ip_output.c revision 1.279 1 1.279 ryo /* $NetBSD: ip_output.c,v 1.279 2017/05/12 17:53:54 ryo Exp $ */
2 1.61 itojun
3 1.61 itojun /*
4 1.61 itojun * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 1.61 itojun * All rights reserved.
6 1.97 itojun *
7 1.61 itojun * Redistribution and use in source and binary forms, with or without
8 1.61 itojun * modification, are permitted provided that the following conditions
9 1.61 itojun * are met:
10 1.61 itojun * 1. Redistributions of source code must retain the above copyright
11 1.61 itojun * notice, this list of conditions and the following disclaimer.
12 1.61 itojun * 2. Redistributions in binary form must reproduce the above copyright
13 1.61 itojun * notice, this list of conditions and the following disclaimer in the
14 1.61 itojun * documentation and/or other materials provided with the distribution.
15 1.61 itojun * 3. Neither the name of the project nor the names of its contributors
16 1.61 itojun * may be used to endorse or promote products derived from this software
17 1.61 itojun * without specific prior written permission.
18 1.97 itojun *
19 1.61 itojun * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 1.61 itojun * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.61 itojun * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.61 itojun * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 1.61 itojun * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.61 itojun * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.61 itojun * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.61 itojun * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.61 itojun * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.61 itojun * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.61 itojun * SUCH DAMAGE.
30 1.61 itojun */
31 1.54 thorpej
32 1.54 thorpej /*-
33 1.54 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 1.54 thorpej * All rights reserved.
35 1.54 thorpej *
36 1.54 thorpej * This code is derived from software contributed to The NetBSD Foundation
37 1.54 thorpej * by Public Access Networks Corporation ("Panix"). It was developed under
38 1.54 thorpej * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 1.54 thorpej *
40 1.54 thorpej * Redistribution and use in source and binary forms, with or without
41 1.54 thorpej * modification, are permitted provided that the following conditions
42 1.54 thorpej * are met:
43 1.54 thorpej * 1. Redistributions of source code must retain the above copyright
44 1.54 thorpej * notice, this list of conditions and the following disclaimer.
45 1.54 thorpej * 2. Redistributions in binary form must reproduce the above copyright
46 1.54 thorpej * notice, this list of conditions and the following disclaimer in the
47 1.54 thorpej * documentation and/or other materials provided with the distribution.
48 1.54 thorpej *
49 1.54 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 1.54 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 1.54 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 1.54 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 1.54 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 1.54 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 1.54 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 1.54 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 1.54 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 1.54 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 1.54 thorpej * POSSIBILITY OF SUCH DAMAGE.
60 1.54 thorpej */
61 1.19 cgd
62 1.1 cgd /*
63 1.18 mycroft * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 1.18 mycroft * The Regents of the University of California. All rights reserved.
65 1.1 cgd *
66 1.1 cgd * Redistribution and use in source and binary forms, with or without
67 1.1 cgd * modification, are permitted provided that the following conditions
68 1.1 cgd * are met:
69 1.1 cgd * 1. Redistributions of source code must retain the above copyright
70 1.1 cgd * notice, this list of conditions and the following disclaimer.
71 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
72 1.1 cgd * notice, this list of conditions and the following disclaimer in the
73 1.1 cgd * documentation and/or other materials provided with the distribution.
74 1.108 agc * 3. Neither the name of the University nor the names of its contributors
75 1.1 cgd * may be used to endorse or promote products derived from this software
76 1.1 cgd * without specific prior written permission.
77 1.1 cgd *
78 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 1.1 cgd * SUCH DAMAGE.
89 1.1 cgd *
90 1.19 cgd * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 1.1 cgd */
92 1.89 lukem
93 1.89 lukem #include <sys/cdefs.h>
94 1.279 ryo __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.279 2017/05/12 17:53:54 ryo Exp $");
95 1.42 scottr
96 1.246 pooka #ifdef _KERNEL_OPT
97 1.128 jonathan #include "opt_inet.h"
98 1.62 thorpej #include "opt_ipsec.h"
99 1.42 scottr #include "opt_mrouting.h"
100 1.236 ozaki #include "opt_net_mpsafe.h"
101 1.239 ozaki #include "opt_mpls.h"
102 1.246 pooka #endif
103 1.1 cgd
104 1.262 christos #include "arp.h"
105 1.262 christos
106 1.8 mycroft #include <sys/param.h>
107 1.215 rmind #include <sys/kmem.h>
108 1.8 mycroft #include <sys/mbuf.h>
109 1.8 mycroft #include <sys/socket.h>
110 1.8 mycroft #include <sys/socketvar.h>
111 1.162 christos #include <sys/kauth.h>
112 1.28 christos #include <sys/systm.h>
113 1.260 ozaki #include <sys/syslog.h>
114 1.61 itojun
115 1.8 mycroft #include <net/if.h>
116 1.239 ozaki #include <net/if_types.h>
117 1.8 mycroft #include <net/route.h>
118 1.38 mrg #include <net/pfil.h>
119 1.1 cgd
120 1.8 mycroft #include <netinet/in.h>
121 1.8 mycroft #include <netinet/in_systm.h>
122 1.8 mycroft #include <netinet/ip.h>
123 1.8 mycroft #include <netinet/in_pcb.h>
124 1.8 mycroft #include <netinet/in_var.h>
125 1.8 mycroft #include <netinet/ip_var.h>
126 1.194 thorpej #include <netinet/ip_private.h>
127 1.152 yamt #include <netinet/in_offload.h>
128 1.217 christos #include <netinet/portalgo.h>
129 1.219 christos #include <netinet/udp.h>
130 1.72 jdolecek
131 1.232 christos #ifdef INET6
132 1.232 christos #include <netinet6/ip6_var.h>
133 1.232 christos #endif
134 1.232 christos
135 1.72 jdolecek #ifdef MROUTING
136 1.72 jdolecek #include <netinet/ip_mroute.h>
137 1.72 jdolecek #endif
138 1.32 mrg
139 1.235 ozaki #ifdef IPSEC
140 1.109 jonathan #include <netipsec/ipsec.h>
141 1.109 jonathan #include <netipsec/key.h>
142 1.235 ozaki #endif
143 1.160 christos
144 1.239 ozaki #ifdef MPLS
145 1.239 ozaki #include <netmpls/mpls.h>
146 1.239 ozaki #include <netmpls/mpls_var.h>
147 1.239 ozaki #endif
148 1.239 ozaki
149 1.226 rmind static int ip_pcbopts(struct inpcb *, const struct sockopt *);
150 1.139 perry static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
151 1.139 perry static struct ifnet *ip_multicast_if(struct in_addr *, int *);
152 1.180 dyoung static void ip_mloopback(struct ifnet *, struct mbuf *,
153 1.180 dyoung const struct sockaddr_in *);
154 1.261 roy static int ip_ifaddrvalid(const struct in_ifaddr *);
155 1.1 cgd
156 1.224 rmind extern pfil_head_t *inet_pfil_hook; /* XXX */
157 1.78 thorpej
158 1.151 yamt int ip_do_loopback_cksum = 0;
159 1.151 yamt
160 1.250 ozaki static int
161 1.253 ozaki ip_mark_mpls(struct ifnet * const ifp, struct mbuf * const m,
162 1.253 ozaki const struct rtentry *rt)
163 1.250 ozaki {
164 1.250 ozaki int error = 0;
165 1.250 ozaki #ifdef MPLS
166 1.250 ozaki union mpls_shim msh;
167 1.250 ozaki
168 1.250 ozaki if (rt == NULL || rt_gettag(rt) == NULL ||
169 1.250 ozaki rt_gettag(rt)->sa_family != AF_MPLS ||
170 1.250 ozaki (m->m_flags & (M_MCAST | M_BCAST)) != 0 ||
171 1.250 ozaki ifp->if_type != IFT_ETHER)
172 1.250 ozaki return 0;
173 1.250 ozaki
174 1.250 ozaki msh.s_addr = MPLS_GETSADDR(rt);
175 1.250 ozaki if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
176 1.250 ozaki struct m_tag *mtag;
177 1.250 ozaki /*
178 1.250 ozaki * XXX tentative solution to tell ether_output
179 1.250 ozaki * it's MPLS. Need some more efficient solution.
180 1.250 ozaki */
181 1.250 ozaki mtag = m_tag_get(PACKET_TAG_MPLS,
182 1.250 ozaki sizeof(int) /* dummy */,
183 1.250 ozaki M_NOWAIT);
184 1.250 ozaki if (mtag == NULL)
185 1.250 ozaki return ENOMEM;
186 1.250 ozaki m_tag_prepend(m, mtag);
187 1.250 ozaki }
188 1.250 ozaki #endif
189 1.250 ozaki return error;
190 1.250 ozaki }
191 1.250 ozaki
192 1.239 ozaki /*
193 1.239 ozaki * Send an IP packet to a host.
194 1.239 ozaki */
195 1.239 ozaki int
196 1.252 ozaki ip_if_output(struct ifnet * const ifp, struct mbuf * const m,
197 1.253 ozaki const struct sockaddr * const dst, const struct rtentry *rt)
198 1.239 ozaki {
199 1.239 ozaki int error = 0;
200 1.244 ozaki
201 1.252 ozaki if (rt != NULL) {
202 1.252 ozaki error = rt_check_reject_route(rt, ifp);
203 1.252 ozaki if (error != 0) {
204 1.252 ozaki m_freem(m);
205 1.252 ozaki return error;
206 1.239 ozaki }
207 1.239 ozaki }
208 1.252 ozaki
209 1.252 ozaki error = ip_mark_mpls(ifp, m, rt);
210 1.252 ozaki if (error != 0) {
211 1.252 ozaki m_freem(m);
212 1.252 ozaki return error;
213 1.239 ozaki }
214 1.239 ozaki
215 1.257 knakahar error = if_output_lock(ifp, ifp, m, dst, rt);
216 1.239 ozaki
217 1.239 ozaki return error;
218 1.239 ozaki }
219 1.239 ozaki
220 1.1 cgd /*
221 1.1 cgd * IP output. The packet in mbuf chain m contains a skeletal IP
222 1.1 cgd * header (with len, off, ttl, proto, tos, src, dst).
223 1.1 cgd * The mbuf chain containing the packet will be freed.
224 1.1 cgd * The mbuf opt, if present, will not be freed.
225 1.1 cgd */
226 1.12 mycroft int
227 1.248 riastrad ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
228 1.275 ozaki struct ip_moptions *imo, struct inpcb *inp)
229 1.1 cgd {
230 1.186 dyoung struct rtentry *rt;
231 1.110 itojun struct ip *ip;
232 1.258 ozaki struct ifnet *ifp, *mifp = NULL;
233 1.71 augustss struct mbuf *m = m0;
234 1.71 augustss int hlen = sizeof (struct ip);
235 1.110 itojun int len, error = 0;
236 1.1 cgd struct route iproute;
237 1.180 dyoung const struct sockaddr_in *dst;
238 1.260 ozaki struct in_ifaddr *ia = NULL;
239 1.234 roy int isbroadcast;
240 1.248 riastrad int sw_csum;
241 1.96 itojun u_long mtu;
242 1.221 rmind bool natt_frag = false;
243 1.230 rmind bool rtmtu_nolock;
244 1.180 dyoung union {
245 1.180 dyoung struct sockaddr dst;
246 1.180 dyoung struct sockaddr_in dst4;
247 1.180 dyoung } u;
248 1.180 dyoung struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
249 1.180 dyoung * to the nexthop
250 1.180 dyoung */
251 1.260 ozaki struct psref psref, psref_ia;
252 1.258 ozaki int bound;
253 1.260 ozaki bool bind_need_restore = false;
254 1.28 christos
255 1.102 darrenr len = 0;
256 1.28 christos
257 1.103 matt MCLAIM(m, &ip_tx_mowner);
258 1.61 itojun
259 1.226 rmind KASSERT((m->m_flags & M_PKTHDR) != 0);
260 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
261 1.226 rmind KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
262 1.226 rmind (M_CSUM_TCPv4|M_CSUM_UDPv4));
263 1.163 tron
264 1.1 cgd if (opt) {
265 1.1 cgd m = ip_insertoptions(m, opt, &len);
266 1.102 darrenr if (len >= sizeof(struct ip))
267 1.102 darrenr hlen = len;
268 1.1 cgd }
269 1.1 cgd ip = mtod(m, struct ip *);
270 1.226 rmind
271 1.1 cgd /*
272 1.1 cgd * Fill in IP header.
273 1.1 cgd */
274 1.18 mycroft if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
275 1.1 cgd ip->ip_v = IPVERSION;
276 1.100 itojun ip->ip_off = htons(0);
277 1.192 matt /* ip->ip_id filled in after we find out source ia */
278 1.1 cgd ip->ip_hl = hlen >> 2;
279 1.194 thorpej IP_STATINC(IP_STAT_LOCALOUT);
280 1.1 cgd } else {
281 1.1 cgd hlen = ip->ip_hl << 2;
282 1.1 cgd }
283 1.226 rmind
284 1.1 cgd /*
285 1.1 cgd * Route packet.
286 1.1 cgd */
287 1.230 rmind if (ro == NULL) {
288 1.230 rmind memset(&iproute, 0, sizeof(iproute));
289 1.1 cgd ro = &iproute;
290 1.230 rmind }
291 1.180 dyoung sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
292 1.180 dyoung dst = satocsin(rtcache_getdst(ro));
293 1.226 rmind
294 1.1 cgd /*
295 1.226 rmind * If there is a cached route, check that it is to the same
296 1.226 rmind * destination and is still up. If not, free it and try again.
297 1.226 rmind * The address family should also be checked in case of sharing
298 1.226 rmind * the cache with IPv6.
299 1.1 cgd */
300 1.226 rmind if (dst && (dst->sin_family != AF_INET ||
301 1.226 rmind !in_hosteq(dst->sin_addr, ip->ip_dst)))
302 1.171 joerg rtcache_free(ro);
303 1.190 dyoung
304 1.190 dyoung if ((rt = rtcache_validate(ro)) == NULL &&
305 1.190 dyoung (rt = rtcache_update(ro, 1)) == NULL) {
306 1.180 dyoung dst = &u.dst4;
307 1.238 ozaki error = rtcache_setdst(ro, &u.dst);
308 1.238 ozaki if (error != 0)
309 1.238 ozaki goto bad;
310 1.1 cgd }
311 1.226 rmind
312 1.260 ozaki bound = curlwp_bind();
313 1.260 ozaki bind_need_restore = true;
314 1.1 cgd /*
315 1.226 rmind * If routing to interface only, short circuit routing lookup.
316 1.1 cgd */
317 1.1 cgd if (flags & IP_ROUTETOIF) {
318 1.260 ozaki struct ifaddr *ifa;
319 1.260 ozaki
320 1.260 ozaki ifa = ifa_ifwithladdr_psref(sintocsa(dst), &psref_ia);
321 1.260 ozaki if (ifa == NULL) {
322 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
323 1.1 cgd error = ENETUNREACH;
324 1.1 cgd goto bad;
325 1.1 cgd }
326 1.260 ozaki /* ia is already referenced by psref_ia */
327 1.260 ozaki ia = ifatoia(ifa);
328 1.260 ozaki
329 1.1 cgd ifp = ia->ia_ifp;
330 1.48 matt mtu = ifp->if_mtu;
331 1.18 mycroft ip->ip_ttl = 1;
332 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
333 1.98 itojun } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
334 1.98 itojun ip->ip_dst.s_addr == INADDR_BROADCAST) &&
335 1.258 ozaki imo != NULL && imo->imo_multicast_if_index != 0) {
336 1.258 ozaki ifp = mifp = if_get_byindex(imo->imo_multicast_if_index, &psref);
337 1.258 ozaki if (ifp == NULL) {
338 1.258 ozaki IP_STATINC(IP_STAT_NOROUTE);
339 1.258 ozaki error = ENETUNREACH;
340 1.258 ozaki goto bad;
341 1.258 ozaki }
342 1.98 itojun mtu = ifp->if_mtu;
343 1.260 ozaki ia = in_get_ia_from_ifp_psref(ifp, &psref_ia);
344 1.260 ozaki if (ia == NULL) {
345 1.260 ozaki error = EADDRNOTAVAIL;
346 1.260 ozaki goto bad;
347 1.260 ozaki }
348 1.234 roy isbroadcast = 0;
349 1.1 cgd } else {
350 1.186 dyoung if (rt == NULL)
351 1.190 dyoung rt = rtcache_init(ro);
352 1.190 dyoung if (rt == NULL) {
353 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
354 1.1 cgd error = EHOSTUNREACH;
355 1.1 cgd goto bad;
356 1.1 cgd }
357 1.265 ozaki if (ifa_is_destroying(rt->rt_ifa)) {
358 1.265 ozaki rtcache_unref(rt, ro);
359 1.266 knakahar rt = NULL;
360 1.265 ozaki IP_STATINC(IP_STAT_NOROUTE);
361 1.265 ozaki error = EHOSTUNREACH;
362 1.265 ozaki goto bad;
363 1.265 ozaki }
364 1.260 ozaki ifa_acquire(rt->rt_ifa, &psref_ia);
365 1.186 dyoung ia = ifatoia(rt->rt_ifa);
366 1.186 dyoung ifp = rt->rt_ifp;
367 1.186 dyoung if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
368 1.48 matt mtu = ifp->if_mtu;
369 1.186 dyoung rt->rt_use++;
370 1.186 dyoung if (rt->rt_flags & RTF_GATEWAY)
371 1.186 dyoung dst = satosin(rt->rt_gateway);
372 1.234 roy if (rt->rt_flags & RTF_HOST)
373 1.234 roy isbroadcast = rt->rt_flags & RTF_BROADCAST;
374 1.234 roy else
375 1.234 roy isbroadcast = in_broadcast(dst->sin_addr, ifp);
376 1.1 cgd }
377 1.230 rmind rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
378 1.226 rmind
379 1.64 is if (IN_MULTICAST(ip->ip_dst.s_addr) ||
380 1.64 is (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
381 1.228 rmind bool inmgroup;
382 1.5 hpeyerl
383 1.64 is m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
384 1.237 ozaki M_BCAST : M_MCAST;
385 1.5 hpeyerl /*
386 1.5 hpeyerl * See if the caller provided any multicast options
387 1.5 hpeyerl */
388 1.98 itojun if (imo != NULL)
389 1.5 hpeyerl ip->ip_ttl = imo->imo_multicast_ttl;
390 1.98 itojun else
391 1.5 hpeyerl ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
392 1.98 itojun
393 1.98 itojun /*
394 1.98 itojun * if we don't know the outgoing ifp yet, we can't generate
395 1.98 itojun * output
396 1.98 itojun */
397 1.98 itojun if (!ifp) {
398 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
399 1.98 itojun error = ENETUNREACH;
400 1.98 itojun goto bad;
401 1.98 itojun }
402 1.98 itojun
403 1.5 hpeyerl /*
404 1.95 thorpej * If the packet is multicast or broadcast, confirm that
405 1.95 thorpej * the outgoing interface can transmit it.
406 1.5 hpeyerl */
407 1.64 is if (((m->m_flags & M_MCAST) &&
408 1.64 is (ifp->if_flags & IFF_MULTICAST) == 0) ||
409 1.97 itojun ((m->m_flags & M_BCAST) &&
410 1.95 thorpej (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
411 1.194 thorpej IP_STATINC(IP_STAT_NOROUTE);
412 1.5 hpeyerl error = ENETUNREACH;
413 1.5 hpeyerl goto bad;
414 1.5 hpeyerl }
415 1.5 hpeyerl /*
416 1.44 tls * If source address not specified yet, use an address
417 1.5 hpeyerl * of outgoing interface.
418 1.5 hpeyerl */
419 1.31 mycroft if (in_nullhost(ip->ip_src)) {
420 1.153 christos struct in_ifaddr *xia;
421 1.230 rmind struct ifaddr *xifa;
422 1.260 ozaki struct psref _psref;
423 1.5 hpeyerl
424 1.260 ozaki xia = in_get_ia_from_ifp_psref(ifp, &_psref);
425 1.153 christos if (!xia) {
426 1.91 itojun error = EADDRNOTAVAIL;
427 1.91 itojun goto bad;
428 1.91 itojun }
429 1.166 dyoung xifa = &xia->ia_ifa;
430 1.166 dyoung if (xifa->ifa_getifa != NULL) {
431 1.260 ozaki ia4_release(xia, &_psref);
432 1.271 ozaki /* FIXME ifa_getifa is NOMPSAFE */
433 1.180 dyoung xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
434 1.240 roy if (xia == NULL) {
435 1.241 roy error = EADDRNOTAVAIL;
436 1.240 roy goto bad;
437 1.240 roy }
438 1.260 ozaki ia4_acquire(xia, &_psref);
439 1.166 dyoung }
440 1.153 christos ip->ip_src = xia->ia_addr.sin_addr;
441 1.260 ozaki ia4_release(xia, &_psref);
442 1.5 hpeyerl }
443 1.5 hpeyerl
444 1.228 rmind inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
445 1.228 rmind if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
446 1.5 hpeyerl /*
447 1.11 mycroft * If we belong to the destination multicast group
448 1.5 hpeyerl * on the outgoing interface, and the caller did not
449 1.5 hpeyerl * forbid loopback, loop back a copy.
450 1.5 hpeyerl */
451 1.180 dyoung ip_mloopback(ifp, m, &u.dst4);
452 1.5 hpeyerl }
453 1.5 hpeyerl #ifdef MROUTING
454 1.18 mycroft else {
455 1.5 hpeyerl /*
456 1.5 hpeyerl * If we are acting as a multicast router, perform
457 1.5 hpeyerl * multicast forwarding as if the packet had just
458 1.5 hpeyerl * arrived on the interface to which we are about
459 1.5 hpeyerl * to send. The multicast forwarding function
460 1.5 hpeyerl * recursively calls this function, using the
461 1.5 hpeyerl * IP_FORWARDING flag to prevent infinite recursion.
462 1.5 hpeyerl *
463 1.5 hpeyerl * Multicasts that are looped back by ip_mloopback(),
464 1.5 hpeyerl * above, will be forwarded by the ip_input() routine,
465 1.5 hpeyerl * if necessary.
466 1.5 hpeyerl */
467 1.18 mycroft extern struct socket *ip_mrouter;
468 1.22 cgd
469 1.18 mycroft if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
470 1.18 mycroft if (ip_mforward(m, ifp) != 0) {
471 1.18 mycroft m_freem(m);
472 1.18 mycroft goto done;
473 1.18 mycroft }
474 1.5 hpeyerl }
475 1.5 hpeyerl }
476 1.5 hpeyerl #endif
477 1.5 hpeyerl /*
478 1.5 hpeyerl * Multicasts with a time-to-live of zero may be looped-
479 1.5 hpeyerl * back, above, but must not be transmitted on a network.
480 1.5 hpeyerl * Also, multicasts addressed to the loopback interface
481 1.5 hpeyerl * are not sent -- the above call to ip_mloopback() will
482 1.5 hpeyerl * loop back a copy if this host actually belongs to the
483 1.5 hpeyerl * destination group on the loopback interface.
484 1.5 hpeyerl */
485 1.20 mycroft if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
486 1.5 hpeyerl m_freem(m);
487 1.5 hpeyerl goto done;
488 1.5 hpeyerl }
489 1.5 hpeyerl goto sendit;
490 1.5 hpeyerl }
491 1.230 rmind
492 1.1 cgd /*
493 1.1 cgd * If source address not specified yet, use address
494 1.1 cgd * of outgoing interface.
495 1.1 cgd */
496 1.166 dyoung if (in_nullhost(ip->ip_src)) {
497 1.230 rmind struct ifaddr *xifa;
498 1.230 rmind
499 1.166 dyoung xifa = &ia->ia_ifa;
500 1.240 roy if (xifa->ifa_getifa != NULL) {
501 1.260 ozaki ia4_release(ia, &psref_ia);
502 1.271 ozaki /* FIXME ifa_getifa is NOMPSAFE */
503 1.180 dyoung ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
504 1.240 roy if (ia == NULL) {
505 1.240 roy error = EADDRNOTAVAIL;
506 1.240 roy goto bad;
507 1.240 roy }
508 1.260 ozaki ia4_acquire(ia, &psref_ia);
509 1.240 roy }
510 1.25 mycroft ip->ip_src = ia->ia_addr.sin_addr;
511 1.166 dyoung }
512 1.59 hwr
513 1.59 hwr /*
514 1.97 itojun * packets with Class-D address as source are not valid per
515 1.59 hwr * RFC 1112
516 1.59 hwr */
517 1.59 hwr if (IN_MULTICAST(ip->ip_src.s_addr)) {
518 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
519 1.59 hwr error = EADDRNOTAVAIL;
520 1.59 hwr goto bad;
521 1.59 hwr }
522 1.59 hwr
523 1.1 cgd /*
524 1.230 rmind * Look for broadcast address and and verify user is allowed to
525 1.230 rmind * send such a packet.
526 1.1 cgd */
527 1.234 roy if (isbroadcast) {
528 1.1 cgd if ((ifp->if_flags & IFF_BROADCAST) == 0) {
529 1.1 cgd error = EADDRNOTAVAIL;
530 1.1 cgd goto bad;
531 1.1 cgd }
532 1.1 cgd if ((flags & IP_ALLOWBROADCAST) == 0) {
533 1.1 cgd error = EACCES;
534 1.1 cgd goto bad;
535 1.1 cgd }
536 1.1 cgd /* don't allow broadcast messages to be fragmented */
537 1.100 itojun if (ntohs(ip->ip_len) > ifp->if_mtu) {
538 1.1 cgd error = EMSGSIZE;
539 1.1 cgd goto bad;
540 1.1 cgd }
541 1.1 cgd m->m_flags |= M_BCAST;
542 1.18 mycroft } else
543 1.18 mycroft m->m_flags &= ~M_BCAST;
544 1.18 mycroft
545 1.60 mrg sendit:
546 1.192 matt if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
547 1.192 matt if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
548 1.192 matt ip->ip_id = 0;
549 1.192 matt } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
550 1.192 matt ip->ip_id = ip_newid(ia);
551 1.192 matt } else {
552 1.192 matt
553 1.192 matt /*
554 1.192 matt * TSO capable interfaces (typically?) increment
555 1.192 matt * ip_id for each segment.
556 1.192 matt * "allocate" enough ids here to increase the chance
557 1.192 matt * for them to be unique.
558 1.192 matt *
559 1.192 matt * note that the following calculation is not
560 1.192 matt * needed to be precise. wasting some ip_id is fine.
561 1.192 matt */
562 1.192 matt
563 1.192 matt unsigned int segsz = m->m_pkthdr.segsz;
564 1.192 matt unsigned int datasz = ntohs(ip->ip_len) - hlen;
565 1.192 matt unsigned int num = howmany(datasz, segsz);
566 1.192 matt
567 1.192 matt ip->ip_id = ip_newid_range(ia, num);
568 1.192 matt }
569 1.192 matt }
570 1.260 ozaki if (ia != NULL) {
571 1.260 ozaki ia4_release(ia, &psref_ia);
572 1.260 ozaki ia = NULL;
573 1.260 ozaki }
574 1.230 rmind
575 1.76 thorpej /*
576 1.76 thorpej * If we're doing Path MTU Discovery, we need to set DF unless
577 1.76 thorpej * the route's MTU is locked.
578 1.76 thorpej */
579 1.230 rmind if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
580 1.100 itojun ip->ip_off |= htons(IP_DF);
581 1.230 rmind }
582 1.76 thorpej
583 1.220 christos #ifdef IPSEC
584 1.229 christos if (ipsec_used) {
585 1.230 rmind bool ipsec_done = false;
586 1.230 rmind
587 1.229 christos /* Perform IPsec processing, if any. */
588 1.278 ozaki error = ipsec4_output(m, inp, flags, &mtu, &natt_frag,
589 1.230 rmind &ipsec_done);
590 1.230 rmind if (error || ipsec_done)
591 1.229 christos goto done;
592 1.221 rmind }
593 1.109 jonathan #endif
594 1.109 jonathan
595 1.82 itojun /*
596 1.82 itojun * Run through list of hooks for output packets.
597 1.82 itojun */
598 1.230 rmind error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
599 1.230 rmind if (error)
600 1.82 itojun goto done;
601 1.82 itojun if (m == NULL)
602 1.82 itojun goto done;
603 1.82 itojun
604 1.82 itojun ip = mtod(m, struct ip *);
605 1.106 itojun hlen = ip->ip_hl << 2;
606 1.82 itojun
607 1.146 matt m->m_pkthdr.csum_data |= hlen << 16;
608 1.146 matt
609 1.136 thorpej /*
610 1.136 thorpej * search for the source address structure to
611 1.277 christos * maintain output statistics, and verify address
612 1.277 christos * validity
613 1.136 thorpej */
614 1.260 ozaki KASSERT(ia == NULL);
615 1.260 ozaki ia = in_get_ia_psref(ip->ip_src, &psref_ia);
616 1.261 roy
617 1.277 christos /*
618 1.277 christos * Ensure we only send from a valid address.
619 1.277 christos * A NULL address is valid because the packet could be
620 1.277 christos * generated from a packet filter.
621 1.277 christos */
622 1.277 christos if (ia != NULL && (flags & IP_FORWARDING) == 0 &&
623 1.261 roy (error = ip_ifaddrvalid(ia)) != 0)
624 1.261 roy {
625 1.269 christos ARPLOG(LOG_ERR,
626 1.261 roy "refusing to send from invalid address %s (pid %d)\n",
627 1.279 ryo ARPLOGADDR(&ip->ip_src), curproc->p_pid);
628 1.261 roy IP_STATINC(IP_STAT_ODROPPED);
629 1.263 roy if (error == 1)
630 1.263 roy /*
631 1.263 roy * Address exists, but is tentative or detached.
632 1.261 roy * We can't send from it because it's invalid,
633 1.263 roy * so we drop the packet.
634 1.263 roy */
635 1.261 roy error = 0;
636 1.261 roy else
637 1.261 roy error = EADDRNOTAVAIL;
638 1.261 roy goto bad;
639 1.261 roy }
640 1.136 thorpej
641 1.138 thorpej /* Maybe skip checksums on loopback interfaces. */
642 1.151 yamt if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
643 1.138 thorpej m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
644 1.151 yamt }
645 1.104 yamt sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
646 1.1 cgd /*
647 1.147 matt * If small enough for mtu of path, or if using TCP segmentation
648 1.147 matt * offload, can just send directly.
649 1.1 cgd */
650 1.218 kefren if (ntohs(ip->ip_len) <= mtu ||
651 1.147 matt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
652 1.230 rmind const struct sockaddr *sa;
653 1.230 rmind
654 1.63 itojun #if IFA_STATS
655 1.63 itojun if (ia)
656 1.218 kefren ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
657 1.63 itojun #endif
658 1.86 thorpej /*
659 1.86 thorpej * Always initialize the sum to 0! Some HW assisted
660 1.86 thorpej * checksumming requires this.
661 1.86 thorpej */
662 1.1 cgd ip->ip_sum = 0;
663 1.86 thorpej
664 1.149 matt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
665 1.147 matt /*
666 1.147 matt * Perform any checksums that the hardware can't do
667 1.147 matt * for us.
668 1.147 matt *
669 1.147 matt * XXX Does any hardware require the {th,uh}_sum
670 1.147 matt * XXX fields to be 0?
671 1.147 matt */
672 1.147 matt if (sw_csum & M_CSUM_IPv4) {
673 1.151 yamt KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
674 1.147 matt ip->ip_sum = in_cksum(m, hlen);
675 1.147 matt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
676 1.147 matt }
677 1.147 matt if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
678 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
679 1.151 yamt sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
680 1.151 yamt in_delayed_cksum(m);
681 1.151 yamt }
682 1.147 matt m->m_pkthdr.csum_flags &=
683 1.147 matt ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
684 1.147 matt }
685 1.146 matt }
686 1.86 thorpej
687 1.230 rmind sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
688 1.152 yamt if (__predict_true(
689 1.152 yamt (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
690 1.152 yamt (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
691 1.252 ozaki error = ip_if_output(ifp, m, sa, rt);
692 1.152 yamt } else {
693 1.230 rmind error = ip_tso_output(ifp, m, sa, rt);
694 1.152 yamt }
695 1.1 cgd goto done;
696 1.1 cgd }
697 1.61 itojun
698 1.1 cgd /*
699 1.86 thorpej * We can't use HW checksumming if we're about to
700 1.86 thorpej * to fragment the packet.
701 1.86 thorpej *
702 1.86 thorpej * XXX Some hardware can do this.
703 1.86 thorpej */
704 1.86 thorpej if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
705 1.151 yamt if (IN_NEED_CHECKSUM(ifp,
706 1.151 yamt m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
707 1.151 yamt in_delayed_cksum(m);
708 1.151 yamt }
709 1.86 thorpej m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
710 1.86 thorpej }
711 1.86 thorpej
712 1.86 thorpej /*
713 1.1 cgd * Too large for interface; fragment if possible.
714 1.1 cgd * Must be able to put at least 8 bytes per fragment.
715 1.1 cgd */
716 1.100 itojun if (ntohs(ip->ip_off) & IP_DF) {
717 1.226 rmind if (flags & IP_RETURNMTU) {
718 1.275 ozaki KASSERT(inp != NULL);
719 1.226 rmind inp->inp_errormtu = mtu;
720 1.226 rmind }
721 1.1 cgd error = EMSGSIZE;
722 1.194 thorpej IP_STATINC(IP_STAT_CANTFRAG);
723 1.1 cgd goto bad;
724 1.1 cgd }
725 1.110 itojun
726 1.110 itojun error = ip_fragment(m, ifp, mtu);
727 1.124 itojun if (error) {
728 1.124 itojun m = NULL;
729 1.1 cgd goto bad;
730 1.124 itojun }
731 1.110 itojun
732 1.119 itojun for (; m; m = m0) {
733 1.110 itojun m0 = m->m_nextpkt;
734 1.110 itojun m->m_nextpkt = 0;
735 1.230 rmind if (error) {
736 1.230 rmind m_freem(m);
737 1.230 rmind continue;
738 1.230 rmind }
739 1.110 itojun #if IFA_STATS
740 1.230 rmind if (ia)
741 1.230 rmind ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
742 1.110 itojun #endif
743 1.230 rmind /*
744 1.230 rmind * If we get there, the packet has not been handled by
745 1.230 rmind * IPsec whereas it should have. Now that it has been
746 1.230 rmind * fragmented, re-inject it in ip_output so that IPsec
747 1.230 rmind * processing can occur.
748 1.230 rmind */
749 1.230 rmind if (natt_frag) {
750 1.230 rmind error = ip_output(m, opt, ro,
751 1.230 rmind flags | IP_RAWOUTPUT | IP_NOIPNEWID,
752 1.275 ozaki imo, inp);
753 1.230 rmind } else {
754 1.230 rmind KASSERT((m->m_pkthdr.csum_flags &
755 1.230 rmind (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
756 1.252 ozaki error = ip_if_output(ifp, m,
757 1.230 rmind (m->m_flags & M_MCAST) ?
758 1.230 rmind sintocsa(rdst) : sintocsa(dst), rt);
759 1.230 rmind }
760 1.1 cgd }
761 1.230 rmind if (error == 0) {
762 1.194 thorpej IP_STATINC(IP_STAT_FRAGMENTED);
763 1.230 rmind }
764 1.110 itojun done:
765 1.260 ozaki ia4_release(ia, &psref_ia);
766 1.264 ozaki rtcache_unref(rt, ro);
767 1.230 rmind if (ro == &iproute) {
768 1.230 rmind rtcache_free(&iproute);
769 1.230 rmind }
770 1.258 ozaki if (mifp != NULL) {
771 1.258 ozaki if_put(mifp, &psref);
772 1.260 ozaki }
773 1.260 ozaki if (bind_need_restore)
774 1.258 ozaki curlwp_bindx(bound);
775 1.221 rmind return error;
776 1.110 itojun bad:
777 1.110 itojun m_freem(m);
778 1.110 itojun goto done;
779 1.110 itojun }
780 1.110 itojun
781 1.113 itojun int
782 1.110 itojun ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
783 1.110 itojun {
784 1.110 itojun struct ip *ip, *mhip;
785 1.110 itojun struct mbuf *m0;
786 1.110 itojun int len, hlen, off;
787 1.110 itojun int mhlen, firstlen;
788 1.110 itojun struct mbuf **mnext;
789 1.135 manu int sw_csum = m->m_pkthdr.csum_flags;
790 1.48 matt int fragments = 0;
791 1.110 itojun int error = 0;
792 1.110 itojun
793 1.110 itojun ip = mtod(m, struct ip *);
794 1.110 itojun hlen = ip->ip_hl << 2;
795 1.135 manu if (ifp != NULL)
796 1.135 manu sw_csum &= ~ifp->if_csum_flags_tx;
797 1.110 itojun
798 1.110 itojun len = (mtu - hlen) &~ 7;
799 1.124 itojun if (len < 8) {
800 1.124 itojun m_freem(m);
801 1.110 itojun return (EMSGSIZE);
802 1.124 itojun }
803 1.110 itojun
804 1.110 itojun firstlen = len;
805 1.110 itojun mnext = &m->m_nextpkt;
806 1.1 cgd
807 1.1 cgd /*
808 1.1 cgd * Loop through length of segment after first fragment,
809 1.1 cgd * make new header and copy data of each part and link onto chain.
810 1.1 cgd */
811 1.1 cgd m0 = m;
812 1.1 cgd mhlen = sizeof (struct ip);
813 1.100 itojun for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
814 1.1 cgd MGETHDR(m, M_DONTWAIT, MT_HEADER);
815 1.1 cgd if (m == 0) {
816 1.1 cgd error = ENOBUFS;
817 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
818 1.1 cgd goto sendorfree;
819 1.1 cgd }
820 1.103 matt MCLAIM(m, m0->m_owner);
821 1.22 cgd *mnext = m;
822 1.22 cgd mnext = &m->m_nextpkt;
823 1.1 cgd m->m_data += max_linkhdr;
824 1.1 cgd mhip = mtod(m, struct ip *);
825 1.1 cgd *mhip = *ip;
826 1.73 is /* we must inherit MCAST and BCAST flags */
827 1.73 is m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
828 1.1 cgd if (hlen > sizeof (struct ip)) {
829 1.1 cgd mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
830 1.1 cgd mhip->ip_hl = mhlen >> 2;
831 1.1 cgd }
832 1.1 cgd m->m_len = mhlen;
833 1.122 itojun mhip->ip_off = ((off - hlen) >> 3) +
834 1.122 itojun (ntohs(ip->ip_off) & ~IP_MF);
835 1.122 itojun if (ip->ip_off & htons(IP_MF))
836 1.1 cgd mhip->ip_off |= IP_MF;
837 1.100 itojun if (off + len >= ntohs(ip->ip_len))
838 1.100 itojun len = ntohs(ip->ip_len) - off;
839 1.1 cgd else
840 1.1 cgd mhip->ip_off |= IP_MF;
841 1.100 itojun HTONS(mhip->ip_off);
842 1.21 cgd mhip->ip_len = htons((u_int16_t)(len + mhlen));
843 1.182 dyoung m->m_next = m_copym(m0, off, len, M_DONTWAIT);
844 1.1 cgd if (m->m_next == 0) {
845 1.1 cgd error = ENOBUFS; /* ??? */
846 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
847 1.1 cgd goto sendorfree;
848 1.1 cgd }
849 1.1 cgd m->m_pkthdr.len = mhlen + len;
850 1.256 ozaki m_reset_rcvif(m);
851 1.1 cgd mhip->ip_sum = 0;
852 1.210 yamt KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
853 1.104 yamt if (sw_csum & M_CSUM_IPv4) {
854 1.104 yamt mhip->ip_sum = in_cksum(m, mhlen);
855 1.104 yamt } else {
856 1.210 yamt /*
857 1.210 yamt * checksum is hw-offloaded or not necessary.
858 1.210 yamt */
859 1.210 yamt m->m_pkthdr.csum_flags |=
860 1.210 yamt m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
861 1.148 thorpej m->m_pkthdr.csum_data |= mhlen << 16;
862 1.210 yamt KASSERT(!(ifp != NULL &&
863 1.237 ozaki IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
864 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
865 1.104 yamt }
866 1.194 thorpej IP_STATINC(IP_STAT_OFRAGMENTS);
867 1.48 matt fragments++;
868 1.1 cgd }
869 1.1 cgd /*
870 1.1 cgd * Update first fragment by trimming what's been copied out
871 1.1 cgd * and updating header, then send each fragment (in order).
872 1.1 cgd */
873 1.1 cgd m = m0;
874 1.100 itojun m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
875 1.1 cgd m->m_pkthdr.len = hlen + firstlen;
876 1.21 cgd ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
877 1.100 itojun ip->ip_off |= htons(IP_MF);
878 1.1 cgd ip->ip_sum = 0;
879 1.210 yamt if (sw_csum & M_CSUM_IPv4) {
880 1.210 yamt ip->ip_sum = in_cksum(m, hlen);
881 1.210 yamt m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
882 1.210 yamt } else {
883 1.210 yamt /*
884 1.210 yamt * checksum is hw-offloaded or not necessary.
885 1.210 yamt */
886 1.237 ozaki KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
887 1.237 ozaki (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
888 1.210 yamt KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
889 1.237 ozaki sizeof(struct ip));
890 1.104 yamt }
891 1.1 cgd sendorfree:
892 1.48 matt /*
893 1.48 matt * If there is no room for all the fragments, don't queue
894 1.48 matt * any of them.
895 1.48 matt */
896 1.135 manu if (ifp != NULL) {
897 1.270 ozaki IFQ_LOCK(&ifp->if_snd);
898 1.135 manu if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
899 1.135 manu error == 0) {
900 1.135 manu error = ENOBUFS;
901 1.194 thorpej IP_STATINC(IP_STAT_ODROPPED);
902 1.135 manu IFQ_INC_DROPS(&ifp->if_snd);
903 1.135 manu }
904 1.270 ozaki IFQ_UNLOCK(&ifp->if_snd);
905 1.126 enami }
906 1.124 itojun if (error) {
907 1.125 itojun for (m = m0; m; m = m0) {
908 1.124 itojun m0 = m->m_nextpkt;
909 1.124 itojun m->m_nextpkt = NULL;
910 1.124 itojun m_freem(m);
911 1.124 itojun }
912 1.124 itojun }
913 1.1 cgd return (error);
914 1.86 thorpej }
915 1.86 thorpej
916 1.86 thorpej /*
917 1.86 thorpej * Process a delayed payload checksum calculation.
918 1.86 thorpej */
919 1.86 thorpej void
920 1.86 thorpej in_delayed_cksum(struct mbuf *m)
921 1.86 thorpej {
922 1.86 thorpej struct ip *ip;
923 1.86 thorpej u_int16_t csum, offset;
924 1.86 thorpej
925 1.86 thorpej ip = mtod(m, struct ip *);
926 1.86 thorpej offset = ip->ip_hl << 2;
927 1.86 thorpej csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
928 1.86 thorpej if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
929 1.86 thorpej csum = 0xffff;
930 1.86 thorpej
931 1.145 briggs offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
932 1.86 thorpej
933 1.86 thorpej if ((offset + sizeof(u_int16_t)) > m->m_len) {
934 1.87 yamt /* This happen when ip options were inserted
935 1.86 thorpej printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
936 1.86 thorpej m->m_len, offset, ip->ip_p);
937 1.87 yamt */
938 1.179 christos m_copyback(m, offset, sizeof(csum), (void *) &csum);
939 1.86 thorpej } else
940 1.179 christos *(u_int16_t *)(mtod(m, char *) + offset) = csum;
941 1.1 cgd }
942 1.47 kml
943 1.47 kml /*
944 1.47 kml * Determine the maximum length of the options to be inserted;
945 1.47 kml * we would far rather allocate too much space rather than too little.
946 1.47 kml */
947 1.47 kml
948 1.47 kml u_int
949 1.140 perry ip_optlen(struct inpcb *inp)
950 1.47 kml {
951 1.47 kml struct mbuf *m = inp->inp_options;
952 1.47 kml
953 1.226 rmind if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
954 1.101 itojun return (m->m_len - offsetof(struct ipoption, ipopt_dst));
955 1.226 rmind }
956 1.226 rmind return 0;
957 1.47 kml }
958 1.47 kml
959 1.1 cgd /*
960 1.1 cgd * Insert IP options into preformed packet.
961 1.1 cgd * Adjust IP destination as required for IP source routing,
962 1.1 cgd * as indicated by a non-zero in_addr at the start of the options.
963 1.1 cgd */
964 1.12 mycroft static struct mbuf *
965 1.140 perry ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
966 1.1 cgd {
967 1.71 augustss struct ipoption *p = mtod(opt, struct ipoption *);
968 1.1 cgd struct mbuf *n;
969 1.71 augustss struct ip *ip = mtod(m, struct ip *);
970 1.1 cgd unsigned optlen;
971 1.1 cgd
972 1.1 cgd optlen = opt->m_len - sizeof(p->ipopt_dst);
973 1.100 itojun if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
974 1.1 cgd return (m); /* XXX should fail */
975 1.31 mycroft if (!in_nullhost(p->ipopt_dst))
976 1.1 cgd ip->ip_dst = p->ipopt_dst;
977 1.123 itojun if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
978 1.1 cgd MGETHDR(n, M_DONTWAIT, MT_HEADER);
979 1.1 cgd if (n == 0)
980 1.1 cgd return (m);
981 1.103 matt MCLAIM(n, m->m_owner);
982 1.155 yamt M_MOVE_PKTHDR(n, m);
983 1.1 cgd m->m_len -= sizeof(struct ip);
984 1.1 cgd m->m_data += sizeof(struct ip);
985 1.1 cgd n->m_next = m;
986 1.1 cgd m = n;
987 1.1 cgd m->m_len = optlen + sizeof(struct ip);
988 1.1 cgd m->m_data += max_linkhdr;
989 1.179 christos bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
990 1.1 cgd } else {
991 1.1 cgd m->m_data -= optlen;
992 1.1 cgd m->m_len += optlen;
993 1.179 christos memmove(mtod(m, void *), ip, sizeof(struct ip));
994 1.1 cgd }
995 1.87 yamt m->m_pkthdr.len += optlen;
996 1.1 cgd ip = mtod(m, struct ip *);
997 1.179 christos bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
998 1.1 cgd *phlen = sizeof(struct ip) + optlen;
999 1.100 itojun ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1000 1.1 cgd return (m);
1001 1.1 cgd }
1002 1.1 cgd
1003 1.1 cgd /*
1004 1.1 cgd * Copy options from ip to jp,
1005 1.1 cgd * omitting those not copied during fragmentation.
1006 1.1 cgd */
1007 1.12 mycroft int
1008 1.140 perry ip_optcopy(struct ip *ip, struct ip *jp)
1009 1.1 cgd {
1010 1.71 augustss u_char *cp, *dp;
1011 1.1 cgd int opt, optlen, cnt;
1012 1.1 cgd
1013 1.1 cgd cp = (u_char *)(ip + 1);
1014 1.1 cgd dp = (u_char *)(jp + 1);
1015 1.1 cgd cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1016 1.1 cgd for (; cnt > 0; cnt -= optlen, cp += optlen) {
1017 1.1 cgd opt = cp[0];
1018 1.1 cgd if (opt == IPOPT_EOL)
1019 1.1 cgd break;
1020 1.18 mycroft if (opt == IPOPT_NOP) {
1021 1.18 mycroft /* Preserve for IP mcast tunnel's LSRR alignment. */
1022 1.18 mycroft *dp++ = IPOPT_NOP;
1023 1.1 cgd optlen = 1;
1024 1.18 mycroft continue;
1025 1.74 itojun }
1026 1.226 rmind
1027 1.226 rmind KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1028 1.74 itojun optlen = cp[IPOPT_OLEN];
1029 1.226 rmind KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1030 1.226 rmind
1031 1.226 rmind /* Invalid lengths should have been caught by ip_dooptions. */
1032 1.1 cgd if (optlen > cnt)
1033 1.1 cgd optlen = cnt;
1034 1.1 cgd if (IPOPT_COPIED(opt)) {
1035 1.179 christos bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1036 1.1 cgd dp += optlen;
1037 1.1 cgd }
1038 1.1 cgd }
1039 1.1 cgd for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1040 1.1 cgd *dp++ = IPOPT_EOL;
1041 1.1 cgd return (optlen);
1042 1.1 cgd }
1043 1.1 cgd
1044 1.1 cgd /*
1045 1.1 cgd * IP socket option processing.
1046 1.1 cgd */
1047 1.12 mycroft int
1048 1.197 plunky ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1049 1.1 cgd {
1050 1.71 augustss struct inpcb *inp = sotoinpcb(so);
1051 1.226 rmind struct ip *ip = &inp->inp_ip;
1052 1.226 rmind int inpflags = inp->inp_flags;
1053 1.226 rmind int optval = 0, error = 0;
1054 1.1 cgd
1055 1.272 ozaki KASSERT(solocked(so));
1056 1.272 ozaki
1057 1.197 plunky if (sopt->sopt_level != IPPROTO_IP) {
1058 1.197 plunky if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1059 1.184 dyoung return 0;
1060 1.184 dyoung return ENOPROTOOPT;
1061 1.184 dyoung }
1062 1.184 dyoung
1063 1.184 dyoung switch (op) {
1064 1.1 cgd case PRCO_SETOPT:
1065 1.197 plunky switch (sopt->sopt_name) {
1066 1.1 cgd case IP_OPTIONS:
1067 1.1 cgd #ifdef notyet
1068 1.1 cgd case IP_RETOPTS:
1069 1.1 cgd #endif
1070 1.226 rmind error = ip_pcbopts(inp, sopt);
1071 1.197 plunky break;
1072 1.1 cgd
1073 1.1 cgd case IP_TOS:
1074 1.1 cgd case IP_TTL:
1075 1.205 minskim case IP_MINTTL:
1076 1.223 christos case IP_PKTINFO:
1077 1.1 cgd case IP_RECVOPTS:
1078 1.1 cgd case IP_RECVRETOPTS:
1079 1.1 cgd case IP_RECVDSTADDR:
1080 1.37 thorpej case IP_RECVIF:
1081 1.223 christos case IP_RECVPKTINFO:
1082 1.204 minskim case IP_RECVTTL:
1083 1.197 plunky error = sockopt_getint(sopt, &optval);
1084 1.197 plunky if (error)
1085 1.197 plunky break;
1086 1.197 plunky
1087 1.197 plunky switch (sopt->sopt_name) {
1088 1.197 plunky case IP_TOS:
1089 1.226 rmind ip->ip_tos = optval;
1090 1.197 plunky break;
1091 1.197 plunky
1092 1.197 plunky case IP_TTL:
1093 1.226 rmind ip->ip_ttl = optval;
1094 1.197 plunky break;
1095 1.205 minskim
1096 1.205 minskim case IP_MINTTL:
1097 1.205 minskim if (optval > 0 && optval <= MAXTTL)
1098 1.205 minskim inp->inp_ip_minttl = optval;
1099 1.205 minskim else
1100 1.205 minskim error = EINVAL;
1101 1.205 minskim break;
1102 1.1 cgd #define OPTSET(bit) \
1103 1.1 cgd if (optval) \
1104 1.226 rmind inpflags |= bit; \
1105 1.1 cgd else \
1106 1.226 rmind inpflags &= ~bit;
1107 1.1 cgd
1108 1.223 christos case IP_PKTINFO:
1109 1.223 christos OPTSET(INP_PKTINFO);
1110 1.223 christos break;
1111 1.223 christos
1112 1.197 plunky case IP_RECVOPTS:
1113 1.197 plunky OPTSET(INP_RECVOPTS);
1114 1.197 plunky break;
1115 1.197 plunky
1116 1.223 christos case IP_RECVPKTINFO:
1117 1.223 christos OPTSET(INP_RECVPKTINFO);
1118 1.223 christos break;
1119 1.223 christos
1120 1.197 plunky case IP_RECVRETOPTS:
1121 1.197 plunky OPTSET(INP_RECVRETOPTS);
1122 1.197 plunky break;
1123 1.197 plunky
1124 1.197 plunky case IP_RECVDSTADDR:
1125 1.197 plunky OPTSET(INP_RECVDSTADDR);
1126 1.197 plunky break;
1127 1.197 plunky
1128 1.197 plunky case IP_RECVIF:
1129 1.197 plunky OPTSET(INP_RECVIF);
1130 1.197 plunky break;
1131 1.204 minskim
1132 1.204 minskim case IP_RECVTTL:
1133 1.204 minskim OPTSET(INP_RECVTTL);
1134 1.204 minskim break;
1135 1.1 cgd }
1136 1.197 plunky break;
1137 1.1 cgd #undef OPTSET
1138 1.18 mycroft
1139 1.18 mycroft case IP_MULTICAST_IF:
1140 1.18 mycroft case IP_MULTICAST_TTL:
1141 1.18 mycroft case IP_MULTICAST_LOOP:
1142 1.18 mycroft case IP_ADD_MEMBERSHIP:
1143 1.18 mycroft case IP_DROP_MEMBERSHIP:
1144 1.231 christos error = ip_setmoptions(&inp->inp_moptions, sopt);
1145 1.18 mycroft break;
1146 1.1 cgd
1147 1.41 lukem case IP_PORTRANGE:
1148 1.197 plunky error = sockopt_getint(sopt, &optval);
1149 1.197 plunky if (error)
1150 1.197 plunky break;
1151 1.197 plunky
1152 1.197 plunky switch (optval) {
1153 1.197 plunky case IP_PORTRANGE_DEFAULT:
1154 1.197 plunky case IP_PORTRANGE_HIGH:
1155 1.226 rmind inpflags &= ~(INP_LOWPORT);
1156 1.197 plunky break;
1157 1.41 lukem
1158 1.197 plunky case IP_PORTRANGE_LOW:
1159 1.226 rmind inpflags |= INP_LOWPORT;
1160 1.197 plunky break;
1161 1.41 lukem
1162 1.197 plunky default:
1163 1.197 plunky error = EINVAL;
1164 1.197 plunky break;
1165 1.41 lukem }
1166 1.41 lukem break;
1167 1.41 lukem
1168 1.216 christos case IP_PORTALGO:
1169 1.216 christos error = sockopt_getint(sopt, &optval);
1170 1.216 christos if (error)
1171 1.216 christos break;
1172 1.216 christos
1173 1.217 christos error = portalgo_algo_index_select(
1174 1.216 christos (struct inpcb_hdr *)inp, optval);
1175 1.216 christos break;
1176 1.216 christos
1177 1.220 christos #if defined(IPSEC)
1178 1.61 itojun case IP_IPSEC_POLICY:
1179 1.229 christos if (ipsec_enabled) {
1180 1.229 christos error = ipsec4_set_policy(inp, sopt->sopt_name,
1181 1.229 christos sopt->sopt_data, sopt->sopt_size,
1182 1.229 christos curlwp->l_cred);
1183 1.229 christos break;
1184 1.229 christos }
1185 1.229 christos /*FALLTHROUGH*/
1186 1.229 christos #endif /* IPSEC */
1187 1.61 itojun
1188 1.1 cgd default:
1189 1.18 mycroft error = ENOPROTOOPT;
1190 1.1 cgd break;
1191 1.1 cgd }
1192 1.1 cgd break;
1193 1.1 cgd
1194 1.1 cgd case PRCO_GETOPT:
1195 1.197 plunky switch (sopt->sopt_name) {
1196 1.1 cgd case IP_OPTIONS:
1197 1.226 rmind case IP_RETOPTS: {
1198 1.226 rmind struct mbuf *mopts = inp->inp_options;
1199 1.226 rmind
1200 1.226 rmind if (mopts) {
1201 1.197 plunky struct mbuf *m;
1202 1.197 plunky
1203 1.226 rmind m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1204 1.199 plunky if (m == NULL) {
1205 1.199 plunky error = ENOBUFS;
1206 1.199 plunky break;
1207 1.199 plunky }
1208 1.197 plunky error = sockopt_setmbuf(sopt, m);
1209 1.197 plunky }
1210 1.1 cgd break;
1211 1.226 rmind }
1212 1.223 christos case IP_PKTINFO:
1213 1.1 cgd case IP_TOS:
1214 1.1 cgd case IP_TTL:
1215 1.205 minskim case IP_MINTTL:
1216 1.1 cgd case IP_RECVOPTS:
1217 1.1 cgd case IP_RECVRETOPTS:
1218 1.1 cgd case IP_RECVDSTADDR:
1219 1.37 thorpej case IP_RECVIF:
1220 1.223 christos case IP_RECVPKTINFO:
1221 1.204 minskim case IP_RECVTTL:
1222 1.40 matt case IP_ERRORMTU:
1223 1.197 plunky switch (sopt->sopt_name) {
1224 1.1 cgd case IP_TOS:
1225 1.226 rmind optval = ip->ip_tos;
1226 1.1 cgd break;
1227 1.1 cgd
1228 1.1 cgd case IP_TTL:
1229 1.226 rmind optval = ip->ip_ttl;
1230 1.40 matt break;
1231 1.40 matt
1232 1.205 minskim case IP_MINTTL:
1233 1.205 minskim optval = inp->inp_ip_minttl;
1234 1.205 minskim break;
1235 1.205 minskim
1236 1.40 matt case IP_ERRORMTU:
1237 1.40 matt optval = inp->inp_errormtu;
1238 1.1 cgd break;
1239 1.1 cgd
1240 1.226 rmind #define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1241 1.1 cgd
1242 1.223 christos case IP_PKTINFO:
1243 1.223 christos optval = OPTBIT(INP_PKTINFO);
1244 1.223 christos break;
1245 1.223 christos
1246 1.1 cgd case IP_RECVOPTS:
1247 1.1 cgd optval = OPTBIT(INP_RECVOPTS);
1248 1.1 cgd break;
1249 1.1 cgd
1250 1.223 christos case IP_RECVPKTINFO:
1251 1.223 christos optval = OPTBIT(INP_RECVPKTINFO);
1252 1.223 christos break;
1253 1.223 christos
1254 1.1 cgd case IP_RECVRETOPTS:
1255 1.1 cgd optval = OPTBIT(INP_RECVRETOPTS);
1256 1.1 cgd break;
1257 1.1 cgd
1258 1.1 cgd case IP_RECVDSTADDR:
1259 1.1 cgd optval = OPTBIT(INP_RECVDSTADDR);
1260 1.37 thorpej break;
1261 1.37 thorpej
1262 1.37 thorpej case IP_RECVIF:
1263 1.37 thorpej optval = OPTBIT(INP_RECVIF);
1264 1.1 cgd break;
1265 1.204 minskim
1266 1.204 minskim case IP_RECVTTL:
1267 1.204 minskim optval = OPTBIT(INP_RECVTTL);
1268 1.204 minskim break;
1269 1.1 cgd }
1270 1.197 plunky error = sockopt_setint(sopt, optval);
1271 1.1 cgd break;
1272 1.61 itojun
1273 1.220 christos #if 0 /* defined(IPSEC) */
1274 1.61 itojun case IP_IPSEC_POLICY:
1275 1.66 itojun {
1276 1.197 plunky struct mbuf *m = NULL;
1277 1.66 itojun
1278 1.197 plunky /* XXX this will return EINVAL as sopt is empty */
1279 1.197 plunky error = ipsec4_get_policy(inp, sopt->sopt_data,
1280 1.197 plunky sopt->sopt_size, &m);
1281 1.197 plunky if (error == 0)
1282 1.197 plunky error = sockopt_setmbuf(sopt, m);
1283 1.61 itojun break;
1284 1.66 itojun }
1285 1.61 itojun #endif /*IPSEC*/
1286 1.18 mycroft
1287 1.18 mycroft case IP_MULTICAST_IF:
1288 1.18 mycroft case IP_MULTICAST_TTL:
1289 1.18 mycroft case IP_MULTICAST_LOOP:
1290 1.18 mycroft case IP_ADD_MEMBERSHIP:
1291 1.18 mycroft case IP_DROP_MEMBERSHIP:
1292 1.231 christos error = ip_getmoptions(inp->inp_moptions, sopt);
1293 1.41 lukem break;
1294 1.41 lukem
1295 1.41 lukem case IP_PORTRANGE:
1296 1.226 rmind if (inpflags & INP_LOWPORT)
1297 1.41 lukem optval = IP_PORTRANGE_LOW;
1298 1.41 lukem else
1299 1.41 lukem optval = IP_PORTRANGE_DEFAULT;
1300 1.197 plunky error = sockopt_setint(sopt, optval);
1301 1.18 mycroft break;
1302 1.1 cgd
1303 1.216 christos case IP_PORTALGO:
1304 1.226 rmind optval = inp->inp_portalgo;
1305 1.216 christos error = sockopt_setint(sopt, optval);
1306 1.216 christos break;
1307 1.216 christos
1308 1.1 cgd default:
1309 1.18 mycroft error = ENOPROTOOPT;
1310 1.1 cgd break;
1311 1.1 cgd }
1312 1.1 cgd break;
1313 1.1 cgd }
1314 1.226 rmind
1315 1.226 rmind if (!error) {
1316 1.226 rmind inp->inp_flags = inpflags;
1317 1.226 rmind }
1318 1.226 rmind return error;
1319 1.1 cgd }
1320 1.1 cgd
1321 1.1 cgd /*
1322 1.1 cgd * Set up IP options in pcb for insertion in output packets.
1323 1.1 cgd * Store in mbuf with pointer in pcbopt, adding pseudo-option
1324 1.1 cgd * with destination address if source routed.
1325 1.1 cgd */
1326 1.226 rmind static int
1327 1.226 rmind ip_pcbopts(struct inpcb *inp, const struct sockopt *sopt)
1328 1.1 cgd {
1329 1.200 plunky struct mbuf *m;
1330 1.200 plunky const u_char *cp;
1331 1.200 plunky u_char *dp;
1332 1.200 plunky int cnt;
1333 1.200 plunky
1334 1.274 ozaki KASSERT(inp_locked(inp));
1335 1.272 ozaki
1336 1.226 rmind /* Turn off any old options. */
1337 1.226 rmind if (inp->inp_options) {
1338 1.226 rmind m_free(inp->inp_options);
1339 1.226 rmind }
1340 1.226 rmind inp->inp_options = NULL;
1341 1.226 rmind if ((cnt = sopt->sopt_size) == 0) {
1342 1.226 rmind /* Only turning off any previous options. */
1343 1.226 rmind return 0;
1344 1.226 rmind }
1345 1.200 plunky cp = sopt->sopt_data;
1346 1.1 cgd
1347 1.85 ragge #ifndef __vax__
1348 1.200 plunky if (cnt % sizeof(int32_t))
1349 1.200 plunky return (EINVAL);
1350 1.1 cgd #endif
1351 1.200 plunky
1352 1.200 plunky m = m_get(M_DONTWAIT, MT_SOOPTS);
1353 1.200 plunky if (m == NULL)
1354 1.200 plunky return (ENOBUFS);
1355 1.200 plunky
1356 1.200 plunky dp = mtod(m, u_char *);
1357 1.200 plunky memset(dp, 0, sizeof(struct in_addr));
1358 1.200 plunky dp += sizeof(struct in_addr);
1359 1.200 plunky m->m_len = sizeof(struct in_addr);
1360 1.200 plunky
1361 1.1 cgd /*
1362 1.200 plunky * IP option list according to RFC791. Each option is of the form
1363 1.200 plunky *
1364 1.200 plunky * [optval] [olen] [(olen - 2) data bytes]
1365 1.200 plunky *
1366 1.226 rmind * We validate the list and copy options to an mbuf for prepending
1367 1.200 plunky * to data packets. The IP first-hop destination address will be
1368 1.200 plunky * stored before actual options and is zero if unset.
1369 1.1 cgd */
1370 1.200 plunky while (cnt > 0) {
1371 1.226 rmind uint8_t optval, olen, offset;
1372 1.226 rmind
1373 1.200 plunky optval = cp[IPOPT_OPTVAL];
1374 1.1 cgd
1375 1.200 plunky if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
1376 1.200 plunky olen = 1;
1377 1.200 plunky } else {
1378 1.200 plunky if (cnt < IPOPT_OLEN + 1)
1379 1.74 itojun goto bad;
1380 1.200 plunky
1381 1.200 plunky olen = cp[IPOPT_OLEN];
1382 1.200 plunky if (olen < IPOPT_OLEN + 1 || olen > cnt)
1383 1.1 cgd goto bad;
1384 1.1 cgd }
1385 1.1 cgd
1386 1.200 plunky if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
1387 1.1 cgd /*
1388 1.1 cgd * user process specifies route as:
1389 1.1 cgd * ->A->B->C->D
1390 1.1 cgd * D must be our final destination (but we can't
1391 1.1 cgd * check that since we may not have connected yet).
1392 1.1 cgd * A is first hop destination, which doesn't appear in
1393 1.1 cgd * actual IP option, but is stored before the options.
1394 1.1 cgd */
1395 1.200 plunky if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
1396 1.1 cgd goto bad;
1397 1.200 plunky
1398 1.200 plunky offset = cp[IPOPT_OFFSET];
1399 1.200 plunky memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
1400 1.200 plunky sizeof(struct in_addr));
1401 1.200 plunky
1402 1.200 plunky cp += sizeof(struct in_addr);
1403 1.1 cgd cnt -= sizeof(struct in_addr);
1404 1.200 plunky olen -= sizeof(struct in_addr);
1405 1.200 plunky
1406 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1407 1.200 plunky goto bad;
1408 1.200 plunky
1409 1.200 plunky memcpy(dp, cp, olen);
1410 1.200 plunky dp[IPOPT_OPTVAL] = optval;
1411 1.200 plunky dp[IPOPT_OLEN] = olen;
1412 1.200 plunky dp[IPOPT_OFFSET] = offset;
1413 1.200 plunky break;
1414 1.200 plunky } else {
1415 1.200 plunky if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
1416 1.200 plunky goto bad;
1417 1.200 plunky
1418 1.200 plunky memcpy(dp, cp, olen);
1419 1.1 cgd break;
1420 1.1 cgd }
1421 1.200 plunky
1422 1.200 plunky dp += olen;
1423 1.200 plunky m->m_len += olen;
1424 1.200 plunky
1425 1.200 plunky if (optval == IPOPT_EOL)
1426 1.200 plunky break;
1427 1.200 plunky
1428 1.200 plunky cp += olen;
1429 1.200 plunky cnt -= olen;
1430 1.1 cgd }
1431 1.200 plunky
1432 1.226 rmind inp->inp_options = m;
1433 1.226 rmind return 0;
1434 1.1 cgd bad:
1435 1.1 cgd (void)m_free(m);
1436 1.226 rmind return EINVAL;
1437 1.1 cgd }
1438 1.5 hpeyerl
1439 1.5 hpeyerl /*
1440 1.81 itojun * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1441 1.273 ozaki * Must be called in a pserialize critical section.
1442 1.81 itojun */
1443 1.81 itojun static struct ifnet *
1444 1.140 perry ip_multicast_if(struct in_addr *a, int *ifindexp)
1445 1.81 itojun {
1446 1.81 itojun int ifindex;
1447 1.111 itojun struct ifnet *ifp = NULL;
1448 1.110 itojun struct in_ifaddr *ia;
1449 1.81 itojun
1450 1.81 itojun if (ifindexp)
1451 1.81 itojun *ifindexp = 0;
1452 1.81 itojun if (ntohl(a->s_addr) >> 24 == 0) {
1453 1.81 itojun ifindex = ntohl(a->s_addr) & 0xffffff;
1454 1.225 rmind ifp = if_byindex(ifindex);
1455 1.129 itojun if (!ifp)
1456 1.129 itojun return NULL;
1457 1.81 itojun if (ifindexp)
1458 1.81 itojun *ifindexp = ifindex;
1459 1.81 itojun } else {
1460 1.273 ozaki IN_ADDRHASH_READER_FOREACH(ia, a->s_addr) {
1461 1.110 itojun if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1462 1.111 itojun (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1463 1.111 itojun ifp = ia->ia_ifp;
1464 1.273 ozaki if (if_is_deactivated(ifp))
1465 1.273 ozaki ifp = NULL;
1466 1.110 itojun break;
1467 1.111 itojun }
1468 1.110 itojun }
1469 1.81 itojun }
1470 1.81 itojun return ifp;
1471 1.81 itojun }
1472 1.81 itojun
1473 1.156 christos static int
1474 1.198 plunky ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
1475 1.156 christos {
1476 1.156 christos u_int tval;
1477 1.197 plunky u_char cval;
1478 1.197 plunky int error;
1479 1.156 christos
1480 1.197 plunky if (sopt == NULL)
1481 1.156 christos return EINVAL;
1482 1.156 christos
1483 1.197 plunky switch (sopt->sopt_size) {
1484 1.156 christos case sizeof(u_char):
1485 1.197 plunky error = sockopt_get(sopt, &cval, sizeof(u_char));
1486 1.197 plunky tval = cval;
1487 1.156 christos break;
1488 1.197 plunky
1489 1.156 christos case sizeof(u_int):
1490 1.197 plunky error = sockopt_get(sopt, &tval, sizeof(u_int));
1491 1.156 christos break;
1492 1.197 plunky
1493 1.156 christos default:
1494 1.197 plunky error = EINVAL;
1495 1.156 christos }
1496 1.156 christos
1497 1.197 plunky if (error)
1498 1.197 plunky return error;
1499 1.197 plunky
1500 1.156 christos if (tval > maxval)
1501 1.156 christos return EINVAL;
1502 1.156 christos
1503 1.156 christos *val = tval;
1504 1.156 christos return 0;
1505 1.156 christos }
1506 1.156 christos
1507 1.232 christos static int
1508 1.232 christos ip_get_membership(const struct sockopt *sopt, struct ifnet **ifp,
1509 1.273 ozaki struct psref *psref, struct in_addr *ia, bool add)
1510 1.232 christos {
1511 1.232 christos int error;
1512 1.232 christos struct ip_mreq mreq;
1513 1.232 christos
1514 1.232 christos error = sockopt_get(sopt, &mreq, sizeof(mreq));
1515 1.232 christos if (error)
1516 1.232 christos return error;
1517 1.232 christos
1518 1.232 christos if (!IN_MULTICAST(mreq.imr_multiaddr.s_addr))
1519 1.232 christos return EINVAL;
1520 1.232 christos
1521 1.232 christos memcpy(ia, &mreq.imr_multiaddr, sizeof(*ia));
1522 1.232 christos
1523 1.232 christos if (in_nullhost(mreq.imr_interface)) {
1524 1.232 christos union {
1525 1.232 christos struct sockaddr dst;
1526 1.232 christos struct sockaddr_in dst4;
1527 1.232 christos } u;
1528 1.232 christos struct route ro;
1529 1.232 christos
1530 1.232 christos if (!add) {
1531 1.232 christos *ifp = NULL;
1532 1.232 christos return 0;
1533 1.232 christos }
1534 1.232 christos /*
1535 1.232 christos * If no interface address was provided, use the interface of
1536 1.232 christos * the route to the given multicast address.
1537 1.232 christos */
1538 1.232 christos struct rtentry *rt;
1539 1.232 christos memset(&ro, 0, sizeof(ro));
1540 1.232 christos
1541 1.232 christos sockaddr_in_init(&u.dst4, ia, 0);
1542 1.238 ozaki error = rtcache_setdst(&ro, &u.dst);
1543 1.238 ozaki if (error != 0)
1544 1.238 ozaki return error;
1545 1.232 christos *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL;
1546 1.273 ozaki if (*ifp != NULL) {
1547 1.273 ozaki if (if_is_deactivated(*ifp))
1548 1.273 ozaki *ifp = NULL;
1549 1.273 ozaki else
1550 1.273 ozaki if_acquire(*ifp, psref);
1551 1.273 ozaki }
1552 1.264 ozaki rtcache_unref(rt, &ro);
1553 1.232 christos rtcache_free(&ro);
1554 1.232 christos } else {
1555 1.273 ozaki int s = pserialize_read_enter();
1556 1.232 christos *ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1557 1.273 ozaki if (!add && *ifp == NULL) {
1558 1.273 ozaki pserialize_read_exit(s);
1559 1.232 christos return EADDRNOTAVAIL;
1560 1.273 ozaki }
1561 1.273 ozaki if (*ifp != NULL) {
1562 1.273 ozaki if (if_is_deactivated(*ifp))
1563 1.273 ozaki *ifp = NULL;
1564 1.273 ozaki else
1565 1.273 ozaki if_acquire(*ifp, psref);
1566 1.273 ozaki }
1567 1.273 ozaki pserialize_read_exit(s);
1568 1.232 christos }
1569 1.232 christos return 0;
1570 1.232 christos }
1571 1.232 christos
1572 1.232 christos /*
1573 1.232 christos * Add a multicast group membership.
1574 1.232 christos * Group must be a valid IP multicast address.
1575 1.232 christos */
1576 1.232 christos static int
1577 1.232 christos ip_add_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1578 1.232 christos {
1579 1.255 ozaki struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1580 1.232 christos struct in_addr ia;
1581 1.273 ozaki int i, error, bound;
1582 1.273 ozaki struct psref psref;
1583 1.232 christos
1584 1.274 ozaki /* imo is protected by solock or referenced only by the caller */
1585 1.274 ozaki
1586 1.273 ozaki bound = curlwp_bind();
1587 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1588 1.273 ozaki error = ip_get_membership(sopt, &ifp, &psref, &ia, true);
1589 1.232 christos else
1590 1.232 christos #ifdef INET6
1591 1.273 ozaki error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1592 1.232 christos #else
1593 1.273 ozaki error = EINVAL;
1594 1.273 ozaki goto out;
1595 1.232 christos #endif
1596 1.232 christos
1597 1.232 christos if (error)
1598 1.273 ozaki goto out;
1599 1.232 christos
1600 1.232 christos /*
1601 1.232 christos * See if we found an interface, and confirm that it
1602 1.232 christos * supports multicast.
1603 1.232 christos */
1604 1.273 ozaki if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1605 1.273 ozaki error = EADDRNOTAVAIL;
1606 1.273 ozaki goto out;
1607 1.273 ozaki }
1608 1.232 christos
1609 1.232 christos /*
1610 1.232 christos * See if the membership already exists or if all the
1611 1.232 christos * membership slots are full.
1612 1.232 christos */
1613 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1614 1.232 christos if (imo->imo_membership[i]->inm_ifp == ifp &&
1615 1.232 christos in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1616 1.232 christos break;
1617 1.232 christos }
1618 1.273 ozaki if (i < imo->imo_num_memberships) {
1619 1.273 ozaki error = EADDRINUSE;
1620 1.273 ozaki goto out;
1621 1.273 ozaki }
1622 1.232 christos
1623 1.273 ozaki if (i == IP_MAX_MEMBERSHIPS) {
1624 1.273 ozaki error = ETOOMANYREFS;
1625 1.273 ozaki goto out;
1626 1.273 ozaki }
1627 1.232 christos
1628 1.232 christos /*
1629 1.232 christos * Everything looks good; add a new record to the multicast
1630 1.232 christos * address list for the given interface.
1631 1.232 christos */
1632 1.273 ozaki if ((imo->imo_membership[i] = in_addmulti(&ia, ifp)) == NULL) {
1633 1.273 ozaki error = ENOBUFS;
1634 1.273 ozaki goto out;
1635 1.273 ozaki }
1636 1.232 christos
1637 1.232 christos ++imo->imo_num_memberships;
1638 1.273 ozaki error = 0;
1639 1.273 ozaki out:
1640 1.273 ozaki if_put(ifp, &psref);
1641 1.273 ozaki curlwp_bindx(bound);
1642 1.273 ozaki return error;
1643 1.232 christos }
1644 1.232 christos
1645 1.232 christos /*
1646 1.232 christos * Drop a multicast group membership.
1647 1.232 christos * Group must be a valid IP multicast address.
1648 1.232 christos */
1649 1.232 christos static int
1650 1.232 christos ip_drop_membership(struct ip_moptions *imo, const struct sockopt *sopt)
1651 1.232 christos {
1652 1.254 christos struct in_addr ia = { .s_addr = 0 }; // XXX: gcc [ppc]
1653 1.254 christos struct ifnet *ifp = NULL; // XXX: gcc [ppc]
1654 1.273 ozaki int i, error, bound;
1655 1.273 ozaki struct psref psref;
1656 1.232 christos
1657 1.273 ozaki /* imo is protected by solock or referenced only by the caller */
1658 1.273 ozaki
1659 1.273 ozaki bound = curlwp_bind();
1660 1.232 christos if (sopt->sopt_size == sizeof(struct ip_mreq))
1661 1.273 ozaki error = ip_get_membership(sopt, &ifp, &psref, &ia, false);
1662 1.232 christos else
1663 1.232 christos #ifdef INET6
1664 1.273 ozaki error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia));
1665 1.232 christos #else
1666 1.273 ozaki error = EINVAL;
1667 1.273 ozaki goto out;
1668 1.232 christos #endif
1669 1.232 christos
1670 1.232 christos if (error)
1671 1.273 ozaki goto out;
1672 1.232 christos
1673 1.232 christos /*
1674 1.232 christos * Find the membership in the membership array.
1675 1.232 christos */
1676 1.232 christos for (i = 0; i < imo->imo_num_memberships; ++i) {
1677 1.232 christos if ((ifp == NULL ||
1678 1.232 christos imo->imo_membership[i]->inm_ifp == ifp) &&
1679 1.237 ozaki in_hosteq(imo->imo_membership[i]->inm_addr, ia))
1680 1.232 christos break;
1681 1.232 christos }
1682 1.273 ozaki if (i == imo->imo_num_memberships) {
1683 1.273 ozaki error = EADDRNOTAVAIL;
1684 1.273 ozaki goto out;
1685 1.273 ozaki }
1686 1.232 christos
1687 1.232 christos /*
1688 1.232 christos * Give up the multicast address record to which the
1689 1.232 christos * membership points.
1690 1.232 christos */
1691 1.232 christos in_delmulti(imo->imo_membership[i]);
1692 1.232 christos
1693 1.232 christos /*
1694 1.232 christos * Remove the gap in the membership array.
1695 1.232 christos */
1696 1.232 christos for (++i; i < imo->imo_num_memberships; ++i)
1697 1.232 christos imo->imo_membership[i-1] = imo->imo_membership[i];
1698 1.232 christos --imo->imo_num_memberships;
1699 1.273 ozaki error = 0;
1700 1.273 ozaki out:
1701 1.276 ozaki if_put(ifp, &psref);
1702 1.273 ozaki curlwp_bindx(bound);
1703 1.273 ozaki return error;
1704 1.232 christos }
1705 1.232 christos
1706 1.81 itojun /*
1707 1.5 hpeyerl * Set the IP multicast options in response to user setsockopt().
1708 1.5 hpeyerl */
1709 1.231 christos int
1710 1.231 christos ip_setmoptions(struct ip_moptions **pimo, const struct sockopt *sopt)
1711 1.5 hpeyerl {
1712 1.231 christos struct ip_moptions *imo = *pimo;
1713 1.5 hpeyerl struct in_addr addr;
1714 1.71 augustss struct ifnet *ifp;
1715 1.232 christos int ifindex, error = 0;
1716 1.5 hpeyerl
1717 1.274 ozaki /* The passed imo isn't NULL, it should be protected by solock */
1718 1.274 ozaki
1719 1.226 rmind if (!imo) {
1720 1.5 hpeyerl /*
1721 1.5 hpeyerl * No multicast option buffer attached to the pcb;
1722 1.5 hpeyerl * allocate one and initialize to default values.
1723 1.5 hpeyerl */
1724 1.215 rmind imo = kmem_intr_alloc(sizeof(*imo), KM_NOSLEEP);
1725 1.5 hpeyerl if (imo == NULL)
1726 1.215 rmind return ENOBUFS;
1727 1.199 plunky
1728 1.258 ozaki imo->imo_multicast_if_index = 0;
1729 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1730 1.5 hpeyerl imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1731 1.5 hpeyerl imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1732 1.5 hpeyerl imo->imo_num_memberships = 0;
1733 1.231 christos *pimo = imo;
1734 1.5 hpeyerl }
1735 1.5 hpeyerl
1736 1.197 plunky switch (sopt->sopt_name) {
1737 1.273 ozaki case IP_MULTICAST_IF: {
1738 1.273 ozaki int s;
1739 1.5 hpeyerl /*
1740 1.5 hpeyerl * Select the interface for outgoing multicast packets.
1741 1.5 hpeyerl */
1742 1.197 plunky error = sockopt_get(sopt, &addr, sizeof(addr));
1743 1.197 plunky if (error)
1744 1.5 hpeyerl break;
1745 1.197 plunky
1746 1.5 hpeyerl /*
1747 1.5 hpeyerl * INADDR_ANY is used to remove a previous selection.
1748 1.11 mycroft * When no interface is selected, a default one is
1749 1.5 hpeyerl * chosen every time a multicast packet is sent.
1750 1.5 hpeyerl */
1751 1.31 mycroft if (in_nullhost(addr)) {
1752 1.258 ozaki imo->imo_multicast_if_index = 0;
1753 1.5 hpeyerl break;
1754 1.5 hpeyerl }
1755 1.5 hpeyerl /*
1756 1.5 hpeyerl * The selected interface is identified by its local
1757 1.5 hpeyerl * IP address. Find the interface and confirm that
1758 1.11 mycroft * it supports multicasting.
1759 1.5 hpeyerl */
1760 1.273 ozaki s = pserialize_read_enter();
1761 1.81 itojun ifp = ip_multicast_if(&addr, &ifindex);
1762 1.5 hpeyerl if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1763 1.273 ozaki pserialize_read_exit(s);
1764 1.5 hpeyerl error = EADDRNOTAVAIL;
1765 1.5 hpeyerl break;
1766 1.5 hpeyerl }
1767 1.258 ozaki imo->imo_multicast_if_index = ifp->if_index;
1768 1.273 ozaki pserialize_read_exit(s);
1769 1.81 itojun if (ifindex)
1770 1.81 itojun imo->imo_multicast_addr = addr;
1771 1.81 itojun else
1772 1.81 itojun imo->imo_multicast_addr.s_addr = INADDR_ANY;
1773 1.5 hpeyerl break;
1774 1.273 ozaki }
1775 1.5 hpeyerl
1776 1.5 hpeyerl case IP_MULTICAST_TTL:
1777 1.5 hpeyerl /*
1778 1.5 hpeyerl * Set the IP time-to-live for outgoing multicast packets.
1779 1.5 hpeyerl */
1780 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
1781 1.5 hpeyerl break;
1782 1.11 mycroft
1783 1.5 hpeyerl case IP_MULTICAST_LOOP:
1784 1.5 hpeyerl /*
1785 1.5 hpeyerl * Set the loopback flag for outgoing multicast packets.
1786 1.5 hpeyerl * Must be zero or one.
1787 1.5 hpeyerl */
1788 1.197 plunky error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
1789 1.5 hpeyerl break;
1790 1.5 hpeyerl
1791 1.232 christos case IP_ADD_MEMBERSHIP: /* IPV6_JOIN_GROUP */
1792 1.232 christos error = ip_add_membership(imo, sopt);
1793 1.5 hpeyerl break;
1794 1.5 hpeyerl
1795 1.232 christos case IP_DROP_MEMBERSHIP: /* IPV6_LEAVE_GROUP */
1796 1.232 christos error = ip_drop_membership(imo, sopt);
1797 1.5 hpeyerl break;
1798 1.5 hpeyerl
1799 1.5 hpeyerl default:
1800 1.5 hpeyerl error = EOPNOTSUPP;
1801 1.5 hpeyerl break;
1802 1.5 hpeyerl }
1803 1.5 hpeyerl
1804 1.5 hpeyerl /*
1805 1.5 hpeyerl * If all options have default values, no need to keep the mbuf.
1806 1.5 hpeyerl */
1807 1.258 ozaki if (imo->imo_multicast_if_index == 0 &&
1808 1.5 hpeyerl imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1809 1.5 hpeyerl imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1810 1.5 hpeyerl imo->imo_num_memberships == 0) {
1811 1.215 rmind kmem_free(imo, sizeof(*imo));
1812 1.231 christos *pimo = NULL;
1813 1.5 hpeyerl }
1814 1.5 hpeyerl
1815 1.215 rmind return error;
1816 1.5 hpeyerl }
1817 1.5 hpeyerl
1818 1.5 hpeyerl /*
1819 1.5 hpeyerl * Return the IP multicast options in response to user getsockopt().
1820 1.5 hpeyerl */
1821 1.231 christos int
1822 1.231 christos ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
1823 1.5 hpeyerl {
1824 1.197 plunky struct in_addr addr;
1825 1.197 plunky uint8_t optval;
1826 1.226 rmind int error = 0;
1827 1.5 hpeyerl
1828 1.272 ozaki /* imo is protected by solock or refereced only by the caller */
1829 1.272 ozaki
1830 1.197 plunky switch (sopt->sopt_name) {
1831 1.5 hpeyerl case IP_MULTICAST_IF:
1832 1.258 ozaki if (imo == NULL || imo->imo_multicast_if_index == 0)
1833 1.197 plunky addr = zeroin_addr;
1834 1.81 itojun else if (imo->imo_multicast_addr.s_addr) {
1835 1.81 itojun /* return the value user has set */
1836 1.197 plunky addr = imo->imo_multicast_addr;
1837 1.81 itojun } else {
1838 1.258 ozaki struct ifnet *ifp;
1839 1.258 ozaki struct in_ifaddr *ia = NULL;
1840 1.258 ozaki int s = pserialize_read_enter();
1841 1.258 ozaki
1842 1.258 ozaki ifp = if_byindex(imo->imo_multicast_if_index);
1843 1.258 ozaki if (ifp != NULL) {
1844 1.259 ozaki ia = in_get_ia_from_ifp(ifp);
1845 1.258 ozaki }
1846 1.197 plunky addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1847 1.258 ozaki pserialize_read_exit(s);
1848 1.5 hpeyerl }
1849 1.197 plunky error = sockopt_set(sopt, &addr, sizeof(addr));
1850 1.197 plunky break;
1851 1.5 hpeyerl
1852 1.5 hpeyerl case IP_MULTICAST_TTL:
1853 1.197 plunky optval = imo ? imo->imo_multicast_ttl
1854 1.237 ozaki : IP_DEFAULT_MULTICAST_TTL;
1855 1.197 plunky
1856 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1857 1.197 plunky break;
1858 1.5 hpeyerl
1859 1.5 hpeyerl case IP_MULTICAST_LOOP:
1860 1.197 plunky optval = imo ? imo->imo_multicast_loop
1861 1.237 ozaki : IP_DEFAULT_MULTICAST_LOOP;
1862 1.197 plunky
1863 1.197 plunky error = sockopt_set(sopt, &optval, sizeof(optval));
1864 1.197 plunky break;
1865 1.5 hpeyerl
1866 1.5 hpeyerl default:
1867 1.197 plunky error = EOPNOTSUPP;
1868 1.5 hpeyerl }
1869 1.197 plunky
1870 1.226 rmind return error;
1871 1.5 hpeyerl }
1872 1.5 hpeyerl
1873 1.5 hpeyerl /*
1874 1.5 hpeyerl * Discard the IP multicast options.
1875 1.5 hpeyerl */
1876 1.5 hpeyerl void
1877 1.140 perry ip_freemoptions(struct ip_moptions *imo)
1878 1.5 hpeyerl {
1879 1.71 augustss int i;
1880 1.5 hpeyerl
1881 1.274 ozaki /* The owner of imo (inp) should be protected by solock */
1882 1.274 ozaki
1883 1.5 hpeyerl if (imo != NULL) {
1884 1.5 hpeyerl for (i = 0; i < imo->imo_num_memberships; ++i)
1885 1.5 hpeyerl in_delmulti(imo->imo_membership[i]);
1886 1.215 rmind kmem_free(imo, sizeof(*imo));
1887 1.5 hpeyerl }
1888 1.5 hpeyerl }
1889 1.5 hpeyerl
1890 1.5 hpeyerl /*
1891 1.5 hpeyerl * Routine called from ip_output() to loop back a copy of an IP multicast
1892 1.5 hpeyerl * packet to the input queue of a specified interface. Note that this
1893 1.5 hpeyerl * calls the output routine of the loopback "driver", but with an interface
1894 1.137 peter * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1895 1.5 hpeyerl */
1896 1.12 mycroft static void
1897 1.180 dyoung ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
1898 1.5 hpeyerl {
1899 1.71 augustss struct ip *ip;
1900 1.5 hpeyerl struct mbuf *copym;
1901 1.5 hpeyerl
1902 1.183 dyoung copym = m_copypacket(m, M_DONTWAIT);
1903 1.237 ozaki if (copym != NULL &&
1904 1.237 ozaki (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1905 1.65 itojun copym = m_pullup(copym, sizeof(struct ip));
1906 1.180 dyoung if (copym == NULL)
1907 1.180 dyoung return;
1908 1.180 dyoung /*
1909 1.180 dyoung * We don't bother to fragment if the IP length is greater
1910 1.180 dyoung * than the interface's MTU. Can this possibly matter?
1911 1.180 dyoung */
1912 1.180 dyoung ip = mtod(copym, struct ip *);
1913 1.93 itojun
1914 1.180 dyoung if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1915 1.180 dyoung in_delayed_cksum(copym);
1916 1.180 dyoung copym->m_pkthdr.csum_flags &=
1917 1.180 dyoung ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1918 1.180 dyoung }
1919 1.93 itojun
1920 1.180 dyoung ip->ip_sum = 0;
1921 1.180 dyoung ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1922 1.236 ozaki #ifndef NET_MPSAFE
1923 1.233 ozaki KERNEL_LOCK(1, NULL);
1924 1.236 ozaki #endif
1925 1.180 dyoung (void)looutput(ifp, copym, sintocsa(dst), NULL);
1926 1.236 ozaki #ifndef NET_MPSAFE
1927 1.233 ozaki KERNEL_UNLOCK_ONE(NULL);
1928 1.236 ozaki #endif
1929 1.5 hpeyerl }
1930 1.261 roy
1931 1.261 roy /*
1932 1.261 roy * Ensure sending address is valid.
1933 1.261 roy * Returns 0 on success, -1 if an error should be sent back or 1
1934 1.261 roy * if the packet could be dropped without error (protocol dependent).
1935 1.261 roy */
1936 1.261 roy static int
1937 1.261 roy ip_ifaddrvalid(const struct in_ifaddr *ia)
1938 1.261 roy {
1939 1.261 roy
1940 1.261 roy if (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)
1941 1.261 roy return 0;
1942 1.261 roy
1943 1.261 roy if (ia->ia4_flags & IN_IFF_DUPLICATED)
1944 1.261 roy return -1;
1945 1.261 roy else if (ia->ia4_flags & (IN_IFF_TENTATIVE | IN_IFF_DETACHED))
1946 1.261 roy return 1;
1947 1.261 roy
1948 1.261 roy return 0;
1949 1.261 roy }
1950