
767 1.1 cgd * Must be able to put at least 8 bytes per fragment.
768 1.1 cgd */
769 1.100 itojun if (ntohs(ip->ip_off) & IP_DF) {
770 1.226 rmind if (flags & IP_RETURNMTU) {
771 1.227 rmind struct inpcb *inp;
772 1.227 rmind
773 1.227 rmind KASSERT(so && solocked(so));
774 1.227 rmind inp = sotoinpcb(so);
775 1.226 rmind inp->inp_errormtu = mtu;
776 1.226 rmind }
777 1.1 cgd error = EMSGSIZE;
778 1.194 thorpej IP_STATINC(IP_STAT_CANTFRAG);
779 1.1 cgd goto bad;
780 1.1 cgd }
781 1.110 itojun
782 1.110 itojun error = ip_fragment(m, ifp, mtu);
783 1.124 itojun if (error) {
784 1.124 itojun m = NULL;
785 1.1 cgd goto bad;
786 1.124 itojun }
787 1.110 itojun
788 1.119 itojun for (; m; m = m0) {
789 1.110 itojun m0 = m->m_nextpkt;
790 1.110 itojun m->m_nextpkt = 0;
791 1.230 rmind if (error) {
792 1.230 rmind m_freem(m);
793 1.230 rmind continue;
794 1.230 rmind }
795 1.110 itojun #if IFA_STATS
796 1.230 rmind if (ia)
797 1.230 rmind ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
798 1.110 itojun #endif
799 1.230 rmind /*
800 1.230 rmind * If we get there, the packet has not been handled by
801 1.230 rmind * IPsec whereas it should have. Now that it has been
802 1.230 rmind * fragmented, re-inject it in ip_output so that IPsec
803 1.230 rmind * processing can occur.
804 1.230 rmind */
805 1.230 rmind if (natt_frag) {
806 1.230 rmind error = ip_output(m, opt, ro,
807 1.230 rmind flags | IP_RAWOUTPUT | IP_NOIPNEWID,
808 1.230 rmind imo, so);
809 1.230 rmind } else {
810 1.230 rmind KASSERT((m->m_pkthdr.csum_flags &
811 1.230 rmind (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
812 1.239 ozaki error = ip_hresolv_output(ifp, m,
813 1.230 rmind (m->m_flags & M_MCAST) ?
814 1.230 rmind sintocsa(rdst) : sintocsa(dst), rt);
815 1.230 rmind }
816 1.1 cgd }
817 1.230 rmind if (error == 0) {
818 1.194 thorpej IP_STATINC(IP_STAT_FRAGMENTED);
819 1.230 rmind }
820 1.110 itojun done:
821 1.230 rmind if (ro == &iproute) {
822 1.230 rmind rtcache_free(&iproute);
823 1.230 rmind }
824 1.229 christos #ifdef IPSEC
825 1.221 rmind if (sp) {
826 1.110 itojun KEY_FREESP(&sp);
827 1.229 christos }
828 1.221 rmind #endif
829 1.221 rmind return error;
830 1.110 itojun bad:
831 1.110 itojun m_freem(m);
832 1.110 itojun goto done;
833 1.110 itojun }
834 1.110 itojun
835 1.113 itojun int
836 1.110 itojun ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
837 1.110 itojun {
838 1.110 itojun struct ip *ip, *mhip;
839 1.110 itojun struct mbuf *m0;
840 1.110 itojun int len, hlen, off;
841 1.110 itojun int mhlen, firstlen;
842 1.110 itojun struct mbuf **mnext;
843 1.135 manu int sw_csum = m->m_pkthdr.csum_flags;
844 1.48 matt int fragments = 0;
845 1.48 matt int s;
846 1.110 itojun int error = 0;
847 1.110 itojun
848 1.110 itojun ip = mtod(m, struct ip *);
849 1.110 itojun hlen = ip->ip_hl << 2;
850 1.135 manu if (ifp != NULL)
851 1.135 manu sw_csum &= ~ifp->if_csum_flags_tx;
852 1.110 itojun
853 1.110 itojun len = (mtu - hlen) &~ 7;
854 1.124 itojun if (len < 8) {
855 1.124 itojun m_freem(m);
856 1.110 itojun return (EMSGSIZE);
857 1.124 itojun }
858 1.110 itojun
859 1.110 itojun firstlen = len;
860 1.110 itojun mnext = &m->m_nextpkt;
861 1.1 cgd
862 1.1 cgd /*
863 1.1 cgd * Loop through length of segment after first fragment,
864 1.1 cgd * make new header and copy data of each part and link onto chain.
865 1.1 cgd */
866 1.1 cgd m0 = m;
867 1.1 cgd mhlen = sizeof (struct ip);
868 1.100 itojun for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
869 1.1 cgd MGETHDR(m, M_DONTWAIT, MT_HEADER);
870 1.1 cgd if (m == 0) {
871 1.1 cgd error = ENOBUFS;
872 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
873 1.1 cgd goto sendorfree;
874 1.1 cgd }
875 1.103 matt MCLAIM(m, m0->m_owner);
876 1.22 cgd *mnext = m;
877 1.22 cgd mnext = &m->m_nextpkt;
878 1.1 cgd m->m_data += max_linkhdr;
879 1.1 cgd mhip = mtod(m, struct ip *);
880 1.1 cgd *mhip = *ip;
881 1.73 is /* we must inherit MCAST and BCAST flags */
882 1.73 is m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
883 1.1 cgd if (hlen > sizeof (struct ip)) {
884 1.1 cgd mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
885 1.1 cgd mhip->ip_hl = mhlen >> 2;
886 1.1 cgd }
887 1.1 cgd m->m_len = mhlen;
888 1.122 itojun mhip->ip_off = ((off - hlen) >> 3) +
889 1.122 itojun (ntohs(ip->ip_off) & ~IP_MF);
890 1.122 itojun if (ip->ip_off & htons(IP_MF))
891 1.1 cgd mhip->ip_off |= IP_MF;
892 1.100 itojun if (off + len >= ntohs(ip->ip_len))
893 1.100 itojun len = ntohs(ip->ip_len) - off;
894 1.1 cgd else
895 1.1 cgd mhip->ip_off |= IP_MF;
896 1.100 itojun HTONS(mhip->ip_off);
897 1.21 cgd mhip->ip_len = htons((u_int16_t)(len + mhlen));
898 1.182 dyoung m->m_next = m_copym(m0, off, len, M_DONTWAIT);
899 1.1 cgd if (m->m_next == 0) {
900 1.1 cgd error = ENOBUFS; /* ??? */
901 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
902 1.1 cgd goto sendorfree;
903 1.1 cgd }
904 1.1 cgd m->m_pkthdr.len = mhlen + len;
905 1.212 christos m->m_pkthdr.rcvif = NULL;
906 1.1 cgd mhip->ip_sum = 0;
907 1.210 yamt KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
908 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
909 1.104 yamt mhip->ip_sum = in_cksum(m, mhlen);
910 1.104 yamt } else {
911 1.210 yamt /*
912 1.210 yamt * checksum is hw-offloaded or not necessary.
913 1.210 yamt */
914 1.210 yamt m->m_pkthdr.csum_flags |=
915 1.210 yamt m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
916 1.148 thorpej m->m_pkthdr.csum_data |= mhlen << 16;
917 1.210 yamt KASSERT(!(ifp != NULL &&
918 1.237 ozaki IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
919 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
920 1.104 yamt }
921 1.194 thorpej IP_STATINC(IP_STAT_OFRAGMENTS);
922 1.48 matt fragments++;
923 1.1 cgd }
924 1.1 cgd /*
925 1.1 cgd * Update first fragment by trimming what's been copied out
926 1.1 cgd * and updating header, then send each fragment (in order).
927 1.1 cgd */
928 1.1 cgd m = m0;
929 1.100 itojun m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
930 1.1 cgd m->m_pkthdr.len = hlen + firstlen;
931 1.21 cgd ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
932 1.100 itojun ip->ip_off |= htons(IP_MF);
933 1.1 cgd ip->ip_sum = 0;
934 1.210 yamt if (sw_csum & M_CSUM_IPv4) {
935 1.210 yamt ip->ip_sum = in_cksum(m, hlen);
936 1.210 yamt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
937 1.210 yamt } else {
938 1.210 yamt /*
939 1.210 yamt * checksum is hw-offloaded or not necessary.
940 1.210 yamt */
941 1.237 ozaki KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
942 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
943 1.210 yamt KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
944 1.237 ozaki sizeof(struct ip));
945 1.104 yamt }
946 1.1 cgd sendorfree:
947 1.48 matt /*
948 1.48 matt * If there is no room for all the fragments, don't queue
949 1.48 matt * any of them.
950 1.48 matt */
951 1.135 manu if (ifp != NULL) {
952 1.135 manu s = splnet();
953 1.135 manu if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
954 1.135 manu error == 0) {
955 1.135 manu error = ENOBUFS;
956 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
957 1.135 manu IFQ_INC_DROPS(&ifp->if_snd);
958 1.135 manu }
959 1.135 manu splx(s);
960 1.126 enami }
961 1.124 itojun if (error) {
962 1.125 itojun for (m = m0; m; m = m0) {
963 1.124 itojun m0 = m->m_nextpkt;
964 1.124 itojun m->m_nextpkt = NULL;
965 1.124 itojun m_freem(m);
966 1.124 itojun }
967 1.124 itojun }
968 1.1 cgd return (error);
969 1.86 thorpej }
970 1.86 thorpej
971 1.86 thorpej /*
972 1.86 thorpej * Process a delayed payload checksum calculation.
973 1.86 thorpej */
974 1.86 thorpej void
975 1.86 thorpej in_delayed_cksum(struct mbuf *m)
976 1.86 thorpej {
977 1.86 thorpej struct ip *ip;
978 1.86 thorpej u_int16_t csum, offset;
979 1.86 thorpej
980 1.86 thorpej ip = mtod(m, struct ip *);
981 1.86 thorpej offset = ip->ip_hl << 2;
982 1.86 thorpej csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
983 1.86 thorpej if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
984 1.86 thorpej csum = 0xffff;
985 1.86 thorpej
986 1.145 briggs offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
987 1.86 thorpej
988 1.86 thorpej if ((offset + sizeof(u_int16_t)) > m->m_len) {
989 1.87 yamt /* This happen when ip options were inserted
990 1.86 thorpej printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
991 1.86 thorpej m->m_len, offset, ip->ip_p);
992 1.87 yamt */
993 1.179 christos m_copyback(m, offset, sizeof(csum), (void *) &csum);
994 1.86 thorpej } else
995 1.179 christos *(u_int16_t *)(mtod(m, char *) + offset) = csum;
996 1.1 cgd }
997 1.47 kml
998 1.47 kml /*
999 1.47 kml * Determine the maximum length of the options to be inserted;
1000 1.47 kml * we would far rather allocate too much space rather than too little.
1001 1.47 kml */
1002 1.47 kml
1003 1.47 kml u_int
1004 1.140 perry ip_optlen(struct inpcb *inp)
1005 1.47 kml {
1006 1.47 kml struct mbuf *m = inp->inp_options;
1007 1.47 kml
1008 1.226 rmind if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
1009 1.101 itojun return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1010 1.226 rmind }
1011 1.226 rmind return 0;
1012 1.47 kml }
1013 1.47 kml
1014 1.1 cgd /*
1015 1.1 cgd * Insert IP options into preformed packet.
1016 1.1 cgd * Adjust IP destination as required for IP source routing,
1017 1.1 cgd * as indicated by a non-zero in_addr at the start of the options.
1018 1.1 cgd */
1019 1.12 mycroft static struct mbuf *
1020 1.140 perry ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1021 1.1 cgd {
1022 1.71 augustss struct ipoption *p = mtod(opt, struct ipoption *);
1023 1.1 cgd struct mbuf *n;
1024 1.71 augustss struct ip *ip = mtod(m, struct ip *);
1025 1.1 cgd unsigned optlen;
1026 1.1 cgd
1027 1.1 cgd optlen = opt->m_len - sizeof(p->ipopt_dst);
1028 1.100 itojun if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1029 1.1 cgd return (m); /* XXX should fail */
1030 1.31 mycroft if (!in_nullhost(p->ipopt_dst))
1031 1.1 cgd ip->ip_dst = p->ipopt_dst;
1032 1.123 itojun if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1033 1.1 cgd MGETHDR(n, M_DONTWAIT, MT_HEADER);
1034 1.1 cgd if (n == 0)
1035 1.1 cgd return (m);
1036 1.103 matt MCLAIM(n, m->m_owner);
1037 1.155 yamt M_MOVE_PKTHDR(n, m);
1038 1.1 cgd m->m_len -= sizeof(struct ip);
1039 1.1 cgd m->m_data += sizeof(struct ip);
1040 1.1 cgd n->m_next = m;
1041 1.1 cgd m = n;
1042 1.1 cgd m->m_len = optlen + sizeof(struct ip);
1043 1.1 cgd m->m_data += max_linkhdr;
1044 1.179 christos bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1045 1.1 cgd } else {
1046 1.1 cgd m->m_data -= optlen;
1047 1.1 cgd m->m_len += optlen;
1048 1.179 christos memmove(mtod(m, void *), ip, sizeof(struct ip));
1049 1.1 cgd }
1050 1.87 yamt m->m_pkthdr.len += optlen;
1051 1.1 cgd ip = mtod(m, struct ip *);
1052 1.179 christos bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1053 1.1 cgd *phlen = sizeof(struct ip) + optlen;
1054 1.100 itojun ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1055 1.1 cgd return (m);
1056 1.1 cgd }
1057 1.1 cgd
1058 1.1 cgd /*
1059 1.1 cgd * Copy options from ip to jp,
1060 1.1 cgd * omitting those not copied during fragmentation.
1061 1.1 cgd */
1062 1.12 mycroft int
1063 1.140 perry ip_optcopy(struct ip *ip, struct ip *jp)
1064 1.1 cgd {
1065 1.71 augustss u_char *cp, *dp;
1066 1.1 cgd int opt, optlen, cnt;
1067 1.1 cgd
1068 1.1 cgd cp = (u_char *)(ip + 1);
1069 1.1 cgd dp = (u_char *)(jp + 1);
1070 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1071 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
1072 1.1 cgd opt = cp[0];
1073 1.1 cgd if (opt == IPOPT_EOL)
1074 1.1 cgd break;
1075 1.18 mycroft if (opt == IPOPT_NOP) {
1076 1.18 mycroft /* Preserve for IP mcast tunnel's LSRR alignment. */
1077 1.18 mycroft *dp++ = IPOPT_NOP;
1078 1.1 cgd optlen = 1;
1079 1.18 mycroft continue;
1080 1.74 itojun }
1081 1.226 rmind
1082 1.226 rmind KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1083 1.74 itojun optlen = cp[IPOPT_OLEN];
1084 1.226 rmind KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1085 1.226 rmind
1086 1.226 rmind /* Invalid lengths should have been caught by ip_dooptions. */
1087 1.1 cgd if (optlen > cnt)
1088 1.1 cgd optlen = cnt;
1089 1.1 cgd if (IPOPT_COPIED(opt)) {
1090 1.179 christos bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1091 1.1 cgd dp += optlen;
1092 1.1 cgd }
1093 1.1 cgd }
1094 1.1 cgd for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1095 1.1 cgd *dp++ = IPOPT_EOL;
1096 1.1 cgd return (optlen);
1097 1.1 cgd }
1098 1.1 cgd
1099 1.1 cgd /*
1100 1.1 cgd * IP socket option processing.
1101 1.1 cgd */
1102 1.12 mycroft int
1103 1.197 plunky ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1104 1.1 cgd {
1105 1.71 augustss struct inpcb *inp = sotoinpcb(so);
1106 1.226 rmind struct ip *ip = &inp->inp_ip;
1107 1.226 rmind int inpflags = inp->inp_flags;
1108 1.226 rmind int optval = 0, error = 0;
1109 1.1 cgd
1110 1.197 plunky if (sopt->sopt_level != IPPROTO_IP) {
1111 1.197 plunky if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1112 1.184 dyoung return 0;
1113 1.184 dyoung return ENOPROTOOPT;
1114 1.184 dyoung }
1115 1.184 dyoung
1116 1.184 dyoung switch (op) {
1117 1.1 cgd case PRCO_SETOPT:
1118 1.197 plunky switch (sopt->sopt_name) {
1119 1.1 cgd case IP_OPTIONS:
1120 1.1 cgd #ifdef notyet
1121 1.1 cgd case IP_RETOPTS:
1122 1.1 cgd #endif
1123 1.226 rmind error = ip_pcbopts(inp, sopt);
1124 1.197 plunky break;
1125 1.1 cgd
1126 1.1 cgd case IP_TOS:
1127 1.1 cgd case IP_TTL:
1128 1.205 minskim case IP_MINTTL:
1129 1.223 christos case IP_PKTINFO:
1130 1.1 cgd case IP_RECVOPTS:
1131 1.1 cgd case IP_RECVRETOPTS:
1132 1.1 cgd case IP_RECVDSTADDR:
1133 1.37 thorpej case IP_RECVIF:
1134 1.223 christos case IP_RECVPKTINFO:
1135 1.204 minskim case IP_RECVTTL:
1136 1.197 plunky error = sockopt_getint(sopt, &optval);
1137 1.197 plunky if (error)
1138 1.197 plunky break;
1139 1.197 plunky
1140 1.197 plunky switch (sopt->sopt_name) {
1141 1.197 plunky case IP_TOS:
1142 1.226 rmind ip->ip_tos = optval;
1143 1.197 plunky break;
1144 1.197 plunky
1145 1.197 plunky case IP_TTL:
1146 1.226 rmind ip->ip_ttl = optval;
1147 1.197 plunky break;
1148 1.205 minskim
1149 1.205 minskim case IP_MINTTL:
1150 1.205 minskim if (optval > 0 && optval <= MAXTTL)
1151 1.205 minskim inp->inp_ip_minttl = optval;
1152 1.205 minskim else
1153 1.205 minskim error = EINVAL;
1154 1.205 minskim break;
1155 1.1 cgd #define OPTSET(bit) \
1156 1.1 cgd if (optval) \
1157 1.226 rmind inpflags |= bit; \
1158 1.1 cgd else \
1159 1.226 rmind inpflags &= ~bit;
1160 1.1 cgd
1161 1.223 christos case IP_PKTINFO:
1162 1.223 christos OPTSET(INP_PKTINFO);
1163 1.223 christos break;
1164 1.223 christos
1165 1.197 plunky case IP_RECVOPTS:
1166 1.197 plunky OPTSET(INP_RECVOPTS);
1167 1.197 plunky break;
1168 1.197 plunky
1169 1.223 christos case IP_RECVPKTINFO:
1170 1.223 christos OPTSET(INP_RECVPKTINFO);
1171 1.223 christos break;
1172 1.223 christos
1173 1.197 plunky case IP_RECVRETOPTS:
1174 1.197 plunky OPTSET(INP_RECVRETOPTS);
1175 1.197 plunky break;
1176 1.197 plunky
1177 1.197 plunky case IP_RECVDSTADDR:
1178 1.197 plunky OPTSET(INP_RECVDSTADDR);
1179 1.197 plunky break;
1180 1.197 plunky
1181 1.197 plunky case IP_RECVIF:
1182 1.197 plunky OPTSET(INP_RECVIF);
1183 1.197 plunky break;
1184 1.204 minskim
1185 1.204 minskim case IP_RECVTTL:
1186 1.204 minskim OPTSET(INP_RECVTTL);
1187 1.204 minskim break;
1188 1.1 cgd }
1189 1.197 plunky break;
1190 1.1 cgd #undef OPTSET
1191 1.18 mycroft
1192 1.18 mycroft case IP_MULTICAST_IF:
1193 1.18 mycroft case IP_MULTICAST_TTL:
1194 1.18 mycroft case IP_MULTICAST_LOOP:
1195 1.18 mycroft case IP_ADD_MEMBERSHIP:
1196 1.18 mycroft case IP_DROP_MEMBERSHIP:
1197 1.231 christos error = ip_setmoptions(&inp->inp_moptions, sopt);
1198 1.18 mycroft break;
1199 1.1 cgd
1200 1.41 lukem case IP_PORTRANGE:
1201 1.197 plunky error = sockopt_getint(sopt, &optval);
1202 1.197 plunky if (error)
1203 1.197 plunky break;
1204 1.197 plunky
1205 1.197 plunky switch (optval) {
1206 1.197 plunky case IP_PORTRANGE_DEFAULT:
1207 1.197 plunky case IP_PORTRANGE_HIGH:
1208 1.226 rmind inpflags &= ~(INP_LOWPORT);
1209 1.197 plunky break;
1210 1.41 lukem
1211 1.197 plunky case IP_PORTRANGE_LOW:
1212 1.226 rmind inpflags |= INP_LOWPORT;
1213 1.197 plunky break;
1214 1.41 lukem
1215 1.197 plunky default:
1216 1.197 plunky error = EINVAL;
1217 1.197 plunky break;
1218 1.41 lukem }
1219 1.41 lukem break;
1220 1.41 lukem
1221 1.216 christos case IP_PORTALGO:
1222 1.216 christos error = sockopt_getint(sopt, &optval);
1223 1.216 christos if (error)
1224 1.216 christos break;
1225 1.216 christos
1226 1.217 christos error = portalgo_algo_index_select(
1227 1.216 christos (struct inpcb_hdr *)inp, optval);
1228 1.216 christos break;
1229 1.216 christos
1230 1.220 christos #if defined(IPSEC)
1231 1.61 itojun case IP_IPSEC_POLICY:
1232 1.229 christos if (ipsec_enabled) {
1233 1.229 christos error = ipsec4_set_policy(inp, sopt->sopt_name,
1234 1.229 christos sopt->sopt_data, sopt->sopt_size,
1235 1.229 christos curlwp->l_cred);
1236 1.229 christos break;
1237 1.229 christos }
1238 1.229 christos /*FALLTHROUGH*/
1239 1.229 christos #endif /* IPSEC */
1240 1.61 itojun
1241 1.1 cgd default:
1242 1.18 mycroft error = ENOPROTOOPT;
1243 1.1 cgd break;
1244 1.1 cgd }
1245 1.1 cgd break;
1246 1.1 cgd
1247 1.1 cgd case PRCO_GETOPT:
1248 1.197 plunky switch (sopt->sopt_name) {
1249 1.1 cgd case IP_OPTIONS:
1250 1.226 rmind case IP_RETOPTS: {
1251 1.226 rmind struct mbuf *mopts = inp->inp_options;
1252 1.226 rmind
1253 1.226 rmind if (mopts) {
1254 1.197 plunky struct mbuf *m;
1255 1.197 plunky
1256 1.226 rmind m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1257 1.199 plunky if (m == NULL) {
1258 1.199 plunky error = ENOBUFS;
1259 1.199 plunky break;
1260 1.199 plunky }
1261 1.197 plunky error = sockopt_setmbuf(sopt, m);
1262 1.197 plunky }
1263 1.1 cgd break;
1264 1.226 rmind }
1265 1.223 christos case IP_PKTINFO:
1266 1.1 cgd case IP_TOS:
1267 1.1 cgd case IP_TTL:
1268 1.205 minskim case IP_MINTTL:
1269 1.1 cgd case IP_RECVOPTS:
1270 1.1 cgd case IP_RECVRETOPTS:
1271 1.1 cgd case IP_RECVDSTADDR:
1272 1.37 thorpej case IP_RECVIF:
1273 1.223 christos case IP_RECVPKTINFO:
1274 1.204 minskim case IP_RECVTTL:
1275 1.40 matt case IP_ERRORMTU:
1276 1.197 plunky switch (sopt->sopt_name) {
1277 1.1 cgd case IP_TOS:
1278 1.226 rmind optval = ip->ip_tos;
1279 1.1 cgd break;
1280 1.1 cgd
1281 1.1 cgd case IP_TTL:
1282 1.226 rmind optval = ip->ip_ttl;
1283 1.40 matt break;
1284 1.40 matt
1285 1.205 minskim case IP_MINTTL:
1286 1.205 minskim optval = inp->inp_ip_minttl;
1287 1.205 minskim break;
1288 1.205 minskim
1289 1.40 matt case IP_ERRORMTU:
1290 1.40 matt optval = inp->inp_errormtu;
1291 1.1 cgd break;
1292 1.1 cgd
1293 1.226 rmind #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1294 1.1 cgd
1295 1.223 christos case IP_PKTINFO:
1296 1.223 christos optval = OPTBIT(INP_PKTINFO);
1297 1.223 christos break;
1298 1.223 christos
1299 1.1 cgd case IP_RECVOPTS:
1300 1.1 cgd optval = OPTBIT(INP_RECVOPTS);
1301 1.1 cgd break;
1302 1.1 cgd
1303 1.223 christos case IP_RECVPKTINFO:
1304 1.223 christos optval = OPTBIT(INP_RECVPKTINFO);
1305 1.223 christos break;
1306 1.223 christos
1307 1.1 cgd case IP_RECVRETOPTS:
1308 1.1 cgd optval = OPTBIT(INP_RECVRETOPTS);
1309 1.1 cgd break;
1310 1.1 cgd
1311 1.1 cgd case IP_RECVDSTADDR:
1312 1.1 cgd optval = OPTBIT(INP_RECVDSTADDR);
1313 1.37 thorpej break;
1314 1.37 thorpej
1315 1.37 thorpej case IP_RECVIF:
1316 1.37 thorpej optval = OPTBIT(INP_RECVIF);
1317 1.1 cgd break;
1318 1.204 minskim
1319 1.204 minskim case IP_RECVTTL:
1320 1.204 minskim optval = OPTBIT(INP_RECVTTL);
1321 1.204 minskim break;
1322 1.1 cgd }
1323 1.197 plunky error = sockopt_setint(sopt, optval);
1324 1.1 cgd break;
1325 1.61 itojun
1326 1.220 christos #if 0 /* defined(IPSEC) */
1327 1.61 itojun case IP_IPSEC_POLICY:
1328 1.66 itojun {
1329 1.197 plunky struct mbuf *m = NULL;
1330 1.66 itojun
1331 1.197 plunky /* XXX this will return EINVAL as sopt is empty */
1332 1.197 plunky error = ipsec4_get_policy(inp, sopt->sopt_data,
1333 1.197 plunky sopt->sopt_size, &m);
1334 1.197 plunky if (error == 0)
1335 1.197 plunky error = sockopt_setmbuf(sopt, m);
1336 1.61 itojun break;
1337 1.66 itojun }
1338 1.61 itojun #endif /*IPSEC*/
1339 1.18 mycroft
1340 1.18 mycroft case IP_MULTICAST_IF:
1341 1.18 mycroft case IP_MULTICAST_TTL:
1342 1.18 mycroft case IP_MULTICAST_LOOP:
1343 1.18 mycroft case IP_ADD_MEMBERSHIP:
1344 1.18 mycroft case IP_DROP_MEMBERSHIP:
1345 1.231 christos error = ip_getmoptions(inp->inp_moptions, sopt);
1346 1.41 lukem break;
1347 1.41 lukem
1348 1.41 lukem case IP_PORTRANGE:
1349 1.226 rmind if (inpflags & INP_LOWPORT)
1350 1.41 lukem optval = IP_PORTRANGE_LOW;
1351 1.41 lukem else
1352 1.41 lukem optval = IP_PORTRANGE_DEFAULT;
1353 1.197 plunky error = sockopt_setint(sopt, optval);
1354 1.18 mycroft break;
1355 1.1 cgd
1356 1.216 christos case IP_PORTALGO:
1357 1.226 rmind optval = inp->inp_portalgo;
1358 1.216 christos error = sockopt_setint(sopt, optval);
1359 1.216 christos break;
1360 1.216 christos
1361 1.1 cgd default:
1362 1.18 mycroft error = ENOPROTOOPT;
1363 1.1 cgd break;
1364 1.1 cgd }
1365 1.1 cgd break;
1366 1.1 cgd }
1367 1.226 rmind
1368 1.226 rmind if (!error) {
1369 1.226 rmind inp->inp_flags = inpflags;
1370 1.226 rmind }
1371 1.226 rmind return error;
1372 1.1 cgd }
1373 1.1 cgd
1374 1.1 cgd /*
1375 1.1 cgd * Set up IP options in pcb for insertion in output packets.
1376 1.1 cgd * Store in mbuf with pointer in pcbopt, adding pseudo-option
1377 1.1 cgd * with destination address if source routed.
1378 1.1 cgd */
1379 1.226 rmind static int
1380 1.226 rmind ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1381 1.1 cgd {
1382 1.200 plunky struct mbuf *m;
1383 1.200 plunky const u_char *cp;
1384 1.200 plunky u_char *dp;
1385 1.200 plunky int cnt;
1386 1.200 plunky
1387 1.226 rmind /* Turn off any old options. */
1388 1.226 rmind if (inp->inp_options) {
1389 1.226 rmind m_free(inp->inp_options);
1390 1.226 rmind }
1391 1.226 rmind inp->inp_options = NULL;
1392 1.226 rmind if ((cnt = sopt->sopt_size) == 0) {
1393 1.226 rmind /* Only turning off any previous options. */
1394 1.226 rmind return 0;
1395 1.226 rmind }
1396 1.200 plunky cp = sopt->sopt_data;
1397 1.1 cgd
1398 1.85 ragge #ifndef __vax__
1399 1.200 plunky if (cnt % sizeof(int32_t))
1400 1.200 plunky return (EINVAL);
1401 1.1 cgd #endif
1402 1.200 plunky
1403 1.200 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
1404 1.200 plunky if (m == NULL)
1405 1.200 plunky return (ENOBUFS);
1406 1.200 plunky
1407 1.200 plunky dp = mtod(m, u_char *);
1408 1.200 plunky memset(dp, 0, sizeof(struct in_addr));
1409 1.200 plunky dp += sizeof(struct in_addr);
1410 1.200 plunky m->m_len = sizeof(struct in_addr);
1411 1.200 plunky
1412 1.1 cgd /*
1413 1.200 plunky * IP option list according to RFC791. Each option is of the form
1414 1.200 plunky *
1415 1.200 plunky * [optval] [olen] [(olen - 2) data bytes]
1416 1.200 plunky *
1417 1.226 rmind * We validate the list and copy options to an mbuf for prepending
1418 1.200 plunky * to data packets. The IP first-hop destination address will be
1419 1.200 plunky * stored before actual options and is zero if unset.
1420 1.1 cgd */
1421 1.200 plunky while (cnt > 0) {
1422 1.226 rmind uint8_t optval, olen, offset;
1423 1.226 rmind
1424 1.200 plunky optval = cp[IPOPT_OPTVAL];
1425 1.1 cgd
1426 1.200 plunky if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1427 1.200 plunky olen = 1;
1428 1.200 plunky } else {
1429 1.200 plunky if (cnt < IPOPT_OLEN + 1)
1430 1.74 itojun goto bad;
1431 1.200 plunky
1432 1.200 plunky olen = cp[IPOPT_OLEN];
1433 1.200 plunky if (olen < IPOPT_OLEN + 1 || olen > cnt)
1434 1.1 cgd goto bad;
1435 1.1 cgd }
1436 1.1 cgd
1437 1.200 plunky if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1438 1.1 cgd /*
1439 1.1 cgd * user process specifies route as:
1440 1.1 cgd * ->A->B->C->D
1441 1.1 cgd * D must be our final destination (but we can't
1442 1.1 cgd * check that since we may not have connected yet).
1443 1.1 cgd * A is first hop destination, which doesn't appear in
1444 1.1 cgd * actual IP option, but is stored before the options.
1445 1.1 cgd */
1446 1.200 plunky if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1447 1.1 cgd goto bad;
1448 1.200 plunky
1449 1.200 plunky offset = cp[IPOPT_OFFSET];
1450 1.200 plunky memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1451 1.200 plunky sizeof(struct in_addr));
1452 1.200 plunky
1453 1.200 plunky cp += sizeof(struct in_addr);
1454 1.1 cgd cnt -= sizeof(struct in_addr);
1455 1.200 plunky olen -= sizeof(struct in_addr);
1456 1.200 plunky
1457 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1458 1.200 plunky goto bad;
1459 1.200 plunky
1460 1.200 plunky memcpy(dp, cp, olen);
1461 1.200 plunky dp[IPOPT_OPTVAL] = optval;
1462 1.200 plunky dp[IPOPT_OLEN] = olen;
1463 1.200 plunky dp[IPOPT_OFFSET] = offset;
1464 1.200 plunky break;
1465 1.200 plunky } else {
1466 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1467 1.200 plunky goto bad;
1468 1.200 plunky
1469 1.200 plunky memcpy(dp, cp, olen);
1470 1.1 cgd break;
1471 1.1 cgd }
1472 1.200 plunky
1473 1.200 plunky dp += olen;
1474 1.200 plunky m->m_len += olen;
1475 1.200 plunky
1476 1.200 plunky if (optval == IPOPT_EOL)
1477 1.200 plunky break;
1478 1.200 plunky
1479 1.200 plunky cp += olen;
1480 1.200 plunky cnt -= olen;
1481 1.1 cgd }
1482 1.200 plunky
1483 1.226 rmind inp->inp_options = m;
1484 1.226 rmind return 0;
1485 1.1 cgd bad:
1486 1.1 cgd (void)m_free(m);
1487 1.226 rmind return EINVAL;
1488 1.1 cgd }
1489 1.5 hpeyerl
1490 1.5 hpeyerl /*
1491 1.81 itojun * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1492 1.81 itojun */
1493 1.81 itojun static struct ifnet *
1494 1.140 perry ip_multicast_if(struct in_addr *a, int *ifindexp)
1495 1.81 itojun {
1496 1.81 itojun int ifindex;
1497 1.111 itojun struct ifnet *ifp = NULL;
1498 1.110 itojun struct in_ifaddr *ia;
1499 1.81 itojun
1500 1.81 itojun if (ifindexp)
1501 1.81 itojun *ifindexp = 0;
1502 1.81 itojun if (ntohl(a->s_addr) >> 24 == 0) {
1503 1.81 itojun ifindex = ntohl(a->s_addr) & 0xffffff;
1504 1.225 rmind ifp = if_byindex(ifindex);
1505 1.129 itojun if (!ifp)
1506 1.129 itojun return NULL;
1507 1.81 itojun if (ifindexp)
1508 1.81 itojun *ifindexp = ifindex;
1509 1.81 itojun } else {
1510 1.110 itojun LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1511 1.110 itojun if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1512 1.111 itojun (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1513 1.111 itojun ifp = ia->ia_ifp;
1514 1.110 itojun break;
1515 1.111 itojun }
1516 1.110 itojun }
1517 1.81 itojun }
1518 1.81 itojun return ifp;
1519 1.81 itojun }
1520 1.81 itojun
1521 1.156 christos static int
1522 1.198 plunky ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1523 1.156 christos {
1524 1.156 christos u_int tval;
1525 1.197 plunky u_char cval;
1526 1.197 plunky int error;
1527 1.156 christos
1528 1.197 plunky if (sopt == NULL)
1529 1.156 christos return EINVAL;
1530 1.156 christos
1531 1.197 plunky switch (sopt->sopt_size) {
1532 1.156 christos case sizeof(u_char):
1533 1.197 plunky error = sockopt_get(sopt, &cval, sizeof(u_char));
1534 1.197 plunky tval = cval;
1535 1.156 christos break;
1536 1.197 plunky
1537 1.156 christos case sizeof(u_int):
1538 1.197 plunky error = sockopt_get(sopt, &tval, sizeof(u_int));
1539 1.156 christos break;
1540 1.197 plunky
1541 1.156 christos default:
1542 1.197 plunky error = EINVAL;
1543 1.156 christos }
1544 1.156 christos
1545 1.197 plunky if (error)
1546 1.197 plunky return error;
1547 1.197 plunky
1548 1.156 christos if (tval > maxval)
1549 1.156 christos return EINVAL;
1550 1.156 christos
1551 1.156 christos *val = tval;
1552 1.156 christos return 0;
1553 1.156 christos }
1554 1.156 christos
1555 1.232 christos static int
1556 1.232 christos ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1557 1.232 christos struct in_addr *ia, bool add)
1558 1.232 christos {
1559 1.232 christos int error;
1560 1.232 christos struct ip_mreq mreq;
1561 1.232 christos
1562 1.232 christos error = sockopt_get(sopt, &mreq, sizeof(mreq));
1563 1.232 christos if (error)
1564 1.232 christos return error;
1565 1.232 christos
1566 1.232 christos if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1567 1.232 christos return EINVAL;
1568 1.232 christos
1569 1.232 christos memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1570 1.232 christos
1571 1.232 christos if (in_nullhost(mreq.imr_interface)) {
1572 1.232 christos union {
1573 1.232 christos struct sockaddr dst;
1574 1.232 christos struct sockaddr_in dst4;
1575 1.232 christos } u;
1576 1.232 christos struct route ro;
1577 1.232 christos
1578 1.232 christos if (!add) {
1579 1.232 christos *ifp = NULL;
1580 1.232 christos return 0;
1581 1.232 christos }
1582 1.232 christos /*
1583 1.232 christos * If no interface address was provided, use the interface of
1584 1.232 christos * the route to the given multicast address.
1585 1.232 christos */
1586 1.232 christos struct rtentry *rt;
1587 1.232 christos memset(&ro, 0, sizeof(ro));
1588 1.232 christos
1589 1.232 christos sockaddr_in_init(&u.dst4, ia, 0);
1590 1.238 ozaki error = rtcache_setdst(&ro, &u.dst);
1591 1.238 ozaki if (error != 0)
1592 1.238 ozaki return error;
1593 1.232 christos *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1594 1.232 christos rtcache_free(&ro);
1595 1.232 christos } else {
1596 1.232 christos *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1597 1.232 christos if (!add && *ifp == NULL)
1598 1.232 christos return EADDRNOTAVAIL;
1599 1.232 christos }
1600 1.232 christos return 0;
1601 1.232 christos }
1602 1.232 christos
1603 1.232 christos /*
1604 1.232 christos * Add a multicast group membership.
1605 1.232 christos * Group must be a valid IP multicast address.
1606 1.232 christos */
1607 1.232 christos static int
1608 1.232 christos ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1609 1.232 christos {
1610 1.232 christos struct ifnet *ifp;
1611 1.232 christos struct in_addr ia;
1612 1.232 christos int i, error;
1613 1.232 christos
1614 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1615 1.232 christos error = ip_get_membership(sopt, &ifp, &ia, true);
1616 1.232 christos else
1617 1.232 christos #ifdef INET6
1618 1.232 christos error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1619 1.232 christos #else
1620 1.232 christos return EINVAL;
1621 1.232 christos #endif
1622 1.232 christos
1623 1.232 christos if (error)
1624 1.232 christos return error;
1625 1.232 christos
1626 1.232 christos /*
1627 1.232 christos * See if we found an interface, and confirm that it
1628 1.232 christos * supports multicast.
1629 1.232 christos */
1630 1.232 christos if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1631 1.232 christos return EADDRNOTAVAIL;
1632 1.232 christos
1633 1.232 christos /*
1634 1.232 christos * See if the membership already exists or if all the
1635 1.232 christos * membership slots are full.
1636 1.232 christos */
1637 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1638 1.232 christos if (imo->imo_membership[i]->inm_ifp == ifp &&
1639 1.232 christos in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1640 1.232 christos break;
1641 1.232 christos }
1642 1.232 christos if (i < imo->imo_num_memberships)
1643 1.232 christos return EADDRINUSE;
1644 1.232 christos
1645 1.232 christos if (i == IP_MAX_MEMBERSHIPS)
1646 1.232 christos return ETOOMANYREFS;
1647 1.232 christos
1648 1.232 christos /*
1649 1.232 christos * Everything looks good; add a new record to the multicast
1650 1.232 christos * address list for the given interface.
1651 1.232 christos */
1652 1.232 christos if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1653 1.232 christos return ENOBUFS;
1654 1.232 christos
1655 1.232 christos ++imo->imo_num_memberships;
1656 1.232 christos return 0;
1657 1.232 christos }
1658 1.232 christos
1659 1.232 christos /*
1660 1.232 christos * Drop a multicast group membership.
1661 1.232 christos * Group must be a valid IP multicast address.
1662 1.232 christos */
1663 1.232 christos static int
1664 1.232 christos ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1665 1.232 christos {
1666 1.232 christos struct in_addr ia;
1667 1.232 christos struct ifnet *ifp;
1668 1.232 christos int i, error;
1669 1.232 christos
1670 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1671 1.232 christos error = ip_get_membership(sopt, &ifp, &ia, false);
1672 1.232 christos else
1673 1.232 christos #ifdef INET6
1674 1.232 christos error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1675 1.232 christos #else
1676 1.232 christos return EINVAL;
1677 1.232 christos #endif
1678 1.232 christos
1679 1.232 christos if (error)
1680 1.232 christos return error;
1681 1.232 christos
1682 1.232 christos /*
1683 1.232 christos * Find the membership in the membership array.
1684 1.232 christos */
1685 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1686 1.232 christos if ((ifp == NULL ||
1687 1.232 christos imo->imo_membership[i]->inm_ifp == ifp) &&
1688 1.237 ozaki in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1689 1.232 christos break;
1690 1.232 christos }
1691 1.232 christos if (i == imo->imo_num_memberships)
1692 1.232 christos return EADDRNOTAVAIL;
1693 1.232 christos
1694 1.232 christos /*
1695 1.232 christos * Give up the multicast address record to which the
1696 1.232 christos * membership points.
1697 1.232 christos */
1698 1.232 christos in_delmulti(imo->imo_membership[i]);
1699 1.232 christos
1700 1.232 christos /*
1701 1.232 christos * Remove the gap in the membership array.
1702 1.232 christos */
1703 1.232 christos for (++i; i < imo->imo_num_memberships; ++i)
1704 1.232 christos imo->imo_membership[i-1] = imo->imo_membership[i];
1705 1.232 christos --imo->imo_num_memberships;
1706 1.232 christos return 0;
1707 1.232 christos }
1708 1.232 christos
1709 1.81 itojun /*
1710 1.5 hpeyerl * Set the IP multicast options in response to user setsockopt().
1711 1.5 hpeyerl */
1712 1.231 christos int
1713 1.231 christos ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1714 1.5 hpeyerl {
1715 1.231 christos struct ip_moptions *imo = *pimo;
1716 1.5 hpeyerl struct in_addr addr;
1717 1.71 augustss struct ifnet *ifp;
1718 1.232 christos int ifindex, error = 0;
1719 1.5 hpeyerl
1720 1.226 rmind if (!imo) {
1721 1.5 hpeyerl /*
1722 1.5 hpeyerl * No multicast option buffer attached to the pcb;
1723 1.5 hpeyerl * allocate one and initialize to default values.
1724 1.5 hpeyerl */
1725 1.215 rmind imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1726 1.5 hpeyerl if (imo == NULL)
1727 1.215 rmind return ENOBUFS;
1728 1.199 plunky
1729 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1730 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1731 1.5 hpeyerl imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1732 1.5 hpeyerl imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1733 1.5 hpeyerl imo->imo_num_memberships = 0;
1734 1.231 christos *pimo = imo;
1735 1.5 hpeyerl }
1736 1.5 hpeyerl
1737 1.197 plunky switch (sopt->sopt_name) {
1738 1.5 hpeyerl case IP_MULTICAST_IF:
1739 1.5 hpeyerl /*
1740 1.5 hpeyerl * Select the interface for outgoing multicast packets.
1741 1.5 hpeyerl */
1742 1.197 plunky error = sockopt_get(sopt, &addr, sizeof(addr));
1743 1.197 plunky if (error)
1744 1.5 hpeyerl break;
1745 1.197 plunky
1746 1.5 hpeyerl /*
1747 1.5 hpeyerl * INADDR_ANY is used to remove a previous selection.
1748 1.11 mycroft * When no interface is selected, a default one is
1749 1.5 hpeyerl * chosen every time a multicast packet is sent.
1750 1.5 hpeyerl */
1751 1.31 mycroft if (in_nullhost(addr)) {
1752 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1753 1.5 hpeyerl break;
1754 1.5 hpeyerl }
1755 1.5 hpeyerl /*
1756 1.5 hpeyerl * The selected interface is identified by its local
1757 1.5 hpeyerl * IP address. Find the interface and confirm that
1758 1.11 mycroft * it supports multicasting.
1759 1.5 hpeyerl */
1760 1.81 itojun ifp = ip_multicast_if(&addr, &ifindex);
1761 1.5 hpeyerl if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1762 1.5 hpeyerl error = EADDRNOTAVAIL;
1763 1.5 hpeyerl break;
1764 1.5 hpeyerl }
1765 1.5 hpeyerl imo->imo_multicast_ifp = ifp;
1766 1.81 itojun if (ifindex)
1767 1.81 itojun imo->imo_multicast_addr = addr;
1768 1.81 itojun else
1769 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1770 1.5 hpeyerl break;
1771 1.5 hpeyerl
1772 1.5 hpeyerl case IP_MULTICAST_TTL:
1773 1.5 hpeyerl /*
1774 1.5 hpeyerl * Set the IP time-to-live for outgoing multicast packets.
1775 1.5 hpeyerl */
1776 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1777 1.5 hpeyerl break;
1778 1.11 mycroft
1779 1.5 hpeyerl case IP_MULTICAST_LOOP:
1780 1.5 hpeyerl /*
1781 1.5 hpeyerl * Set the loopback flag for outgoing multicast packets.
1782 1.5 hpeyerl * Must be zero or one.
1783 1.5 hpeyerl */
1784 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1785 1.5 hpeyerl break;
1786 1.5 hpeyerl
1787 1.232 christos case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1788 1.232 christos error = ip_add_membership(imo, sopt);
1789 1.5 hpeyerl break;
1790 1.5 hpeyerl
1791 1.232 christos case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1792 1.232 christos error = ip_drop_membership(imo, sopt);
1793 1.5 hpeyerl break;
1794 1.5 hpeyerl
1795 1.5 hpeyerl default:
1796 1.5 hpeyerl error = EOPNOTSUPP;
1797 1.5 hpeyerl break;
1798 1.5 hpeyerl }
1799 1.5 hpeyerl
1800 1.5 hpeyerl /*
1801 1.5 hpeyerl * If all options have default values, no need to keep the mbuf.
1802 1.5 hpeyerl */
1803 1.5 hpeyerl if (imo->imo_multicast_ifp == NULL &&
1804 1.5 hpeyerl imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1805 1.5 hpeyerl imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1806 1.5 hpeyerl imo->imo_num_memberships == 0) {
1807 1.215 rmind kmem_free(imo, sizeof(*imo));
1808 1.231 christos *pimo = NULL;
1809 1.5 hpeyerl }
1810 1.5 hpeyerl
1811 1.215 rmind return error;
1812 1.5 hpeyerl }
1813 1.5 hpeyerl
1814 1.5 hpeyerl /*
1815 1.5 hpeyerl * Return the IP multicast options in response to user getsockopt().
1816 1.5 hpeyerl */
1817 1.231 christos int
1818 1.231 christos ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1819 1.5 hpeyerl {
1820 1.197 plunky struct in_addr addr;
1821 1.5 hpeyerl struct in_ifaddr *ia;
1822 1.197 plunky uint8_t optval;
1823 1.226 rmind int error = 0;
1824 1.5 hpeyerl
1825 1.197 plunky switch (sopt->sopt_name) {
1826 1.5 hpeyerl case IP_MULTICAST_IF:
1827 1.5 hpeyerl if (imo == NULL || imo->imo_multicast_ifp == NULL)
1828 1.197 plunky addr = zeroin_addr;
1829 1.81 itojun else if (imo->imo_multicast_addr.s_addr) {
1830 1.81 itojun /* return the value user has set */
1831 1.197 plunky addr = imo->imo_multicast_addr;
1832 1.81 itojun } else {
1833 1.5 hpeyerl IFP_TO_IA(imo->imo_multicast_ifp, ia);
1834 1.197 plunky addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1835 1.5 hpeyerl }
1836 1.197 plunky error = sockopt_set(sopt, &addr, sizeof(addr));
1837 1.197 plunky break;
1838 1.5 hpeyerl
1839 1.5 hpeyerl case IP_MULTICAST_TTL:
1840 1.197 plunky optval = imo ? imo->imo_multicast_ttl
1841 1.237 ozaki : IP_DEFAULT_MULTICAST_TTL;
1842 1.197 plunky
1843 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1844 1.197 plunky break;
1845 1.5 hpeyerl
1846 1.5 hpeyerl case IP_MULTICAST_LOOP:
1847 1.197 plunky optval = imo ? imo->imo_multicast_loop
1848 1.237 ozaki : IP_DEFAULT_MULTICAST_LOOP;
1849 1.197 plunky
1850 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1851 1.197 plunky break;
1852 1.5 hpeyerl
1853 1.5 hpeyerl default:
1854 1.197 plunky error = EOPNOTSUPP;
1855 1.5 hpeyerl }
1856 1.197 plunky
1857 1.226 rmind return error;
1858 1.5 hpeyerl }
1859 1.5 hpeyerl
1860 1.5 hpeyerl /*
1861 1.5 hpeyerl * Discard the IP multicast options.
1862 1.5 hpeyerl */
1863 1.5 hpeyerl void
1864 1.140 perry ip_freemoptions(struct ip_moptions *imo)
1865 1.5 hpeyerl {
1866 1.71 augustss int i;
1867 1.5 hpeyerl
1868 1.5 hpeyerl if (imo != NULL) {
1869 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i)
1870 1.5 hpeyerl in_delmulti(imo->imo_membership[i]);
1871 1.215 rmind kmem_free(imo, sizeof(*imo));
1872 1.5 hpeyerl }
1873 1.5 hpeyerl }
1874 1.5 hpeyerl
1875 1.5 hpeyerl /*
1876 1.5 hpeyerl * Routine called from ip_output() to loop back a copy of an IP multicast
1877 1.5 hpeyerl * packet to the input queue of a specified interface. Note that this
1878 1.5 hpeyerl * calls the output routine of the loopback "driver", but with an interface
1879 1.137 peter * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1880 1.5 hpeyerl */
1881 1.12 mycroft static void
1882 1.180 dyoung ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1883 1.5 hpeyerl {
1884 1.71 augustss struct ip *ip;
1885 1.5 hpeyerl struct mbuf *copym;
1886 1.5 hpeyerl
1887 1.183 dyoung copym = m_copypacket(m, M_DONTWAIT);
1888 1.237 ozaki if (copym != NULL &&
1889 1.237 ozaki (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1890 1.65 itojun copym = m_pullup(copym, sizeof(struct ip));
1891 1.180 dyoung if (copym == NULL)
1892 1.180 dyoung return;
1893 1.180 dyoung /*
1894 1.180 dyoung * We don't bother to fragment if the IP length is greater
1895 1.180 dyoung * than the interface's MTU. Can this possibly matter?
1896 1.180 dyoung */
1897 1.180 dyoung ip = mtod(copym, struct ip *);
1898 1.93 itojun
1899 1.180 dyoung if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1900 1.180 dyoung in_delayed_cksum(copym);
1901 1.180 dyoung copym->m_pkthdr.csum_flags &=
1902 1.180 dyoung ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1903 1.180 dyoung }
1904 1.93 itojun
1905 1.180 dyoung ip->ip_sum = 0;
1906 1.180 dyoung ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1907 1.236 ozaki #ifndef NET_MPSAFE
1908 1.233 ozaki KERNEL_LOCK(1, NULL);
1909 1.236 ozaki #endif
1910 1.180 dyoung (void)looutput(ifp, copym, sintocsa(dst), NULL);
1911 1.236 ozaki #ifndef NET_MPSAFE
1912 1.233 ozaki KERNEL_UNLOCK_ONE(NULL);
1913 1.236 ozaki #endif
1914 1.5 hpeyerl }
1915