ip_output.c revision 1.107.2.11 1 /* $NetBSD: ip_output.c,v 1.107.2.11 2005/11/10 14:11:07 skrll Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.107.2.11 2005/11/10 14:11:07 skrll Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/in_offload.h>
132
133 #ifdef MROUTING
134 #include <netinet/ip_mroute.h>
135 #endif
136
137 #include <machine/stdarg.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #include <netkey/key_debug.h>
143 #ifdef IPSEC_NAT_T
144 #include <netinet/udp.h>
145 #endif
146 #endif /*IPSEC*/
147
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #include <netipsec/xform.h>
152 #endif /* FAST_IPSEC*/
153
154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
157 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
158
159 #ifdef PFIL_HOOKS
160 extern struct pfil_head inet_pfil_hook; /* XXX */
161 #endif
162
163 int ip_do_loopback_cksum = 0;
164
165 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
166 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
167 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
168 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
169 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
170
171 struct ip_tso_output_args {
172 struct ifnet *ifp;
173 struct sockaddr *sa;
174 struct rtentry *rt;
175 };
176
177 static int ip_tso_output_callback(void *, struct mbuf *);
178 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
179 struct rtentry *);
180
181 static int
182 ip_tso_output_callback(void *vp, struct mbuf *m)
183 {
184 struct ip_tso_output_args *args = vp;
185 struct ifnet *ifp = args->ifp;
186
187 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
188 }
189
190 static int
191 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
192 struct rtentry *rt)
193 {
194 struct ip_tso_output_args args;
195
196 args.ifp = ifp;
197 args.sa = sa;
198 args.rt = rt;
199
200 return tcp4_segment(m, ip_tso_output_callback, &args);
201 }
202
203 /*
204 * IP output. The packet in mbuf chain m contains a skeletal IP
205 * header (with len, off, ttl, proto, tos, src, dst).
206 * The mbuf chain containing the packet will be freed.
207 * The mbuf opt, if present, will not be freed.
208 */
209 int
210 ip_output(struct mbuf *m0, ...)
211 {
212 struct ip *ip;
213 struct ifnet *ifp;
214 struct mbuf *m = m0;
215 int hlen = sizeof (struct ip);
216 int len, error = 0;
217 struct route iproute;
218 struct sockaddr_in *dst;
219 struct in_ifaddr *ia;
220 struct mbuf *opt;
221 struct route *ro;
222 int flags, sw_csum;
223 int *mtu_p;
224 u_long mtu;
225 struct ip_moptions *imo;
226 struct socket *so;
227 va_list ap;
228 #ifdef IPSEC
229 struct secpolicy *sp = NULL;
230 #ifdef IPSEC_NAT_T
231 int natt_frag = 0;
232 #endif
233 #endif /*IPSEC*/
234 #ifdef FAST_IPSEC
235 struct inpcb *inp;
236 struct m_tag *mtag;
237 struct secpolicy *sp = NULL;
238 struct tdb_ident *tdbi;
239 int s;
240 #endif
241 u_int16_t ip_len;
242
243 len = 0;
244 va_start(ap, m0);
245 opt = va_arg(ap, struct mbuf *);
246 ro = va_arg(ap, struct route *);
247 flags = va_arg(ap, int);
248 imo = va_arg(ap, struct ip_moptions *);
249 so = va_arg(ap, struct socket *);
250 if (flags & IP_RETURNMTU)
251 mtu_p = va_arg(ap, int *);
252 else
253 mtu_p = NULL;
254 va_end(ap);
255
256 MCLAIM(m, &ip_tx_mowner);
257 #ifdef FAST_IPSEC
258 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
259 inp = (struct inpcb *)so->so_pcb;
260 else
261 inp = NULL;
262 #endif /* FAST_IPSEC */
263
264 #ifdef DIAGNOSTIC
265 if ((m->m_flags & M_PKTHDR) == 0)
266 panic("ip_output no HDR");
267 #endif
268 if (opt) {
269 m = ip_insertoptions(m, opt, &len);
270 if (len >= sizeof(struct ip))
271 hlen = len;
272 }
273 ip = mtod(m, struct ip *);
274 /*
275 * Fill in IP header.
276 */
277 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
278 ip->ip_v = IPVERSION;
279 ip->ip_off = htons(0);
280 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
281 ip->ip_id = ip_newid();
282 } else {
283
284 /*
285 * TSO capable interfaces (typically?) increment
286 * ip_id for each segment.
287 * "allocate" enough ids here to increase the chance
288 * for them to be unique.
289 *
290 * note that the following calculation is not
291 * needed to be precise. wasting some ip_id is fine.
292 */
293
294 unsigned int segsz = m->m_pkthdr.segsz;
295 unsigned int datasz = ntohs(ip->ip_len) - hlen;
296 unsigned int num = howmany(datasz, segsz);
297
298 ip->ip_id = ip_newid_range(num);
299 }
300 ip->ip_hl = hlen >> 2;
301 ipstat.ips_localout++;
302 } else {
303 hlen = ip->ip_hl << 2;
304 }
305 /*
306 * Route packet.
307 */
308 if (ro == 0) {
309 ro = &iproute;
310 bzero((caddr_t)ro, sizeof (*ro));
311 }
312 dst = satosin(&ro->ro_dst);
313 /*
314 * If there is a cached route,
315 * check that it is to the same destination
316 * and is still up. If not, free it and try again.
317 * The address family should also be checked in case of sharing the
318 * cache with IPv6.
319 */
320 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
321 dst->sin_family != AF_INET ||
322 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
323 RTFREE(ro->ro_rt);
324 ro->ro_rt = (struct rtentry *)0;
325 }
326 if (ro->ro_rt == 0) {
327 bzero(dst, sizeof(*dst));
328 dst->sin_family = AF_INET;
329 dst->sin_len = sizeof(*dst);
330 dst->sin_addr = ip->ip_dst;
331 }
332 /*
333 * If routing to interface only,
334 * short circuit routing lookup.
335 */
336 if (flags & IP_ROUTETOIF) {
337 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
338 ipstat.ips_noroute++;
339 error = ENETUNREACH;
340 goto bad;
341 }
342 ifp = ia->ia_ifp;
343 mtu = ifp->if_mtu;
344 ip->ip_ttl = 1;
345 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
346 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
347 imo != NULL && imo->imo_multicast_ifp != NULL) {
348 ifp = imo->imo_multicast_ifp;
349 mtu = ifp->if_mtu;
350 IFP_TO_IA(ifp, ia);
351 } else {
352 if (ro->ro_rt == 0)
353 rtalloc(ro);
354 if (ro->ro_rt == 0) {
355 ipstat.ips_noroute++;
356 error = EHOSTUNREACH;
357 goto bad;
358 }
359 ia = ifatoia(ro->ro_rt->rt_ifa);
360 ifp = ro->ro_rt->rt_ifp;
361 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
362 mtu = ifp->if_mtu;
363 ro->ro_rt->rt_use++;
364 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
365 dst = satosin(ro->ro_rt->rt_gateway);
366 }
367 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
368 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
369 struct in_multi *inm;
370
371 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
372 M_BCAST : M_MCAST;
373 /*
374 * IP destination address is multicast. Make sure "dst"
375 * still points to the address in "ro". (It may have been
376 * changed to point to a gateway address, above.)
377 */
378 dst = satosin(&ro->ro_dst);
379 /*
380 * See if the caller provided any multicast options
381 */
382 if (imo != NULL)
383 ip->ip_ttl = imo->imo_multicast_ttl;
384 else
385 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
386
387 /*
388 * if we don't know the outgoing ifp yet, we can't generate
389 * output
390 */
391 if (!ifp) {
392 ipstat.ips_noroute++;
393 error = ENETUNREACH;
394 goto bad;
395 }
396
397 /*
398 * If the packet is multicast or broadcast, confirm that
399 * the outgoing interface can transmit it.
400 */
401 if (((m->m_flags & M_MCAST) &&
402 (ifp->if_flags & IFF_MULTICAST) == 0) ||
403 ((m->m_flags & M_BCAST) &&
404 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
405 ipstat.ips_noroute++;
406 error = ENETUNREACH;
407 goto bad;
408 }
409 /*
410 * If source address not specified yet, use an address
411 * of outgoing interface.
412 */
413 if (in_nullhost(ip->ip_src)) {
414 struct in_ifaddr *xia;
415
416 IFP_TO_IA(ifp, xia);
417 if (!xia) {
418 error = EADDRNOTAVAIL;
419 goto bad;
420 }
421 ip->ip_src = xia->ia_addr.sin_addr;
422 }
423
424 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
425 if (inm != NULL &&
426 (imo == NULL || imo->imo_multicast_loop)) {
427 /*
428 * If we belong to the destination multicast group
429 * on the outgoing interface, and the caller did not
430 * forbid loopback, loop back a copy.
431 */
432 ip_mloopback(ifp, m, dst);
433 }
434 #ifdef MROUTING
435 else {
436 /*
437 * If we are acting as a multicast router, perform
438 * multicast forwarding as if the packet had just
439 * arrived on the interface to which we are about
440 * to send. The multicast forwarding function
441 * recursively calls this function, using the
442 * IP_FORWARDING flag to prevent infinite recursion.
443 *
444 * Multicasts that are looped back by ip_mloopback(),
445 * above, will be forwarded by the ip_input() routine,
446 * if necessary.
447 */
448 extern struct socket *ip_mrouter;
449
450 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
451 if (ip_mforward(m, ifp) != 0) {
452 m_freem(m);
453 goto done;
454 }
455 }
456 }
457 #endif
458 /*
459 * Multicasts with a time-to-live of zero may be looped-
460 * back, above, but must not be transmitted on a network.
461 * Also, multicasts addressed to the loopback interface
462 * are not sent -- the above call to ip_mloopback() will
463 * loop back a copy if this host actually belongs to the
464 * destination group on the loopback interface.
465 */
466 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
467 m_freem(m);
468 goto done;
469 }
470
471 goto sendit;
472 }
473 /*
474 * If source address not specified yet, use address
475 * of outgoing interface.
476 */
477 if (in_nullhost(ip->ip_src))
478 ip->ip_src = ia->ia_addr.sin_addr;
479
480 /*
481 * packets with Class-D address as source are not valid per
482 * RFC 1112
483 */
484 if (IN_MULTICAST(ip->ip_src.s_addr)) {
485 ipstat.ips_odropped++;
486 error = EADDRNOTAVAIL;
487 goto bad;
488 }
489
490 /*
491 * Look for broadcast address and
492 * and verify user is allowed to send
493 * such a packet.
494 */
495 if (in_broadcast(dst->sin_addr, ifp)) {
496 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
497 error = EADDRNOTAVAIL;
498 goto bad;
499 }
500 if ((flags & IP_ALLOWBROADCAST) == 0) {
501 error = EACCES;
502 goto bad;
503 }
504 /* don't allow broadcast messages to be fragmented */
505 if (ntohs(ip->ip_len) > ifp->if_mtu) {
506 error = EMSGSIZE;
507 goto bad;
508 }
509 m->m_flags |= M_BCAST;
510 } else
511 m->m_flags &= ~M_BCAST;
512
513 sendit:
514 /*
515 * If we're doing Path MTU Discovery, we need to set DF unless
516 * the route's MTU is locked.
517 */
518 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
519 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
520 ip->ip_off |= htons(IP_DF);
521
522 /* Remember the current ip_len */
523 ip_len = ntohs(ip->ip_len);
524
525 #ifdef IPSEC
526 /* get SP for this packet */
527 if (so == NULL)
528 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
529 flags, &error);
530 else {
531 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
532 IPSEC_DIR_OUTBOUND))
533 goto skip_ipsec;
534 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
535 }
536
537 if (sp == NULL) {
538 ipsecstat.out_inval++;
539 goto bad;
540 }
541
542 error = 0;
543
544 /* check policy */
545 switch (sp->policy) {
546 case IPSEC_POLICY_DISCARD:
547 /*
548 * This packet is just discarded.
549 */
550 ipsecstat.out_polvio++;
551 goto bad;
552
553 case IPSEC_POLICY_BYPASS:
554 case IPSEC_POLICY_NONE:
555 /* no need to do IPsec. */
556 goto skip_ipsec;
557
558 case IPSEC_POLICY_IPSEC:
559 if (sp->req == NULL) {
560 /* XXX should be panic ? */
561 printf("ip_output: No IPsec request specified.\n");
562 error = EINVAL;
563 goto bad;
564 }
565 break;
566
567 case IPSEC_POLICY_ENTRUST:
568 default:
569 printf("ip_output: Invalid policy found. %d\n", sp->policy);
570 }
571
572 #ifdef IPSEC_NAT_T
573 /*
574 * NAT-T ESP fragmentation: don't do IPSec processing now,
575 * we'll do it on each fragmented packet.
576 */
577 if (sp->req->sav &&
578 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
579 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
580 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
581 natt_frag = 1;
582 mtu = sp->req->sav->esp_frag;
583 goto skip_ipsec;
584 }
585 }
586 #endif /* IPSEC_NAT_T */
587
588 /*
589 * ipsec4_output() expects ip_len and ip_off in network
590 * order. They have been set to network order above.
591 */
592
593 {
594 struct ipsec_output_state state;
595 bzero(&state, sizeof(state));
596 state.m = m;
597 if (flags & IP_ROUTETOIF) {
598 state.ro = &iproute;
599 bzero(&iproute, sizeof(iproute));
600 } else
601 state.ro = ro;
602 state.dst = (struct sockaddr *)dst;
603
604 /*
605 * We can't defer the checksum of payload data if
606 * we're about to encrypt/authenticate it.
607 *
608 * XXX When we support crypto offloading functions of
609 * XXX network interfaces, we need to reconsider this,
610 * XXX since it's likely that they'll support checksumming,
611 * XXX as well.
612 */
613 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
614 in_delayed_cksum(m);
615 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
616 }
617
618 error = ipsec4_output(&state, sp, flags);
619
620 m = state.m;
621 if (flags & IP_ROUTETOIF) {
622 /*
623 * if we have tunnel mode SA, we may need to ignore
624 * IP_ROUTETOIF.
625 */
626 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
627 flags &= ~IP_ROUTETOIF;
628 ro = state.ro;
629 }
630 } else
631 ro = state.ro;
632 dst = (struct sockaddr_in *)state.dst;
633 if (error) {
634 /* mbuf is already reclaimed in ipsec4_output. */
635 m0 = NULL;
636 switch (error) {
637 case EHOSTUNREACH:
638 case ENETUNREACH:
639 case EMSGSIZE:
640 case ENOBUFS:
641 case ENOMEM:
642 break;
643 default:
644 printf("ip4_output (ipsec): error code %d\n", error);
645 /*fall through*/
646 case ENOENT:
647 /* don't show these error codes to the user */
648 error = 0;
649 break;
650 }
651 goto bad;
652 }
653
654 /* be sure to update variables that are affected by ipsec4_output() */
655 ip = mtod(m, struct ip *);
656 hlen = ip->ip_hl << 2;
657 ip_len = ntohs(ip->ip_len);
658
659 if (ro->ro_rt == NULL) {
660 if ((flags & IP_ROUTETOIF) == 0) {
661 printf("ip_output: "
662 "can't update route after IPsec processing\n");
663 error = EHOSTUNREACH; /*XXX*/
664 goto bad;
665 }
666 } else {
667 /* nobody uses ia beyond here */
668 if (state.encap) {
669 ifp = ro->ro_rt->rt_ifp;
670 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
671 mtu = ifp->if_mtu;
672 }
673 }
674 }
675 skip_ipsec:
676 #endif /*IPSEC*/
677 #ifdef FAST_IPSEC
678 /*
679 * Check the security policy (SP) for the packet and, if
680 * required, do IPsec-related processing. There are two
681 * cases here; the first time a packet is sent through
682 * it will be untagged and handled by ipsec4_checkpolicy.
683 * If the packet is resubmitted to ip_output (e.g. after
684 * AH, ESP, etc. processing), there will be a tag to bypass
685 * the lookup and related policy checking.
686 */
687 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
688 s = splsoftnet();
689 if (mtag != NULL) {
690 tdbi = (struct tdb_ident *)(mtag + 1);
691 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
692 if (sp == NULL)
693 error = -EINVAL; /* force silent drop */
694 m_tag_delete(m, mtag);
695 } else {
696 if (inp != NULL &&
697 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
698 goto spd_done;
699 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
700 &error, inp);
701 }
702 /*
703 * There are four return cases:
704 * sp != NULL apply IPsec policy
705 * sp == NULL, error == 0 no IPsec handling needed
706 * sp == NULL, error == -EINVAL discard packet w/o error
707 * sp == NULL, error != 0 discard packet, report error
708 */
709 if (sp != NULL) {
710 /* Loop detection, check if ipsec processing already done */
711 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
712 for (mtag = m_tag_first(m); mtag != NULL;
713 mtag = m_tag_next(m, mtag)) {
714 #ifdef MTAG_ABI_COMPAT
715 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
716 continue;
717 #endif
718 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
719 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
720 continue;
721 /*
722 * Check if policy has an SA associated with it.
723 * This can happen when an SP has yet to acquire
724 * an SA; e.g. on first reference. If it occurs,
725 * then we let ipsec4_process_packet do its thing.
726 */
727 if (sp->req->sav == NULL)
728 break;
729 tdbi = (struct tdb_ident *)(mtag + 1);
730 if (tdbi->spi == sp->req->sav->spi &&
731 tdbi->proto == sp->req->sav->sah->saidx.proto &&
732 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
733 sizeof (union sockaddr_union)) == 0) {
734 /*
735 * No IPsec processing is needed, free
736 * reference to SP.
737 *
738 * NB: null pointer to avoid free at
739 * done: below.
740 */
741 KEY_FREESP(&sp), sp = NULL;
742 splx(s);
743 goto spd_done;
744 }
745 }
746
747 /*
748 * Do delayed checksums now because we send before
749 * this is done in the normal processing path.
750 */
751 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
752 in_delayed_cksum(m);
753 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
754 }
755
756 #ifdef __FreeBSD__
757 ip->ip_len = htons(ip->ip_len);
758 ip->ip_off = htons(ip->ip_off);
759 #endif
760
761 /* NB: callee frees mbuf */
762 error = ipsec4_process_packet(m, sp->req, flags, 0);
763 /*
764 * Preserve KAME behaviour: ENOENT can be returned
765 * when an SA acquire is in progress. Don't propagate
766 * this to user-level; it confuses applications.
767 *
768 * XXX this will go away when the SADB is redone.
769 */
770 if (error == ENOENT)
771 error = 0;
772 splx(s);
773 goto done;
774 } else {
775 splx(s);
776
777 if (error != 0) {
778 /*
779 * Hack: -EINVAL is used to signal that a packet
780 * should be silently discarded. This is typically
781 * because we asked key management for an SA and
782 * it was delayed (e.g. kicked up to IKE).
783 */
784 if (error == -EINVAL)
785 error = 0;
786 goto bad;
787 } else {
788 /* No IPsec processing for this packet. */
789 }
790 #ifdef notyet
791 /*
792 * If deferred crypto processing is needed, check that
793 * the interface supports it.
794 */
795 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
796 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
797 /* notify IPsec to do its own crypto */
798 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
799 error = EHOSTUNREACH;
800 goto bad;
801 }
802 #endif
803 }
804 spd_done:
805 #endif /* FAST_IPSEC */
806
807 #ifdef PFIL_HOOKS
808 /*
809 * Run through list of hooks for output packets.
810 */
811 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
812 goto done;
813 if (m == NULL)
814 goto done;
815
816 ip = mtod(m, struct ip *);
817 hlen = ip->ip_hl << 2;
818 #endif /* PFIL_HOOKS */
819
820 m->m_pkthdr.csum_data |= hlen << 16;
821
822 #if IFA_STATS
823 /*
824 * search for the source address structure to
825 * maintain output statistics.
826 */
827 INADDR_TO_IA(ip->ip_src, ia);
828 #endif
829
830 /* Maybe skip checksums on loopback interfaces. */
831 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
832 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
833 }
834 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
835 /*
836 * If small enough for mtu of path, or if using TCP segmentation
837 * offload, can just send directly.
838 */
839 if (ip_len <= mtu ||
840 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
841 #if IFA_STATS
842 if (ia)
843 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
844 #endif
845 /*
846 * Always initialize the sum to 0! Some HW assisted
847 * checksumming requires this.
848 */
849 ip->ip_sum = 0;
850
851 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
852 /*
853 * Perform any checksums that the hardware can't do
854 * for us.
855 *
856 * XXX Does any hardware require the {th,uh}_sum
857 * XXX fields to be 0?
858 */
859 if (sw_csum & M_CSUM_IPv4) {
860 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
861 ip->ip_sum = in_cksum(m, hlen);
862 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
863 }
864 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
865 if (IN_NEED_CHECKSUM(ifp,
866 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
867 in_delayed_cksum(m);
868 }
869 m->m_pkthdr.csum_flags &=
870 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
871 }
872 }
873
874 #ifdef IPSEC
875 /* clean ipsec history once it goes out of the node */
876 ipsec_delaux(m);
877 #endif
878
879 if (__predict_true(
880 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
881 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
882 error =
883 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
884 } else {
885 error =
886 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
887 }
888 goto done;
889 }
890
891 /*
892 * We can't use HW checksumming if we're about to
893 * to fragment the packet.
894 *
895 * XXX Some hardware can do this.
896 */
897 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
898 if (IN_NEED_CHECKSUM(ifp,
899 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
900 in_delayed_cksum(m);
901 }
902 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
903 }
904
905 /*
906 * Too large for interface; fragment if possible.
907 * Must be able to put at least 8 bytes per fragment.
908 */
909 if (ntohs(ip->ip_off) & IP_DF) {
910 if (flags & IP_RETURNMTU)
911 *mtu_p = mtu;
912 error = EMSGSIZE;
913 ipstat.ips_cantfrag++;
914 goto bad;
915 }
916
917 error = ip_fragment(m, ifp, mtu);
918 if (error) {
919 m = NULL;
920 goto bad;
921 }
922
923 for (; m; m = m0) {
924 m0 = m->m_nextpkt;
925 m->m_nextpkt = 0;
926 if (error == 0) {
927 #if IFA_STATS
928 if (ia)
929 ia->ia_ifa.ifa_data.ifad_outbytes +=
930 ntohs(ip->ip_len);
931 #endif
932 #ifdef IPSEC
933 /* clean ipsec history once it goes out of the node */
934 ipsec_delaux(m);
935
936 #ifdef IPSEC_NAT_T
937 /*
938 * If we get there, the packet has not been handeld by
939 * IPSec whereas it should have. Now that it has been
940 * fragmented, re-inject it in ip_output so that IPsec
941 * processing can occur.
942 */
943 if (natt_frag) {
944 error = ip_output(m, opt,
945 ro, flags, imo, so, mtu_p);
946 } else
947 #endif /* IPSEC_NAT_T */
948 #endif /* IPSEC */
949 {
950 KASSERT((m->m_pkthdr.csum_flags &
951 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
952 error = (*ifp->if_output)(ifp, m, sintosa(dst),
953 ro->ro_rt);
954 }
955 } else
956 m_freem(m);
957 }
958
959 if (error == 0)
960 ipstat.ips_fragmented++;
961 done:
962 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
963 RTFREE(ro->ro_rt);
964 ro->ro_rt = 0;
965 }
966
967 #ifdef IPSEC
968 if (sp != NULL) {
969 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
970 printf("DP ip_output call free SP:%p\n", sp));
971 key_freesp(sp);
972 }
973 #endif /* IPSEC */
974 #ifdef FAST_IPSEC
975 if (sp != NULL)
976 KEY_FREESP(&sp);
977 #endif /* FAST_IPSEC */
978
979 return (error);
980 bad:
981 m_freem(m);
982 goto done;
983 }
984
985 int
986 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
987 {
988 struct ip *ip, *mhip;
989 struct mbuf *m0;
990 int len, hlen, off;
991 int mhlen, firstlen;
992 struct mbuf **mnext;
993 int sw_csum = m->m_pkthdr.csum_flags;
994 int fragments = 0;
995 int s;
996 int error = 0;
997
998 ip = mtod(m, struct ip *);
999 hlen = ip->ip_hl << 2;
1000 if (ifp != NULL)
1001 sw_csum &= ~ifp->if_csum_flags_tx;
1002
1003 len = (mtu - hlen) &~ 7;
1004 if (len < 8) {
1005 m_freem(m);
1006 return (EMSGSIZE);
1007 }
1008
1009 firstlen = len;
1010 mnext = &m->m_nextpkt;
1011
1012 /*
1013 * Loop through length of segment after first fragment,
1014 * make new header and copy data of each part and link onto chain.
1015 */
1016 m0 = m;
1017 mhlen = sizeof (struct ip);
1018 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1019 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1020 if (m == 0) {
1021 error = ENOBUFS;
1022 ipstat.ips_odropped++;
1023 goto sendorfree;
1024 }
1025 MCLAIM(m, m0->m_owner);
1026 *mnext = m;
1027 mnext = &m->m_nextpkt;
1028 m->m_data += max_linkhdr;
1029 mhip = mtod(m, struct ip *);
1030 *mhip = *ip;
1031 /* we must inherit MCAST and BCAST flags */
1032 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1033 if (hlen > sizeof (struct ip)) {
1034 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1035 mhip->ip_hl = mhlen >> 2;
1036 }
1037 m->m_len = mhlen;
1038 mhip->ip_off = ((off - hlen) >> 3) +
1039 (ntohs(ip->ip_off) & ~IP_MF);
1040 if (ip->ip_off & htons(IP_MF))
1041 mhip->ip_off |= IP_MF;
1042 if (off + len >= ntohs(ip->ip_len))
1043 len = ntohs(ip->ip_len) - off;
1044 else
1045 mhip->ip_off |= IP_MF;
1046 HTONS(mhip->ip_off);
1047 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1048 m->m_next = m_copy(m0, off, len);
1049 if (m->m_next == 0) {
1050 error = ENOBUFS; /* ??? */
1051 ipstat.ips_odropped++;
1052 goto sendorfree;
1053 }
1054 m->m_pkthdr.len = mhlen + len;
1055 m->m_pkthdr.rcvif = (struct ifnet *)0;
1056 mhip->ip_sum = 0;
1057 if (sw_csum & M_CSUM_IPv4) {
1058 mhip->ip_sum = in_cksum(m, mhlen);
1059 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1060 } else {
1061 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1062 m->m_pkthdr.csum_data |= mhlen << 16;
1063 }
1064 ipstat.ips_ofragments++;
1065 fragments++;
1066 }
1067 /*
1068 * Update first fragment by trimming what's been copied out
1069 * and updating header, then send each fragment (in order).
1070 */
1071 m = m0;
1072 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1073 m->m_pkthdr.len = hlen + firstlen;
1074 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1075 ip->ip_off |= htons(IP_MF);
1076 ip->ip_sum = 0;
1077 if (sw_csum & M_CSUM_IPv4) {
1078 ip->ip_sum = in_cksum(m, hlen);
1079 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1080 } else {
1081 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1082 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1083 sizeof(struct ip));
1084 }
1085 sendorfree:
1086 /*
1087 * If there is no room for all the fragments, don't queue
1088 * any of them.
1089 */
1090 if (ifp != NULL) {
1091 s = splnet();
1092 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1093 error == 0) {
1094 error = ENOBUFS;
1095 ipstat.ips_odropped++;
1096 IFQ_INC_DROPS(&ifp->if_snd);
1097 }
1098 splx(s);
1099 }
1100 if (error) {
1101 for (m = m0; m; m = m0) {
1102 m0 = m->m_nextpkt;
1103 m->m_nextpkt = NULL;
1104 m_freem(m);
1105 }
1106 }
1107 return (error);
1108 }
1109
1110 /*
1111 * Process a delayed payload checksum calculation.
1112 */
1113 void
1114 in_delayed_cksum(struct mbuf *m)
1115 {
1116 struct ip *ip;
1117 u_int16_t csum, offset;
1118
1119 ip = mtod(m, struct ip *);
1120 offset = ip->ip_hl << 2;
1121 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1122 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1123 csum = 0xffff;
1124
1125 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1126
1127 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1128 /* This happen when ip options were inserted
1129 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1130 m->m_len, offset, ip->ip_p);
1131 */
1132 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1133 } else
1134 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1135 }
1136
1137 /*
1138 * Determine the maximum length of the options to be inserted;
1139 * we would far rather allocate too much space rather than too little.
1140 */
1141
1142 u_int
1143 ip_optlen(struct inpcb *inp)
1144 {
1145 struct mbuf *m = inp->inp_options;
1146
1147 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1148 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1149 else
1150 return 0;
1151 }
1152
1153
1154 /*
1155 * Insert IP options into preformed packet.
1156 * Adjust IP destination as required for IP source routing,
1157 * as indicated by a non-zero in_addr at the start of the options.
1158 */
1159 static struct mbuf *
1160 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1161 {
1162 struct ipoption *p = mtod(opt, struct ipoption *);
1163 struct mbuf *n;
1164 struct ip *ip = mtod(m, struct ip *);
1165 unsigned optlen;
1166
1167 optlen = opt->m_len - sizeof(p->ipopt_dst);
1168 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1169 return (m); /* XXX should fail */
1170 if (!in_nullhost(p->ipopt_dst))
1171 ip->ip_dst = p->ipopt_dst;
1172 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1173 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1174 if (n == 0)
1175 return (m);
1176 MCLAIM(n, m->m_owner);
1177 M_MOVE_PKTHDR(n, m);
1178 m->m_len -= sizeof(struct ip);
1179 m->m_data += sizeof(struct ip);
1180 n->m_next = m;
1181 m = n;
1182 m->m_len = optlen + sizeof(struct ip);
1183 m->m_data += max_linkhdr;
1184 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1185 } else {
1186 m->m_data -= optlen;
1187 m->m_len += optlen;
1188 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1189 }
1190 m->m_pkthdr.len += optlen;
1191 ip = mtod(m, struct ip *);
1192 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1193 *phlen = sizeof(struct ip) + optlen;
1194 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1195 return (m);
1196 }
1197
1198 /*
1199 * Copy options from ip to jp,
1200 * omitting those not copied during fragmentation.
1201 */
1202 int
1203 ip_optcopy(struct ip *ip, struct ip *jp)
1204 {
1205 u_char *cp, *dp;
1206 int opt, optlen, cnt;
1207
1208 cp = (u_char *)(ip + 1);
1209 dp = (u_char *)(jp + 1);
1210 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1211 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1212 opt = cp[0];
1213 if (opt == IPOPT_EOL)
1214 break;
1215 if (opt == IPOPT_NOP) {
1216 /* Preserve for IP mcast tunnel's LSRR alignment. */
1217 *dp++ = IPOPT_NOP;
1218 optlen = 1;
1219 continue;
1220 }
1221 #ifdef DIAGNOSTIC
1222 if (cnt < IPOPT_OLEN + sizeof(*cp))
1223 panic("malformed IPv4 option passed to ip_optcopy");
1224 #endif
1225 optlen = cp[IPOPT_OLEN];
1226 #ifdef DIAGNOSTIC
1227 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1228 panic("malformed IPv4 option passed to ip_optcopy");
1229 #endif
1230 /* bogus lengths should have been caught by ip_dooptions */
1231 if (optlen > cnt)
1232 optlen = cnt;
1233 if (IPOPT_COPIED(opt)) {
1234 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1235 dp += optlen;
1236 }
1237 }
1238 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1239 *dp++ = IPOPT_EOL;
1240 return (optlen);
1241 }
1242
1243 /*
1244 * IP socket option processing.
1245 */
1246 int
1247 ip_ctloutput(int op, struct socket *so, int level, int optname,
1248 struct mbuf **mp)
1249 {
1250 struct inpcb *inp = sotoinpcb(so);
1251 struct mbuf *m = *mp;
1252 int optval = 0;
1253 int error = 0;
1254 #if defined(IPSEC) || defined(FAST_IPSEC)
1255 struct proc *p = curproc; /*XXX*/
1256 #endif
1257
1258 if (level != IPPROTO_IP) {
1259 error = EINVAL;
1260 if (op == PRCO_SETOPT && *mp)
1261 (void) m_free(*mp);
1262 } else switch (op) {
1263
1264 case PRCO_SETOPT:
1265 switch (optname) {
1266 case IP_OPTIONS:
1267 #ifdef notyet
1268 case IP_RETOPTS:
1269 return (ip_pcbopts(optname, &inp->inp_options, m));
1270 #else
1271 return (ip_pcbopts(&inp->inp_options, m));
1272 #endif
1273
1274 case IP_TOS:
1275 case IP_TTL:
1276 case IP_RECVOPTS:
1277 case IP_RECVRETOPTS:
1278 case IP_RECVDSTADDR:
1279 case IP_RECVIF:
1280 if (m == NULL || m->m_len != sizeof(int))
1281 error = EINVAL;
1282 else {
1283 optval = *mtod(m, int *);
1284 switch (optname) {
1285
1286 case IP_TOS:
1287 inp->inp_ip.ip_tos = optval;
1288 break;
1289
1290 case IP_TTL:
1291 inp->inp_ip.ip_ttl = optval;
1292 break;
1293 #define OPTSET(bit) \
1294 if (optval) \
1295 inp->inp_flags |= bit; \
1296 else \
1297 inp->inp_flags &= ~bit;
1298
1299 case IP_RECVOPTS:
1300 OPTSET(INP_RECVOPTS);
1301 break;
1302
1303 case IP_RECVRETOPTS:
1304 OPTSET(INP_RECVRETOPTS);
1305 break;
1306
1307 case IP_RECVDSTADDR:
1308 OPTSET(INP_RECVDSTADDR);
1309 break;
1310
1311 case IP_RECVIF:
1312 OPTSET(INP_RECVIF);
1313 break;
1314 }
1315 }
1316 break;
1317 #undef OPTSET
1318
1319 case IP_MULTICAST_IF:
1320 case IP_MULTICAST_TTL:
1321 case IP_MULTICAST_LOOP:
1322 case IP_ADD_MEMBERSHIP:
1323 case IP_DROP_MEMBERSHIP:
1324 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1325 break;
1326
1327 case IP_PORTRANGE:
1328 if (m == 0 || m->m_len != sizeof(int))
1329 error = EINVAL;
1330 else {
1331 optval = *mtod(m, int *);
1332
1333 switch (optval) {
1334
1335 case IP_PORTRANGE_DEFAULT:
1336 case IP_PORTRANGE_HIGH:
1337 inp->inp_flags &= ~(INP_LOWPORT);
1338 break;
1339
1340 case IP_PORTRANGE_LOW:
1341 inp->inp_flags |= INP_LOWPORT;
1342 break;
1343
1344 default:
1345 error = EINVAL;
1346 break;
1347 }
1348 }
1349 break;
1350
1351 #if defined(IPSEC) || defined(FAST_IPSEC)
1352 case IP_IPSEC_POLICY:
1353 {
1354 caddr_t req = NULL;
1355 size_t len = 0;
1356 int priv = 0;
1357
1358 #ifdef __NetBSD__
1359 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1360 priv = 0;
1361 else
1362 priv = 1;
1363 #else
1364 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1365 #endif
1366 if (m) {
1367 req = mtod(m, caddr_t);
1368 len = m->m_len;
1369 }
1370 error = ipsec4_set_policy(inp, optname, req, len, priv);
1371 break;
1372 }
1373 #endif /*IPSEC*/
1374
1375 default:
1376 error = ENOPROTOOPT;
1377 break;
1378 }
1379 if (m)
1380 (void)m_free(m);
1381 break;
1382
1383 case PRCO_GETOPT:
1384 switch (optname) {
1385 case IP_OPTIONS:
1386 case IP_RETOPTS:
1387 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1388 MCLAIM(m, so->so_mowner);
1389 if (inp->inp_options) {
1390 m->m_len = inp->inp_options->m_len;
1391 bcopy(mtod(inp->inp_options, caddr_t),
1392 mtod(m, caddr_t), (unsigned)m->m_len);
1393 } else
1394 m->m_len = 0;
1395 break;
1396
1397 case IP_TOS:
1398 case IP_TTL:
1399 case IP_RECVOPTS:
1400 case IP_RECVRETOPTS:
1401 case IP_RECVDSTADDR:
1402 case IP_RECVIF:
1403 case IP_ERRORMTU:
1404 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1405 MCLAIM(m, so->so_mowner);
1406 m->m_len = sizeof(int);
1407 switch (optname) {
1408
1409 case IP_TOS:
1410 optval = inp->inp_ip.ip_tos;
1411 break;
1412
1413 case IP_TTL:
1414 optval = inp->inp_ip.ip_ttl;
1415 break;
1416
1417 case IP_ERRORMTU:
1418 optval = inp->inp_errormtu;
1419 break;
1420
1421 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1422
1423 case IP_RECVOPTS:
1424 optval = OPTBIT(INP_RECVOPTS);
1425 break;
1426
1427 case IP_RECVRETOPTS:
1428 optval = OPTBIT(INP_RECVRETOPTS);
1429 break;
1430
1431 case IP_RECVDSTADDR:
1432 optval = OPTBIT(INP_RECVDSTADDR);
1433 break;
1434
1435 case IP_RECVIF:
1436 optval = OPTBIT(INP_RECVIF);
1437 break;
1438 }
1439 *mtod(m, int *) = optval;
1440 break;
1441
1442 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1443 /* XXX: code broken */
1444 case IP_IPSEC_POLICY:
1445 {
1446 caddr_t req = NULL;
1447 size_t len = 0;
1448
1449 if (m) {
1450 req = mtod(m, caddr_t);
1451 len = m->m_len;
1452 }
1453 error = ipsec4_get_policy(inp, req, len, mp);
1454 break;
1455 }
1456 #endif /*IPSEC*/
1457
1458 case IP_MULTICAST_IF:
1459 case IP_MULTICAST_TTL:
1460 case IP_MULTICAST_LOOP:
1461 case IP_ADD_MEMBERSHIP:
1462 case IP_DROP_MEMBERSHIP:
1463 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1464 if (*mp)
1465 MCLAIM(*mp, so->so_mowner);
1466 break;
1467
1468 case IP_PORTRANGE:
1469 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1470 MCLAIM(m, so->so_mowner);
1471 m->m_len = sizeof(int);
1472
1473 if (inp->inp_flags & INP_LOWPORT)
1474 optval = IP_PORTRANGE_LOW;
1475 else
1476 optval = IP_PORTRANGE_DEFAULT;
1477
1478 *mtod(m, int *) = optval;
1479 break;
1480
1481 default:
1482 error = ENOPROTOOPT;
1483 break;
1484 }
1485 break;
1486 }
1487 return (error);
1488 }
1489
1490 /*
1491 * Set up IP options in pcb for insertion in output packets.
1492 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1493 * with destination address if source routed.
1494 */
1495 int
1496 #ifdef notyet
1497 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1498 #else
1499 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1500 #endif
1501 {
1502 int cnt, optlen;
1503 u_char *cp;
1504 u_char opt;
1505
1506 /* turn off any old options */
1507 if (*pcbopt)
1508 (void)m_free(*pcbopt);
1509 *pcbopt = 0;
1510 if (m == (struct mbuf *)0 || m->m_len == 0) {
1511 /*
1512 * Only turning off any previous options.
1513 */
1514 if (m)
1515 (void)m_free(m);
1516 return (0);
1517 }
1518
1519 #ifndef __vax__
1520 if (m->m_len % sizeof(int32_t))
1521 goto bad;
1522 #endif
1523 /*
1524 * IP first-hop destination address will be stored before
1525 * actual options; move other options back
1526 * and clear it when none present.
1527 */
1528 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1529 goto bad;
1530 cnt = m->m_len;
1531 m->m_len += sizeof(struct in_addr);
1532 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1533 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1534 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1535
1536 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1537 opt = cp[IPOPT_OPTVAL];
1538 if (opt == IPOPT_EOL)
1539 break;
1540 if (opt == IPOPT_NOP)
1541 optlen = 1;
1542 else {
1543 if (cnt < IPOPT_OLEN + sizeof(*cp))
1544 goto bad;
1545 optlen = cp[IPOPT_OLEN];
1546 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1547 goto bad;
1548 }
1549 switch (opt) {
1550
1551 default:
1552 break;
1553
1554 case IPOPT_LSRR:
1555 case IPOPT_SSRR:
1556 /*
1557 * user process specifies route as:
1558 * ->A->B->C->D
1559 * D must be our final destination (but we can't
1560 * check that since we may not have connected yet).
1561 * A is first hop destination, which doesn't appear in
1562 * actual IP option, but is stored before the options.
1563 */
1564 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1565 goto bad;
1566 m->m_len -= sizeof(struct in_addr);
1567 cnt -= sizeof(struct in_addr);
1568 optlen -= sizeof(struct in_addr);
1569 cp[IPOPT_OLEN] = optlen;
1570 /*
1571 * Move first hop before start of options.
1572 */
1573 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1574 sizeof(struct in_addr));
1575 /*
1576 * Then copy rest of options back
1577 * to close up the deleted entry.
1578 */
1579 (void)memmove(&cp[IPOPT_OFFSET+1],
1580 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1581 (unsigned)cnt - (IPOPT_MINOFF - 1));
1582 break;
1583 }
1584 }
1585 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1586 goto bad;
1587 *pcbopt = m;
1588 return (0);
1589
1590 bad:
1591 (void)m_free(m);
1592 return (EINVAL);
1593 }
1594
1595 /*
1596 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1597 */
1598 static struct ifnet *
1599 ip_multicast_if(struct in_addr *a, int *ifindexp)
1600 {
1601 int ifindex;
1602 struct ifnet *ifp = NULL;
1603 struct in_ifaddr *ia;
1604
1605 if (ifindexp)
1606 *ifindexp = 0;
1607 if (ntohl(a->s_addr) >> 24 == 0) {
1608 ifindex = ntohl(a->s_addr) & 0xffffff;
1609 if (ifindex < 0 || if_indexlim <= ifindex)
1610 return NULL;
1611 ifp = ifindex2ifnet[ifindex];
1612 if (!ifp)
1613 return NULL;
1614 if (ifindexp)
1615 *ifindexp = ifindex;
1616 } else {
1617 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1618 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1619 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1620 ifp = ia->ia_ifp;
1621 break;
1622 }
1623 }
1624 }
1625 return ifp;
1626 }
1627
1628 static int
1629 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1630 {
1631 u_int tval;
1632
1633 if (m == NULL)
1634 return EINVAL;
1635
1636 switch (m->m_len) {
1637 case sizeof(u_char):
1638 tval = *(mtod(m, u_char *));
1639 break;
1640 case sizeof(u_int):
1641 tval = *(mtod(m, u_int *));
1642 break;
1643 default:
1644 return EINVAL;
1645 }
1646
1647 if (tval > maxval)
1648 return EINVAL;
1649
1650 *val = tval;
1651 return 0;
1652 }
1653
1654 /*
1655 * Set the IP multicast options in response to user setsockopt().
1656 */
1657 int
1658 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1659 {
1660 int error = 0;
1661 int i;
1662 struct in_addr addr;
1663 struct ip_mreq *mreq;
1664 struct ifnet *ifp;
1665 struct ip_moptions *imo = *imop;
1666 struct route ro;
1667 struct sockaddr_in *dst;
1668 int ifindex;
1669
1670 if (imo == NULL) {
1671 /*
1672 * No multicast option buffer attached to the pcb;
1673 * allocate one and initialize to default values.
1674 */
1675 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1676 M_WAITOK);
1677
1678 if (imo == NULL)
1679 return (ENOBUFS);
1680 *imop = imo;
1681 imo->imo_multicast_ifp = NULL;
1682 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1683 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1684 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1685 imo->imo_num_memberships = 0;
1686 }
1687
1688 switch (optname) {
1689
1690 case IP_MULTICAST_IF:
1691 /*
1692 * Select the interface for outgoing multicast packets.
1693 */
1694 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1695 error = EINVAL;
1696 break;
1697 }
1698 addr = *(mtod(m, struct in_addr *));
1699 /*
1700 * INADDR_ANY is used to remove a previous selection.
1701 * When no interface is selected, a default one is
1702 * chosen every time a multicast packet is sent.
1703 */
1704 if (in_nullhost(addr)) {
1705 imo->imo_multicast_ifp = NULL;
1706 break;
1707 }
1708 /*
1709 * The selected interface is identified by its local
1710 * IP address. Find the interface and confirm that
1711 * it supports multicasting.
1712 */
1713 ifp = ip_multicast_if(&addr, &ifindex);
1714 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1715 error = EADDRNOTAVAIL;
1716 break;
1717 }
1718 imo->imo_multicast_ifp = ifp;
1719 if (ifindex)
1720 imo->imo_multicast_addr = addr;
1721 else
1722 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1723 break;
1724
1725 case IP_MULTICAST_TTL:
1726 /*
1727 * Set the IP time-to-live for outgoing multicast packets.
1728 */
1729 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1730 break;
1731
1732 case IP_MULTICAST_LOOP:
1733 /*
1734 * Set the loopback flag for outgoing multicast packets.
1735 * Must be zero or one.
1736 */
1737 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1738 break;
1739
1740 case IP_ADD_MEMBERSHIP:
1741 /*
1742 * Add a multicast group membership.
1743 * Group must be a valid IP multicast address.
1744 */
1745 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1746 error = EINVAL;
1747 break;
1748 }
1749 mreq = mtod(m, struct ip_mreq *);
1750 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1751 error = EINVAL;
1752 break;
1753 }
1754 /*
1755 * If no interface address was provided, use the interface of
1756 * the route to the given multicast address.
1757 */
1758 if (in_nullhost(mreq->imr_interface)) {
1759 bzero((caddr_t)&ro, sizeof(ro));
1760 ro.ro_rt = NULL;
1761 dst = satosin(&ro.ro_dst);
1762 dst->sin_len = sizeof(*dst);
1763 dst->sin_family = AF_INET;
1764 dst->sin_addr = mreq->imr_multiaddr;
1765 rtalloc(&ro);
1766 if (ro.ro_rt == NULL) {
1767 error = EADDRNOTAVAIL;
1768 break;
1769 }
1770 ifp = ro.ro_rt->rt_ifp;
1771 rtfree(ro.ro_rt);
1772 } else {
1773 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1774 }
1775 /*
1776 * See if we found an interface, and confirm that it
1777 * supports multicast.
1778 */
1779 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1780 error = EADDRNOTAVAIL;
1781 break;
1782 }
1783 /*
1784 * See if the membership already exists or if all the
1785 * membership slots are full.
1786 */
1787 for (i = 0; i < imo->imo_num_memberships; ++i) {
1788 if (imo->imo_membership[i]->inm_ifp == ifp &&
1789 in_hosteq(imo->imo_membership[i]->inm_addr,
1790 mreq->imr_multiaddr))
1791 break;
1792 }
1793 if (i < imo->imo_num_memberships) {
1794 error = EADDRINUSE;
1795 break;
1796 }
1797 if (i == IP_MAX_MEMBERSHIPS) {
1798 error = ETOOMANYREFS;
1799 break;
1800 }
1801 /*
1802 * Everything looks good; add a new record to the multicast
1803 * address list for the given interface.
1804 */
1805 if ((imo->imo_membership[i] =
1806 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1807 error = ENOBUFS;
1808 break;
1809 }
1810 ++imo->imo_num_memberships;
1811 break;
1812
1813 case IP_DROP_MEMBERSHIP:
1814 /*
1815 * Drop a multicast group membership.
1816 * Group must be a valid IP multicast address.
1817 */
1818 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1819 error = EINVAL;
1820 break;
1821 }
1822 mreq = mtod(m, struct ip_mreq *);
1823 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1824 error = EINVAL;
1825 break;
1826 }
1827 /*
1828 * If an interface address was specified, get a pointer
1829 * to its ifnet structure.
1830 */
1831 if (in_nullhost(mreq->imr_interface))
1832 ifp = NULL;
1833 else {
1834 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1835 if (ifp == NULL) {
1836 error = EADDRNOTAVAIL;
1837 break;
1838 }
1839 }
1840 /*
1841 * Find the membership in the membership array.
1842 */
1843 for (i = 0; i < imo->imo_num_memberships; ++i) {
1844 if ((ifp == NULL ||
1845 imo->imo_membership[i]->inm_ifp == ifp) &&
1846 in_hosteq(imo->imo_membership[i]->inm_addr,
1847 mreq->imr_multiaddr))
1848 break;
1849 }
1850 if (i == imo->imo_num_memberships) {
1851 error = EADDRNOTAVAIL;
1852 break;
1853 }
1854 /*
1855 * Give up the multicast address record to which the
1856 * membership points.
1857 */
1858 in_delmulti(imo->imo_membership[i]);
1859 /*
1860 * Remove the gap in the membership array.
1861 */
1862 for (++i; i < imo->imo_num_memberships; ++i)
1863 imo->imo_membership[i-1] = imo->imo_membership[i];
1864 --imo->imo_num_memberships;
1865 break;
1866
1867 default:
1868 error = EOPNOTSUPP;
1869 break;
1870 }
1871
1872 /*
1873 * If all options have default values, no need to keep the mbuf.
1874 */
1875 if (imo->imo_multicast_ifp == NULL &&
1876 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1877 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1878 imo->imo_num_memberships == 0) {
1879 free(*imop, M_IPMOPTS);
1880 *imop = NULL;
1881 }
1882
1883 return (error);
1884 }
1885
1886 /*
1887 * Return the IP multicast options in response to user getsockopt().
1888 */
1889 int
1890 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1891 {
1892 u_char *ttl;
1893 u_char *loop;
1894 struct in_addr *addr;
1895 struct in_ifaddr *ia;
1896
1897 *mp = m_get(M_WAIT, MT_SOOPTS);
1898
1899 switch (optname) {
1900
1901 case IP_MULTICAST_IF:
1902 addr = mtod(*mp, struct in_addr *);
1903 (*mp)->m_len = sizeof(struct in_addr);
1904 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1905 *addr = zeroin_addr;
1906 else if (imo->imo_multicast_addr.s_addr) {
1907 /* return the value user has set */
1908 *addr = imo->imo_multicast_addr;
1909 } else {
1910 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1911 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1912 }
1913 return (0);
1914
1915 case IP_MULTICAST_TTL:
1916 ttl = mtod(*mp, u_char *);
1917 (*mp)->m_len = 1;
1918 *ttl = imo ? imo->imo_multicast_ttl
1919 : IP_DEFAULT_MULTICAST_TTL;
1920 return (0);
1921
1922 case IP_MULTICAST_LOOP:
1923 loop = mtod(*mp, u_char *);
1924 (*mp)->m_len = 1;
1925 *loop = imo ? imo->imo_multicast_loop
1926 : IP_DEFAULT_MULTICAST_LOOP;
1927 return (0);
1928
1929 default:
1930 return (EOPNOTSUPP);
1931 }
1932 }
1933
1934 /*
1935 * Discard the IP multicast options.
1936 */
1937 void
1938 ip_freemoptions(struct ip_moptions *imo)
1939 {
1940 int i;
1941
1942 if (imo != NULL) {
1943 for (i = 0; i < imo->imo_num_memberships; ++i)
1944 in_delmulti(imo->imo_membership[i]);
1945 free(imo, M_IPMOPTS);
1946 }
1947 }
1948
1949 /*
1950 * Routine called from ip_output() to loop back a copy of an IP multicast
1951 * packet to the input queue of a specified interface. Note that this
1952 * calls the output routine of the loopback "driver", but with an interface
1953 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1954 */
1955 static void
1956 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1957 {
1958 struct ip *ip;
1959 struct mbuf *copym;
1960
1961 copym = m_copy(m, 0, M_COPYALL);
1962 if (copym != NULL
1963 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1964 copym = m_pullup(copym, sizeof(struct ip));
1965 if (copym != NULL) {
1966 /*
1967 * We don't bother to fragment if the IP length is greater
1968 * than the interface's MTU. Can this possibly matter?
1969 */
1970 ip = mtod(copym, struct ip *);
1971
1972 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1973 in_delayed_cksum(copym);
1974 copym->m_pkthdr.csum_flags &=
1975 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1976 }
1977
1978 ip->ip_sum = 0;
1979 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1980 (void) looutput(ifp, copym, sintosa(dst), NULL);
1981 }
1982 }
1983