ip_output.c revision 1.247 1 1.247 ozaki /* $NetBSD: ip_output.c,v 1.247 2015/09/02 11:35:11 ozaki-r Exp $ */
2 1.61 itojun
3 1.61 itojun /*
4 1.61 itojun * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 1.61 itojun * All rights reserved.
6 1.97 itojun *
7 1.61 itojun * Redistribution and use in source and binary forms, with or without
8 1.61 itojun * modification, are permitted provided that the following conditions
9 1.61 itojun * are met:
10 1.61 itojun * 1. Redistributions of source code must retain the above copyright
11 1.61 itojun * notice, this list of conditions and the following disclaimer.
12 1.61 itojun * 2. Redistributions in binary form must reproduce the above copyright
13 1.61 itojun * notice, this list of conditions and the following disclaimer in the
14 1.61 itojun * documentation and/or other materials provided with the distribution.
15 1.61 itojun * 3. Neither the name of the project nor the names of its contributors
16 1.61 itojun * may be used to endorse or promote products derived from this software
17 1.61 itojun * without specific prior written permission.
18 1.97 itojun *
19 1.61 itojun * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 1.61 itojun * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.61 itojun * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.61 itojun * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 1.61 itojun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.61 itojun * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.61 itojun * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.61 itojun * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.61 itojun * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.61 itojun * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.61 itojun * SUCH DAMAGE.
30 1.61 itojun */
31 1.54 thorpej
32 1.54 thorpej /*-
33 1.54 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 1.54 thorpej * All rights reserved.
35 1.54 thorpej *
36 1.54 thorpej * This code is derived from software contributed to The NetBSD Foundation
37 1.54 thorpej * by Public Access Networks Corporation ("Panix"). It was developed under
38 1.54 thorpej * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 1.54 thorpej *
40 1.54 thorpej * Redistribution and use in source and binary forms, with or without
41 1.54 thorpej * modification, are permitted provided that the following conditions
42 1.54 thorpej * are met:
43 1.54 thorpej * 1. Redistributions of source code must retain the above copyright
44 1.54 thorpej * notice, this list of conditions and the following disclaimer.
45 1.54 thorpej * 2. Redistributions in binary form must reproduce the above copyright
46 1.54 thorpej * notice, this list of conditions and the following disclaimer in the
47 1.54 thorpej * documentation and/or other materials provided with the distribution.
48 1.54 thorpej *
49 1.54 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 1.54 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 1.54 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 1.54 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 1.54 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 1.54 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 1.54 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 1.54 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 1.54 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 1.54 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 1.54 thorpej * POSSIBILITY OF SUCH DAMAGE.
60 1.54 thorpej */
61 1.19 cgd
62 1.1 cgd /*
63 1.18 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 1.18 mycroft * The Regents of the University of California. All rights reserved.
65 1.1 cgd *
66 1.1 cgd * Redistribution and use in source and binary forms, with or without
67 1.1 cgd * modification, are permitted provided that the following conditions
68 1.1 cgd * are met:
69 1.1 cgd * 1. Redistributions of source code must retain the above copyright
70 1.1 cgd * notice, this list of conditions and the following disclaimer.
71 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
72 1.1 cgd * notice, this list of conditions and the following disclaimer in the
73 1.1 cgd * documentation and/or other materials provided with the distribution.
74 1.108 agc * 3. Neither the name of the University nor the names of its contributors
75 1.1 cgd * may be used to endorse or promote products derived from this software
76 1.1 cgd * without specific prior written permission.
77 1.1 cgd *
78 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 1.1 cgd * SUCH DAMAGE.
89 1.1 cgd *
90 1.19 cgd * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 1.1 cgd */
92 1.89 lukem
93 1.89 lukem #include <sys/cdefs.h>
94 1.247 ozaki __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.247 2015/09/02 11:35:11 ozaki-r Exp $");
95 1.42 scottr
96 1.246 pooka #ifdef _KERNEL_OPT
97 1.128 jonathan #include "opt_inet.h"
98 1.62 thorpej #include "opt_ipsec.h"
99 1.42 scottr #include "opt_mrouting.h"
100 1.236 ozaki #include "opt_net_mpsafe.h"
101 1.239 ozaki #include "opt_mpls.h"
102 1.246 pooka #endif
103 1.1 cgd
104 1.8 mycroft #include <sys/param.h>
105 1.215 rmind #include <sys/kmem.h>
106 1.8 mycroft #include <sys/mbuf.h>
107 1.8 mycroft #include <sys/protosw.h>
108 1.8 mycroft #include <sys/socket.h>
109 1.8 mycroft #include <sys/socketvar.h>
110 1.162 christos #include <sys/kauth.h>
111 1.220 christos #ifdef IPSEC
112 1.118 itojun #include <sys/domain.h>
113 1.118 itojun #endif
114 1.28 christos #include <sys/systm.h>
115 1.61 itojun
116 1.8 mycroft #include <net/if.h>
117 1.239 ozaki #include <net/if_types.h>
118 1.8 mycroft #include <net/route.h>
119 1.38 mrg #include <net/pfil.h>
120 1.1 cgd
121 1.8 mycroft #include <netinet/in.h>
122 1.8 mycroft #include <netinet/in_systm.h>
123 1.8 mycroft #include <netinet/ip.h>
124 1.8 mycroft #include <netinet/in_pcb.h>
125 1.8 mycroft #include <netinet/in_var.h>
126 1.8 mycroft #include <netinet/ip_var.h>
127 1.194 thorpej #include <netinet/ip_private.h>
128 1.152 yamt #include <netinet/in_offload.h>
129 1.217 christos #include <netinet/portalgo.h>
130 1.219 christos #include <netinet/udp.h>
131 1.72 jdolecek
132 1.232 christos #ifdef INET6
133 1.232 christos #include <netinet6/ip6_var.h>
134 1.232 christos #endif
135 1.232 christos
136 1.72 jdolecek #ifdef MROUTING
137 1.72 jdolecek #include <netinet/ip_mroute.h>
138 1.72 jdolecek #endif
139 1.32 mrg
140 1.235 ozaki #ifdef IPSEC
141 1.109 jonathan #include <netipsec/ipsec.h>
142 1.109 jonathan #include <netipsec/key.h>
143 1.235 ozaki #endif
144 1.160 christos
145 1.239 ozaki #ifdef MPLS
146 1.239 ozaki #include <netmpls/mpls.h>
147 1.239 ozaki #include <netmpls/mpls_var.h>
148 1.239 ozaki #endif
149 1.239 ozaki
150 1.226 rmind static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151 1.139 perry static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152 1.139 perry static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153 1.180 dyoung static void ip_mloopback(struct ifnet *, struct mbuf *,
154 1.180 dyoung const struct sockaddr_in *);
155 1.1 cgd
156 1.224 rmind extern pfil_head_t *inet_pfil_hook; /* XXX */
157 1.78 thorpej
158 1.151 yamt int ip_do_loopback_cksum = 0;
159 1.151 yamt
160 1.239 ozaki static bool
161 1.239 ozaki ip_hresolv_needed(const struct ifnet * const ifp)
162 1.239 ozaki {
163 1.239 ozaki switch (ifp->if_type) {
164 1.239 ozaki case IFT_ARCNET:
165 1.239 ozaki case IFT_ATM:
166 1.239 ozaki case IFT_ECONET:
167 1.239 ozaki case IFT_ETHER:
168 1.239 ozaki case IFT_FDDI:
169 1.239 ozaki case IFT_HIPPI:
170 1.239 ozaki case IFT_IEEE1394:
171 1.242 ozaki case IFT_ISO88025:
172 1.243 ozaki case IFT_SLIP:
173 1.239 ozaki return true;
174 1.239 ozaki default:
175 1.239 ozaki return false;
176 1.239 ozaki }
177 1.239 ozaki }
178 1.239 ozaki
179 1.239 ozaki static int
180 1.239 ozaki klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
181 1.239 ozaki const struct sockaddr * const dst, struct rtentry *rt)
182 1.239 ozaki {
183 1.239 ozaki int error;
184 1.239 ozaki
185 1.239 ozaki #ifndef NET_MPSAFE
186 1.239 ozaki KERNEL_LOCK(1, NULL);
187 1.239 ozaki #endif
188 1.239 ozaki
189 1.239 ozaki error = (*ifp->if_output)(ifp, m, dst, rt);
190 1.239 ozaki
191 1.239 ozaki #ifndef NET_MPSAFE
192 1.239 ozaki KERNEL_UNLOCK_ONE(NULL);
193 1.239 ozaki #endif
194 1.239 ozaki
195 1.239 ozaki return error;
196 1.239 ozaki }
197 1.239 ozaki
198 1.239 ozaki /*
199 1.239 ozaki * Send an IP packet to a host.
200 1.239 ozaki *
201 1.239 ozaki * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
202 1.239 ozaki * calling ifp's output routine.
203 1.239 ozaki */
204 1.239 ozaki int
205 1.239 ozaki ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
206 1.244 ozaki const struct sockaddr * const dst, struct rtentry *rt00)
207 1.239 ozaki {
208 1.239 ozaki int error = 0;
209 1.239 ozaki struct ifnet *ifp = ifp0;
210 1.244 ozaki struct rtentry *rt, *rt0, *gwrt;
211 1.244 ozaki
212 1.244 ozaki #define RTFREE_IF_NEEDED(_rt) \
213 1.244 ozaki if ((_rt) != NULL && (_rt) != rt00) \
214 1.244 ozaki rtfree((_rt));
215 1.239 ozaki
216 1.244 ozaki rt0 = rt00;
217 1.239 ozaki retry:
218 1.239 ozaki if (!ip_hresolv_needed(ifp)) {
219 1.239 ozaki rt = rt0;
220 1.239 ozaki goto out;
221 1.239 ozaki }
222 1.239 ozaki
223 1.239 ozaki if (rt0 == NULL) {
224 1.239 ozaki rt = NULL;
225 1.239 ozaki goto out;
226 1.239 ozaki }
227 1.239 ozaki
228 1.239 ozaki rt = rt0;
229 1.239 ozaki
230 1.239 ozaki /*
231 1.239 ozaki * The following block is highly questionable. How did we get here
232 1.239 ozaki * with a !RTF_UP route? Does rtalloc1() always return an RTF_UP
233 1.239 ozaki * route?
234 1.239 ozaki */
235 1.239 ozaki if ((rt->rt_flags & RTF_UP) == 0) {
236 1.239 ozaki rt = rtalloc1(dst, 1);
237 1.239 ozaki if (rt == NULL) {
238 1.239 ozaki error = EHOSTUNREACH;
239 1.239 ozaki goto bad;
240 1.239 ozaki }
241 1.239 ozaki rt0 = rt;
242 1.239 ozaki if (rt->rt_ifp != ifp) {
243 1.239 ozaki ifp = rt->rt_ifp;
244 1.239 ozaki goto retry;
245 1.239 ozaki }
246 1.239 ozaki }
247 1.239 ozaki
248 1.239 ozaki if ((rt->rt_flags & RTF_GATEWAY) == 0)
249 1.239 ozaki goto out;
250 1.239 ozaki
251 1.244 ozaki gwrt = rt_get_gwroute(rt);
252 1.244 ozaki RTFREE_IF_NEEDED(rt);
253 1.244 ozaki rt = gwrt;
254 1.239 ozaki if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
255 1.239 ozaki if (rt != NULL) {
256 1.244 ozaki RTFREE_IF_NEEDED(rt);
257 1.239 ozaki rt = rt0;
258 1.239 ozaki }
259 1.239 ozaki if (rt == NULL) {
260 1.239 ozaki error = EHOSTUNREACH;
261 1.239 ozaki goto bad;
262 1.239 ozaki }
263 1.247 ozaki gwrt = rtalloc1(rt->rt_gateway, 1);
264 1.247 ozaki rt_set_gwroute(rt, gwrt);
265 1.244 ozaki RTFREE_IF_NEEDED(rt);
266 1.244 ozaki rt = gwrt;
267 1.239 ozaki if (rt == NULL) {
268 1.239 ozaki error = EHOSTUNREACH;
269 1.239 ozaki goto bad;
270 1.239 ozaki }
271 1.239 ozaki /* the "G" test below also prevents rt == rt0 */
272 1.239 ozaki if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
273 1.247 ozaki if (rt0->rt_gwroute != NULL)
274 1.247 ozaki rtfree(rt0->rt_gwroute);
275 1.239 ozaki rt0->rt_gwroute = NULL;
276 1.239 ozaki error = EHOSTUNREACH;
277 1.239 ozaki goto bad;
278 1.239 ozaki }
279 1.239 ozaki }
280 1.239 ozaki if ((rt->rt_flags & RTF_REJECT) != 0) {
281 1.239 ozaki if (rt->rt_rmx.rmx_expire == 0 ||
282 1.245 ozaki time_uptime < rt->rt_rmx.rmx_expire) {
283 1.239 ozaki error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
284 1.239 ozaki goto bad;
285 1.239 ozaki }
286 1.239 ozaki }
287 1.239 ozaki
288 1.239 ozaki out:
289 1.239 ozaki #ifdef MPLS
290 1.239 ozaki if (rt0 != NULL && rt_gettag(rt0) != NULL &&
291 1.239 ozaki rt_gettag(rt0)->sa_family == AF_MPLS &&
292 1.239 ozaki (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
293 1.239 ozaki ifp->if_type == IFT_ETHER) {
294 1.239 ozaki union mpls_shim msh;
295 1.239 ozaki msh.s_addr = MPLS_GETSADDR(rt0);
296 1.239 ozaki if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
297 1.239 ozaki struct m_tag *mtag;
298 1.239 ozaki /*
299 1.239 ozaki * XXX tentative solution to tell ether_output
300 1.239 ozaki * it's MPLS. Need some more efficient solution.
301 1.239 ozaki */
302 1.239 ozaki mtag = m_tag_get(PACKET_TAG_MPLS,
303 1.239 ozaki sizeof(int) /* dummy */,
304 1.239 ozaki M_NOWAIT);
305 1.239 ozaki if (mtag == NULL) {
306 1.239 ozaki error = ENOMEM;
307 1.239 ozaki goto bad;
308 1.239 ozaki }
309 1.239 ozaki m_tag_prepend(m, mtag);
310 1.239 ozaki }
311 1.239 ozaki }
312 1.239 ozaki #endif
313 1.239 ozaki
314 1.244 ozaki error = klock_if_output(ifp, m, dst, rt);
315 1.244 ozaki goto exit;
316 1.244 ozaki
317 1.239 ozaki bad:
318 1.239 ozaki if (m != NULL)
319 1.239 ozaki m_freem(m);
320 1.244 ozaki exit:
321 1.244 ozaki RTFREE_IF_NEEDED(rt);
322 1.239 ozaki
323 1.239 ozaki return error;
324 1.244 ozaki
325 1.244 ozaki #undef RTFREE_IF_NEEDED
326 1.239 ozaki }
327 1.239 ozaki
328 1.1 cgd /*
329 1.1 cgd * IP output. The packet in mbuf chain m contains a skeletal IP
330 1.1 cgd * header (with len, off, ttl, proto, tos, src, dst).
331 1.1 cgd * The mbuf chain containing the packet will be freed.
332 1.1 cgd * The mbuf opt, if present, will not be freed.
333 1.1 cgd */
334 1.12 mycroft int
335 1.28 christos ip_output(struct mbuf *m0, ...)
336 1.1 cgd {
337 1.186 dyoung struct rtentry *rt;
338 1.110 itojun struct ip *ip;
339 1.71 augustss struct ifnet *ifp;
340 1.71 augustss struct mbuf *m = m0;
341 1.71 augustss int hlen = sizeof (struct ip);
342 1.110 itojun int len, error = 0;
343 1.1 cgd struct route iproute;
344 1.180 dyoung const struct sockaddr_in *dst;
345 1.1 cgd struct in_ifaddr *ia;
346 1.234 roy int isbroadcast;
347 1.28 christos struct mbuf *opt;
348 1.28 christos struct route *ro;
349 1.226 rmind int flags, sw_csum;
350 1.96 itojun u_long mtu;
351 1.28 christos struct ip_moptions *imo;
352 1.116 itojun struct socket *so;
353 1.28 christos va_list ap;
354 1.229 christos #ifdef IPSEC
355 1.109 jonathan struct secpolicy *sp = NULL;
356 1.229 christos #endif
357 1.221 rmind bool natt_frag = false;
358 1.230 rmind bool rtmtu_nolock;
359 1.180 dyoung union {
360 1.180 dyoung struct sockaddr dst;
361 1.180 dyoung struct sockaddr_in dst4;
362 1.180 dyoung } u;
363 1.180 dyoung struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
364 1.180 dyoung * to the nexthop
365 1.180 dyoung */
366 1.28 christos
367 1.102 darrenr len = 0;
368 1.28 christos va_start(ap, m0);
369 1.28 christos opt = va_arg(ap, struct mbuf *);
370 1.28 christos ro = va_arg(ap, struct route *);
371 1.28 christos flags = va_arg(ap, int);
372 1.28 christos imo = va_arg(ap, struct ip_moptions *);
373 1.116 itojun so = va_arg(ap, struct socket *);
374 1.28 christos va_end(ap);
375 1.28 christos
376 1.103 matt MCLAIM(m, &ip_tx_mowner);
377 1.61 itojun
378 1.226 rmind KASSERT((m->m_flags & M_PKTHDR) != 0);
379 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
380 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
381 1.226 rmind (M_CSUM_TCPv4|M_CSUM_UDPv4));
382 1.163 tron
383 1.1 cgd if (opt) {
384 1.1 cgd m = ip_insertoptions(m, opt, &len);
385 1.102 darrenr if (len >= sizeof(struct ip))
386 1.102 darrenr hlen = len;
387 1.1 cgd }
388 1.1 cgd ip = mtod(m, struct ip *);
389 1.226 rmind
390 1.1 cgd /*
391 1.1 cgd * Fill in IP header.
392 1.1 cgd */
393 1.18 mycroft if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
394 1.1 cgd ip->ip_v = IPVERSION;
395 1.100 itojun ip->ip_off = htons(0);
396 1.192 matt /* ip->ip_id filled in after we find out source ia */
397 1.1 cgd ip->ip_hl = hlen >> 2;
398 1.194 thorpej IP_STATINC(IP_STAT_LOCALOUT);
399 1.1 cgd } else {
400 1.1 cgd hlen = ip->ip_hl << 2;
401 1.1 cgd }
402 1.226 rmind
403 1.1 cgd /*
404 1.1 cgd * Route packet.
405 1.1 cgd */
406 1.230 rmind if (ro == NULL) {
407 1.230 rmind memset(&iproute, 0, sizeof(iproute));
408 1.1 cgd ro = &iproute;
409 1.230 rmind }
410 1.180 dyoung sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
411 1.180 dyoung dst = satocsin(rtcache_getdst(ro));
412 1.226 rmind
413 1.1 cgd /*
414 1.226 rmind * If there is a cached route, check that it is to the same
415 1.226 rmind * destination and is still up. If not, free it and try again.
416 1.226 rmind * The address family should also be checked in case of sharing
417 1.226 rmind * the cache with IPv6.
418 1.1 cgd */
419 1.226 rmind if (dst && (dst->sin_family != AF_INET ||
420 1.226 rmind !in_hosteq(dst->sin_addr, ip->ip_dst)))
421 1.171 joerg rtcache_free(ro);
422 1.190 dyoung
423 1.190 dyoung if ((rt = rtcache_validate(ro)) == NULL &&
424 1.190 dyoung (rt = rtcache_update(ro, 1)) == NULL) {
425 1.180 dyoung dst = &u.dst4;
426 1.238 ozaki error = rtcache_setdst(ro, &u.dst);
427 1.238 ozaki if (error != 0)
428 1.238 ozaki goto bad;
429 1.1 cgd }
430 1.226 rmind
431 1.1 cgd /*
432 1.226 rmind * If routing to interface only, short circuit routing lookup.
433 1.1 cgd */
434 1.1 cgd if (flags & IP_ROUTETOIF) {
435 1.180 dyoung if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
436 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
437 1.1 cgd error = ENETUNREACH;
438 1.1 cgd goto bad;
439 1.1 cgd }
440 1.1 cgd ifp = ia->ia_ifp;
441 1.48 matt mtu = ifp->if_mtu;
442 1.18 mycroft ip->ip_ttl = 1;
443 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
444 1.98 itojun } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
445 1.98 itojun ip->ip_dst.s_addr == INADDR_BROADCAST) &&
446 1.98 itojun imo != NULL && imo->imo_multicast_ifp != NULL) {
447 1.98 itojun ifp = imo->imo_multicast_ifp;
448 1.98 itojun mtu = ifp->if_mtu;
449 1.99 itojun IFP_TO_IA(ifp, ia);
450 1.234 roy isbroadcast = 0;
451 1.1 cgd } else {
452 1.186 dyoung if (rt == NULL)
453 1.190 dyoung rt = rtcache_init(ro);
454 1.190 dyoung if (rt == NULL) {
455 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
456 1.1 cgd error = EHOSTUNREACH;
457 1.1 cgd goto bad;
458 1.1 cgd }
459 1.186 dyoung ia = ifatoia(rt->rt_ifa);
460 1.186 dyoung ifp = rt->rt_ifp;
461 1.186 dyoung if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
462 1.48 matt mtu = ifp->if_mtu;
463 1.186 dyoung rt->rt_use++;
464 1.186 dyoung if (rt->rt_flags & RTF_GATEWAY)
465 1.186 dyoung dst = satosin(rt->rt_gateway);
466 1.234 roy if (rt->rt_flags & RTF_HOST)
467 1.234 roy isbroadcast = rt->rt_flags & RTF_BROADCAST;
468 1.234 roy else
469 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
470 1.1 cgd }
471 1.230 rmind rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
472 1.226 rmind
473 1.64 is if (IN_MULTICAST(ip->ip_dst.s_addr) ||
474 1.64 is (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
475 1.228 rmind bool inmgroup;
476 1.5 hpeyerl
477 1.64 is m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
478 1.237 ozaki M_BCAST : M_MCAST;
479 1.5 hpeyerl /*
480 1.5 hpeyerl * See if the caller provided any multicast options
481 1.5 hpeyerl */
482 1.98 itojun if (imo != NULL)
483 1.5 hpeyerl ip->ip_ttl = imo->imo_multicast_ttl;
484 1.98 itojun else
485 1.5 hpeyerl ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
486 1.98 itojun
487 1.98 itojun /*
488 1.98 itojun * if we don't know the outgoing ifp yet, we can't generate
489 1.98 itojun * output
490 1.98 itojun */
491 1.98 itojun if (!ifp) {
492 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
493 1.98 itojun error = ENETUNREACH;
494 1.98 itojun goto bad;
495 1.98 itojun }
496 1.98 itojun
497 1.5 hpeyerl /*
498 1.95 thorpej * If the packet is multicast or broadcast, confirm that
499 1.95 thorpej * the outgoing interface can transmit it.
500 1.5 hpeyerl */
501 1.64 is if (((m->m_flags & M_MCAST) &&
502 1.64 is (ifp->if_flags & IFF_MULTICAST) == 0) ||
503 1.97 itojun ((m->m_flags & M_BCAST) &&
504 1.95 thorpej (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
505 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
506 1.5 hpeyerl error = ENETUNREACH;
507 1.5 hpeyerl goto bad;
508 1.5 hpeyerl }
509 1.5 hpeyerl /*
510 1.44 tls * If source address not specified yet, use an address
511 1.5 hpeyerl * of outgoing interface.
512 1.5 hpeyerl */
513 1.31 mycroft if (in_nullhost(ip->ip_src)) {
514 1.153 christos struct in_ifaddr *xia;
515 1.230 rmind struct ifaddr *xifa;
516 1.5 hpeyerl
517 1.153 christos IFP_TO_IA(ifp, xia);
518 1.153 christos if (!xia) {
519 1.91 itojun error = EADDRNOTAVAIL;
520 1.91 itojun goto bad;
521 1.91 itojun }
522 1.166 dyoung xifa = &xia->ia_ifa;
523 1.166 dyoung if (xifa->ifa_getifa != NULL) {
524 1.180 dyoung xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
525 1.240 roy if (xia == NULL) {
526 1.241 roy error = EADDRNOTAVAIL;
527 1.240 roy goto bad;
528 1.240 roy }
529 1.166 dyoung }
530 1.153 christos ip->ip_src = xia->ia_addr.sin_addr;
531 1.5 hpeyerl }
532 1.5 hpeyerl
533 1.228 rmind inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
534 1.228 rmind if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
535 1.5 hpeyerl /*
536 1.11 mycroft * If we belong to the destination multicast group
537 1.5 hpeyerl * on the outgoing interface, and the caller did not
538 1.5 hpeyerl * forbid loopback, loop back a copy.
539 1.5 hpeyerl */
540 1.180 dyoung ip_mloopback(ifp, m, &u.dst4);
541 1.5 hpeyerl }
542 1.5 hpeyerl #ifdef MROUTING
543 1.18 mycroft else {
544 1.5 hpeyerl /*
545 1.5 hpeyerl * If we are acting as a multicast router, perform
546 1.5 hpeyerl * multicast forwarding as if the packet had just
547 1.5 hpeyerl * arrived on the interface to which we are about
548 1.5 hpeyerl * to send. The multicast forwarding function
549 1.5 hpeyerl * recursively calls this function, using the
550 1.5 hpeyerl * IP_FORWARDING flag to prevent infinite recursion.
551 1.5 hpeyerl *
552 1.5 hpeyerl * Multicasts that are looped back by ip_mloopback(),
553 1.5 hpeyerl * above, will be forwarded by the ip_input() routine,
554 1.5 hpeyerl * if necessary.
555 1.5 hpeyerl */
556 1.18 mycroft extern struct socket *ip_mrouter;
557 1.22 cgd
558 1.18 mycroft if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
559 1.18 mycroft if (ip_mforward(m, ifp) != 0) {
560 1.18 mycroft m_freem(m);
561 1.18 mycroft goto done;
562 1.18 mycroft }
563 1.5 hpeyerl }
564 1.5 hpeyerl }
565 1.5 hpeyerl #endif
566 1.5 hpeyerl /*
567 1.5 hpeyerl * Multicasts with a time-to-live of zero may be looped-
568 1.5 hpeyerl * back, above, but must not be transmitted on a network.
569 1.5 hpeyerl * Also, multicasts addressed to the loopback interface
570 1.5 hpeyerl * are not sent -- the above call to ip_mloopback() will
571 1.5 hpeyerl * loop back a copy if this host actually belongs to the
572 1.5 hpeyerl * destination group on the loopback interface.
573 1.5 hpeyerl */
574 1.20 mycroft if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
575 1.5 hpeyerl m_freem(m);
576 1.5 hpeyerl goto done;
577 1.5 hpeyerl }
578 1.5 hpeyerl goto sendit;
579 1.5 hpeyerl }
580 1.230 rmind
581 1.1 cgd /*
582 1.1 cgd * If source address not specified yet, use address
583 1.1 cgd * of outgoing interface.
584 1.1 cgd */
585 1.166 dyoung if (in_nullhost(ip->ip_src)) {
586 1.230 rmind struct ifaddr *xifa;
587 1.230 rmind
588 1.166 dyoung xifa = &ia->ia_ifa;
589 1.240 roy if (xifa->ifa_getifa != NULL) {
590 1.180 dyoung ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
591 1.240 roy if (ia == NULL) {
592 1.240 roy error = EADDRNOTAVAIL;
593 1.240 roy goto bad;
594 1.240 roy }
595 1.240 roy }
596 1.25 mycroft ip->ip_src = ia->ia_addr.sin_addr;
597 1.166 dyoung }
598 1.59 hwr
599 1.59 hwr /*
600 1.97 itojun * packets with Class-D address as source are not valid per
601 1.59 hwr * RFC 1112
602 1.59 hwr */
603 1.59 hwr if (IN_MULTICAST(ip->ip_src.s_addr)) {
604 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
605 1.59 hwr error = EADDRNOTAVAIL;
606 1.59 hwr goto bad;
607 1.59 hwr }
608 1.59 hwr
609 1.1 cgd /*
610 1.230 rmind * Look for broadcast address and and verify user is allowed to
611 1.230 rmind * send such a packet.
612 1.1 cgd */
613 1.234 roy if (isbroadcast) {
614 1.1 cgd if ((ifp->if_flags & IFF_BROADCAST) == 0) {
615 1.1 cgd error = EADDRNOTAVAIL;
616 1.1 cgd goto bad;
617 1.1 cgd }
618 1.1 cgd if ((flags & IP_ALLOWBROADCAST) == 0) {
619 1.1 cgd error = EACCES;
620 1.1 cgd goto bad;
621 1.1 cgd }
622 1.1 cgd /* don't allow broadcast messages to be fragmented */
623 1.100 itojun if (ntohs(ip->ip_len) > ifp->if_mtu) {
624 1.1 cgd error = EMSGSIZE;
625 1.1 cgd goto bad;
626 1.1 cgd }
627 1.1 cgd m->m_flags |= M_BCAST;
628 1.18 mycroft } else
629 1.18 mycroft m->m_flags &= ~M_BCAST;
630 1.18 mycroft
631 1.60 mrg sendit:
632 1.192 matt if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
633 1.192 matt if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
634 1.192 matt ip->ip_id = 0;
635 1.192 matt } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
636 1.192 matt ip->ip_id = ip_newid(ia);
637 1.192 matt } else {
638 1.192 matt
639 1.192 matt /*
640 1.192 matt * TSO capable interfaces (typically?) increment
641 1.192 matt * ip_id for each segment.
642 1.192 matt * "allocate" enough ids here to increase the chance
643 1.192 matt * for them to be unique.
644 1.192 matt *
645 1.192 matt * note that the following calculation is not
646 1.192 matt * needed to be precise. wasting some ip_id is fine.
647 1.192 matt */
648 1.192 matt
649 1.192 matt unsigned int segsz = m->m_pkthdr.segsz;
650 1.192 matt unsigned int datasz = ntohs(ip->ip_len) - hlen;
651 1.192 matt unsigned int num = howmany(datasz, segsz);
652 1.192 matt
653 1.192 matt ip->ip_id = ip_newid_range(ia, num);
654 1.192 matt }
655 1.192 matt }
656 1.230 rmind
657 1.76 thorpej /*
658 1.76 thorpej * If we're doing Path MTU Discovery, we need to set DF unless
659 1.76 thorpej * the route's MTU is locked.
660 1.76 thorpej */
661 1.230 rmind if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
662 1.100 itojun ip->ip_off |= htons(IP_DF);
663 1.230 rmind }
664 1.76 thorpej
665 1.220 christos #ifdef IPSEC
666 1.229 christos if (ipsec_used) {
667 1.230 rmind bool ipsec_done = false;
668 1.230 rmind
669 1.229 christos /* Perform IPsec processing, if any. */
670 1.229 christos error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
671 1.230 rmind &ipsec_done);
672 1.230 rmind if (error || ipsec_done)
673 1.229 christos goto done;
674 1.221 rmind }
675 1.109 jonathan #endif
676 1.109 jonathan
677 1.82 itojun /*
678 1.82 itojun * Run through list of hooks for output packets.
679 1.82 itojun */
680 1.230 rmind error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
681 1.230 rmind if (error)
682 1.82 itojun goto done;
683 1.82 itojun if (m == NULL)
684 1.82 itojun goto done;
685 1.82 itojun
686 1.82 itojun ip = mtod(m, struct ip *);
687 1.106 itojun hlen = ip->ip_hl << 2;
688 1.82 itojun
689 1.146 matt m->m_pkthdr.csum_data |= hlen << 16;
690 1.146 matt
691 1.136 thorpej #if IFA_STATS
692 1.136 thorpej /*
693 1.136 thorpej * search for the source address structure to
694 1.136 thorpej * maintain output statistics.
695 1.136 thorpej */
696 1.136 thorpej INADDR_TO_IA(ip->ip_src, ia);
697 1.136 thorpej #endif
698 1.136 thorpej
699 1.138 thorpej /* Maybe skip checksums on loopback interfaces. */
700 1.151 yamt if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
701 1.138 thorpej m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
702 1.151 yamt }
703 1.104 yamt sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
704 1.1 cgd /*
705 1.147 matt * If small enough for mtu of path, or if using TCP segmentation
706 1.147 matt * offload, can just send directly.
707 1.1 cgd */
708 1.218 kefren if (ntohs(ip->ip_len) <= mtu ||
709 1.147 matt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
710 1.230 rmind const struct sockaddr *sa;
711 1.230 rmind
712 1.63 itojun #if IFA_STATS
713 1.63 itojun if (ia)
714 1.218 kefren ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
715 1.63 itojun #endif
716 1.86 thorpej /*
717 1.86 thorpej * Always initialize the sum to 0! Some HW assisted
718 1.86 thorpej * checksumming requires this.
719 1.86 thorpej */
720 1.1 cgd ip->ip_sum = 0;
721 1.86 thorpej
722 1.149 matt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
723 1.147 matt /*
724 1.147 matt * Perform any checksums that the hardware can't do
725 1.147 matt * for us.
726 1.147 matt *
727 1.147 matt * XXX Does any hardware require the {th,uh}_sum
728 1.147 matt * XXX fields to be 0?
729 1.147 matt */
730 1.147 matt if (sw_csum & M_CSUM_IPv4) {
731 1.151 yamt KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
732 1.147 matt ip->ip_sum = in_cksum(m, hlen);
733 1.147 matt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
734 1.147 matt }
735 1.147 matt if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
736 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
737 1.151 yamt sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
738 1.151 yamt in_delayed_cksum(m);
739 1.151 yamt }
740 1.147 matt m->m_pkthdr.csum_flags &=
741 1.147 matt ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
742 1.147 matt }
743 1.146 matt }
744 1.86 thorpej
745 1.230 rmind sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
746 1.152 yamt if (__predict_true(
747 1.152 yamt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
748 1.152 yamt (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
749 1.239 ozaki error = ip_hresolv_output(ifp, m, sa, rt);
750 1.152 yamt } else {
751 1.230 rmind error = ip_tso_output(ifp, m, sa, rt);
752 1.152 yamt }
753 1.1 cgd goto done;
754 1.1 cgd }
755 1.61 itojun
756 1.1 cgd /*
757 1.86 thorpej * We can't use HW checksumming if we're about to
758 1.86 thorpej * to fragment the packet.
759 1.86 thorpej *
760 1.86 thorpej * XXX Some hardware can do this.
761 1.86 thorpej */
762 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
763 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
764 1.151 yamt m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
765 1.151 yamt in_delayed_cksum(m);
766 1.151 yamt }
767 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
768 1.86 thorpej }
769 1.86 thorpej
770 1.86 thorpej /*
771 1.1 cgd * Too large for interface; fragment if possible.
772 1.1 cgd * Must be able to put at least 8 bytes per fragment.
773 1.1 cgd */
774 1.100 itojun if (ntohs(ip->ip_off) & IP_DF) {
775 1.226 rmind if (flags & IP_RETURNMTU) {
776 1.227 rmind struct inpcb *inp;
777 1.227 rmind
778 1.227 rmind KASSERT(so && solocked(so));
779 1.227 rmind inp = sotoinpcb(so);
780 1.226 rmind inp->inp_errormtu = mtu;
781 1.226 rmind }
782 1.1 cgd error = EMSGSIZE;
783 1.194 thorpej IP_STATINC(IP_STAT_CANTFRAG);
784 1.1 cgd goto bad;
785 1.1 cgd }
786 1.110 itojun
787 1.110 itojun error = ip_fragment(m, ifp, mtu);
788 1.124 itojun if (error) {
789 1.124 itojun m = NULL;
790 1.1 cgd goto bad;
791 1.124 itojun }
792 1.110 itojun
793 1.119 itojun for (; m; m = m0) {
794 1.110 itojun m0 = m->m_nextpkt;
795 1.110 itojun m->m_nextpkt = 0;
796 1.230 rmind if (error) {
797 1.230 rmind m_freem(m);
798 1.230 rmind continue;
799 1.230 rmind }
800 1.110 itojun #if IFA_STATS
801 1.230 rmind if (ia)
802 1.230 rmind ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
803 1.110 itojun #endif
804 1.230 rmind /*
805 1.230 rmind * If we get there, the packet has not been handled by
806 1.230 rmind * IPsec whereas it should have. Now that it has been
807 1.230 rmind * fragmented, re-inject it in ip_output so that IPsec
808 1.230 rmind * processing can occur.
809 1.230 rmind */
810 1.230 rmind if (natt_frag) {
811 1.230 rmind error = ip_output(m, opt, ro,
812 1.230 rmind flags | IP_RAWOUTPUT | IP_NOIPNEWID,
813 1.230 rmind imo, so);
814 1.230 rmind } else {
815 1.230 rmind KASSERT((m->m_pkthdr.csum_flags &
816 1.230 rmind (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
817 1.239 ozaki error = ip_hresolv_output(ifp, m,
818 1.230 rmind (m->m_flags & M_MCAST) ?
819 1.230 rmind sintocsa(rdst) : sintocsa(dst), rt);
820 1.230 rmind }
821 1.1 cgd }
822 1.230 rmind if (error == 0) {
823 1.194 thorpej IP_STATINC(IP_STAT_FRAGMENTED);
824 1.230 rmind }
825 1.110 itojun done:
826 1.230 rmind if (ro == &iproute) {
827 1.230 rmind rtcache_free(&iproute);
828 1.230 rmind }
829 1.229 christos #ifdef IPSEC
830 1.221 rmind if (sp) {
831 1.110 itojun KEY_FREESP(&sp);
832 1.229 christos }
833 1.221 rmind #endif
834 1.221 rmind return error;
835 1.110 itojun bad:
836 1.110 itojun m_freem(m);
837 1.110 itojun goto done;
838 1.110 itojun }
839 1.110 itojun
840 1.113 itojun int
841 1.110 itojun ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
842 1.110 itojun {
843 1.110 itojun struct ip *ip, *mhip;
844 1.110 itojun struct mbuf *m0;
845 1.110 itojun int len, hlen, off;
846 1.110 itojun int mhlen, firstlen;
847 1.110 itojun struct mbuf **mnext;
848 1.135 manu int sw_csum = m->m_pkthdr.csum_flags;
849 1.48 matt int fragments = 0;
850 1.48 matt int s;
851 1.110 itojun int error = 0;
852 1.110 itojun
853 1.110 itojun ip = mtod(m, struct ip *);
854 1.110 itojun hlen = ip->ip_hl << 2;
855 1.135 manu if (ifp != NULL)
856 1.135 manu sw_csum &= ~ifp->if_csum_flags_tx;
857 1.110 itojun
858 1.110 itojun len = (mtu - hlen) &~ 7;
859 1.124 itojun if (len < 8) {
860 1.124 itojun m_freem(m);
861 1.110 itojun return (EMSGSIZE);
862 1.124 itojun }
863 1.110 itojun
864 1.110 itojun firstlen = len;
865 1.110 itojun mnext = &m->m_nextpkt;
866 1.1 cgd
867 1.1 cgd /*
868 1.1 cgd * Loop through length of segment after first fragment,
869 1.1 cgd * make new header and copy data of each part and link onto chain.
870 1.1 cgd */
871 1.1 cgd m0 = m;
872 1.1 cgd mhlen = sizeof (struct ip);
873 1.100 itojun for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
874 1.1 cgd MGETHDR(m, M_DONTWAIT, MT_HEADER);
875 1.1 cgd if (m == 0) {
876 1.1 cgd error = ENOBUFS;
877 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
878 1.1 cgd goto sendorfree;
879 1.1 cgd }
880 1.103 matt MCLAIM(m, m0->m_owner);
881 1.22 cgd *mnext = m;
882 1.22 cgd mnext = &m->m_nextpkt;
883 1.1 cgd m->m_data += max_linkhdr;
884 1.1 cgd mhip = mtod(m, struct ip *);
885 1.1 cgd *mhip = *ip;
886 1.73 is /* we must inherit MCAST and BCAST flags */
887 1.73 is m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
888 1.1 cgd if (hlen > sizeof (struct ip)) {
889 1.1 cgd mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
890 1.1 cgd mhip->ip_hl = mhlen >> 2;
891 1.1 cgd }
892 1.1 cgd m->m_len = mhlen;
893 1.122 itojun mhip->ip_off = ((off - hlen) >> 3) +
894 1.122 itojun (ntohs(ip->ip_off) & ~IP_MF);
895 1.122 itojun if (ip->ip_off & htons(IP_MF))
896 1.1 cgd mhip->ip_off |= IP_MF;
897 1.100 itojun if (off + len >= ntohs(ip->ip_len))
898 1.100 itojun len = ntohs(ip->ip_len) - off;
899 1.1 cgd else
900 1.1 cgd mhip->ip_off |= IP_MF;
901 1.100 itojun HTONS(mhip->ip_off);
902 1.21 cgd mhip->ip_len = htons((u_int16_t)(len + mhlen));
903 1.182 dyoung m->m_next = m_copym(m0, off, len, M_DONTWAIT);
904 1.1 cgd if (m->m_next == 0) {
905 1.1 cgd error = ENOBUFS; /* ??? */
906 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
907 1.1 cgd goto sendorfree;
908 1.1 cgd }
909 1.1 cgd m->m_pkthdr.len = mhlen + len;
910 1.212 christos m->m_pkthdr.rcvif = NULL;
911 1.1 cgd mhip->ip_sum = 0;
912 1.210 yamt KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
913 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
914 1.104 yamt mhip->ip_sum = in_cksum(m, mhlen);
915 1.104 yamt } else {
916 1.210 yamt /*
917 1.210 yamt * checksum is hw-offloaded or not necessary.
918 1.210 yamt */
919 1.210 yamt m->m_pkthdr.csum_flags |=
920 1.210 yamt m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
921 1.148 thorpej m->m_pkthdr.csum_data |= mhlen << 16;
922 1.210 yamt KASSERT(!(ifp != NULL &&
923 1.237 ozaki IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
924 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
925 1.104 yamt }
926 1.194 thorpej IP_STATINC(IP_STAT_OFRAGMENTS);
927 1.48 matt fragments++;
928 1.1 cgd }
929 1.1 cgd /*
930 1.1 cgd * Update first fragment by trimming what's been copied out
931 1.1 cgd * and updating header, then send each fragment (in order).
932 1.1 cgd */
933 1.1 cgd m = m0;
934 1.100 itojun m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
935 1.1 cgd m->m_pkthdr.len = hlen + firstlen;
936 1.21 cgd ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
937 1.100 itojun ip->ip_off |= htons(IP_MF);
938 1.1 cgd ip->ip_sum = 0;
939 1.210 yamt if (sw_csum & M_CSUM_IPv4) {
940 1.210 yamt ip->ip_sum = in_cksum(m, hlen);
941 1.210 yamt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
942 1.210 yamt } else {
943 1.210 yamt /*
944 1.210 yamt * checksum is hw-offloaded or not necessary.
945 1.210 yamt */
946 1.237 ozaki KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
947 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
948 1.210 yamt KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
949 1.237 ozaki sizeof(struct ip));
950 1.104 yamt }
951 1.1 cgd sendorfree:
952 1.48 matt /*
953 1.48 matt * If there is no room for all the fragments, don't queue
954 1.48 matt * any of them.
955 1.48 matt */
956 1.135 manu if (ifp != NULL) {
957 1.135 manu s = splnet();
958 1.135 manu if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
959 1.135 manu error == 0) {
960 1.135 manu error = ENOBUFS;
961 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
962 1.135 manu IFQ_INC_DROPS(&ifp->if_snd);
963 1.135 manu }
964 1.135 manu splx(s);
965 1.126 enami }
966 1.124 itojun if (error) {
967 1.125 itojun for (m = m0; m; m = m0) {
968 1.124 itojun m0 = m->m_nextpkt;
969 1.124 itojun m->m_nextpkt = NULL;
970 1.124 itojun m_freem(m);
971 1.124 itojun }
972 1.124 itojun }
973 1.1 cgd return (error);
974 1.86 thorpej }
975 1.86 thorpej
976 1.86 thorpej /*
977 1.86 thorpej * Process a delayed payload checksum calculation.
978 1.86 thorpej */
979 1.86 thorpej void
980 1.86 thorpej in_delayed_cksum(struct mbuf *m)
981 1.86 thorpej {
982 1.86 thorpej struct ip *ip;
983 1.86 thorpej u_int16_t csum, offset;
984 1.86 thorpej
985 1.86 thorpej ip = mtod(m, struct ip *);
986 1.86 thorpej offset = ip->ip_hl << 2;
987 1.86 thorpej csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
988 1.86 thorpej if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
989 1.86 thorpej csum = 0xffff;
990 1.86 thorpej
991 1.145 briggs offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
992 1.86 thorpej
993 1.86 thorpej if ((offset + sizeof(u_int16_t)) > m->m_len) {
994 1.87 yamt /* This happen when ip options were inserted
995 1.86 thorpej printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
996 1.86 thorpej m->m_len, offset, ip->ip_p);
997 1.87 yamt */
998 1.179 christos m_copyback(m, offset, sizeof(csum), (void *) &csum);
999 1.86 thorpej } else
1000 1.179 christos *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1001 1.1 cgd }
1002 1.47 kml
1003 1.47 kml /*
1004 1.47 kml * Determine the maximum length of the options to be inserted;
1005 1.47 kml * we would far rather allocate too much space rather than too little.
1006 1.47 kml */
1007 1.47 kml
1008 1.47 kml u_int
1009 1.140 perry ip_optlen(struct inpcb *inp)
1010 1.47 kml {
1011 1.47 kml struct mbuf *m = inp->inp_options;
1012 1.47 kml
1013 1.226 rmind if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
1014 1.101 itojun return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1015 1.226 rmind }
1016 1.226 rmind return 0;
1017 1.47 kml }
1018 1.47 kml
1019 1.1 cgd /*
1020 1.1 cgd * Insert IP options into preformed packet.
1021 1.1 cgd * Adjust IP destination as required for IP source routing,
1022 1.1 cgd * as indicated by a non-zero in_addr at the start of the options.
1023 1.1 cgd */
1024 1.12 mycroft static struct mbuf *
1025 1.140 perry ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1026 1.1 cgd {
1027 1.71 augustss struct ipoption *p = mtod(opt, struct ipoption *);
1028 1.1 cgd struct mbuf *n;
1029 1.71 augustss struct ip *ip = mtod(m, struct ip *);
1030 1.1 cgd unsigned optlen;
1031 1.1 cgd
1032 1.1 cgd optlen = opt->m_len - sizeof(p->ipopt_dst);
1033 1.100 itojun if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1034 1.1 cgd return (m); /* XXX should fail */
1035 1.31 mycroft if (!in_nullhost(p->ipopt_dst))
1036 1.1 cgd ip->ip_dst = p->ipopt_dst;
1037 1.123 itojun if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1038 1.1 cgd MGETHDR(n, M_DONTWAIT, MT_HEADER);
1039 1.1 cgd if (n == 0)
1040 1.1 cgd return (m);
1041 1.103 matt MCLAIM(n, m->m_owner);
1042 1.155 yamt M_MOVE_PKTHDR(n, m);
1043 1.1 cgd m->m_len -= sizeof(struct ip);
1044 1.1 cgd m->m_data += sizeof(struct ip);
1045 1.1 cgd n->m_next = m;
1046 1.1 cgd m = n;
1047 1.1 cgd m->m_len = optlen + sizeof(struct ip);
1048 1.1 cgd m->m_data += max_linkhdr;
1049 1.179 christos bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1050 1.1 cgd } else {
1051 1.1 cgd m->m_data -= optlen;
1052 1.1 cgd m->m_len += optlen;
1053 1.179 christos memmove(mtod(m, void *), ip, sizeof(struct ip));
1054 1.1 cgd }
1055 1.87 yamt m->m_pkthdr.len += optlen;
1056 1.1 cgd ip = mtod(m, struct ip *);
1057 1.179 christos bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1058 1.1 cgd *phlen = sizeof(struct ip) + optlen;
1059 1.100 itojun ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1060 1.1 cgd return (m);
1061 1.1 cgd }
1062 1.1 cgd
1063 1.1 cgd /*
1064 1.1 cgd * Copy options from ip to jp,
1065 1.1 cgd * omitting those not copied during fragmentation.
1066 1.1 cgd */
1067 1.12 mycroft int
1068 1.140 perry ip_optcopy(struct ip *ip, struct ip *jp)
1069 1.1 cgd {
1070 1.71 augustss u_char *cp, *dp;
1071 1.1 cgd int opt, optlen, cnt;
1072 1.1 cgd
1073 1.1 cgd cp = (u_char *)(ip + 1);
1074 1.1 cgd dp = (u_char *)(jp + 1);
1075 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1076 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
1077 1.1 cgd opt = cp[0];
1078 1.1 cgd if (opt == IPOPT_EOL)
1079 1.1 cgd break;
1080 1.18 mycroft if (opt == IPOPT_NOP) {
1081 1.18 mycroft /* Preserve for IP mcast tunnel's LSRR alignment. */
1082 1.18 mycroft *dp++ = IPOPT_NOP;
1083 1.1 cgd optlen = 1;
1084 1.18 mycroft continue;
1085 1.74 itojun }
1086 1.226 rmind
1087 1.226 rmind KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1088 1.74 itojun optlen = cp[IPOPT_OLEN];
1089 1.226 rmind KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1090 1.226 rmind
1091 1.226 rmind /* Invalid lengths should have been caught by ip_dooptions. */
1092 1.1 cgd if (optlen > cnt)
1093 1.1 cgd optlen = cnt;
1094 1.1 cgd if (IPOPT_COPIED(opt)) {
1095 1.179 christos bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1096 1.1 cgd dp += optlen;
1097 1.1 cgd }
1098 1.1 cgd }
1099 1.1 cgd for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1100 1.1 cgd *dp++ = IPOPT_EOL;
1101 1.1 cgd return (optlen);
1102 1.1 cgd }
1103 1.1 cgd
1104 1.1 cgd /*
1105 1.1 cgd * IP socket option processing.
1106 1.1 cgd */
1107 1.12 mycroft int
1108 1.197 plunky ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1109 1.1 cgd {
1110 1.71 augustss struct inpcb *inp = sotoinpcb(so);
1111 1.226 rmind struct ip *ip = &inp->inp_ip;
1112 1.226 rmind int inpflags = inp->inp_flags;
1113 1.226 rmind int optval = 0, error = 0;
1114 1.1 cgd
1115 1.197 plunky if (sopt->sopt_level != IPPROTO_IP) {
1116 1.197 plunky if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1117 1.184 dyoung return 0;
1118 1.184 dyoung return ENOPROTOOPT;
1119 1.184 dyoung }
1120 1.184 dyoung
1121 1.184 dyoung switch (op) {
1122 1.1 cgd case PRCO_SETOPT:
1123 1.197 plunky switch (sopt->sopt_name) {
1124 1.1 cgd case IP_OPTIONS:
1125 1.1 cgd #ifdef notyet
1126 1.1 cgd case IP_RETOPTS:
1127 1.1 cgd #endif
1128 1.226 rmind error = ip_pcbopts(inp, sopt);
1129 1.197 plunky break;
1130 1.1 cgd
1131 1.1 cgd case IP_TOS:
1132 1.1 cgd case IP_TTL:
1133 1.205 minskim case IP_MINTTL:
1134 1.223 christos case IP_PKTINFO:
1135 1.1 cgd case IP_RECVOPTS:
1136 1.1 cgd case IP_RECVRETOPTS:
1137 1.1 cgd case IP_RECVDSTADDR:
1138 1.37 thorpej case IP_RECVIF:
1139 1.223 christos case IP_RECVPKTINFO:
1140 1.204 minskim case IP_RECVTTL:
1141 1.197 plunky error = sockopt_getint(sopt, &optval);
1142 1.197 plunky if (error)
1143 1.197 plunky break;
1144 1.197 plunky
1145 1.197 plunky switch (sopt->sopt_name) {
1146 1.197 plunky case IP_TOS:
1147 1.226 rmind ip->ip_tos = optval;
1148 1.197 plunky break;
1149 1.197 plunky
1150 1.197 plunky case IP_TTL:
1151 1.226 rmind ip->ip_ttl = optval;
1152 1.197 plunky break;
1153 1.205 minskim
1154 1.205 minskim case IP_MINTTL:
1155 1.205 minskim if (optval > 0 && optval <= MAXTTL)
1156 1.205 minskim inp->inp_ip_minttl = optval;
1157 1.205 minskim else
1158 1.205 minskim error = EINVAL;
1159 1.205 minskim break;
1160 1.1 cgd #define OPTSET(bit) \
1161 1.1 cgd if (optval) \
1162 1.226 rmind inpflags |= bit; \
1163 1.1 cgd else \
1164 1.226 rmind inpflags &= ~bit;
1165 1.1 cgd
1166 1.223 christos case IP_PKTINFO:
1167 1.223 christos OPTSET(INP_PKTINFO);
1168 1.223 christos break;
1169 1.223 christos
1170 1.197 plunky case IP_RECVOPTS:
1171 1.197 plunky OPTSET(INP_RECVOPTS);
1172 1.197 plunky break;
1173 1.197 plunky
1174 1.223 christos case IP_RECVPKTINFO:
1175 1.223 christos OPTSET(INP_RECVPKTINFO);
1176 1.223 christos break;
1177 1.223 christos
1178 1.197 plunky case IP_RECVRETOPTS:
1179 1.197 plunky OPTSET(INP_RECVRETOPTS);
1180 1.197 plunky break;
1181 1.197 plunky
1182 1.197 plunky case IP_RECVDSTADDR:
1183 1.197 plunky OPTSET(INP_RECVDSTADDR);
1184 1.197 plunky break;
1185 1.197 plunky
1186 1.197 plunky case IP_RECVIF:
1187 1.197 plunky OPTSET(INP_RECVIF);
1188 1.197 plunky break;
1189 1.204 minskim
1190 1.204 minskim case IP_RECVTTL:
1191 1.204 minskim OPTSET(INP_RECVTTL);
1192 1.204 minskim break;
1193 1.1 cgd }
1194 1.197 plunky break;
1195 1.1 cgd #undef OPTSET
1196 1.18 mycroft
1197 1.18 mycroft case IP_MULTICAST_IF:
1198 1.18 mycroft case IP_MULTICAST_TTL:
1199 1.18 mycroft case IP_MULTICAST_LOOP:
1200 1.18 mycroft case IP_ADD_MEMBERSHIP:
1201 1.18 mycroft case IP_DROP_MEMBERSHIP:
1202 1.231 christos error = ip_setmoptions(&inp->inp_moptions, sopt);
1203 1.18 mycroft break;
1204 1.1 cgd
1205 1.41 lukem case IP_PORTRANGE:
1206 1.197 plunky error = sockopt_getint(sopt, &optval);
1207 1.197 plunky if (error)
1208 1.197 plunky break;
1209 1.197 plunky
1210 1.197 plunky switch (optval) {
1211 1.197 plunky case IP_PORTRANGE_DEFAULT:
1212 1.197 plunky case IP_PORTRANGE_HIGH:
1213 1.226 rmind inpflags &= ~(INP_LOWPORT);
1214 1.197 plunky break;
1215 1.41 lukem
1216 1.197 plunky case IP_PORTRANGE_LOW:
1217 1.226 rmind inpflags |= INP_LOWPORT;
1218 1.197 plunky break;
1219 1.41 lukem
1220 1.197 plunky default:
1221 1.197 plunky error = EINVAL;
1222 1.197 plunky break;
1223 1.41 lukem }
1224 1.41 lukem break;
1225 1.41 lukem
1226 1.216 christos case IP_PORTALGO:
1227 1.216 christos error = sockopt_getint(sopt, &optval);
1228 1.216 christos if (error)
1229 1.216 christos break;
1230 1.216 christos
1231 1.217 christos error = portalgo_algo_index_select(
1232 1.216 christos (struct inpcb_hdr *)inp, optval);
1233 1.216 christos break;
1234 1.216 christos
1235 1.220 christos #if defined(IPSEC)
1236 1.61 itojun case IP_IPSEC_POLICY:
1237 1.229 christos if (ipsec_enabled) {
1238 1.229 christos error = ipsec4_set_policy(inp, sopt->sopt_name,
1239 1.229 christos sopt->sopt_data, sopt->sopt_size,
1240 1.229 christos curlwp->l_cred);
1241 1.229 christos break;
1242 1.229 christos }
1243 1.229 christos /*FALLTHROUGH*/
1244 1.229 christos #endif /* IPSEC */
1245 1.61 itojun
1246 1.1 cgd default:
1247 1.18 mycroft error = ENOPROTOOPT;
1248 1.1 cgd break;
1249 1.1 cgd }
1250 1.1 cgd break;
1251 1.1 cgd
1252 1.1 cgd case PRCO_GETOPT:
1253 1.197 plunky switch (sopt->sopt_name) {
1254 1.1 cgd case IP_OPTIONS:
1255 1.226 rmind case IP_RETOPTS: {
1256 1.226 rmind struct mbuf *mopts = inp->inp_options;
1257 1.226 rmind
1258 1.226 rmind if (mopts) {
1259 1.197 plunky struct mbuf *m;
1260 1.197 plunky
1261 1.226 rmind m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1262 1.199 plunky if (m == NULL) {
1263 1.199 plunky error = ENOBUFS;
1264 1.199 plunky break;
1265 1.199 plunky }
1266 1.197 plunky error = sockopt_setmbuf(sopt, m);
1267 1.197 plunky }
1268 1.1 cgd break;
1269 1.226 rmind }
1270 1.223 christos case IP_PKTINFO:
1271 1.1 cgd case IP_TOS:
1272 1.1 cgd case IP_TTL:
1273 1.205 minskim case IP_MINTTL:
1274 1.1 cgd case IP_RECVOPTS:
1275 1.1 cgd case IP_RECVRETOPTS:
1276 1.1 cgd case IP_RECVDSTADDR:
1277 1.37 thorpej case IP_RECVIF:
1278 1.223 christos case IP_RECVPKTINFO:
1279 1.204 minskim case IP_RECVTTL:
1280 1.40 matt case IP_ERRORMTU:
1281 1.197 plunky switch (sopt->sopt_name) {
1282 1.1 cgd case IP_TOS:
1283 1.226 rmind optval = ip->ip_tos;
1284 1.1 cgd break;
1285 1.1 cgd
1286 1.1 cgd case IP_TTL:
1287 1.226 rmind optval = ip->ip_ttl;
1288 1.40 matt break;
1289 1.40 matt
1290 1.205 minskim case IP_MINTTL:
1291 1.205 minskim optval = inp->inp_ip_minttl;
1292 1.205 minskim break;
1293 1.205 minskim
1294 1.40 matt case IP_ERRORMTU:
1295 1.40 matt optval = inp->inp_errormtu;
1296 1.1 cgd break;
1297 1.1 cgd
1298 1.226 rmind #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1299 1.1 cgd
1300 1.223 christos case IP_PKTINFO:
1301 1.223 christos optval = OPTBIT(INP_PKTINFO);
1302 1.223 christos break;
1303 1.223 christos
1304 1.1 cgd case IP_RECVOPTS:
1305 1.1 cgd optval = OPTBIT(INP_RECVOPTS);
1306 1.1 cgd break;
1307 1.1 cgd
1308 1.223 christos case IP_RECVPKTINFO:
1309 1.223 christos optval = OPTBIT(INP_RECVPKTINFO);
1310 1.223 christos break;
1311 1.223 christos
1312 1.1 cgd case IP_RECVRETOPTS:
1313 1.1 cgd optval = OPTBIT(INP_RECVRETOPTS);
1314 1.1 cgd break;
1315 1.1 cgd
1316 1.1 cgd case IP_RECVDSTADDR:
1317 1.1 cgd optval = OPTBIT(INP_RECVDSTADDR);
1318 1.37 thorpej break;
1319 1.37 thorpej
1320 1.37 thorpej case IP_RECVIF:
1321 1.37 thorpej optval = OPTBIT(INP_RECVIF);
1322 1.1 cgd break;
1323 1.204 minskim
1324 1.204 minskim case IP_RECVTTL:
1325 1.204 minskim optval = OPTBIT(INP_RECVTTL);
1326 1.204 minskim break;
1327 1.1 cgd }
1328 1.197 plunky error = sockopt_setint(sopt, optval);
1329 1.1 cgd break;
1330 1.61 itojun
1331 1.220 christos #if 0 /* defined(IPSEC) */
1332 1.61 itojun case IP_IPSEC_POLICY:
1333 1.66 itojun {
1334 1.197 plunky struct mbuf *m = NULL;
1335 1.66 itojun
1336 1.197 plunky /* XXX this will return EINVAL as sopt is empty */
1337 1.197 plunky error = ipsec4_get_policy(inp, sopt->sopt_data,
1338 1.197 plunky sopt->sopt_size, &m);
1339 1.197 plunky if (error == 0)
1340 1.197 plunky error = sockopt_setmbuf(sopt, m);
1341 1.61 itojun break;
1342 1.66 itojun }
1343 1.61 itojun #endif /*IPSEC*/
1344 1.18 mycroft
1345 1.18 mycroft case IP_MULTICAST_IF:
1346 1.18 mycroft case IP_MULTICAST_TTL:
1347 1.18 mycroft case IP_MULTICAST_LOOP:
1348 1.18 mycroft case IP_ADD_MEMBERSHIP:
1349 1.18 mycroft case IP_DROP_MEMBERSHIP:
1350 1.231 christos error = ip_getmoptions(inp->inp_moptions, sopt);
1351 1.41 lukem break;
1352 1.41 lukem
1353 1.41 lukem case IP_PORTRANGE:
1354 1.226 rmind if (inpflags & INP_LOWPORT)
1355 1.41 lukem optval = IP_PORTRANGE_LOW;
1356 1.41 lukem else
1357 1.41 lukem optval = IP_PORTRANGE_DEFAULT;
1358 1.197 plunky error = sockopt_setint(sopt, optval);
1359 1.18 mycroft break;
1360 1.1 cgd
1361 1.216 christos case IP_PORTALGO:
1362 1.226 rmind optval = inp->inp_portalgo;
1363 1.216 christos error = sockopt_setint(sopt, optval);
1364 1.216 christos break;
1365 1.216 christos
1366 1.1 cgd default:
1367 1.18 mycroft error = ENOPROTOOPT;
1368 1.1 cgd break;
1369 1.1 cgd }
1370 1.1 cgd break;
1371 1.1 cgd }
1372 1.226 rmind
1373 1.226 rmind if (!error) {
1374 1.226 rmind inp->inp_flags = inpflags;
1375 1.226 rmind }
1376 1.226 rmind return error;
1377 1.1 cgd }
1378 1.1 cgd
1379 1.1 cgd /*
1380 1.1 cgd * Set up IP options in pcb for insertion in output packets.
1381 1.1 cgd * Store in mbuf with pointer in pcbopt, adding pseudo-option
1382 1.1 cgd * with destination address if source routed.
1383 1.1 cgd */
1384 1.226 rmind static int
1385 1.226 rmind ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1386 1.1 cgd {
1387 1.200 plunky struct mbuf *m;
1388 1.200 plunky const u_char *cp;
1389 1.200 plunky u_char *dp;
1390 1.200 plunky int cnt;
1391 1.200 plunky
1392 1.226 rmind /* Turn off any old options. */
1393 1.226 rmind if (inp->inp_options) {
1394 1.226 rmind m_free(inp->inp_options);
1395 1.226 rmind }
1396 1.226 rmind inp->inp_options = NULL;
1397 1.226 rmind if ((cnt = sopt->sopt_size) == 0) {
1398 1.226 rmind /* Only turning off any previous options. */
1399 1.226 rmind return 0;
1400 1.226 rmind }
1401 1.200 plunky cp = sopt->sopt_data;
1402 1.1 cgd
1403 1.85 ragge #ifndef __vax__
1404 1.200 plunky if (cnt % sizeof(int32_t))
1405 1.200 plunky return (EINVAL);
1406 1.1 cgd #endif
1407 1.200 plunky
1408 1.200 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
1409 1.200 plunky if (m == NULL)
1410 1.200 plunky return (ENOBUFS);
1411 1.200 plunky
1412 1.200 plunky dp = mtod(m, u_char *);
1413 1.200 plunky memset(dp, 0, sizeof(struct in_addr));
1414 1.200 plunky dp += sizeof(struct in_addr);
1415 1.200 plunky m->m_len = sizeof(struct in_addr);
1416 1.200 plunky
1417 1.1 cgd /*
1418 1.200 plunky * IP option list according to RFC791. Each option is of the form
1419 1.200 plunky *
1420 1.200 plunky * [optval] [olen] [(olen - 2) data bytes]
1421 1.200 plunky *
1422 1.226 rmind * We validate the list and copy options to an mbuf for prepending
1423 1.200 plunky * to data packets. The IP first-hop destination address will be
1424 1.200 plunky * stored before actual options and is zero if unset.
1425 1.1 cgd */
1426 1.200 plunky while (cnt > 0) {
1427 1.226 rmind uint8_t optval, olen, offset;
1428 1.226 rmind
1429 1.200 plunky optval = cp[IPOPT_OPTVAL];
1430 1.1 cgd
1431 1.200 plunky if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1432 1.200 plunky olen = 1;
1433 1.200 plunky } else {
1434 1.200 plunky if (cnt < IPOPT_OLEN + 1)
1435 1.74 itojun goto bad;
1436 1.200 plunky
1437 1.200 plunky olen = cp[IPOPT_OLEN];
1438 1.200 plunky if (olen < IPOPT_OLEN + 1 || olen > cnt)
1439 1.1 cgd goto bad;
1440 1.1 cgd }
1441 1.1 cgd
1442 1.200 plunky if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1443 1.1 cgd /*
1444 1.1 cgd * user process specifies route as:
1445 1.1 cgd * ->A->B->C->D
1446 1.1 cgd * D must be our final destination (but we can't
1447 1.1 cgd * check that since we may not have connected yet).
1448 1.1 cgd * A is first hop destination, which doesn't appear in
1449 1.1 cgd * actual IP option, but is stored before the options.
1450 1.1 cgd */
1451 1.200 plunky if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1452 1.1 cgd goto bad;
1453 1.200 plunky
1454 1.200 plunky offset = cp[IPOPT_OFFSET];
1455 1.200 plunky memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1456 1.200 plunky sizeof(struct in_addr));
1457 1.200 plunky
1458 1.200 plunky cp += sizeof(struct in_addr);
1459 1.1 cgd cnt -= sizeof(struct in_addr);
1460 1.200 plunky olen -= sizeof(struct in_addr);
1461 1.200 plunky
1462 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1463 1.200 plunky goto bad;
1464 1.200 plunky
1465 1.200 plunky memcpy(dp, cp, olen);
1466 1.200 plunky dp[IPOPT_OPTVAL] = optval;
1467 1.200 plunky dp[IPOPT_OLEN] = olen;
1468 1.200 plunky dp[IPOPT_OFFSET] = offset;
1469 1.200 plunky break;
1470 1.200 plunky } else {
1471 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1472 1.200 plunky goto bad;
1473 1.200 plunky
1474 1.200 plunky memcpy(dp, cp, olen);
1475 1.1 cgd break;
1476 1.1 cgd }
1477 1.200 plunky
1478 1.200 plunky dp += olen;
1479 1.200 plunky m->m_len += olen;
1480 1.200 plunky
1481 1.200 plunky if (optval == IPOPT_EOL)
1482 1.200 plunky break;
1483 1.200 plunky
1484 1.200 plunky cp += olen;
1485 1.200 plunky cnt -= olen;
1486 1.1 cgd }
1487 1.200 plunky
1488 1.226 rmind inp->inp_options = m;
1489 1.226 rmind return 0;
1490 1.1 cgd bad:
1491 1.1 cgd (void)m_free(m);
1492 1.226 rmind return EINVAL;
1493 1.1 cgd }
1494 1.5 hpeyerl
1495 1.5 hpeyerl /*
1496 1.81 itojun * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1497 1.81 itojun */
1498 1.81 itojun static struct ifnet *
1499 1.140 perry ip_multicast_if(struct in_addr *a, int *ifindexp)
1500 1.81 itojun {
1501 1.81 itojun int ifindex;
1502 1.111 itojun struct ifnet *ifp = NULL;
1503 1.110 itojun struct in_ifaddr *ia;
1504 1.81 itojun
1505 1.81 itojun if (ifindexp)
1506 1.81 itojun *ifindexp = 0;
1507 1.81 itojun if (ntohl(a->s_addr) >> 24 == 0) {
1508 1.81 itojun ifindex = ntohl(a->s_addr) & 0xffffff;
1509 1.225 rmind ifp = if_byindex(ifindex);
1510 1.129 itojun if (!ifp)
1511 1.129 itojun return NULL;
1512 1.81 itojun if (ifindexp)
1513 1.81 itojun *ifindexp = ifindex;
1514 1.81 itojun } else {
1515 1.110 itojun LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1516 1.110 itojun if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1517 1.111 itojun (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1518 1.111 itojun ifp = ia->ia_ifp;
1519 1.110 itojun break;
1520 1.111 itojun }
1521 1.110 itojun }
1522 1.81 itojun }
1523 1.81 itojun return ifp;
1524 1.81 itojun }
1525 1.81 itojun
1526 1.156 christos static int
1527 1.198 plunky ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1528 1.156 christos {
1529 1.156 christos u_int tval;
1530 1.197 plunky u_char cval;
1531 1.197 plunky int error;
1532 1.156 christos
1533 1.197 plunky if (sopt == NULL)
1534 1.156 christos return EINVAL;
1535 1.156 christos
1536 1.197 plunky switch (sopt->sopt_size) {
1537 1.156 christos case sizeof(u_char):
1538 1.197 plunky error = sockopt_get(sopt, &cval, sizeof(u_char));
1539 1.197 plunky tval = cval;
1540 1.156 christos break;
1541 1.197 plunky
1542 1.156 christos case sizeof(u_int):
1543 1.197 plunky error = sockopt_get(sopt, &tval, sizeof(u_int));
1544 1.156 christos break;
1545 1.197 plunky
1546 1.156 christos default:
1547 1.197 plunky error = EINVAL;
1548 1.156 christos }
1549 1.156 christos
1550 1.197 plunky if (error)
1551 1.197 plunky return error;
1552 1.197 plunky
1553 1.156 christos if (tval > maxval)
1554 1.156 christos return EINVAL;
1555 1.156 christos
1556 1.156 christos *val = tval;
1557 1.156 christos return 0;
1558 1.156 christos }
1559 1.156 christos
1560 1.232 christos static int
1561 1.232 christos ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1562 1.232 christos struct in_addr *ia, bool add)
1563 1.232 christos {
1564 1.232 christos int error;
1565 1.232 christos struct ip_mreq mreq;
1566 1.232 christos
1567 1.232 christos error = sockopt_get(sopt, &mreq, sizeof(mreq));
1568 1.232 christos if (error)
1569 1.232 christos return error;
1570 1.232 christos
1571 1.232 christos if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1572 1.232 christos return EINVAL;
1573 1.232 christos
1574 1.232 christos memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1575 1.232 christos
1576 1.232 christos if (in_nullhost(mreq.imr_interface)) {
1577 1.232 christos union {
1578 1.232 christos struct sockaddr dst;
1579 1.232 christos struct sockaddr_in dst4;
1580 1.232 christos } u;
1581 1.232 christos struct route ro;
1582 1.232 christos
1583 1.232 christos if (!add) {
1584 1.232 christos *ifp = NULL;
1585 1.232 christos return 0;
1586 1.232 christos }
1587 1.232 christos /*
1588 1.232 christos * If no interface address was provided, use the interface of
1589 1.232 christos * the route to the given multicast address.
1590 1.232 christos */
1591 1.232 christos struct rtentry *rt;
1592 1.232 christos memset(&ro, 0, sizeof(ro));
1593 1.232 christos
1594 1.232 christos sockaddr_in_init(&u.dst4, ia, 0);
1595 1.238 ozaki error = rtcache_setdst(&ro, &u.dst);
1596 1.238 ozaki if (error != 0)
1597 1.238 ozaki return error;
1598 1.232 christos *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1599 1.232 christos rtcache_free(&ro);
1600 1.232 christos } else {
1601 1.232 christos *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1602 1.232 christos if (!add && *ifp == NULL)
1603 1.232 christos return EADDRNOTAVAIL;
1604 1.232 christos }
1605 1.232 christos return 0;
1606 1.232 christos }
1607 1.232 christos
1608 1.232 christos /*
1609 1.232 christos * Add a multicast group membership.
1610 1.232 christos * Group must be a valid IP multicast address.
1611 1.232 christos */
1612 1.232 christos static int
1613 1.232 christos ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1614 1.232 christos {
1615 1.232 christos struct ifnet *ifp;
1616 1.232 christos struct in_addr ia;
1617 1.232 christos int i, error;
1618 1.232 christos
1619 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1620 1.232 christos error = ip_get_membership(sopt, &ifp, &ia, true);
1621 1.232 christos else
1622 1.232 christos #ifdef INET6
1623 1.232 christos error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1624 1.232 christos #else
1625 1.232 christos return EINVAL;
1626 1.232 christos #endif
1627 1.232 christos
1628 1.232 christos if (error)
1629 1.232 christos return error;
1630 1.232 christos
1631 1.232 christos /*
1632 1.232 christos * See if we found an interface, and confirm that it
1633 1.232 christos * supports multicast.
1634 1.232 christos */
1635 1.232 christos if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1636 1.232 christos return EADDRNOTAVAIL;
1637 1.232 christos
1638 1.232 christos /*
1639 1.232 christos * See if the membership already exists or if all the
1640 1.232 christos * membership slots are full.
1641 1.232 christos */
1642 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1643 1.232 christos if (imo->imo_membership[i]->inm_ifp == ifp &&
1644 1.232 christos in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1645 1.232 christos break;
1646 1.232 christos }
1647 1.232 christos if (i < imo->imo_num_memberships)
1648 1.232 christos return EADDRINUSE;
1649 1.232 christos
1650 1.232 christos if (i == IP_MAX_MEMBERSHIPS)
1651 1.232 christos return ETOOMANYREFS;
1652 1.232 christos
1653 1.232 christos /*
1654 1.232 christos * Everything looks good; add a new record to the multicast
1655 1.232 christos * address list for the given interface.
1656 1.232 christos */
1657 1.232 christos if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1658 1.232 christos return ENOBUFS;
1659 1.232 christos
1660 1.232 christos ++imo->imo_num_memberships;
1661 1.232 christos return 0;
1662 1.232 christos }
1663 1.232 christos
1664 1.232 christos /*
1665 1.232 christos * Drop a multicast group membership.
1666 1.232 christos * Group must be a valid IP multicast address.
1667 1.232 christos */
1668 1.232 christos static int
1669 1.232 christos ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1670 1.232 christos {
1671 1.232 christos struct in_addr ia;
1672 1.232 christos struct ifnet *ifp;
1673 1.232 christos int i, error;
1674 1.232 christos
1675 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1676 1.232 christos error = ip_get_membership(sopt, &ifp, &ia, false);
1677 1.232 christos else
1678 1.232 christos #ifdef INET6
1679 1.232 christos error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1680 1.232 christos #else
1681 1.232 christos return EINVAL;
1682 1.232 christos #endif
1683 1.232 christos
1684 1.232 christos if (error)
1685 1.232 christos return error;
1686 1.232 christos
1687 1.232 christos /*
1688 1.232 christos * Find the membership in the membership array.
1689 1.232 christos */
1690 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1691 1.232 christos if ((ifp == NULL ||
1692 1.232 christos imo->imo_membership[i]->inm_ifp == ifp) &&
1693 1.237 ozaki in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1694 1.232 christos break;
1695 1.232 christos }
1696 1.232 christos if (i == imo->imo_num_memberships)
1697 1.232 christos return EADDRNOTAVAIL;
1698 1.232 christos
1699 1.232 christos /*
1700 1.232 christos * Give up the multicast address record to which the
1701 1.232 christos * membership points.
1702 1.232 christos */
1703 1.232 christos in_delmulti(imo->imo_membership[i]);
1704 1.232 christos
1705 1.232 christos /*
1706 1.232 christos * Remove the gap in the membership array.
1707 1.232 christos */
1708 1.232 christos for (++i; i < imo->imo_num_memberships; ++i)
1709 1.232 christos imo->imo_membership[i-1] = imo->imo_membership[i];
1710 1.232 christos --imo->imo_num_memberships;
1711 1.232 christos return 0;
1712 1.232 christos }
1713 1.232 christos
1714 1.81 itojun /*
1715 1.5 hpeyerl * Set the IP multicast options in response to user setsockopt().
1716 1.5 hpeyerl */
1717 1.231 christos int
1718 1.231 christos ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1719 1.5 hpeyerl {
1720 1.231 christos struct ip_moptions *imo = *pimo;
1721 1.5 hpeyerl struct in_addr addr;
1722 1.71 augustss struct ifnet *ifp;
1723 1.232 christos int ifindex, error = 0;
1724 1.5 hpeyerl
1725 1.226 rmind if (!imo) {
1726 1.5 hpeyerl /*
1727 1.5 hpeyerl * No multicast option buffer attached to the pcb;
1728 1.5 hpeyerl * allocate one and initialize to default values.
1729 1.5 hpeyerl */
1730 1.215 rmind imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1731 1.5 hpeyerl if (imo == NULL)
1732 1.215 rmind return ENOBUFS;
1733 1.199 plunky
1734 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1735 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1736 1.5 hpeyerl imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1737 1.5 hpeyerl imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1738 1.5 hpeyerl imo->imo_num_memberships = 0;
1739 1.231 christos *pimo = imo;
1740 1.5 hpeyerl }
1741 1.5 hpeyerl
1742 1.197 plunky switch (sopt->sopt_name) {
1743 1.5 hpeyerl case IP_MULTICAST_IF:
1744 1.5 hpeyerl /*
1745 1.5 hpeyerl * Select the interface for outgoing multicast packets.
1746 1.5 hpeyerl */
1747 1.197 plunky error = sockopt_get(sopt, &addr, sizeof(addr));
1748 1.197 plunky if (error)
1749 1.5 hpeyerl break;
1750 1.197 plunky
1751 1.5 hpeyerl /*
1752 1.5 hpeyerl * INADDR_ANY is used to remove a previous selection.
1753 1.11 mycroft * When no interface is selected, a default one is
1754 1.5 hpeyerl * chosen every time a multicast packet is sent.
1755 1.5 hpeyerl */
1756 1.31 mycroft if (in_nullhost(addr)) {
1757 1.5 hpeyerl imo->imo_multicast_ifp = NULL;
1758 1.5 hpeyerl break;
1759 1.5 hpeyerl }
1760 1.5 hpeyerl /*
1761 1.5 hpeyerl * The selected interface is identified by its local
1762 1.5 hpeyerl * IP address. Find the interface and confirm that
1763 1.11 mycroft * it supports multicasting.
1764 1.5 hpeyerl */
1765 1.81 itojun ifp = ip_multicast_if(&addr, &ifindex);
1766 1.5 hpeyerl if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1767 1.5 hpeyerl error = EADDRNOTAVAIL;
1768 1.5 hpeyerl break;
1769 1.5 hpeyerl }
1770 1.5 hpeyerl imo->imo_multicast_ifp = ifp;
1771 1.81 itojun if (ifindex)
1772 1.81 itojun imo->imo_multicast_addr = addr;
1773 1.81 itojun else
1774 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1775 1.5 hpeyerl break;
1776 1.5 hpeyerl
1777 1.5 hpeyerl case IP_MULTICAST_TTL:
1778 1.5 hpeyerl /*
1779 1.5 hpeyerl * Set the IP time-to-live for outgoing multicast packets.
1780 1.5 hpeyerl */
1781 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1782 1.5 hpeyerl break;
1783 1.11 mycroft
1784 1.5 hpeyerl case IP_MULTICAST_LOOP:
1785 1.5 hpeyerl /*
1786 1.5 hpeyerl * Set the loopback flag for outgoing multicast packets.
1787 1.5 hpeyerl * Must be zero or one.
1788 1.5 hpeyerl */
1789 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1790 1.5 hpeyerl break;
1791 1.5 hpeyerl
1792 1.232 christos case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1793 1.232 christos error = ip_add_membership(imo, sopt);
1794 1.5 hpeyerl break;
1795 1.5 hpeyerl
1796 1.232 christos case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1797 1.232 christos error = ip_drop_membership(imo, sopt);
1798 1.5 hpeyerl break;
1799 1.5 hpeyerl
1800 1.5 hpeyerl default:
1801 1.5 hpeyerl error = EOPNOTSUPP;
1802 1.5 hpeyerl break;
1803 1.5 hpeyerl }
1804 1.5 hpeyerl
1805 1.5 hpeyerl /*
1806 1.5 hpeyerl * If all options have default values, no need to keep the mbuf.
1807 1.5 hpeyerl */
1808 1.5 hpeyerl if (imo->imo_multicast_ifp == NULL &&
1809 1.5 hpeyerl imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1810 1.5 hpeyerl imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1811 1.5 hpeyerl imo->imo_num_memberships == 0) {
1812 1.215 rmind kmem_free(imo, sizeof(*imo));
1813 1.231 christos *pimo = NULL;
1814 1.5 hpeyerl }
1815 1.5 hpeyerl
1816 1.215 rmind return error;
1817 1.5 hpeyerl }
1818 1.5 hpeyerl
1819 1.5 hpeyerl /*
1820 1.5 hpeyerl * Return the IP multicast options in response to user getsockopt().
1821 1.5 hpeyerl */
1822 1.231 christos int
1823 1.231 christos ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1824 1.5 hpeyerl {
1825 1.197 plunky struct in_addr addr;
1826 1.5 hpeyerl struct in_ifaddr *ia;
1827 1.197 plunky uint8_t optval;
1828 1.226 rmind int error = 0;
1829 1.5 hpeyerl
1830 1.197 plunky switch (sopt->sopt_name) {
1831 1.5 hpeyerl case IP_MULTICAST_IF:
1832 1.5 hpeyerl if (imo == NULL || imo->imo_multicast_ifp == NULL)
1833 1.197 plunky addr = zeroin_addr;
1834 1.81 itojun else if (imo->imo_multicast_addr.s_addr) {
1835 1.81 itojun /* return the value user has set */
1836 1.197 plunky addr = imo->imo_multicast_addr;
1837 1.81 itojun } else {
1838 1.5 hpeyerl IFP_TO_IA(imo->imo_multicast_ifp, ia);
1839 1.197 plunky addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1840 1.5 hpeyerl }
1841 1.197 plunky error = sockopt_set(sopt, &addr, sizeof(addr));
1842 1.197 plunky break;
1843 1.5 hpeyerl
1844 1.5 hpeyerl case IP_MULTICAST_TTL:
1845 1.197 plunky optval = imo ? imo->imo_multicast_ttl
1846 1.237 ozaki : IP_DEFAULT_MULTICAST_TTL;
1847 1.197 plunky
1848 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1849 1.197 plunky break;
1850 1.5 hpeyerl
1851 1.5 hpeyerl case IP_MULTICAST_LOOP:
1852 1.197 plunky optval = imo ? imo->imo_multicast_loop
1853 1.237 ozaki : IP_DEFAULT_MULTICAST_LOOP;
1854 1.197 plunky
1855 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1856 1.197 plunky break;
1857 1.5 hpeyerl
1858 1.5 hpeyerl default:
1859 1.197 plunky error = EOPNOTSUPP;
1860 1.5 hpeyerl }
1861 1.197 plunky
1862 1.226 rmind return error;
1863 1.5 hpeyerl }
1864 1.5 hpeyerl
1865 1.5 hpeyerl /*
1866 1.5 hpeyerl * Discard the IP multicast options.
1867 1.5 hpeyerl */
1868 1.5 hpeyerl void
1869 1.140 perry ip_freemoptions(struct ip_moptions *imo)
1870 1.5 hpeyerl {
1871 1.71 augustss int i;
1872 1.5 hpeyerl
1873 1.5 hpeyerl if (imo != NULL) {
1874 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i)
1875 1.5 hpeyerl in_delmulti(imo->imo_membership[i]);
1876 1.215 rmind kmem_free(imo, sizeof(*imo));
1877 1.5 hpeyerl }
1878 1.5 hpeyerl }
1879 1.5 hpeyerl
1880 1.5 hpeyerl /*
1881 1.5 hpeyerl * Routine called from ip_output() to loop back a copy of an IP multicast
1882 1.5 hpeyerl * packet to the input queue of a specified interface. Note that this
1883 1.5 hpeyerl * calls the output routine of the loopback "driver", but with an interface
1884 1.137 peter * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1885 1.5 hpeyerl */
1886 1.12 mycroft static void
1887 1.180 dyoung ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1888 1.5 hpeyerl {
1889 1.71 augustss struct ip *ip;
1890 1.5 hpeyerl struct mbuf *copym;
1891 1.5 hpeyerl
1892 1.183 dyoung copym = m_copypacket(m, M_DONTWAIT);
1893 1.237 ozaki if (copym != NULL &&
1894 1.237 ozaki (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1895 1.65 itojun copym = m_pullup(copym, sizeof(struct ip));
1896 1.180 dyoung if (copym == NULL)
1897 1.180 dyoung return;
1898 1.180 dyoung /*
1899 1.180 dyoung * We don't bother to fragment if the IP length is greater
1900 1.180 dyoung * than the interface's MTU. Can this possibly matter?
1901 1.180 dyoung */
1902 1.180 dyoung ip = mtod(copym, struct ip *);
1903 1.93 itojun
1904 1.180 dyoung if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1905 1.180 dyoung in_delayed_cksum(copym);
1906 1.180 dyoung copym->m_pkthdr.csum_flags &=
1907 1.180 dyoung ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1908 1.180 dyoung }
1909 1.93 itojun
1910 1.180 dyoung ip->ip_sum = 0;
1911 1.180 dyoung ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1912 1.236 ozaki #ifndef NET_MPSAFE
1913 1.233 ozaki KERNEL_LOCK(1, NULL);
1914 1.236 ozaki #endif
1915 1.180 dyoung (void)looutput(ifp, copym, sintocsa(dst), NULL);
1916 1.236 ozaki #ifndef NET_MPSAFE
1917 1.233 ozaki KERNEL_UNLOCK_ONE(NULL);
1918 1.236 ozaki #endif
1919 1.5 hpeyerl }
1920