ip_output.c revision 1.264 1 1.264 ozaki /* $NetBSD: ip_output.c,v 1.264 2016/12/08 05:16:33 ozaki-r Exp $ */
2 1.61 itojun
3 1.61 itojun /*
4 1.61 itojun * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 1.61 itojun * All rights reserved.
6 1.97 itojun *
7 1.61 itojun * Redistribution and use in source and binary forms, with or without
8 1.61 itojun * modification, are permitted provided that the following conditions
9 1.61 itojun * are met:
10 1.61 itojun * 1. Redistributions of source code must retain the above copyright
11 1.61 itojun * notice, this list of conditions and the following disclaimer.
12 1.61 itojun * 2. Redistributions in binary form must reproduce the above copyright
13 1.61 itojun * notice, this list of conditions and the following disclaimer in the
14 1.61 itojun * documentation and/or other materials provided with the distribution.
15 1.61 itojun * 3. Neither the name of the project nor the names of its contributors
16 1.61 itojun * may be used to endorse or promote products derived from this software
17 1.61 itojun * without specific prior written permission.
18 1.97 itojun *
19 1.61 itojun * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 1.61 itojun * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.61 itojun * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.61 itojun * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 1.61 itojun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.61 itojun * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.61 itojun * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.61 itojun * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.61 itojun * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.61 itojun * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.61 itojun * SUCH DAMAGE.
30 1.61 itojun */
31 1.54 thorpej
32 1.54 thorpej /*-
33 1.54 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 1.54 thorpej * All rights reserved.
35 1.54 thorpej *
36 1.54 thorpej * This code is derived from software contributed to The NetBSD Foundation
37 1.54 thorpej * by Public Access Networks Corporation ("Panix"). It was developed under
38 1.54 thorpej * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 1.54 thorpej *
40 1.54 thorpej * Redistribution and use in source and binary forms, with or without
41 1.54 thorpej * modification, are permitted provided that the following conditions
42 1.54 thorpej * are met:
43 1.54 thorpej * 1. Redistributions of source code must retain the above copyright
44 1.54 thorpej * notice, this list of conditions and the following disclaimer.
45 1.54 thorpej * 2. Redistributions in binary form must reproduce the above copyright
46 1.54 thorpej * notice, this list of conditions and the following disclaimer in the
47 1.54 thorpej * documentation and/or other materials provided with the distribution.
48 1.54 thorpej *
49 1.54 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 1.54 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 1.54 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 1.54 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 1.54 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 1.54 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 1.54 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 1.54 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 1.54 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 1.54 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 1.54 thorpej * POSSIBILITY OF SUCH DAMAGE.
60 1.54 thorpej */
61 1.19 cgd
62 1.1 cgd /*
63 1.18 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 1.18 mycroft * The Regents of the University of California. All rights reserved.
65 1.1 cgd *
66 1.1 cgd * Redistribution and use in source and binary forms, with or without
67 1.1 cgd * modification, are permitted provided that the following conditions
68 1.1 cgd * are met:
69 1.1 cgd * 1. Redistributions of source code must retain the above copyright
70 1.1 cgd * notice, this list of conditions and the following disclaimer.
71 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
72 1.1 cgd * notice, this list of conditions and the following disclaimer in the
73 1.1 cgd * documentation and/or other materials provided with the distribution.
74 1.108 agc * 3. Neither the name of the University nor the names of its contributors
75 1.1 cgd * may be used to endorse or promote products derived from this software
76 1.1 cgd * without specific prior written permission.
77 1.1 cgd *
78 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 1.1 cgd * SUCH DAMAGE.
89 1.1 cgd *
90 1.19 cgd * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 1.1 cgd */
92 1.89 lukem
93 1.89 lukem #include <sys/cdefs.h>
94 1.264 ozaki __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.264 2016/12/08 05:16:33 ozaki-r Exp $");
95 1.42 scottr
96 1.246 pooka #ifdef _KERNEL_OPT
97 1.128 jonathan #include "opt_inet.h"
98 1.62 thorpej #include "opt_ipsec.h"
99 1.42 scottr #include "opt_mrouting.h"
100 1.236 ozaki #include "opt_net_mpsafe.h"
101 1.239 ozaki #include "opt_mpls.h"
102 1.246 pooka #endif
103 1.1 cgd
104 1.262 christos #include "arp.h"
105 1.262 christos
106 1.8 mycroft #include <sys/param.h>
107 1.215 rmind #include <sys/kmem.h>
108 1.8 mycroft #include <sys/mbuf.h>
109 1.8 mycroft #include <sys/protosw.h>
110 1.8 mycroft #include <sys/socket.h>
111 1.8 mycroft #include <sys/socketvar.h>
112 1.162 christos #include <sys/kauth.h>
113 1.220 christos #ifdef IPSEC
114 1.118 itojun #include <sys/domain.h>
115 1.118 itojun #endif
116 1.28 christos #include <sys/systm.h>
117 1.260 ozaki #include <sys/syslog.h>
118 1.61 itojun
119 1.8 mycroft #include <net/if.h>
120 1.239 ozaki #include <net/if_types.h>
121 1.8 mycroft #include <net/route.h>
122 1.38 mrg #include <net/pfil.h>
123 1.1 cgd
124 1.8 mycroft #include <netinet/in.h>
125 1.8 mycroft #include <netinet/in_systm.h>
126 1.8 mycroft #include <netinet/ip.h>
127 1.8 mycroft #include <netinet/in_pcb.h>
128 1.8 mycroft #include <netinet/in_var.h>
129 1.8 mycroft #include <netinet/ip_var.h>
130 1.194 thorpej #include <netinet/ip_private.h>
131 1.152 yamt #include <netinet/in_offload.h>
132 1.217 christos #include <netinet/portalgo.h>
133 1.219 christos #include <netinet/udp.h>
134 1.72 jdolecek
135 1.232 christos #ifdef INET6
136 1.232 christos #include <netinet6/ip6_var.h>
137 1.232 christos #endif
138 1.232 christos
139 1.72 jdolecek #ifdef MROUTING
140 1.72 jdolecek #include <netinet/ip_mroute.h>
141 1.72 jdolecek #endif
142 1.32 mrg
143 1.235 ozaki #ifdef IPSEC
144 1.109 jonathan #include <netipsec/ipsec.h>
145 1.109 jonathan #include <netipsec/key.h>
146 1.235 ozaki #endif
147 1.160 christos
148 1.239 ozaki #ifdef MPLS
149 1.239 ozaki #include <netmpls/mpls.h>
150 1.239 ozaki #include <netmpls/mpls_var.h>
151 1.239 ozaki #endif
152 1.239 ozaki
153 1.226 rmind static int ip_pcbopts(struct inpcb *, const struct sockopt *);
154 1.139 perry static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 1.139 perry static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 1.180 dyoung static void ip_mloopback(struct ifnet *, struct mbuf *,
157 1.180 dyoung const struct sockaddr_in *);
158 1.261 roy static int ip_ifaddrvalid(const struct in_ifaddr *);
159 1.1 cgd
160 1.224 rmind extern pfil_head_t *inet_pfil_hook; /* XXX */
161 1.78 thorpej
162 1.151 yamt int ip_do_loopback_cksum = 0;
163 1.151 yamt
164 1.250 ozaki static int
165 1.253 ozaki ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
166 1.253 ozaki const struct rtentry *rt)
167 1.250 ozaki {
168 1.250 ozaki int error = 0;
169 1.250 ozaki #ifdef MPLS
170 1.250 ozaki union mpls_shim msh;
171 1.250 ozaki
172 1.250 ozaki if (rt == NULL || rt_gettag(rt) == NULL ||
173 1.250 ozaki rt_gettag(rt)->sa_family != AF_MPLS ||
174 1.250 ozaki (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
175 1.250 ozaki ifp->if_type != IFT_ETHER)
176 1.250 ozaki return 0;
177 1.250 ozaki
178 1.250 ozaki msh.s_addr = MPLS_GETSADDR(rt);
179 1.250 ozaki if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
180 1.250 ozaki struct m_tag *mtag;
181 1.250 ozaki /*
182 1.250 ozaki * XXX tentative solution to tell ether_output
183 1.250 ozaki * it's MPLS. Need some more efficient solution.
184 1.250 ozaki */
185 1.250 ozaki mtag = m_tag_get(PACKET_TAG_MPLS,
186 1.250 ozaki sizeof(int) /* dummy */,
187 1.250 ozaki M_NOWAIT);
188 1.250 ozaki if (mtag == NULL)
189 1.250 ozaki return ENOMEM;
190 1.250 ozaki m_tag_prepend(m, mtag);
191 1.250 ozaki }
192 1.250 ozaki #endif
193 1.250 ozaki return error;
194 1.250 ozaki }
195 1.250 ozaki
196 1.239 ozaki /*
197 1.239 ozaki * Send an IP packet to a host.
198 1.239 ozaki */
199 1.239 ozaki int
200 1.252 ozaki ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
201 1.253 ozaki const struct sockaddr * const dst, const struct rtentry *rt)
202 1.239 ozaki {
203 1.239 ozaki int error = 0;
204 1.244 ozaki
205 1.252 ozaki if (rt != NULL) {
206 1.252 ozaki error = rt_check_reject_route(rt, ifp);
207 1.252 ozaki if (error != 0) {
208 1.252 ozaki m_freem(m);
209 1.252 ozaki return error;
210 1.239 ozaki }
211 1.239 ozaki }
212 1.252 ozaki
213 1.252 ozaki error = ip_mark_mpls(ifp, m, rt);
214 1.252 ozaki if (error != 0) {
215 1.252 ozaki m_freem(m);
216 1.252 ozaki return error;
217 1.239 ozaki }
218 1.239 ozaki
219 1.257 knakahar error = if_output_lock(ifp, ifp, m, dst, rt);
220 1.239 ozaki
221 1.239 ozaki return error;
222 1.239 ozaki }
223 1.239 ozaki
224 1.1 cgd /*
225 1.1 cgd * IP output. The packet in mbuf chain m contains a skeletal IP
226 1.1 cgd * header (with len, off, ttl, proto, tos, src, dst).
227 1.1 cgd * The mbuf chain containing the packet will be freed.
228 1.1 cgd * The mbuf opt, if present, will not be freed.
229 1.1 cgd */
230 1.12 mycroft int
231 1.248 riastrad ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
232 1.248 riastrad struct ip_moptions *imo, struct socket *so)
233 1.1 cgd {
234 1.186 dyoung struct rtentry *rt;
235 1.110 itojun struct ip *ip;
236 1.258 ozaki struct ifnet *ifp, *mifp = NULL;
237 1.71 augustss struct mbuf *m = m0;
238 1.71 augustss int hlen = sizeof (struct ip);
239 1.110 itojun int len, error = 0;
240 1.1 cgd struct route iproute;
241 1.180 dyoung const struct sockaddr_in *dst;
242 1.260 ozaki struct in_ifaddr *ia = NULL;
243 1.234 roy int isbroadcast;
244 1.248 riastrad int sw_csum;
245 1.96 itojun u_long mtu;
246 1.229 christos #ifdef IPSEC
247 1.109 jonathan struct secpolicy *sp = NULL;
248 1.229 christos #endif
249 1.221 rmind bool natt_frag = false;
250 1.230 rmind bool rtmtu_nolock;
251 1.180 dyoung union {
252 1.180 dyoung struct sockaddr dst;
253 1.180 dyoung struct sockaddr_in dst4;
254 1.180 dyoung } u;
255 1.180 dyoung struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
256 1.180 dyoung * to the nexthop
257 1.180 dyoung */
258 1.260 ozaki struct psref psref, psref_ia;
259 1.258 ozaki int bound;
260 1.260 ozaki bool bind_need_restore = false;
261 1.28 christos
262 1.102 darrenr len = 0;
263 1.28 christos
264 1.103 matt MCLAIM(m, &ip_tx_mowner);
265 1.61 itojun
266 1.226 rmind KASSERT((m->m_flags & M_PKTHDR) != 0);
267 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
268 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
269 1.226 rmind (M_CSUM_TCPv4|M_CSUM_UDPv4));
270 1.163 tron
271 1.1 cgd if (opt) {
272 1.1 cgd m = ip_insertoptions(m, opt, &len);
273 1.102 darrenr if (len >= sizeof(struct ip))
274 1.102 darrenr hlen = len;
275 1.1 cgd }
276 1.1 cgd ip = mtod(m, struct ip *);
277 1.226 rmind
278 1.1 cgd /*
279 1.1 cgd * Fill in IP header.
280 1.1 cgd */
281 1.18 mycroft if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
282 1.1 cgd ip->ip_v = IPVERSION;
283 1.100 itojun ip->ip_off = htons(0);
284 1.192 matt /* ip->ip_id filled in after we find out source ia */
285 1.1 cgd ip->ip_hl = hlen >> 2;
286 1.194 thorpej IP_STATINC(IP_STAT_LOCALOUT);
287 1.1 cgd } else {
288 1.1 cgd hlen = ip->ip_hl << 2;
289 1.1 cgd }
290 1.226 rmind
291 1.1 cgd /*
292 1.1 cgd * Route packet.
293 1.1 cgd */
294 1.230 rmind if (ro == NULL) {
295 1.230 rmind memset(&iproute, 0, sizeof(iproute));
296 1.1 cgd ro = &iproute;
297 1.230 rmind }
298 1.180 dyoung sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
299 1.180 dyoung dst = satocsin(rtcache_getdst(ro));
300 1.226 rmind
301 1.1 cgd /*
302 1.226 rmind * If there is a cached route, check that it is to the same
303 1.226 rmind * destination and is still up. If not, free it and try again.
304 1.226 rmind * The address family should also be checked in case of sharing
305 1.226 rmind * the cache with IPv6.
306 1.1 cgd */
307 1.226 rmind if (dst && (dst->sin_family != AF_INET ||
308 1.226 rmind !in_hosteq(dst->sin_addr, ip->ip_dst)))
309 1.171 joerg rtcache_free(ro);
310 1.190 dyoung
311 1.190 dyoung if ((rt = rtcache_validate(ro)) == NULL &&
312 1.190 dyoung (rt = rtcache_update(ro, 1)) == NULL) {
313 1.180 dyoung dst = &u.dst4;
314 1.238 ozaki error = rtcache_setdst(ro, &u.dst);
315 1.238 ozaki if (error != 0)
316 1.238 ozaki goto bad;
317 1.1 cgd }
318 1.226 rmind
319 1.260 ozaki bound = curlwp_bind();
320 1.260 ozaki bind_need_restore = true;
321 1.1 cgd /*
322 1.226 rmind * If routing to interface only, short circuit routing lookup.
323 1.1 cgd */
324 1.1 cgd if (flags & IP_ROUTETOIF) {
325 1.260 ozaki struct ifaddr *ifa;
326 1.260 ozaki
327 1.260 ozaki ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
328 1.260 ozaki if (ifa == NULL) {
329 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
330 1.1 cgd error = ENETUNREACH;
331 1.1 cgd goto bad;
332 1.1 cgd }
333 1.260 ozaki /* ia is already referenced by psref_ia */
334 1.260 ozaki ia = ifatoia(ifa);
335 1.260 ozaki
336 1.1 cgd ifp = ia->ia_ifp;
337 1.48 matt mtu = ifp->if_mtu;
338 1.18 mycroft ip->ip_ttl = 1;
339 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
340 1.98 itojun } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
341 1.98 itojun ip->ip_dst.s_addr == INADDR_BROADCAST) &&
342 1.258 ozaki imo != NULL && imo->imo_multicast_if_index != 0) {
343 1.258 ozaki ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
344 1.258 ozaki if (ifp == NULL) {
345 1.258 ozaki IP_STATINC(IP_STAT_NOROUTE);
346 1.258 ozaki error = ENETUNREACH;
347 1.258 ozaki goto bad;
348 1.258 ozaki }
349 1.98 itojun mtu = ifp->if_mtu;
350 1.260 ozaki ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
351 1.260 ozaki if (ia == NULL) {
352 1.260 ozaki error = EADDRNOTAVAIL;
353 1.260 ozaki goto bad;
354 1.260 ozaki }
355 1.234 roy isbroadcast = 0;
356 1.1 cgd } else {
357 1.186 dyoung if (rt == NULL)
358 1.190 dyoung rt = rtcache_init(ro);
359 1.190 dyoung if (rt == NULL) {
360 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
361 1.1 cgd error = EHOSTUNREACH;
362 1.1 cgd goto bad;
363 1.1 cgd }
364 1.260 ozaki /*
365 1.260 ozaki * XXX NOMPSAFE: depends on accessing rt->rt_ifa isn't racy.
366 1.260 ozaki * Revisit when working on rtentry MP-ification.
367 1.260 ozaki */
368 1.260 ozaki ifa_acquire(rt->rt_ifa, &psref_ia);
369 1.186 dyoung ia = ifatoia(rt->rt_ifa);
370 1.186 dyoung ifp = rt->rt_ifp;
371 1.186 dyoung if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
372 1.48 matt mtu = ifp->if_mtu;
373 1.186 dyoung rt->rt_use++;
374 1.186 dyoung if (rt->rt_flags & RTF_GATEWAY)
375 1.186 dyoung dst = satosin(rt->rt_gateway);
376 1.234 roy if (rt->rt_flags & RTF_HOST)
377 1.234 roy isbroadcast = rt->rt_flags & RTF_BROADCAST;
378 1.234 roy else
379 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
380 1.1 cgd }
381 1.230 rmind rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
382 1.226 rmind
383 1.64 is if (IN_MULTICAST(ip->ip_dst.s_addr) ||
384 1.64 is (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
385 1.228 rmind bool inmgroup;
386 1.5 hpeyerl
387 1.64 is m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
388 1.237 ozaki M_BCAST : M_MCAST;
389 1.5 hpeyerl /*
390 1.5 hpeyerl * See if the caller provided any multicast options
391 1.5 hpeyerl */
392 1.98 itojun if (imo != NULL)
393 1.5 hpeyerl ip->ip_ttl = imo->imo_multicast_ttl;
394 1.98 itojun else
395 1.5 hpeyerl ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
396 1.98 itojun
397 1.98 itojun /*
398 1.98 itojun * if we don't know the outgoing ifp yet, we can't generate
399 1.98 itojun * output
400 1.98 itojun */
401 1.98 itojun if (!ifp) {
402 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
403 1.98 itojun error = ENETUNREACH;
404 1.98 itojun goto bad;
405 1.98 itojun }
406 1.98 itojun
407 1.5 hpeyerl /*
408 1.95 thorpej * If the packet is multicast or broadcast, confirm that
409 1.95 thorpej * the outgoing interface can transmit it.
410 1.5 hpeyerl */
411 1.64 is if (((m->m_flags & M_MCAST) &&
412 1.64 is (ifp->if_flags & IFF_MULTICAST) == 0) ||
413 1.97 itojun ((m->m_flags & M_BCAST) &&
414 1.95 thorpej (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
415 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
416 1.5 hpeyerl error = ENETUNREACH;
417 1.5 hpeyerl goto bad;
418 1.5 hpeyerl }
419 1.5 hpeyerl /*
420 1.44 tls * If source address not specified yet, use an address
421 1.5 hpeyerl * of outgoing interface.
422 1.5 hpeyerl */
423 1.31 mycroft if (in_nullhost(ip->ip_src)) {
424 1.153 christos struct in_ifaddr *xia;
425 1.230 rmind struct ifaddr *xifa;
426 1.260 ozaki struct psref _psref;
427 1.5 hpeyerl
428 1.260 ozaki xia = in_get_ia_from_ifp_psref(ifp, &_psref);
429 1.153 christos if (!xia) {
430 1.91 itojun error = EADDRNOTAVAIL;
431 1.91 itojun goto bad;
432 1.91 itojun }
433 1.166 dyoung xifa = &xia->ia_ifa;
434 1.166 dyoung if (xifa->ifa_getifa != NULL) {
435 1.260 ozaki ia4_release(xia, &_psref);
436 1.260 ozaki /* FIXME NOMPSAFE */
437 1.180 dyoung xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
438 1.240 roy if (xia == NULL) {
439 1.241 roy error = EADDRNOTAVAIL;
440 1.240 roy goto bad;
441 1.240 roy }
442 1.260 ozaki ia4_acquire(xia, &_psref);
443 1.166 dyoung }
444 1.153 christos ip->ip_src = xia->ia_addr.sin_addr;
445 1.260 ozaki ia4_release(xia, &_psref);
446 1.5 hpeyerl }
447 1.5 hpeyerl
448 1.228 rmind inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
449 1.228 rmind if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
450 1.5 hpeyerl /*
451 1.11 mycroft * If we belong to the destination multicast group
452 1.5 hpeyerl * on the outgoing interface, and the caller did not
453 1.5 hpeyerl * forbid loopback, loop back a copy.
454 1.5 hpeyerl */
455 1.180 dyoung ip_mloopback(ifp, m, &u.dst4);
456 1.5 hpeyerl }
457 1.5 hpeyerl #ifdef MROUTING
458 1.18 mycroft else {
459 1.5 hpeyerl /*
460 1.5 hpeyerl * If we are acting as a multicast router, perform
461 1.5 hpeyerl * multicast forwarding as if the packet had just
462 1.5 hpeyerl * arrived on the interface to which we are about
463 1.5 hpeyerl * to send. The multicast forwarding function
464 1.5 hpeyerl * recursively calls this function, using the
465 1.5 hpeyerl * IP_FORWARDING flag to prevent infinite recursion.
466 1.5 hpeyerl *
467 1.5 hpeyerl * Multicasts that are looped back by ip_mloopback(),
468 1.5 hpeyerl * above, will be forwarded by the ip_input() routine,
469 1.5 hpeyerl * if necessary.
470 1.5 hpeyerl */
471 1.18 mycroft extern struct socket *ip_mrouter;
472 1.22 cgd
473 1.18 mycroft if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
474 1.18 mycroft if (ip_mforward(m, ifp) != 0) {
475 1.18 mycroft m_freem(m);
476 1.18 mycroft goto done;
477 1.18 mycroft }
478 1.5 hpeyerl }
479 1.5 hpeyerl }
480 1.5 hpeyerl #endif
481 1.5 hpeyerl /*
482 1.5 hpeyerl * Multicasts with a time-to-live of zero may be looped-
483 1.5 hpeyerl * back, above, but must not be transmitted on a network.
484 1.5 hpeyerl * Also, multicasts addressed to the loopback interface
485 1.5 hpeyerl * are not sent -- the above call to ip_mloopback() will
486 1.5 hpeyerl * loop back a copy if this host actually belongs to the
487 1.5 hpeyerl * destination group on the loopback interface.
488 1.5 hpeyerl */
489 1.20 mycroft if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
490 1.5 hpeyerl m_freem(m);
491 1.5 hpeyerl goto done;
492 1.5 hpeyerl }
493 1.5 hpeyerl goto sendit;
494 1.5 hpeyerl }
495 1.230 rmind
496 1.1 cgd /*
497 1.1 cgd * If source address not specified yet, use address
498 1.1 cgd * of outgoing interface.
499 1.1 cgd */
500 1.166 dyoung if (in_nullhost(ip->ip_src)) {
501 1.230 rmind struct ifaddr *xifa;
502 1.230 rmind
503 1.166 dyoung xifa = &ia->ia_ifa;
504 1.240 roy if (xifa->ifa_getifa != NULL) {
505 1.260 ozaki ia4_release(ia, &psref_ia);
506 1.260 ozaki /* FIXME NOMPSAFE */
507 1.180 dyoung ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
508 1.240 roy if (ia == NULL) {
509 1.240 roy error = EADDRNOTAVAIL;
510 1.240 roy goto bad;
511 1.240 roy }
512 1.260 ozaki ia4_acquire(ia, &psref_ia);
513 1.240 roy }
514 1.25 mycroft ip->ip_src = ia->ia_addr.sin_addr;
515 1.166 dyoung }
516 1.59 hwr
517 1.59 hwr /*
518 1.97 itojun * packets with Class-D address as source are not valid per
519 1.59 hwr * RFC 1112
520 1.59 hwr */
521 1.59 hwr if (IN_MULTICAST(ip->ip_src.s_addr)) {
522 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
523 1.59 hwr error = EADDRNOTAVAIL;
524 1.59 hwr goto bad;
525 1.59 hwr }
526 1.59 hwr
527 1.1 cgd /*
528 1.230 rmind * Look for broadcast address and and verify user is allowed to
529 1.230 rmind * send such a packet.
530 1.1 cgd */
531 1.234 roy if (isbroadcast) {
532 1.1 cgd if ((ifp->if_flags & IFF_BROADCAST) == 0) {
533 1.1 cgd error = EADDRNOTAVAIL;
534 1.1 cgd goto bad;
535 1.1 cgd }
536 1.1 cgd if ((flags & IP_ALLOWBROADCAST) == 0) {
537 1.1 cgd error = EACCES;
538 1.1 cgd goto bad;
539 1.1 cgd }
540 1.1 cgd /* don't allow broadcast messages to be fragmented */
541 1.100 itojun if (ntohs(ip->ip_len) > ifp->if_mtu) {
542 1.1 cgd error = EMSGSIZE;
543 1.1 cgd goto bad;
544 1.1 cgd }
545 1.1 cgd m->m_flags |= M_BCAST;
546 1.18 mycroft } else
547 1.18 mycroft m->m_flags &= ~M_BCAST;
548 1.18 mycroft
549 1.60 mrg sendit:
550 1.192 matt if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
551 1.192 matt if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
552 1.192 matt ip->ip_id = 0;
553 1.192 matt } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
554 1.192 matt ip->ip_id = ip_newid(ia);
555 1.192 matt } else {
556 1.192 matt
557 1.192 matt /*
558 1.192 matt * TSO capable interfaces (typically?) increment
559 1.192 matt * ip_id for each segment.
560 1.192 matt * "allocate" enough ids here to increase the chance
561 1.192 matt * for them to be unique.
562 1.192 matt *
563 1.192 matt * note that the following calculation is not
564 1.192 matt * needed to be precise. wasting some ip_id is fine.
565 1.192 matt */
566 1.192 matt
567 1.192 matt unsigned int segsz = m->m_pkthdr.segsz;
568 1.192 matt unsigned int datasz = ntohs(ip->ip_len) - hlen;
569 1.192 matt unsigned int num = howmany(datasz, segsz);
570 1.192 matt
571 1.192 matt ip->ip_id = ip_newid_range(ia, num);
572 1.192 matt }
573 1.192 matt }
574 1.260 ozaki if (ia != NULL) {
575 1.260 ozaki ia4_release(ia, &psref_ia);
576 1.260 ozaki ia = NULL;
577 1.260 ozaki }
578 1.230 rmind
579 1.76 thorpej /*
580 1.76 thorpej * If we're doing Path MTU Discovery, we need to set DF unless
581 1.76 thorpej * the route's MTU is locked.
582 1.76 thorpej */
583 1.230 rmind if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
584 1.100 itojun ip->ip_off |= htons(IP_DF);
585 1.230 rmind }
586 1.76 thorpej
587 1.220 christos #ifdef IPSEC
588 1.229 christos if (ipsec_used) {
589 1.230 rmind bool ipsec_done = false;
590 1.230 rmind
591 1.229 christos /* Perform IPsec processing, if any. */
592 1.229 christos error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
593 1.230 rmind &ipsec_done);
594 1.230 rmind if (error || ipsec_done)
595 1.229 christos goto done;
596 1.221 rmind }
597 1.109 jonathan #endif
598 1.109 jonathan
599 1.82 itojun /*
600 1.82 itojun * Run through list of hooks for output packets.
601 1.82 itojun */
602 1.230 rmind error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
603 1.230 rmind if (error)
604 1.82 itojun goto done;
605 1.82 itojun if (m == NULL)
606 1.82 itojun goto done;
607 1.82 itojun
608 1.82 itojun ip = mtod(m, struct ip *);
609 1.106 itojun hlen = ip->ip_hl << 2;
610 1.82 itojun
611 1.146 matt m->m_pkthdr.csum_data |= hlen << 16;
612 1.146 matt
613 1.136 thorpej /*
614 1.136 thorpej * search for the source address structure to
615 1.136 thorpej * maintain output statistics.
616 1.136 thorpej */
617 1.260 ozaki KASSERT(ia == NULL);
618 1.260 ozaki ia = in_get_ia_psref(ip->ip_src, &psref_ia);
619 1.261 roy
620 1.263 roy /* Ensure we only send from a valid address. */
621 1.261 roy if ((ia != NULL || (flags & IP_FORWARDING) == 0) &&
622 1.261 roy (error = ip_ifaddrvalid(ia)) != 0)
623 1.261 roy {
624 1.261 roy arplog(LOG_ERR,
625 1.261 roy "refusing to send from invalid address %s (pid %d)\n",
626 1.261 roy in_fmtaddr(ip->ip_src), curproc->p_pid);
627 1.261 roy IP_STATINC(IP_STAT_ODROPPED);
628 1.263 roy if (error == 1)
629 1.263 roy /*
630 1.263 roy * Address exists, but is tentative or detached.
631 1.261 roy * We can't send from it because it's invalid,
632 1.263 roy * so we drop the packet.
633 1.263 roy */
634 1.261 roy error = 0;
635 1.261 roy else
636 1.261 roy error = EADDRNOTAVAIL;
637 1.261 roy goto bad;
638 1.261 roy }
639 1.136 thorpej
640 1.138 thorpej /* Maybe skip checksums on loopback interfaces. */
641 1.151 yamt if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
642 1.138 thorpej m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
643 1.151 yamt }
644 1.104 yamt sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
645 1.1 cgd /*
646 1.147 matt * If small enough for mtu of path, or if using TCP segmentation
647 1.147 matt * offload, can just send directly.
648 1.1 cgd */
649 1.218 kefren if (ntohs(ip->ip_len) <= mtu ||
650 1.147 matt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
651 1.230 rmind const struct sockaddr *sa;
652 1.230 rmind
653 1.63 itojun #if IFA_STATS
654 1.63 itojun if (ia)
655 1.218 kefren ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
656 1.63 itojun #endif
657 1.86 thorpej /*
658 1.86 thorpej * Always initialize the sum to 0! Some HW assisted
659 1.86 thorpej * checksumming requires this.
660 1.86 thorpej */
661 1.1 cgd ip->ip_sum = 0;
662 1.86 thorpej
663 1.149 matt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
664 1.147 matt /*
665 1.147 matt * Perform any checksums that the hardware can't do
666 1.147 matt * for us.
667 1.147 matt *
668 1.147 matt * XXX Does any hardware require the {th,uh}_sum
669 1.147 matt * XXX fields to be 0?
670 1.147 matt */
671 1.147 matt if (sw_csum & M_CSUM_IPv4) {
672 1.151 yamt KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
673 1.147 matt ip->ip_sum = in_cksum(m, hlen);
674 1.147 matt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
675 1.147 matt }
676 1.147 matt if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
677 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
678 1.151 yamt sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
679 1.151 yamt in_delayed_cksum(m);
680 1.151 yamt }
681 1.147 matt m->m_pkthdr.csum_flags &=
682 1.147 matt ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
683 1.147 matt }
684 1.146 matt }
685 1.86 thorpej
686 1.230 rmind sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
687 1.152 yamt if (__predict_true(
688 1.152 yamt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
689 1.152 yamt (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
690 1.252 ozaki error = ip_if_output(ifp, m, sa, rt);
691 1.152 yamt } else {
692 1.230 rmind error = ip_tso_output(ifp, m, sa, rt);
693 1.152 yamt }
694 1.1 cgd goto done;
695 1.1 cgd }
696 1.61 itojun
697 1.1 cgd /*
698 1.86 thorpej * We can't use HW checksumming if we're about to
699 1.86 thorpej * to fragment the packet.
700 1.86 thorpej *
701 1.86 thorpej * XXX Some hardware can do this.
702 1.86 thorpej */
703 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
704 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
705 1.151 yamt m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
706 1.151 yamt in_delayed_cksum(m);
707 1.151 yamt }
708 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
709 1.86 thorpej }
710 1.86 thorpej
711 1.86 thorpej /*
712 1.1 cgd * Too large for interface; fragment if possible.
713 1.1 cgd * Must be able to put at least 8 bytes per fragment.
714 1.1 cgd */
715 1.100 itojun if (ntohs(ip->ip_off) & IP_DF) {
716 1.226 rmind if (flags & IP_RETURNMTU) {
717 1.227 rmind struct inpcb *inp;
718 1.227 rmind
719 1.227 rmind KASSERT(so && solocked(so));
720 1.227 rmind inp = sotoinpcb(so);
721 1.226 rmind inp->inp_errormtu = mtu;
722 1.226 rmind }
723 1.1 cgd error = EMSGSIZE;
724 1.194 thorpej IP_STATINC(IP_STAT_CANTFRAG);
725 1.1 cgd goto bad;
726 1.1 cgd }
727 1.110 itojun
728 1.110 itojun error = ip_fragment(m, ifp, mtu);
729 1.124 itojun if (error) {
730 1.124 itojun m = NULL;
731 1.1 cgd goto bad;
732 1.124 itojun }
733 1.110 itojun
734 1.119 itojun for (; m; m = m0) {
735 1.110 itojun m0 = m->m_nextpkt;
736 1.110 itojun m->m_nextpkt = 0;
737 1.230 rmind if (error) {
738 1.230 rmind m_freem(m);
739 1.230 rmind continue;
740 1.230 rmind }
741 1.110 itojun #if IFA_STATS
742 1.230 rmind if (ia)
743 1.230 rmind ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
744 1.110 itojun #endif
745 1.230 rmind /*
746 1.230 rmind * If we get there, the packet has not been handled by
747 1.230 rmind * IPsec whereas it should have. Now that it has been
748 1.230 rmind * fragmented, re-inject it in ip_output so that IPsec
749 1.230 rmind * processing can occur.
750 1.230 rmind */
751 1.230 rmind if (natt_frag) {
752 1.230 rmind error = ip_output(m, opt, ro,
753 1.230 rmind flags | IP_RAWOUTPUT | IP_NOIPNEWID,
754 1.230 rmind imo, so);
755 1.230 rmind } else {
756 1.230 rmind KASSERT((m->m_pkthdr.csum_flags &
757 1.230 rmind (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
758 1.252 ozaki error = ip_if_output(ifp, m,
759 1.230 rmind (m->m_flags & M_MCAST) ?
760 1.230 rmind sintocsa(rdst) : sintocsa(dst), rt);
761 1.230 rmind }
762 1.1 cgd }
763 1.230 rmind if (error == 0) {
764 1.194 thorpej IP_STATINC(IP_STAT_FRAGMENTED);
765 1.230 rmind }
766 1.110 itojun done:
767 1.260 ozaki ia4_release(ia, &psref_ia);
768 1.264 ozaki rtcache_unref(rt, ro);
769 1.230 rmind if (ro == &iproute) {
770 1.230 rmind rtcache_free(&iproute);
771 1.230 rmind }
772 1.229 christos #ifdef IPSEC
773 1.221 rmind if (sp) {
774 1.110 itojun KEY_FREESP(&sp);
775 1.229 christos }
776 1.221 rmind #endif
777 1.258 ozaki if (mifp != NULL) {
778 1.258 ozaki if_put(mifp, &psref);
779 1.260 ozaki }
780 1.260 ozaki if (bind_need_restore)
781 1.258 ozaki curlwp_bindx(bound);
782 1.221 rmind return error;
783 1.110 itojun bad:
784 1.110 itojun m_freem(m);
785 1.110 itojun goto done;
786 1.110 itojun }
787 1.110 itojun
788 1.113 itojun int
789 1.110 itojun ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
790 1.110 itojun {
791 1.110 itojun struct ip *ip, *mhip;
792 1.110 itojun struct mbuf *m0;
793 1.110 itojun int len, hlen, off;
794 1.110 itojun int mhlen, firstlen;
795 1.110 itojun struct mbuf **mnext;
796 1.135 manu int sw_csum = m->m_pkthdr.csum_flags;
797 1.48 matt int fragments = 0;
798 1.48 matt int s;
799 1.110 itojun int error = 0;
800 1.110 itojun
801 1.110 itojun ip = mtod(m, struct ip *);
802 1.110 itojun hlen = ip->ip_hl << 2;
803 1.135 manu if (ifp != NULL)
804 1.135 manu sw_csum &= ~ifp->if_csum_flags_tx;
805 1.110 itojun
806 1.110 itojun len = (mtu - hlen) &~ 7;
807 1.124 itojun if (len < 8) {
808 1.124 itojun m_freem(m);
809 1.110 itojun return (EMSGSIZE);
810 1.124 itojun }
811 1.110 itojun
812 1.110 itojun firstlen = len;
813 1.110 itojun mnext = &m->m_nextpkt;
814 1.1 cgd
815 1.1 cgd /*
816 1.1 cgd * Loop through length of segment after first fragment,
817 1.1 cgd * make new header and copy data of each part and link onto chain.
818 1.1 cgd */
819 1.1 cgd m0 = m;
820 1.1 cgd mhlen = sizeof (struct ip);
821 1.100 itojun for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
822 1.1 cgd MGETHDR(m, M_DONTWAIT, MT_HEADER);
823 1.1 cgd if (m == 0) {
824 1.1 cgd error = ENOBUFS;
825 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
826 1.1 cgd goto sendorfree;
827 1.1 cgd }
828 1.103 matt MCLAIM(m, m0->m_owner);
829 1.22 cgd *mnext = m;
830 1.22 cgd mnext = &m->m_nextpkt;
831 1.1 cgd m->m_data += max_linkhdr;
832 1.1 cgd mhip = mtod(m, struct ip *);
833 1.1 cgd *mhip = *ip;
834 1.73 is /* we must inherit MCAST and BCAST flags */
835 1.73 is m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
836 1.1 cgd if (hlen > sizeof (struct ip)) {
837 1.1 cgd mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
838 1.1 cgd mhip->ip_hl = mhlen >> 2;
839 1.1 cgd }
840 1.1 cgd m->m_len = mhlen;
841 1.122 itojun mhip->ip_off = ((off - hlen) >> 3) +
842 1.122 itojun (ntohs(ip->ip_off) & ~IP_MF);
843 1.122 itojun if (ip->ip_off & htons(IP_MF))
844 1.1 cgd mhip->ip_off |= IP_MF;
845 1.100 itojun if (off + len >= ntohs(ip->ip_len))
846 1.100 itojun len = ntohs(ip->ip_len) - off;
847 1.1 cgd else
848 1.1 cgd mhip->ip_off |= IP_MF;
849 1.100 itojun HTONS(mhip->ip_off);
850 1.21 cgd mhip->ip_len = htons((u_int16_t)(len + mhlen));
851 1.182 dyoung m->m_next = m_copym(m0, off, len, M_DONTWAIT);
852 1.1 cgd if (m->m_next == 0) {
853 1.1 cgd error = ENOBUFS; /* ??? */
854 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
855 1.1 cgd goto sendorfree;
856 1.1 cgd }
857 1.1 cgd m->m_pkthdr.len = mhlen + len;
858 1.256 ozaki m_reset_rcvif(m);
859 1.1 cgd mhip->ip_sum = 0;
860 1.210 yamt KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
861 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
862 1.104 yamt mhip->ip_sum = in_cksum(m, mhlen);
863 1.104 yamt } else {
864 1.210 yamt /*
865 1.210 yamt * checksum is hw-offloaded or not necessary.
866 1.210 yamt */
867 1.210 yamt m->m_pkthdr.csum_flags |=
868 1.210 yamt m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
869 1.148 thorpej m->m_pkthdr.csum_data |= mhlen << 16;
870 1.210 yamt KASSERT(!(ifp != NULL &&
871 1.237 ozaki IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
872 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
873 1.104 yamt }
874 1.194 thorpej IP_STATINC(IP_STAT_OFRAGMENTS);
875 1.48 matt fragments++;
876 1.1 cgd }
877 1.1 cgd /*
878 1.1 cgd * Update first fragment by trimming what's been copied out
879 1.1 cgd * and updating header, then send each fragment (in order).
880 1.1 cgd */
881 1.1 cgd m = m0;
882 1.100 itojun m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
883 1.1 cgd m->m_pkthdr.len = hlen + firstlen;
884 1.21 cgd ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
885 1.100 itojun ip->ip_off |= htons(IP_MF);
886 1.1 cgd ip->ip_sum = 0;
887 1.210 yamt if (sw_csum & M_CSUM_IPv4) {
888 1.210 yamt ip->ip_sum = in_cksum(m, hlen);
889 1.210 yamt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
890 1.210 yamt } else {
891 1.210 yamt /*
892 1.210 yamt * checksum is hw-offloaded or not necessary.
893 1.210 yamt */
894 1.237 ozaki KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
895 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
896 1.210 yamt KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
897 1.237 ozaki sizeof(struct ip));
898 1.104 yamt }
899 1.1 cgd sendorfree:
900 1.48 matt /*
901 1.48 matt * If there is no room for all the fragments, don't queue
902 1.48 matt * any of them.
903 1.48 matt */
904 1.135 manu if (ifp != NULL) {
905 1.135 manu s = splnet();
906 1.135 manu if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
907 1.135 manu error == 0) {
908 1.135 manu error = ENOBUFS;
909 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
910 1.135 manu IFQ_INC_DROPS(&ifp->if_snd);
911 1.135 manu }
912 1.135 manu splx(s);
913 1.126 enami }
914 1.124 itojun if (error) {
915 1.125 itojun for (m = m0; m; m = m0) {
916 1.124 itojun m0 = m->m_nextpkt;
917 1.124 itojun m->m_nextpkt = NULL;
918 1.124 itojun m_freem(m);
919 1.124 itojun }
920 1.124 itojun }
921 1.1 cgd return (error);
922 1.86 thorpej }
923 1.86 thorpej
924 1.86 thorpej /*
925 1.86 thorpej * Process a delayed payload checksum calculation.
926 1.86 thorpej */
927 1.86 thorpej void
928 1.86 thorpej in_delayed_cksum(struct mbuf *m)
929 1.86 thorpej {
930 1.86 thorpej struct ip *ip;
931 1.86 thorpej u_int16_t csum, offset;
932 1.86 thorpej
933 1.86 thorpej ip = mtod(m, struct ip *);
934 1.86 thorpej offset = ip->ip_hl << 2;
935 1.86 thorpej csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
936 1.86 thorpej if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
937 1.86 thorpej csum = 0xffff;
938 1.86 thorpej
939 1.145 briggs offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
940 1.86 thorpej
941 1.86 thorpej if ((offset + sizeof(u_int16_t)) > m->m_len) {
942 1.87 yamt /* This happen when ip options were inserted
943 1.86 thorpej printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
944 1.86 thorpej m->m_len, offset, ip->ip_p);
945 1.87 yamt */
946 1.179 christos m_copyback(m, offset, sizeof(csum), (void *) &csum);
947 1.86 thorpej } else
948 1.179 christos *(u_int16_t *)(mtod(m, char *) + offset) = csum;
949 1.1 cgd }
950 1.47 kml
951 1.47 kml /*
952 1.47 kml * Determine the maximum length of the options to be inserted;
953 1.47 kml * we would far rather allocate too much space rather than too little.
954 1.47 kml */
955 1.47 kml
956 1.47 kml u_int
957 1.140 perry ip_optlen(struct inpcb *inp)
958 1.47 kml {
959 1.47 kml struct mbuf *m = inp->inp_options;
960 1.47 kml
961 1.226 rmind if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
962 1.101 itojun return (m->m_len - offsetof(struct ipoption, ipopt_dst));
963 1.226 rmind }
964 1.226 rmind return 0;
965 1.47 kml }
966 1.47 kml
967 1.1 cgd /*
968 1.1 cgd * Insert IP options into preformed packet.
969 1.1 cgd * Adjust IP destination as required for IP source routing,
970 1.1 cgd * as indicated by a non-zero in_addr at the start of the options.
971 1.1 cgd */
972 1.12 mycroft static struct mbuf *
973 1.140 perry ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
974 1.1 cgd {
975 1.71 augustss struct ipoption *p = mtod(opt, struct ipoption *);
976 1.1 cgd struct mbuf *n;
977 1.71 augustss struct ip *ip = mtod(m, struct ip *);
978 1.1 cgd unsigned optlen;
979 1.1 cgd
980 1.1 cgd optlen = opt->m_len - sizeof(p->ipopt_dst);
981 1.100 itojun if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
982 1.1 cgd return (m); /* XXX should fail */
983 1.31 mycroft if (!in_nullhost(p->ipopt_dst))
984 1.1 cgd ip->ip_dst = p->ipopt_dst;
985 1.123 itojun if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
986 1.1 cgd MGETHDR(n, M_DONTWAIT, MT_HEADER);
987 1.1 cgd if (n == 0)
988 1.1 cgd return (m);
989 1.103 matt MCLAIM(n, m->m_owner);
990 1.155 yamt M_MOVE_PKTHDR(n, m);
991 1.1 cgd m->m_len -= sizeof(struct ip);
992 1.1 cgd m->m_data += sizeof(struct ip);
993 1.1 cgd n->m_next = m;
994 1.1 cgd m = n;
995 1.1 cgd m->m_len = optlen + sizeof(struct ip);
996 1.1 cgd m->m_data += max_linkhdr;
997 1.179 christos bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
998 1.1 cgd } else {
999 1.1 cgd m->m_data -= optlen;
1000 1.1 cgd m->m_len += optlen;
1001 1.179 christos memmove(mtod(m, void *), ip, sizeof(struct ip));
1002 1.1 cgd }
1003 1.87 yamt m->m_pkthdr.len += optlen;
1004 1.1 cgd ip = mtod(m, struct ip *);
1005 1.179 christos bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1006 1.1 cgd *phlen = sizeof(struct ip) + optlen;
1007 1.100 itojun ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1008 1.1 cgd return (m);
1009 1.1 cgd }
1010 1.1 cgd
1011 1.1 cgd /*
1012 1.1 cgd * Copy options from ip to jp,
1013 1.1 cgd * omitting those not copied during fragmentation.
1014 1.1 cgd */
1015 1.12 mycroft int
1016 1.140 perry ip_optcopy(struct ip *ip, struct ip *jp)
1017 1.1 cgd {
1018 1.71 augustss u_char *cp, *dp;
1019 1.1 cgd int opt, optlen, cnt;
1020 1.1 cgd
1021 1.1 cgd cp = (u_char *)(ip + 1);
1022 1.1 cgd dp = (u_char *)(jp + 1);
1023 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1024 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
1025 1.1 cgd opt = cp[0];
1026 1.1 cgd if (opt == IPOPT_EOL)
1027 1.1 cgd break;
1028 1.18 mycroft if (opt == IPOPT_NOP) {
1029 1.18 mycroft /* Preserve for IP mcast tunnel's LSRR alignment. */
1030 1.18 mycroft *dp++ = IPOPT_NOP;
1031 1.1 cgd optlen = 1;
1032 1.18 mycroft continue;
1033 1.74 itojun }
1034 1.226 rmind
1035 1.226 rmind KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1036 1.74 itojun optlen = cp[IPOPT_OLEN];
1037 1.226 rmind KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1038 1.226 rmind
1039 1.226 rmind /* Invalid lengths should have been caught by ip_dooptions. */
1040 1.1 cgd if (optlen > cnt)
1041 1.1 cgd optlen = cnt;
1042 1.1 cgd if (IPOPT_COPIED(opt)) {
1043 1.179 christos bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1044 1.1 cgd dp += optlen;
1045 1.1 cgd }
1046 1.1 cgd }
1047 1.1 cgd for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1048 1.1 cgd *dp++ = IPOPT_EOL;
1049 1.1 cgd return (optlen);
1050 1.1 cgd }
1051 1.1 cgd
1052 1.1 cgd /*
1053 1.1 cgd * IP socket option processing.
1054 1.1 cgd */
1055 1.12 mycroft int
1056 1.197 plunky ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1057 1.1 cgd {
1058 1.71 augustss struct inpcb *inp = sotoinpcb(so);
1059 1.226 rmind struct ip *ip = &inp->inp_ip;
1060 1.226 rmind int inpflags = inp->inp_flags;
1061 1.226 rmind int optval = 0, error = 0;
1062 1.1 cgd
1063 1.197 plunky if (sopt->sopt_level != IPPROTO_IP) {
1064 1.197 plunky if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1065 1.184 dyoung return 0;
1066 1.184 dyoung return ENOPROTOOPT;
1067 1.184 dyoung }
1068 1.184 dyoung
1069 1.184 dyoung switch (op) {
1070 1.1 cgd case PRCO_SETOPT:
1071 1.197 plunky switch (sopt->sopt_name) {
1072 1.1 cgd case IP_OPTIONS:
1073 1.1 cgd #ifdef notyet
1074 1.1 cgd case IP_RETOPTS:
1075 1.1 cgd #endif
1076 1.226 rmind error = ip_pcbopts(inp, sopt);
1077 1.197 plunky break;
1078 1.1 cgd
1079 1.1 cgd case IP_TOS:
1080 1.1 cgd case IP_TTL:
1081 1.205 minskim case IP_MINTTL:
1082 1.223 christos case IP_PKTINFO:
1083 1.1 cgd case IP_RECVOPTS:
1084 1.1 cgd case IP_RECVRETOPTS:
1085 1.1 cgd case IP_RECVDSTADDR:
1086 1.37 thorpej case IP_RECVIF:
1087 1.223 christos case IP_RECVPKTINFO:
1088 1.204 minskim case IP_RECVTTL:
1089 1.197 plunky error = sockopt_getint(sopt, &optval);
1090 1.197 plunky if (error)
1091 1.197 plunky break;
1092 1.197 plunky
1093 1.197 plunky switch (sopt->sopt_name) {
1094 1.197 plunky case IP_TOS:
1095 1.226 rmind ip->ip_tos = optval;
1096 1.197 plunky break;
1097 1.197 plunky
1098 1.197 plunky case IP_TTL:
1099 1.226 rmind ip->ip_ttl = optval;
1100 1.197 plunky break;
1101 1.205 minskim
1102 1.205 minskim case IP_MINTTL:
1103 1.205 minskim if (optval > 0 && optval <= MAXTTL)
1104 1.205 minskim inp->inp_ip_minttl = optval;
1105 1.205 minskim else
1106 1.205 minskim error = EINVAL;
1107 1.205 minskim break;
1108 1.1 cgd #define OPTSET(bit) \
1109 1.1 cgd if (optval) \
1110 1.226 rmind inpflags |= bit; \
1111 1.1 cgd else \
1112 1.226 rmind inpflags &= ~bit;
1113 1.1 cgd
1114 1.223 christos case IP_PKTINFO:
1115 1.223 christos OPTSET(INP_PKTINFO);
1116 1.223 christos break;
1117 1.223 christos
1118 1.197 plunky case IP_RECVOPTS:
1119 1.197 plunky OPTSET(INP_RECVOPTS);
1120 1.197 plunky break;
1121 1.197 plunky
1122 1.223 christos case IP_RECVPKTINFO:
1123 1.223 christos OPTSET(INP_RECVPKTINFO);
1124 1.223 christos break;
1125 1.223 christos
1126 1.197 plunky case IP_RECVRETOPTS:
1127 1.197 plunky OPTSET(INP_RECVRETOPTS);
1128 1.197 plunky break;
1129 1.197 plunky
1130 1.197 plunky case IP_RECVDSTADDR:
1131 1.197 plunky OPTSET(INP_RECVDSTADDR);
1132 1.197 plunky break;
1133 1.197 plunky
1134 1.197 plunky case IP_RECVIF:
1135 1.197 plunky OPTSET(INP_RECVIF);
1136 1.197 plunky break;
1137 1.204 minskim
1138 1.204 minskim case IP_RECVTTL:
1139 1.204 minskim OPTSET(INP_RECVTTL);
1140 1.204 minskim break;
1141 1.1 cgd }
1142 1.197 plunky break;
1143 1.1 cgd #undef OPTSET
1144 1.18 mycroft
1145 1.18 mycroft case IP_MULTICAST_IF:
1146 1.18 mycroft case IP_MULTICAST_TTL:
1147 1.18 mycroft case IP_MULTICAST_LOOP:
1148 1.18 mycroft case IP_ADD_MEMBERSHIP:
1149 1.18 mycroft case IP_DROP_MEMBERSHIP:
1150 1.231 christos error = ip_setmoptions(&inp->inp_moptions, sopt);
1151 1.18 mycroft break;
1152 1.1 cgd
1153 1.41 lukem case IP_PORTRANGE:
1154 1.197 plunky error = sockopt_getint(sopt, &optval);
1155 1.197 plunky if (error)
1156 1.197 plunky break;
1157 1.197 plunky
1158 1.197 plunky switch (optval) {
1159 1.197 plunky case IP_PORTRANGE_DEFAULT:
1160 1.197 plunky case IP_PORTRANGE_HIGH:
1161 1.226 rmind inpflags &= ~(INP_LOWPORT);
1162 1.197 plunky break;
1163 1.41 lukem
1164 1.197 plunky case IP_PORTRANGE_LOW:
1165 1.226 rmind inpflags |= INP_LOWPORT;
1166 1.197 plunky break;
1167 1.41 lukem
1168 1.197 plunky default:
1169 1.197 plunky error = EINVAL;
1170 1.197 plunky break;
1171 1.41 lukem }
1172 1.41 lukem break;
1173 1.41 lukem
1174 1.216 christos case IP_PORTALGO:
1175 1.216 christos error = sockopt_getint(sopt, &optval);
1176 1.216 christos if (error)
1177 1.216 christos break;
1178 1.216 christos
1179 1.217 christos error = portalgo_algo_index_select(
1180 1.216 christos (struct inpcb_hdr *)inp, optval);
1181 1.216 christos break;
1182 1.216 christos
1183 1.220 christos #if defined(IPSEC)
1184 1.61 itojun case IP_IPSEC_POLICY:
1185 1.229 christos if (ipsec_enabled) {
1186 1.229 christos error = ipsec4_set_policy(inp, sopt->sopt_name,
1187 1.229 christos sopt->sopt_data, sopt->sopt_size,
1188 1.229 christos curlwp->l_cred);
1189 1.229 christos break;
1190 1.229 christos }
1191 1.229 christos /*FALLTHROUGH*/
1192 1.229 christos #endif /* IPSEC */
1193 1.61 itojun
1194 1.1 cgd default:
1195 1.18 mycroft error = ENOPROTOOPT;
1196 1.1 cgd break;
1197 1.1 cgd }
1198 1.1 cgd break;
1199 1.1 cgd
1200 1.1 cgd case PRCO_GETOPT:
1201 1.197 plunky switch (sopt->sopt_name) {
1202 1.1 cgd case IP_OPTIONS:
1203 1.226 rmind case IP_RETOPTS: {
1204 1.226 rmind struct mbuf *mopts = inp->inp_options;
1205 1.226 rmind
1206 1.226 rmind if (mopts) {
1207 1.197 plunky struct mbuf *m;
1208 1.197 plunky
1209 1.226 rmind m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1210 1.199 plunky if (m == NULL) {
1211 1.199 plunky error = ENOBUFS;
1212 1.199 plunky break;
1213 1.199 plunky }
1214 1.197 plunky error = sockopt_setmbuf(sopt, m);
1215 1.197 plunky }
1216 1.1 cgd break;
1217 1.226 rmind }
1218 1.223 christos case IP_PKTINFO:
1219 1.1 cgd case IP_TOS:
1220 1.1 cgd case IP_TTL:
1221 1.205 minskim case IP_MINTTL:
1222 1.1 cgd case IP_RECVOPTS:
1223 1.1 cgd case IP_RECVRETOPTS:
1224 1.1 cgd case IP_RECVDSTADDR:
1225 1.37 thorpej case IP_RECVIF:
1226 1.223 christos case IP_RECVPKTINFO:
1227 1.204 minskim case IP_RECVTTL:
1228 1.40 matt case IP_ERRORMTU:
1229 1.197 plunky switch (sopt->sopt_name) {
1230 1.1 cgd case IP_TOS:
1231 1.226 rmind optval = ip->ip_tos;
1232 1.1 cgd break;
1233 1.1 cgd
1234 1.1 cgd case IP_TTL:
1235 1.226 rmind optval = ip->ip_ttl;
1236 1.40 matt break;
1237 1.40 matt
1238 1.205 minskim case IP_MINTTL:
1239 1.205 minskim optval = inp->inp_ip_minttl;
1240 1.205 minskim break;
1241 1.205 minskim
1242 1.40 matt case IP_ERRORMTU:
1243 1.40 matt optval = inp->inp_errormtu;
1244 1.1 cgd break;
1245 1.1 cgd
1246 1.226 rmind #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1247 1.1 cgd
1248 1.223 christos case IP_PKTINFO:
1249 1.223 christos optval = OPTBIT(INP_PKTINFO);
1250 1.223 christos break;
1251 1.223 christos
1252 1.1 cgd case IP_RECVOPTS:
1253 1.1 cgd optval = OPTBIT(INP_RECVOPTS);
1254 1.1 cgd break;
1255 1.1 cgd
1256 1.223 christos case IP_RECVPKTINFO:
1257 1.223 christos optval = OPTBIT(INP_RECVPKTINFO);
1258 1.223 christos break;
1259 1.223 christos
1260 1.1 cgd case IP_RECVRETOPTS:
1261 1.1 cgd optval = OPTBIT(INP_RECVRETOPTS);
1262 1.1 cgd break;
1263 1.1 cgd
1264 1.1 cgd case IP_RECVDSTADDR:
1265 1.1 cgd optval = OPTBIT(INP_RECVDSTADDR);
1266 1.37 thorpej break;
1267 1.37 thorpej
1268 1.37 thorpej case IP_RECVIF:
1269 1.37 thorpej optval = OPTBIT(INP_RECVIF);
1270 1.1 cgd break;
1271 1.204 minskim
1272 1.204 minskim case IP_RECVTTL:
1273 1.204 minskim optval = OPTBIT(INP_RECVTTL);
1274 1.204 minskim break;
1275 1.1 cgd }
1276 1.197 plunky error = sockopt_setint(sopt, optval);
1277 1.1 cgd break;
1278 1.61 itojun
1279 1.220 christos #if 0 /* defined(IPSEC) */
1280 1.61 itojun case IP_IPSEC_POLICY:
1281 1.66 itojun {
1282 1.197 plunky struct mbuf *m = NULL;
1283 1.66 itojun
1284 1.197 plunky /* XXX this will return EINVAL as sopt is empty */
1285 1.197 plunky error = ipsec4_get_policy(inp, sopt->sopt_data,
1286 1.197 plunky sopt->sopt_size, &m);
1287 1.197 plunky if (error == 0)
1288 1.197 plunky error = sockopt_setmbuf(sopt, m);
1289 1.61 itojun break;
1290 1.66 itojun }
1291 1.61 itojun #endif /*IPSEC*/
1292 1.18 mycroft
1293 1.18 mycroft case IP_MULTICAST_IF:
1294 1.18 mycroft case IP_MULTICAST_TTL:
1295 1.18 mycroft case IP_MULTICAST_LOOP:
1296 1.18 mycroft case IP_ADD_MEMBERSHIP:
1297 1.18 mycroft case IP_DROP_MEMBERSHIP:
1298 1.231 christos error = ip_getmoptions(inp->inp_moptions, sopt);
1299 1.41 lukem break;
1300 1.41 lukem
1301 1.41 lukem case IP_PORTRANGE:
1302 1.226 rmind if (inpflags & INP_LOWPORT)
1303 1.41 lukem optval = IP_PORTRANGE_LOW;
1304 1.41 lukem else
1305 1.41 lukem optval = IP_PORTRANGE_DEFAULT;
1306 1.197 plunky error = sockopt_setint(sopt, optval);
1307 1.18 mycroft break;
1308 1.1 cgd
1309 1.216 christos case IP_PORTALGO:
1310 1.226 rmind optval = inp->inp_portalgo;
1311 1.216 christos error = sockopt_setint(sopt, optval);
1312 1.216 christos break;
1313 1.216 christos
1314 1.1 cgd default:
1315 1.18 mycroft error = ENOPROTOOPT;
1316 1.1 cgd break;
1317 1.1 cgd }
1318 1.1 cgd break;
1319 1.1 cgd }
1320 1.226 rmind
1321 1.226 rmind if (!error) {
1322 1.226 rmind inp->inp_flags = inpflags;
1323 1.226 rmind }
1324 1.226 rmind return error;
1325 1.1 cgd }
1326 1.1 cgd
1327 1.1 cgd /*
1328 1.1 cgd * Set up IP options in pcb for insertion in output packets.
1329 1.1 cgd * Store in mbuf with pointer in pcbopt, adding pseudo-option
1330 1.1 cgd * with destination address if source routed.
1331 1.1 cgd */
1332 1.226 rmind static int
1333 1.226 rmind ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1334 1.1 cgd {
1335 1.200 plunky struct mbuf *m;
1336 1.200 plunky const u_char *cp;
1337 1.200 plunky u_char *dp;
1338 1.200 plunky int cnt;
1339 1.200 plunky
1340 1.226 rmind /* Turn off any old options. */
1341 1.226 rmind if (inp->inp_options) {
1342 1.226 rmind m_free(inp->inp_options);
1343 1.226 rmind }
1344 1.226 rmind inp->inp_options = NULL;
1345 1.226 rmind if ((cnt = sopt->sopt_size) == 0) {
1346 1.226 rmind /* Only turning off any previous options. */
1347 1.226 rmind return 0;
1348 1.226 rmind }
1349 1.200 plunky cp = sopt->sopt_data;
1350 1.1 cgd
1351 1.85 ragge #ifndef __vax__
1352 1.200 plunky if (cnt % sizeof(int32_t))
1353 1.200 plunky return (EINVAL);
1354 1.1 cgd #endif
1355 1.200 plunky
1356 1.200 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
1357 1.200 plunky if (m == NULL)
1358 1.200 plunky return (ENOBUFS);
1359 1.200 plunky
1360 1.200 plunky dp = mtod(m, u_char *);
1361 1.200 plunky memset(dp, 0, sizeof(struct in_addr));
1362 1.200 plunky dp += sizeof(struct in_addr);
1363 1.200 plunky m->m_len = sizeof(struct in_addr);
1364 1.200 plunky
1365 1.1 cgd /*
1366 1.200 plunky * IP option list according to RFC791. Each option is of the form
1367 1.200 plunky *
1368 1.200 plunky * [optval] [olen] [(olen - 2) data bytes]
1369 1.200 plunky *
1370 1.226 rmind * We validate the list and copy options to an mbuf for prepending
1371 1.200 plunky * to data packets. The IP first-hop destination address will be
1372 1.200 plunky * stored before actual options and is zero if unset.
1373 1.1 cgd */
1374 1.200 plunky while (cnt > 0) {
1375 1.226 rmind uint8_t optval, olen, offset;
1376 1.226 rmind
1377 1.200 plunky optval = cp[IPOPT_OPTVAL];
1378 1.1 cgd
1379 1.200 plunky if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1380 1.200 plunky olen = 1;
1381 1.200 plunky } else {
1382 1.200 plunky if (cnt < IPOPT_OLEN + 1)
1383 1.74 itojun goto bad;
1384 1.200 plunky
1385 1.200 plunky olen = cp[IPOPT_OLEN];
1386 1.200 plunky if (olen < IPOPT_OLEN + 1 || olen > cnt)
1387 1.1 cgd goto bad;
1388 1.1 cgd }
1389 1.1 cgd
1390 1.200 plunky if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1391 1.1 cgd /*
1392 1.1 cgd * user process specifies route as:
1393 1.1 cgd * ->A->B->C->D
1394 1.1 cgd * D must be our final destination (but we can't
1395 1.1 cgd * check that since we may not have connected yet).
1396 1.1 cgd * A is first hop destination, which doesn't appear in
1397 1.1 cgd * actual IP option, but is stored before the options.
1398 1.1 cgd */
1399 1.200 plunky if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1400 1.1 cgd goto bad;
1401 1.200 plunky
1402 1.200 plunky offset = cp[IPOPT_OFFSET];
1403 1.200 plunky memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1404 1.200 plunky sizeof(struct in_addr));
1405 1.200 plunky
1406 1.200 plunky cp += sizeof(struct in_addr);
1407 1.1 cgd cnt -= sizeof(struct in_addr);
1408 1.200 plunky olen -= sizeof(struct in_addr);
1409 1.200 plunky
1410 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1411 1.200 plunky goto bad;
1412 1.200 plunky
1413 1.200 plunky memcpy(dp, cp, olen);
1414 1.200 plunky dp[IPOPT_OPTVAL] = optval;
1415 1.200 plunky dp[IPOPT_OLEN] = olen;
1416 1.200 plunky dp[IPOPT_OFFSET] = offset;
1417 1.200 plunky break;
1418 1.200 plunky } else {
1419 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1420 1.200 plunky goto bad;
1421 1.200 plunky
1422 1.200 plunky memcpy(dp, cp, olen);
1423 1.1 cgd break;
1424 1.1 cgd }
1425 1.200 plunky
1426 1.200 plunky dp += olen;
1427 1.200 plunky m->m_len += olen;
1428 1.200 plunky
1429 1.200 plunky if (optval == IPOPT_EOL)
1430 1.200 plunky break;
1431 1.200 plunky
1432 1.200 plunky cp += olen;
1433 1.200 plunky cnt -= olen;
1434 1.1 cgd }
1435 1.200 plunky
1436 1.226 rmind inp->inp_options = m;
1437 1.226 rmind return 0;
1438 1.1 cgd bad:
1439 1.1 cgd (void)m_free(m);
1440 1.226 rmind return EINVAL;
1441 1.1 cgd }
1442 1.5 hpeyerl
1443 1.5 hpeyerl /*
1444 1.81 itojun * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1445 1.81 itojun */
1446 1.81 itojun static struct ifnet *
1447 1.140 perry ip_multicast_if(struct in_addr *a, int *ifindexp)
1448 1.81 itojun {
1449 1.81 itojun int ifindex;
1450 1.111 itojun struct ifnet *ifp = NULL;
1451 1.110 itojun struct in_ifaddr *ia;
1452 1.81 itojun
1453 1.81 itojun if (ifindexp)
1454 1.81 itojun *ifindexp = 0;
1455 1.81 itojun if (ntohl(a->s_addr) >> 24 == 0) {
1456 1.81 itojun ifindex = ntohl(a->s_addr) & 0xffffff;
1457 1.225 rmind ifp = if_byindex(ifindex);
1458 1.129 itojun if (!ifp)
1459 1.129 itojun return NULL;
1460 1.81 itojun if (ifindexp)
1461 1.81 itojun *ifindexp = ifindex;
1462 1.81 itojun } else {
1463 1.110 itojun LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1464 1.110 itojun if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1465 1.111 itojun (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1466 1.111 itojun ifp = ia->ia_ifp;
1467 1.110 itojun break;
1468 1.111 itojun }
1469 1.110 itojun }
1470 1.81 itojun }
1471 1.81 itojun return ifp;
1472 1.81 itojun }
1473 1.81 itojun
1474 1.156 christos static int
1475 1.198 plunky ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1476 1.156 christos {
1477 1.156 christos u_int tval;
1478 1.197 plunky u_char cval;
1479 1.197 plunky int error;
1480 1.156 christos
1481 1.197 plunky if (sopt == NULL)
1482 1.156 christos return EINVAL;
1483 1.156 christos
1484 1.197 plunky switch (sopt->sopt_size) {
1485 1.156 christos case sizeof(u_char):
1486 1.197 plunky error = sockopt_get(sopt, &cval, sizeof(u_char));
1487 1.197 plunky tval = cval;
1488 1.156 christos break;
1489 1.197 plunky
1490 1.156 christos case sizeof(u_int):
1491 1.197 plunky error = sockopt_get(sopt, &tval, sizeof(u_int));
1492 1.156 christos break;
1493 1.197 plunky
1494 1.156 christos default:
1495 1.197 plunky error = EINVAL;
1496 1.156 christos }
1497 1.156 christos
1498 1.197 plunky if (error)
1499 1.197 plunky return error;
1500 1.197 plunky
1501 1.156 christos if (tval > maxval)
1502 1.156 christos return EINVAL;
1503 1.156 christos
1504 1.156 christos *val = tval;
1505 1.156 christos return 0;
1506 1.156 christos }
1507 1.156 christos
1508 1.232 christos static int
1509 1.232 christos ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1510 1.232 christos struct in_addr *ia, bool add)
1511 1.232 christos {
1512 1.232 christos int error;
1513 1.232 christos struct ip_mreq mreq;
1514 1.232 christos
1515 1.232 christos error = sockopt_get(sopt, &mreq, sizeof(mreq));
1516 1.232 christos if (error)
1517 1.232 christos return error;
1518 1.232 christos
1519 1.232 christos if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1520 1.232 christos return EINVAL;
1521 1.232 christos
1522 1.232 christos memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1523 1.232 christos
1524 1.232 christos if (in_nullhost(mreq.imr_interface)) {
1525 1.232 christos union {
1526 1.232 christos struct sockaddr dst;
1527 1.232 christos struct sockaddr_in dst4;
1528 1.232 christos } u;
1529 1.232 christos struct route ro;
1530 1.232 christos
1531 1.232 christos if (!add) {
1532 1.232 christos *ifp = NULL;
1533 1.232 christos return 0;
1534 1.232 christos }
1535 1.232 christos /*
1536 1.232 christos * If no interface address was provided, use the interface of
1537 1.232 christos * the route to the given multicast address.
1538 1.232 christos */
1539 1.232 christos struct rtentry *rt;
1540 1.232 christos memset(&ro, 0, sizeof(ro));
1541 1.232 christos
1542 1.232 christos sockaddr_in_init(&u.dst4, ia, 0);
1543 1.238 ozaki error = rtcache_setdst(&ro, &u.dst);
1544 1.238 ozaki if (error != 0)
1545 1.238 ozaki return error;
1546 1.232 christos *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1547 1.264 ozaki rtcache_unref(rt, &ro);
1548 1.232 christos rtcache_free(&ro);
1549 1.232 christos } else {
1550 1.232 christos *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1551 1.232 christos if (!add && *ifp == NULL)
1552 1.232 christos return EADDRNOTAVAIL;
1553 1.232 christos }
1554 1.232 christos return 0;
1555 1.232 christos }
1556 1.232 christos
1557 1.232 christos /*
1558 1.232 christos * Add a multicast group membership.
1559 1.232 christos * Group must be a valid IP multicast address.
1560 1.232 christos */
1561 1.232 christos static int
1562 1.232 christos ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1563 1.232 christos {
1564 1.255 ozaki struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1565 1.232 christos struct in_addr ia;
1566 1.232 christos int i, error;
1567 1.232 christos
1568 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1569 1.232 christos error = ip_get_membership(sopt, &ifp, &ia, true);
1570 1.232 christos else
1571 1.232 christos #ifdef INET6
1572 1.232 christos error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1573 1.232 christos #else
1574 1.232 christos return EINVAL;
1575 1.232 christos #endif
1576 1.232 christos
1577 1.232 christos if (error)
1578 1.232 christos return error;
1579 1.232 christos
1580 1.232 christos /*
1581 1.232 christos * See if we found an interface, and confirm that it
1582 1.232 christos * supports multicast.
1583 1.232 christos */
1584 1.232 christos if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
1585 1.232 christos return EADDRNOTAVAIL;
1586 1.232 christos
1587 1.232 christos /*
1588 1.232 christos * See if the membership already exists or if all the
1589 1.232 christos * membership slots are full.
1590 1.232 christos */
1591 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1592 1.232 christos if (imo->imo_membership[i]->inm_ifp == ifp &&
1593 1.232 christos in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1594 1.232 christos break;
1595 1.232 christos }
1596 1.232 christos if (i < imo->imo_num_memberships)
1597 1.232 christos return EADDRINUSE;
1598 1.232 christos
1599 1.232 christos if (i == IP_MAX_MEMBERSHIPS)
1600 1.232 christos return ETOOMANYREFS;
1601 1.232 christos
1602 1.232 christos /*
1603 1.232 christos * Everything looks good; add a new record to the multicast
1604 1.232 christos * address list for the given interface.
1605 1.232 christos */
1606 1.232 christos if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL)
1607 1.232 christos return ENOBUFS;
1608 1.232 christos
1609 1.232 christos ++imo->imo_num_memberships;
1610 1.232 christos return 0;
1611 1.232 christos }
1612 1.232 christos
1613 1.232 christos /*
1614 1.232 christos * Drop a multicast group membership.
1615 1.232 christos * Group must be a valid IP multicast address.
1616 1.232 christos */
1617 1.232 christos static int
1618 1.232 christos ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1619 1.232 christos {
1620 1.254 christos struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1621 1.254 christos struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1622 1.232 christos int i, error;
1623 1.232 christos
1624 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1625 1.232 christos error = ip_get_membership(sopt, &ifp, &ia, false);
1626 1.232 christos else
1627 1.232 christos #ifdef INET6
1628 1.232 christos error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia));
1629 1.232 christos #else
1630 1.232 christos return EINVAL;
1631 1.232 christos #endif
1632 1.232 christos
1633 1.232 christos if (error)
1634 1.232 christos return error;
1635 1.232 christos
1636 1.232 christos /*
1637 1.232 christos * Find the membership in the membership array.
1638 1.232 christos */
1639 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1640 1.232 christos if ((ifp == NULL ||
1641 1.232 christos imo->imo_membership[i]->inm_ifp == ifp) &&
1642 1.237 ozaki in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1643 1.232 christos break;
1644 1.232 christos }
1645 1.232 christos if (i == imo->imo_num_memberships)
1646 1.232 christos return EADDRNOTAVAIL;
1647 1.232 christos
1648 1.232 christos /*
1649 1.232 christos * Give up the multicast address record to which the
1650 1.232 christos * membership points.
1651 1.232 christos */
1652 1.232 christos in_delmulti(imo->imo_membership[i]);
1653 1.232 christos
1654 1.232 christos /*
1655 1.232 christos * Remove the gap in the membership array.
1656 1.232 christos */
1657 1.232 christos for (++i; i < imo->imo_num_memberships; ++i)
1658 1.232 christos imo->imo_membership[i-1] = imo->imo_membership[i];
1659 1.232 christos --imo->imo_num_memberships;
1660 1.232 christos return 0;
1661 1.232 christos }
1662 1.232 christos
1663 1.81 itojun /*
1664 1.5 hpeyerl * Set the IP multicast options in response to user setsockopt().
1665 1.5 hpeyerl */
1666 1.231 christos int
1667 1.231 christos ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1668 1.5 hpeyerl {
1669 1.231 christos struct ip_moptions *imo = *pimo;
1670 1.5 hpeyerl struct in_addr addr;
1671 1.71 augustss struct ifnet *ifp;
1672 1.232 christos int ifindex, error = 0;
1673 1.5 hpeyerl
1674 1.226 rmind if (!imo) {
1675 1.5 hpeyerl /*
1676 1.5 hpeyerl * No multicast option buffer attached to the pcb;
1677 1.5 hpeyerl * allocate one and initialize to default values.
1678 1.5 hpeyerl */
1679 1.215 rmind imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1680 1.5 hpeyerl if (imo == NULL)
1681 1.215 rmind return ENOBUFS;
1682 1.199 plunky
1683 1.258 ozaki imo->imo_multicast_if_index = 0;
1684 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1685 1.5 hpeyerl imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1686 1.5 hpeyerl imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1687 1.5 hpeyerl imo->imo_num_memberships = 0;
1688 1.231 christos *pimo = imo;
1689 1.5 hpeyerl }
1690 1.5 hpeyerl
1691 1.197 plunky switch (sopt->sopt_name) {
1692 1.5 hpeyerl case IP_MULTICAST_IF:
1693 1.5 hpeyerl /*
1694 1.5 hpeyerl * Select the interface for outgoing multicast packets.
1695 1.5 hpeyerl */
1696 1.197 plunky error = sockopt_get(sopt, &addr, sizeof(addr));
1697 1.197 plunky if (error)
1698 1.5 hpeyerl break;
1699 1.197 plunky
1700 1.5 hpeyerl /*
1701 1.5 hpeyerl * INADDR_ANY is used to remove a previous selection.
1702 1.11 mycroft * When no interface is selected, a default one is
1703 1.5 hpeyerl * chosen every time a multicast packet is sent.
1704 1.5 hpeyerl */
1705 1.31 mycroft if (in_nullhost(addr)) {
1706 1.258 ozaki imo->imo_multicast_if_index = 0;
1707 1.5 hpeyerl break;
1708 1.5 hpeyerl }
1709 1.5 hpeyerl /*
1710 1.5 hpeyerl * The selected interface is identified by its local
1711 1.5 hpeyerl * IP address. Find the interface and confirm that
1712 1.11 mycroft * it supports multicasting.
1713 1.5 hpeyerl */
1714 1.81 itojun ifp = ip_multicast_if(&addr, &ifindex);
1715 1.5 hpeyerl if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1716 1.5 hpeyerl error = EADDRNOTAVAIL;
1717 1.5 hpeyerl break;
1718 1.5 hpeyerl }
1719 1.258 ozaki imo->imo_multicast_if_index = ifp->if_index;
1720 1.81 itojun if (ifindex)
1721 1.81 itojun imo->imo_multicast_addr = addr;
1722 1.81 itojun else
1723 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1724 1.5 hpeyerl break;
1725 1.5 hpeyerl
1726 1.5 hpeyerl case IP_MULTICAST_TTL:
1727 1.5 hpeyerl /*
1728 1.5 hpeyerl * Set the IP time-to-live for outgoing multicast packets.
1729 1.5 hpeyerl */
1730 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1731 1.5 hpeyerl break;
1732 1.11 mycroft
1733 1.5 hpeyerl case IP_MULTICAST_LOOP:
1734 1.5 hpeyerl /*
1735 1.5 hpeyerl * Set the loopback flag for outgoing multicast packets.
1736 1.5 hpeyerl * Must be zero or one.
1737 1.5 hpeyerl */
1738 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1739 1.5 hpeyerl break;
1740 1.5 hpeyerl
1741 1.232 christos case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1742 1.232 christos error = ip_add_membership(imo, sopt);
1743 1.5 hpeyerl break;
1744 1.5 hpeyerl
1745 1.232 christos case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1746 1.232 christos error = ip_drop_membership(imo, sopt);
1747 1.5 hpeyerl break;
1748 1.5 hpeyerl
1749 1.5 hpeyerl default:
1750 1.5 hpeyerl error = EOPNOTSUPP;
1751 1.5 hpeyerl break;
1752 1.5 hpeyerl }
1753 1.5 hpeyerl
1754 1.5 hpeyerl /*
1755 1.5 hpeyerl * If all options have default values, no need to keep the mbuf.
1756 1.5 hpeyerl */
1757 1.258 ozaki if (imo->imo_multicast_if_index == 0 &&
1758 1.5 hpeyerl imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1759 1.5 hpeyerl imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1760 1.5 hpeyerl imo->imo_num_memberships == 0) {
1761 1.215 rmind kmem_free(imo, sizeof(*imo));
1762 1.231 christos *pimo = NULL;
1763 1.5 hpeyerl }
1764 1.5 hpeyerl
1765 1.215 rmind return error;
1766 1.5 hpeyerl }
1767 1.5 hpeyerl
1768 1.5 hpeyerl /*
1769 1.5 hpeyerl * Return the IP multicast options in response to user getsockopt().
1770 1.5 hpeyerl */
1771 1.231 christos int
1772 1.231 christos ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1773 1.5 hpeyerl {
1774 1.197 plunky struct in_addr addr;
1775 1.197 plunky uint8_t optval;
1776 1.226 rmind int error = 0;
1777 1.5 hpeyerl
1778 1.197 plunky switch (sopt->sopt_name) {
1779 1.5 hpeyerl case IP_MULTICAST_IF:
1780 1.258 ozaki if (imo == NULL || imo->imo_multicast_if_index == 0)
1781 1.197 plunky addr = zeroin_addr;
1782 1.81 itojun else if (imo->imo_multicast_addr.s_addr) {
1783 1.81 itojun /* return the value user has set */
1784 1.197 plunky addr = imo->imo_multicast_addr;
1785 1.81 itojun } else {
1786 1.258 ozaki struct ifnet *ifp;
1787 1.258 ozaki struct in_ifaddr *ia = NULL;
1788 1.258 ozaki int s = pserialize_read_enter();
1789 1.258 ozaki
1790 1.258 ozaki ifp = if_byindex(imo->imo_multicast_if_index);
1791 1.258 ozaki if (ifp != NULL) {
1792 1.259 ozaki ia = in_get_ia_from_ifp(ifp);
1793 1.258 ozaki }
1794 1.197 plunky addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1795 1.258 ozaki pserialize_read_exit(s);
1796 1.5 hpeyerl }
1797 1.197 plunky error = sockopt_set(sopt, &addr, sizeof(addr));
1798 1.197 plunky break;
1799 1.5 hpeyerl
1800 1.5 hpeyerl case IP_MULTICAST_TTL:
1801 1.197 plunky optval = imo ? imo->imo_multicast_ttl
1802 1.237 ozaki : IP_DEFAULT_MULTICAST_TTL;
1803 1.197 plunky
1804 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1805 1.197 plunky break;
1806 1.5 hpeyerl
1807 1.5 hpeyerl case IP_MULTICAST_LOOP:
1808 1.197 plunky optval = imo ? imo->imo_multicast_loop
1809 1.237 ozaki : IP_DEFAULT_MULTICAST_LOOP;
1810 1.197 plunky
1811 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1812 1.197 plunky break;
1813 1.5 hpeyerl
1814 1.5 hpeyerl default:
1815 1.197 plunky error = EOPNOTSUPP;
1816 1.5 hpeyerl }
1817 1.197 plunky
1818 1.226 rmind return error;
1819 1.5 hpeyerl }
1820 1.5 hpeyerl
1821 1.5 hpeyerl /*
1822 1.5 hpeyerl * Discard the IP multicast options.
1823 1.5 hpeyerl */
1824 1.5 hpeyerl void
1825 1.140 perry ip_freemoptions(struct ip_moptions *imo)
1826 1.5 hpeyerl {
1827 1.71 augustss int i;
1828 1.5 hpeyerl
1829 1.5 hpeyerl if (imo != NULL) {
1830 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i)
1831 1.5 hpeyerl in_delmulti(imo->imo_membership[i]);
1832 1.215 rmind kmem_free(imo, sizeof(*imo));
1833 1.5 hpeyerl }
1834 1.5 hpeyerl }
1835 1.5 hpeyerl
1836 1.5 hpeyerl /*
1837 1.5 hpeyerl * Routine called from ip_output() to loop back a copy of an IP multicast
1838 1.5 hpeyerl * packet to the input queue of a specified interface. Note that this
1839 1.5 hpeyerl * calls the output routine of the loopback "driver", but with an interface
1840 1.137 peter * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1841 1.5 hpeyerl */
1842 1.12 mycroft static void
1843 1.180 dyoung ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1844 1.5 hpeyerl {
1845 1.71 augustss struct ip *ip;
1846 1.5 hpeyerl struct mbuf *copym;
1847 1.5 hpeyerl
1848 1.183 dyoung copym = m_copypacket(m, M_DONTWAIT);
1849 1.237 ozaki if (copym != NULL &&
1850 1.237 ozaki (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1851 1.65 itojun copym = m_pullup(copym, sizeof(struct ip));
1852 1.180 dyoung if (copym == NULL)
1853 1.180 dyoung return;
1854 1.180 dyoung /*
1855 1.180 dyoung * We don't bother to fragment if the IP length is greater
1856 1.180 dyoung * than the interface's MTU. Can this possibly matter?
1857 1.180 dyoung */
1858 1.180 dyoung ip = mtod(copym, struct ip *);
1859 1.93 itojun
1860 1.180 dyoung if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1861 1.180 dyoung in_delayed_cksum(copym);
1862 1.180 dyoung copym->m_pkthdr.csum_flags &=
1863 1.180 dyoung ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1864 1.180 dyoung }
1865 1.93 itojun
1866 1.180 dyoung ip->ip_sum = 0;
1867 1.180 dyoung ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1868 1.236 ozaki #ifndef NET_MPSAFE
1869 1.233 ozaki KERNEL_LOCK(1, NULL);
1870 1.236 ozaki #endif
1871 1.180 dyoung (void)looutput(ifp, copym, sintocsa(dst), NULL);
1872 1.236 ozaki #ifndef NET_MPSAFE
1873 1.233 ozaki KERNEL_UNLOCK_ONE(NULL);
1874 1.236 ozaki #endif
1875 1.5 hpeyerl }
1876 1.261 roy
1877 1.261 roy /*
1878 1.261 roy * Ensure sending address is valid.
1879 1.261 roy * Returns 0 on success, -1 if an error should be sent back or 1
1880 1.261 roy * if the packet could be dropped without error (protocol dependent).
1881 1.261 roy */
1882 1.261 roy static int
1883 1.261 roy ip_ifaddrvalid(const struct in_ifaddr *ia)
1884 1.261 roy {
1885 1.261 roy
1886 1.261 roy if (ia == NULL)
1887 1.261 roy return -1;
1888 1.261 roy
1889 1.261 roy if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
1890 1.261 roy return 0;
1891 1.261 roy
1892 1.261 roy if (ia->ia4_flags & IN_IFF_DUPLICATED)
1893 1.261 roy return -1;
1894 1.261 roy else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
1895 1.261 roy return 1;
1896 1.261 roy
1897 1.261 roy return 0;
1898 1.261 roy }
1899