ip_output.c revision 1.107.2.7 1 /* $NetBSD: ip_output.c,v 1.107.2.7 2005/02/15 21:33:39 skrll Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.107.2.7 2005/02/15 21:33:39 skrll Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = ip_newid();
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else {
472 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
473 IPSEC_DIR_OUTBOUND))
474 goto skip_ipsec;
475 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 }
477
478 if (sp == NULL) {
479 ipsecstat.out_inval++;
480 goto bad;
481 }
482
483 error = 0;
484
485 /* check policy */
486 switch (sp->policy) {
487 case IPSEC_POLICY_DISCARD:
488 /*
489 * This packet is just discarded.
490 */
491 ipsecstat.out_polvio++;
492 goto bad;
493
494 case IPSEC_POLICY_BYPASS:
495 case IPSEC_POLICY_NONE:
496 /* no need to do IPsec. */
497 goto skip_ipsec;
498
499 case IPSEC_POLICY_IPSEC:
500 if (sp->req == NULL) {
501 /* XXX should be panic ? */
502 printf("ip_output: No IPsec request specified.\n");
503 error = EINVAL;
504 goto bad;
505 }
506 break;
507
508 case IPSEC_POLICY_ENTRUST:
509 default:
510 printf("ip_output: Invalid policy found. %d\n", sp->policy);
511 }
512
513 #ifdef IPSEC_NAT_T
514 /*
515 * NAT-T ESP fragmentation: don't do IPSec processing now,
516 * we'll do it on each fragmented packet.
517 */
518 if (sp->req->sav &&
519 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
520 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
521 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
522 natt_frag = 1;
523 mtu = sp->req->sav->esp_frag;
524 goto skip_ipsec;
525 }
526 }
527 #endif /* IPSEC_NAT_T */
528
529 /*
530 * ipsec4_output() expects ip_len and ip_off in network
531 * order. They have been set to network order above.
532 */
533
534 {
535 struct ipsec_output_state state;
536 bzero(&state, sizeof(state));
537 state.m = m;
538 if (flags & IP_ROUTETOIF) {
539 state.ro = &iproute;
540 bzero(&iproute, sizeof(iproute));
541 } else
542 state.ro = ro;
543 state.dst = (struct sockaddr *)dst;
544
545 /*
546 * We can't defer the checksum of payload data if
547 * we're about to encrypt/authenticate it.
548 *
549 * XXX When we support crypto offloading functions of
550 * XXX network interfaces, we need to reconsider this,
551 * XXX since it's likely that they'll support checksumming,
552 * XXX as well.
553 */
554 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
555 in_delayed_cksum(m);
556 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
557 }
558
559 error = ipsec4_output(&state, sp, flags);
560
561 m = state.m;
562 if (flags & IP_ROUTETOIF) {
563 /*
564 * if we have tunnel mode SA, we may need to ignore
565 * IP_ROUTETOIF.
566 */
567 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
568 flags &= ~IP_ROUTETOIF;
569 ro = state.ro;
570 }
571 } else
572 ro = state.ro;
573 dst = (struct sockaddr_in *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec4_output. */
576 m0 = NULL;
577 switch (error) {
578 case EHOSTUNREACH:
579 case ENETUNREACH:
580 case EMSGSIZE:
581 case ENOBUFS:
582 case ENOMEM:
583 break;
584 default:
585 printf("ip4_output (ipsec): error code %d\n", error);
586 /*fall through*/
587 case ENOENT:
588 /* don't show these error codes to the user */
589 error = 0;
590 break;
591 }
592 goto bad;
593 }
594
595 /* be sure to update variables that are affected by ipsec4_output() */
596 ip = mtod(m, struct ip *);
597 hlen = ip->ip_hl << 2;
598 ip_len = ntohs(ip->ip_len);
599
600 if (ro->ro_rt == NULL) {
601 if ((flags & IP_ROUTETOIF) == 0) {
602 printf("ip_output: "
603 "can't update route after IPsec processing\n");
604 error = EHOSTUNREACH; /*XXX*/
605 goto bad;
606 }
607 } else {
608 /* nobody uses ia beyond here */
609 if (state.encap) {
610 ifp = ro->ro_rt->rt_ifp;
611 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
612 mtu = ifp->if_mtu;
613 }
614 }
615 }
616 skip_ipsec:
617 #endif /*IPSEC*/
618 #ifdef FAST_IPSEC
619 /*
620 * Check the security policy (SP) for the packet and, if
621 * required, do IPsec-related processing. There are two
622 * cases here; the first time a packet is sent through
623 * it will be untagged and handled by ipsec4_checkpolicy.
624 * If the packet is resubmitted to ip_output (e.g. after
625 * AH, ESP, etc. processing), there will be a tag to bypass
626 * the lookup and related policy checking.
627 */
628 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629 s = splsoftnet();
630 if (mtag != NULL) {
631 tdbi = (struct tdb_ident *)(mtag + 1);
632 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633 if (sp == NULL)
634 error = -EINVAL; /* force silent drop */
635 m_tag_delete(m, mtag);
636 } else {
637 if (inp != NULL &&
638 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
639 goto spd_done;
640 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
641 &error, inp);
642 }
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp != NULL) {
651 /* Loop detection, check if ipsec processing already done */
652 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
653 for (mtag = m_tag_first(m); mtag != NULL;
654 mtag = m_tag_next(m, mtag)) {
655 #ifdef MTAG_ABI_COMPAT
656 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
657 continue;
658 #endif
659 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
660 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
661 continue;
662 /*
663 * Check if policy has an SA associated with it.
664 * This can happen when an SP has yet to acquire
665 * an SA; e.g. on first reference. If it occurs,
666 * then we let ipsec4_process_packet do its thing.
667 */
668 if (sp->req->sav == NULL)
669 break;
670 tdbi = (struct tdb_ident *)(mtag + 1);
671 if (tdbi->spi == sp->req->sav->spi &&
672 tdbi->proto == sp->req->sav->sah->saidx.proto &&
673 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
674 sizeof (union sockaddr_union)) == 0) {
675 /*
676 * No IPsec processing is needed, free
677 * reference to SP.
678 *
679 * NB: null pointer to avoid free at
680 * done: below.
681 */
682 KEY_FREESP(&sp), sp = NULL;
683 splx(s);
684 goto spd_done;
685 }
686 }
687
688 /*
689 * Do delayed checksums now because we send before
690 * this is done in the normal processing path.
691 */
692 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
693 in_delayed_cksum(m);
694 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
695 }
696
697 #ifdef __FreeBSD__
698 ip->ip_len = htons(ip->ip_len);
699 ip->ip_off = htons(ip->ip_off);
700 #endif
701
702 /* NB: callee frees mbuf */
703 error = ipsec4_process_packet(m, sp->req, flags, 0);
704 /*
705 * Preserve KAME behaviour: ENOENT can be returned
706 * when an SA acquire is in progress. Don't propagate
707 * this to user-level; it confuses applications.
708 *
709 * XXX this will go away when the SADB is redone.
710 */
711 if (error == ENOENT)
712 error = 0;
713 splx(s);
714 goto done;
715 } else {
716 splx(s);
717
718 if (error != 0) {
719 /*
720 * Hack: -EINVAL is used to signal that a packet
721 * should be silently discarded. This is typically
722 * because we asked key management for an SA and
723 * it was delayed (e.g. kicked up to IKE).
724 */
725 if (error == -EINVAL)
726 error = 0;
727 goto bad;
728 } else {
729 /* No IPsec processing for this packet. */
730 }
731 #ifdef notyet
732 /*
733 * If deferred crypto processing is needed, check that
734 * the interface supports it.
735 */
736 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
737 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
738 /* notify IPsec to do its own crypto */
739 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
740 error = EHOSTUNREACH;
741 goto bad;
742 }
743 #endif
744 }
745 spd_done:
746 #endif /* FAST_IPSEC */
747
748 #ifdef PFIL_HOOKS
749 /*
750 * Run through list of hooks for output packets.
751 */
752 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
753 goto done;
754 if (m == NULL)
755 goto done;
756
757 ip = mtod(m, struct ip *);
758 hlen = ip->ip_hl << 2;
759 #endif /* PFIL_HOOKS */
760
761 #if IFA_STATS
762 /*
763 * search for the source address structure to
764 * maintain output statistics.
765 */
766 INADDR_TO_IA(ip->ip_src, ia);
767 #endif
768
769 /* Maybe skip checksums on loopback interfaces. */
770 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
771 ip_do_loopback_cksum))
772 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
773 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
774 /*
775 * If small enough for mtu of path, can just send directly.
776 */
777 if (ip_len <= mtu) {
778 #if IFA_STATS
779 if (ia)
780 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
781 #endif
782 /*
783 * Always initialize the sum to 0! Some HW assisted
784 * checksumming requires this.
785 */
786 ip->ip_sum = 0;
787
788 /*
789 * Perform any checksums that the hardware can't do
790 * for us.
791 *
792 * XXX Does any hardware require the {th,uh}_sum
793 * XXX fields to be 0?
794 */
795 if (sw_csum & M_CSUM_IPv4) {
796 ip->ip_sum = in_cksum(m, hlen);
797 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
798 }
799 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
800 in_delayed_cksum(m);
801 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
802 } else if (ifp->if_csum_flags_tx & M_CSUM_NO_PSEUDOHDR &&
803 m->m_pkthdr.csum_flags & (M_CSUM_UDPv4|M_CSUM_TCPv4)) {
804 /* add pseudo-header sum */
805 uint16_t sum;
806
807 ip = mtod(m, struct ip *);
808 hlen = ip->ip_hl << 2;
809 m->m_pkthdr.csum_data = (hlen << 16) |
810 (m->m_pkthdr.csum_data & 0xffff);
811
812 if (ip->ip_p == IPPROTO_TCP) {
813 sum = in_cksum_phdr(ip->ip_src.s_addr,
814 ip->ip_dst.s_addr,
815 htons(ntohs(ip->ip_len) - hlen +
816 IPPROTO_TCP));
817 /* offset of TCP checksum field */
818 hlen += (m->m_pkthdr.csum_data & 0xffff);
819 } else if (ip->ip_p == IPPROTO_UDP) {
820 sum = in_cksum_phdr(ip->ip_src.s_addr,
821 ip->ip_dst.s_addr,
822 htons(ntohs(ip->ip_len) - hlen +
823 IPPROTO_UDP));
824 /* offset of UDP checksum field */
825 hlen += (m->m_pkthdr.csum_data & 0xffff);
826 }
827 if ((hlen + sizeof(uint16_t)) > m->m_len) {
828 /* This happens when ip options were inserted */
829 m_copyback(m, hlen, sizeof(sum), (caddr_t)&sum);
830 } else
831 *(u_int16_t *)(mtod(m, caddr_t) + hlen) = sum;
832
833 }
834
835 #ifdef IPSEC
836 /* clean ipsec history once it goes out of the node */
837 ipsec_delaux(m);
838 #endif
839 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
840 goto done;
841 }
842
843 /*
844 * We can't use HW checksumming if we're about to
845 * to fragment the packet.
846 *
847 * XXX Some hardware can do this.
848 */
849 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
850 in_delayed_cksum(m);
851 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
852 }
853
854 /*
855 * Too large for interface; fragment if possible.
856 * Must be able to put at least 8 bytes per fragment.
857 */
858 if (ntohs(ip->ip_off) & IP_DF) {
859 if (flags & IP_RETURNMTU)
860 *mtu_p = mtu;
861 error = EMSGSIZE;
862 ipstat.ips_cantfrag++;
863 goto bad;
864 }
865
866 error = ip_fragment(m, ifp, mtu);
867 if (error) {
868 m = NULL;
869 goto bad;
870 }
871
872 for (; m; m = m0) {
873 m0 = m->m_nextpkt;
874 m->m_nextpkt = 0;
875 if (error == 0) {
876 #if IFA_STATS
877 if (ia)
878 ia->ia_ifa.ifa_data.ifad_outbytes +=
879 ntohs(ip->ip_len);
880 #endif
881 #ifdef IPSEC
882 /* clean ipsec history once it goes out of the node */
883 ipsec_delaux(m);
884
885 #ifdef IPSEC_NAT_T
886 /*
887 * If we get there, the packet has not been handeld by
888 * IPSec whereas it should have. Now that it has been
889 * fragmented, re-inject it in ip_output so that IPsec
890 * processing can occur.
891 */
892 if (natt_frag) {
893 error = ip_output(m, opt,
894 ro, flags, imo, so, mtu_p);
895 } else
896 #endif /* IPSEC_NAT_T */
897 #endif /* IPSEC */
898 {
899 KASSERT((m->m_pkthdr.csum_flags &
900 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
901 error = (*ifp->if_output)(ifp, m, sintosa(dst),
902 ro->ro_rt);
903 }
904 } else
905 m_freem(m);
906 }
907
908 if (error == 0)
909 ipstat.ips_fragmented++;
910 done:
911 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
912 RTFREE(ro->ro_rt);
913 ro->ro_rt = 0;
914 }
915
916 #ifdef IPSEC
917 if (sp != NULL) {
918 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
919 printf("DP ip_output call free SP:%p\n", sp));
920 key_freesp(sp);
921 }
922 #endif /* IPSEC */
923 #ifdef FAST_IPSEC
924 if (sp != NULL)
925 KEY_FREESP(&sp);
926 #endif /* FAST_IPSEC */
927
928 return (error);
929 bad:
930 m_freem(m);
931 goto done;
932 }
933
934 int
935 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
936 {
937 struct ip *ip, *mhip;
938 struct mbuf *m0;
939 int len, hlen, off;
940 int mhlen, firstlen;
941 struct mbuf **mnext;
942 int sw_csum = m->m_pkthdr.csum_flags;
943 int fragments = 0;
944 int s;
945 int error = 0;
946
947 ip = mtod(m, struct ip *);
948 hlen = ip->ip_hl << 2;
949 if (ifp != NULL)
950 sw_csum &= ~ifp->if_csum_flags_tx;
951
952 len = (mtu - hlen) &~ 7;
953 if (len < 8) {
954 m_freem(m);
955 return (EMSGSIZE);
956 }
957
958 firstlen = len;
959 mnext = &m->m_nextpkt;
960
961 /*
962 * Loop through length of segment after first fragment,
963 * make new header and copy data of each part and link onto chain.
964 */
965 m0 = m;
966 mhlen = sizeof (struct ip);
967 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
968 MGETHDR(m, M_DONTWAIT, MT_HEADER);
969 if (m == 0) {
970 error = ENOBUFS;
971 ipstat.ips_odropped++;
972 goto sendorfree;
973 }
974 MCLAIM(m, m0->m_owner);
975 *mnext = m;
976 mnext = &m->m_nextpkt;
977 m->m_data += max_linkhdr;
978 mhip = mtod(m, struct ip *);
979 *mhip = *ip;
980 /* we must inherit MCAST and BCAST flags */
981 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
982 if (hlen > sizeof (struct ip)) {
983 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
984 mhip->ip_hl = mhlen >> 2;
985 }
986 m->m_len = mhlen;
987 mhip->ip_off = ((off - hlen) >> 3) +
988 (ntohs(ip->ip_off) & ~IP_MF);
989 if (ip->ip_off & htons(IP_MF))
990 mhip->ip_off |= IP_MF;
991 if (off + len >= ntohs(ip->ip_len))
992 len = ntohs(ip->ip_len) - off;
993 else
994 mhip->ip_off |= IP_MF;
995 HTONS(mhip->ip_off);
996 mhip->ip_len = htons((u_int16_t)(len + mhlen));
997 m->m_next = m_copy(m0, off, len);
998 if (m->m_next == 0) {
999 error = ENOBUFS; /* ??? */
1000 ipstat.ips_odropped++;
1001 goto sendorfree;
1002 }
1003 m->m_pkthdr.len = mhlen + len;
1004 m->m_pkthdr.rcvif = (struct ifnet *)0;
1005 mhip->ip_sum = 0;
1006 if (sw_csum & M_CSUM_IPv4) {
1007 mhip->ip_sum = in_cksum(m, mhlen);
1008 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1009 } else {
1010 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1011 }
1012 ipstat.ips_ofragments++;
1013 fragments++;
1014 }
1015 /*
1016 * Update first fragment by trimming what's been copied out
1017 * and updating header, then send each fragment (in order).
1018 */
1019 m = m0;
1020 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1021 m->m_pkthdr.len = hlen + firstlen;
1022 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1023 ip->ip_off |= htons(IP_MF);
1024 ip->ip_sum = 0;
1025 if (sw_csum & M_CSUM_IPv4) {
1026 ip->ip_sum = in_cksum(m, hlen);
1027 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1028 } else {
1029 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1030 }
1031 sendorfree:
1032 /*
1033 * If there is no room for all the fragments, don't queue
1034 * any of them.
1035 */
1036 if (ifp != NULL) {
1037 s = splnet();
1038 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1039 error == 0) {
1040 error = ENOBUFS;
1041 ipstat.ips_odropped++;
1042 IFQ_INC_DROPS(&ifp->if_snd);
1043 }
1044 splx(s);
1045 }
1046 if (error) {
1047 for (m = m0; m; m = m0) {
1048 m0 = m->m_nextpkt;
1049 m->m_nextpkt = NULL;
1050 m_freem(m);
1051 }
1052 }
1053 return (error);
1054 }
1055
1056 /*
1057 * Process a delayed payload checksum calculation.
1058 */
1059 void
1060 in_delayed_cksum(struct mbuf *m)
1061 {
1062 struct ip *ip;
1063 u_int16_t csum, offset;
1064
1065 ip = mtod(m, struct ip *);
1066 offset = ip->ip_hl << 2;
1067 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1068 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1069 csum = 0xffff;
1070
1071 offset += m->m_pkthdr.csum_data; /* checksum offset */
1072
1073 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1074 /* This happen when ip options were inserted
1075 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1076 m->m_len, offset, ip->ip_p);
1077 */
1078 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1079 } else
1080 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1081 }
1082
1083 /*
1084 * Determine the maximum length of the options to be inserted;
1085 * we would far rather allocate too much space rather than too little.
1086 */
1087
1088 u_int
1089 ip_optlen(struct inpcb *inp)
1090 {
1091 struct mbuf *m = inp->inp_options;
1092
1093 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1094 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1095 else
1096 return 0;
1097 }
1098
1099
1100 /*
1101 * Insert IP options into preformed packet.
1102 * Adjust IP destination as required for IP source routing,
1103 * as indicated by a non-zero in_addr at the start of the options.
1104 */
1105 static struct mbuf *
1106 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1107 {
1108 struct ipoption *p = mtod(opt, struct ipoption *);
1109 struct mbuf *n;
1110 struct ip *ip = mtod(m, struct ip *);
1111 unsigned optlen;
1112
1113 optlen = opt->m_len - sizeof(p->ipopt_dst);
1114 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1115 return (m); /* XXX should fail */
1116 if (!in_nullhost(p->ipopt_dst))
1117 ip->ip_dst = p->ipopt_dst;
1118 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1119 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1120 if (n == 0)
1121 return (m);
1122 MCLAIM(n, m->m_owner);
1123 M_COPY_PKTHDR(n, m);
1124 m_tag_delete_chain(m, NULL);
1125 m->m_flags &= ~M_PKTHDR;
1126 m->m_len -= sizeof(struct ip);
1127 m->m_data += sizeof(struct ip);
1128 n->m_next = m;
1129 m = n;
1130 m->m_len = optlen + sizeof(struct ip);
1131 m->m_data += max_linkhdr;
1132 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1133 } else {
1134 m->m_data -= optlen;
1135 m->m_len += optlen;
1136 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1137 }
1138 m->m_pkthdr.len += optlen;
1139 ip = mtod(m, struct ip *);
1140 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1141 *phlen = sizeof(struct ip) + optlen;
1142 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1143 return (m);
1144 }
1145
1146 /*
1147 * Copy options from ip to jp,
1148 * omitting those not copied during fragmentation.
1149 */
1150 int
1151 ip_optcopy(struct ip *ip, struct ip *jp)
1152 {
1153 u_char *cp, *dp;
1154 int opt, optlen, cnt;
1155
1156 cp = (u_char *)(ip + 1);
1157 dp = (u_char *)(jp + 1);
1158 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1159 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1160 opt = cp[0];
1161 if (opt == IPOPT_EOL)
1162 break;
1163 if (opt == IPOPT_NOP) {
1164 /* Preserve for IP mcast tunnel's LSRR alignment. */
1165 *dp++ = IPOPT_NOP;
1166 optlen = 1;
1167 continue;
1168 }
1169 #ifdef DIAGNOSTIC
1170 if (cnt < IPOPT_OLEN + sizeof(*cp))
1171 panic("malformed IPv4 option passed to ip_optcopy");
1172 #endif
1173 optlen = cp[IPOPT_OLEN];
1174 #ifdef DIAGNOSTIC
1175 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1176 panic("malformed IPv4 option passed to ip_optcopy");
1177 #endif
1178 /* bogus lengths should have been caught by ip_dooptions */
1179 if (optlen > cnt)
1180 optlen = cnt;
1181 if (IPOPT_COPIED(opt)) {
1182 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1183 dp += optlen;
1184 }
1185 }
1186 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1187 *dp++ = IPOPT_EOL;
1188 return (optlen);
1189 }
1190
1191 /*
1192 * IP socket option processing.
1193 */
1194 int
1195 ip_ctloutput(int op, struct socket *so, int level, int optname,
1196 struct mbuf **mp)
1197 {
1198 struct inpcb *inp = sotoinpcb(so);
1199 struct mbuf *m = *mp;
1200 int optval = 0;
1201 int error = 0;
1202 #if defined(IPSEC) || defined(FAST_IPSEC)
1203 struct proc *p = curproc; /*XXX*/
1204 #endif
1205
1206 if (level != IPPROTO_IP) {
1207 error = EINVAL;
1208 if (op == PRCO_SETOPT && *mp)
1209 (void) m_free(*mp);
1210 } else switch (op) {
1211
1212 case PRCO_SETOPT:
1213 switch (optname) {
1214 case IP_OPTIONS:
1215 #ifdef notyet
1216 case IP_RETOPTS:
1217 return (ip_pcbopts(optname, &inp->inp_options, m));
1218 #else
1219 return (ip_pcbopts(&inp->inp_options, m));
1220 #endif
1221
1222 case IP_TOS:
1223 case IP_TTL:
1224 case IP_RECVOPTS:
1225 case IP_RECVRETOPTS:
1226 case IP_RECVDSTADDR:
1227 case IP_RECVIF:
1228 if (m == NULL || m->m_len != sizeof(int))
1229 error = EINVAL;
1230 else {
1231 optval = *mtod(m, int *);
1232 switch (optname) {
1233
1234 case IP_TOS:
1235 inp->inp_ip.ip_tos = optval;
1236 break;
1237
1238 case IP_TTL:
1239 inp->inp_ip.ip_ttl = optval;
1240 break;
1241 #define OPTSET(bit) \
1242 if (optval) \
1243 inp->inp_flags |= bit; \
1244 else \
1245 inp->inp_flags &= ~bit;
1246
1247 case IP_RECVOPTS:
1248 OPTSET(INP_RECVOPTS);
1249 break;
1250
1251 case IP_RECVRETOPTS:
1252 OPTSET(INP_RECVRETOPTS);
1253 break;
1254
1255 case IP_RECVDSTADDR:
1256 OPTSET(INP_RECVDSTADDR);
1257 break;
1258
1259 case IP_RECVIF:
1260 OPTSET(INP_RECVIF);
1261 break;
1262 }
1263 }
1264 break;
1265 #undef OPTSET
1266
1267 case IP_MULTICAST_IF:
1268 case IP_MULTICAST_TTL:
1269 case IP_MULTICAST_LOOP:
1270 case IP_ADD_MEMBERSHIP:
1271 case IP_DROP_MEMBERSHIP:
1272 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1273 break;
1274
1275 case IP_PORTRANGE:
1276 if (m == 0 || m->m_len != sizeof(int))
1277 error = EINVAL;
1278 else {
1279 optval = *mtod(m, int *);
1280
1281 switch (optval) {
1282
1283 case IP_PORTRANGE_DEFAULT:
1284 case IP_PORTRANGE_HIGH:
1285 inp->inp_flags &= ~(INP_LOWPORT);
1286 break;
1287
1288 case IP_PORTRANGE_LOW:
1289 inp->inp_flags |= INP_LOWPORT;
1290 break;
1291
1292 default:
1293 error = EINVAL;
1294 break;
1295 }
1296 }
1297 break;
1298
1299 #if defined(IPSEC) || defined(FAST_IPSEC)
1300 case IP_IPSEC_POLICY:
1301 {
1302 caddr_t req = NULL;
1303 size_t len = 0;
1304 int priv = 0;
1305
1306 #ifdef __NetBSD__
1307 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1308 priv = 0;
1309 else
1310 priv = 1;
1311 #else
1312 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1313 #endif
1314 if (m) {
1315 req = mtod(m, caddr_t);
1316 len = m->m_len;
1317 }
1318 error = ipsec4_set_policy(inp, optname, req, len, priv);
1319 break;
1320 }
1321 #endif /*IPSEC*/
1322
1323 default:
1324 error = ENOPROTOOPT;
1325 break;
1326 }
1327 if (m)
1328 (void)m_free(m);
1329 break;
1330
1331 case PRCO_GETOPT:
1332 switch (optname) {
1333 case IP_OPTIONS:
1334 case IP_RETOPTS:
1335 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1336 MCLAIM(m, so->so_mowner);
1337 if (inp->inp_options) {
1338 m->m_len = inp->inp_options->m_len;
1339 bcopy(mtod(inp->inp_options, caddr_t),
1340 mtod(m, caddr_t), (unsigned)m->m_len);
1341 } else
1342 m->m_len = 0;
1343 break;
1344
1345 case IP_TOS:
1346 case IP_TTL:
1347 case IP_RECVOPTS:
1348 case IP_RECVRETOPTS:
1349 case IP_RECVDSTADDR:
1350 case IP_RECVIF:
1351 case IP_ERRORMTU:
1352 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1353 MCLAIM(m, so->so_mowner);
1354 m->m_len = sizeof(int);
1355 switch (optname) {
1356
1357 case IP_TOS:
1358 optval = inp->inp_ip.ip_tos;
1359 break;
1360
1361 case IP_TTL:
1362 optval = inp->inp_ip.ip_ttl;
1363 break;
1364
1365 case IP_ERRORMTU:
1366 optval = inp->inp_errormtu;
1367 break;
1368
1369 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1370
1371 case IP_RECVOPTS:
1372 optval = OPTBIT(INP_RECVOPTS);
1373 break;
1374
1375 case IP_RECVRETOPTS:
1376 optval = OPTBIT(INP_RECVRETOPTS);
1377 break;
1378
1379 case IP_RECVDSTADDR:
1380 optval = OPTBIT(INP_RECVDSTADDR);
1381 break;
1382
1383 case IP_RECVIF:
1384 optval = OPTBIT(INP_RECVIF);
1385 break;
1386 }
1387 *mtod(m, int *) = optval;
1388 break;
1389
1390 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1391 /* XXX: code broken */
1392 case IP_IPSEC_POLICY:
1393 {
1394 caddr_t req = NULL;
1395 size_t len = 0;
1396
1397 if (m) {
1398 req = mtod(m, caddr_t);
1399 len = m->m_len;
1400 }
1401 error = ipsec4_get_policy(inp, req, len, mp);
1402 break;
1403 }
1404 #endif /*IPSEC*/
1405
1406 case IP_MULTICAST_IF:
1407 case IP_MULTICAST_TTL:
1408 case IP_MULTICAST_LOOP:
1409 case IP_ADD_MEMBERSHIP:
1410 case IP_DROP_MEMBERSHIP:
1411 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1412 if (*mp)
1413 MCLAIM(*mp, so->so_mowner);
1414 break;
1415
1416 case IP_PORTRANGE:
1417 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1418 MCLAIM(m, so->so_mowner);
1419 m->m_len = sizeof(int);
1420
1421 if (inp->inp_flags & INP_LOWPORT)
1422 optval = IP_PORTRANGE_LOW;
1423 else
1424 optval = IP_PORTRANGE_DEFAULT;
1425
1426 *mtod(m, int *) = optval;
1427 break;
1428
1429 default:
1430 error = ENOPROTOOPT;
1431 break;
1432 }
1433 break;
1434 }
1435 return (error);
1436 }
1437
1438 /*
1439 * Set up IP options in pcb for insertion in output packets.
1440 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1441 * with destination address if source routed.
1442 */
1443 int
1444 #ifdef notyet
1445 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1446 #else
1447 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1448 #endif
1449 {
1450 int cnt, optlen;
1451 u_char *cp;
1452 u_char opt;
1453
1454 /* turn off any old options */
1455 if (*pcbopt)
1456 (void)m_free(*pcbopt);
1457 *pcbopt = 0;
1458 if (m == (struct mbuf *)0 || m->m_len == 0) {
1459 /*
1460 * Only turning off any previous options.
1461 */
1462 if (m)
1463 (void)m_free(m);
1464 return (0);
1465 }
1466
1467 #ifndef __vax__
1468 if (m->m_len % sizeof(int32_t))
1469 goto bad;
1470 #endif
1471 /*
1472 * IP first-hop destination address will be stored before
1473 * actual options; move other options back
1474 * and clear it when none present.
1475 */
1476 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1477 goto bad;
1478 cnt = m->m_len;
1479 m->m_len += sizeof(struct in_addr);
1480 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1481 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1482 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1483
1484 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1485 opt = cp[IPOPT_OPTVAL];
1486 if (opt == IPOPT_EOL)
1487 break;
1488 if (opt == IPOPT_NOP)
1489 optlen = 1;
1490 else {
1491 if (cnt < IPOPT_OLEN + sizeof(*cp))
1492 goto bad;
1493 optlen = cp[IPOPT_OLEN];
1494 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1495 goto bad;
1496 }
1497 switch (opt) {
1498
1499 default:
1500 break;
1501
1502 case IPOPT_LSRR:
1503 case IPOPT_SSRR:
1504 /*
1505 * user process specifies route as:
1506 * ->A->B->C->D
1507 * D must be our final destination (but we can't
1508 * check that since we may not have connected yet).
1509 * A is first hop destination, which doesn't appear in
1510 * actual IP option, but is stored before the options.
1511 */
1512 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1513 goto bad;
1514 m->m_len -= sizeof(struct in_addr);
1515 cnt -= sizeof(struct in_addr);
1516 optlen -= sizeof(struct in_addr);
1517 cp[IPOPT_OLEN] = optlen;
1518 /*
1519 * Move first hop before start of options.
1520 */
1521 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1522 sizeof(struct in_addr));
1523 /*
1524 * Then copy rest of options back
1525 * to close up the deleted entry.
1526 */
1527 (void)memmove(&cp[IPOPT_OFFSET+1],
1528 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1529 (unsigned)cnt - (IPOPT_MINOFF - 1));
1530 break;
1531 }
1532 }
1533 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1534 goto bad;
1535 *pcbopt = m;
1536 return (0);
1537
1538 bad:
1539 (void)m_free(m);
1540 return (EINVAL);
1541 }
1542
1543 /*
1544 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1545 */
1546 static struct ifnet *
1547 ip_multicast_if(struct in_addr *a, int *ifindexp)
1548 {
1549 int ifindex;
1550 struct ifnet *ifp = NULL;
1551 struct in_ifaddr *ia;
1552
1553 if (ifindexp)
1554 *ifindexp = 0;
1555 if (ntohl(a->s_addr) >> 24 == 0) {
1556 ifindex = ntohl(a->s_addr) & 0xffffff;
1557 if (ifindex < 0 || if_indexlim <= ifindex)
1558 return NULL;
1559 ifp = ifindex2ifnet[ifindex];
1560 if (!ifp)
1561 return NULL;
1562 if (ifindexp)
1563 *ifindexp = ifindex;
1564 } else {
1565 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1566 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1567 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1568 ifp = ia->ia_ifp;
1569 break;
1570 }
1571 }
1572 }
1573 return ifp;
1574 }
1575
1576 /*
1577 * Set the IP multicast options in response to user setsockopt().
1578 */
1579 int
1580 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1581 {
1582 int error = 0;
1583 u_char loop;
1584 int i;
1585 struct in_addr addr;
1586 struct ip_mreq *mreq;
1587 struct ifnet *ifp;
1588 struct ip_moptions *imo = *imop;
1589 struct route ro;
1590 struct sockaddr_in *dst;
1591 int ifindex;
1592
1593 if (imo == NULL) {
1594 /*
1595 * No multicast option buffer attached to the pcb;
1596 * allocate one and initialize to default values.
1597 */
1598 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1599 M_WAITOK);
1600
1601 if (imo == NULL)
1602 return (ENOBUFS);
1603 *imop = imo;
1604 imo->imo_multicast_ifp = NULL;
1605 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1606 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1607 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1608 imo->imo_num_memberships = 0;
1609 }
1610
1611 switch (optname) {
1612
1613 case IP_MULTICAST_IF:
1614 /*
1615 * Select the interface for outgoing multicast packets.
1616 */
1617 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1618 error = EINVAL;
1619 break;
1620 }
1621 addr = *(mtod(m, struct in_addr *));
1622 /*
1623 * INADDR_ANY is used to remove a previous selection.
1624 * When no interface is selected, a default one is
1625 * chosen every time a multicast packet is sent.
1626 */
1627 if (in_nullhost(addr)) {
1628 imo->imo_multicast_ifp = NULL;
1629 break;
1630 }
1631 /*
1632 * The selected interface is identified by its local
1633 * IP address. Find the interface and confirm that
1634 * it supports multicasting.
1635 */
1636 ifp = ip_multicast_if(&addr, &ifindex);
1637 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1638 error = EADDRNOTAVAIL;
1639 break;
1640 }
1641 imo->imo_multicast_ifp = ifp;
1642 if (ifindex)
1643 imo->imo_multicast_addr = addr;
1644 else
1645 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1646 break;
1647
1648 case IP_MULTICAST_TTL:
1649 /*
1650 * Set the IP time-to-live for outgoing multicast packets.
1651 */
1652 if (m == NULL || m->m_len != 1) {
1653 error = EINVAL;
1654 break;
1655 }
1656 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1657 break;
1658
1659 case IP_MULTICAST_LOOP:
1660 /*
1661 * Set the loopback flag for outgoing multicast packets.
1662 * Must be zero or one.
1663 */
1664 if (m == NULL || m->m_len != 1 ||
1665 (loop = *(mtod(m, u_char *))) > 1) {
1666 error = EINVAL;
1667 break;
1668 }
1669 imo->imo_multicast_loop = loop;
1670 break;
1671
1672 case IP_ADD_MEMBERSHIP:
1673 /*
1674 * Add a multicast group membership.
1675 * Group must be a valid IP multicast address.
1676 */
1677 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1678 error = EINVAL;
1679 break;
1680 }
1681 mreq = mtod(m, struct ip_mreq *);
1682 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1683 error = EINVAL;
1684 break;
1685 }
1686 /*
1687 * If no interface address was provided, use the interface of
1688 * the route to the given multicast address.
1689 */
1690 if (in_nullhost(mreq->imr_interface)) {
1691 bzero((caddr_t)&ro, sizeof(ro));
1692 ro.ro_rt = NULL;
1693 dst = satosin(&ro.ro_dst);
1694 dst->sin_len = sizeof(*dst);
1695 dst->sin_family = AF_INET;
1696 dst->sin_addr = mreq->imr_multiaddr;
1697 rtalloc(&ro);
1698 if (ro.ro_rt == NULL) {
1699 error = EADDRNOTAVAIL;
1700 break;
1701 }
1702 ifp = ro.ro_rt->rt_ifp;
1703 rtfree(ro.ro_rt);
1704 } else {
1705 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1706 }
1707 /*
1708 * See if we found an interface, and confirm that it
1709 * supports multicast.
1710 */
1711 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1712 error = EADDRNOTAVAIL;
1713 break;
1714 }
1715 /*
1716 * See if the membership already exists or if all the
1717 * membership slots are full.
1718 */
1719 for (i = 0; i < imo->imo_num_memberships; ++i) {
1720 if (imo->imo_membership[i]->inm_ifp == ifp &&
1721 in_hosteq(imo->imo_membership[i]->inm_addr,
1722 mreq->imr_multiaddr))
1723 break;
1724 }
1725 if (i < imo->imo_num_memberships) {
1726 error = EADDRINUSE;
1727 break;
1728 }
1729 if (i == IP_MAX_MEMBERSHIPS) {
1730 error = ETOOMANYREFS;
1731 break;
1732 }
1733 /*
1734 * Everything looks good; add a new record to the multicast
1735 * address list for the given interface.
1736 */
1737 if ((imo->imo_membership[i] =
1738 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1739 error = ENOBUFS;
1740 break;
1741 }
1742 ++imo->imo_num_memberships;
1743 break;
1744
1745 case IP_DROP_MEMBERSHIP:
1746 /*
1747 * Drop a multicast group membership.
1748 * Group must be a valid IP multicast address.
1749 */
1750 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1751 error = EINVAL;
1752 break;
1753 }
1754 mreq = mtod(m, struct ip_mreq *);
1755 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1756 error = EINVAL;
1757 break;
1758 }
1759 /*
1760 * If an interface address was specified, get a pointer
1761 * to its ifnet structure.
1762 */
1763 if (in_nullhost(mreq->imr_interface))
1764 ifp = NULL;
1765 else {
1766 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1767 if (ifp == NULL) {
1768 error = EADDRNOTAVAIL;
1769 break;
1770 }
1771 }
1772 /*
1773 * Find the membership in the membership array.
1774 */
1775 for (i = 0; i < imo->imo_num_memberships; ++i) {
1776 if ((ifp == NULL ||
1777 imo->imo_membership[i]->inm_ifp == ifp) &&
1778 in_hosteq(imo->imo_membership[i]->inm_addr,
1779 mreq->imr_multiaddr))
1780 break;
1781 }
1782 if (i == imo->imo_num_memberships) {
1783 error = EADDRNOTAVAIL;
1784 break;
1785 }
1786 /*
1787 * Give up the multicast address record to which the
1788 * membership points.
1789 */
1790 in_delmulti(imo->imo_membership[i]);
1791 /*
1792 * Remove the gap in the membership array.
1793 */
1794 for (++i; i < imo->imo_num_memberships; ++i)
1795 imo->imo_membership[i-1] = imo->imo_membership[i];
1796 --imo->imo_num_memberships;
1797 break;
1798
1799 default:
1800 error = EOPNOTSUPP;
1801 break;
1802 }
1803
1804 /*
1805 * If all options have default values, no need to keep the mbuf.
1806 */
1807 if (imo->imo_multicast_ifp == NULL &&
1808 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1809 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1810 imo->imo_num_memberships == 0) {
1811 free(*imop, M_IPMOPTS);
1812 *imop = NULL;
1813 }
1814
1815 return (error);
1816 }
1817
1818 /*
1819 * Return the IP multicast options in response to user getsockopt().
1820 */
1821 int
1822 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1823 {
1824 u_char *ttl;
1825 u_char *loop;
1826 struct in_addr *addr;
1827 struct in_ifaddr *ia;
1828
1829 *mp = m_get(M_WAIT, MT_SOOPTS);
1830
1831 switch (optname) {
1832
1833 case IP_MULTICAST_IF:
1834 addr = mtod(*mp, struct in_addr *);
1835 (*mp)->m_len = sizeof(struct in_addr);
1836 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1837 *addr = zeroin_addr;
1838 else if (imo->imo_multicast_addr.s_addr) {
1839 /* return the value user has set */
1840 *addr = imo->imo_multicast_addr;
1841 } else {
1842 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1843 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1844 }
1845 return (0);
1846
1847 case IP_MULTICAST_TTL:
1848 ttl = mtod(*mp, u_char *);
1849 (*mp)->m_len = 1;
1850 *ttl = imo ? imo->imo_multicast_ttl
1851 : IP_DEFAULT_MULTICAST_TTL;
1852 return (0);
1853
1854 case IP_MULTICAST_LOOP:
1855 loop = mtod(*mp, u_char *);
1856 (*mp)->m_len = 1;
1857 *loop = imo ? imo->imo_multicast_loop
1858 : IP_DEFAULT_MULTICAST_LOOP;
1859 return (0);
1860
1861 default:
1862 return (EOPNOTSUPP);
1863 }
1864 }
1865
1866 /*
1867 * Discard the IP multicast options.
1868 */
1869 void
1870 ip_freemoptions(struct ip_moptions *imo)
1871 {
1872 int i;
1873
1874 if (imo != NULL) {
1875 for (i = 0; i < imo->imo_num_memberships; ++i)
1876 in_delmulti(imo->imo_membership[i]);
1877 free(imo, M_IPMOPTS);
1878 }
1879 }
1880
1881 /*
1882 * Routine called from ip_output() to loop back a copy of an IP multicast
1883 * packet to the input queue of a specified interface. Note that this
1884 * calls the output routine of the loopback "driver", but with an interface
1885 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1886 */
1887 static void
1888 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1889 {
1890 struct ip *ip;
1891 struct mbuf *copym;
1892
1893 copym = m_copy(m, 0, M_COPYALL);
1894 if (copym != NULL
1895 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1896 copym = m_pullup(copym, sizeof(struct ip));
1897 if (copym != NULL) {
1898 /*
1899 * We don't bother to fragment if the IP length is greater
1900 * than the interface's MTU. Can this possibly matter?
1901 */
1902 ip = mtod(copym, struct ip *);
1903
1904 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1905 in_delayed_cksum(copym);
1906 copym->m_pkthdr.csum_flags &=
1907 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1908 }
1909
1910 ip->ip_sum = 0;
1911 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1912 (void) looutput(ifp, copym, sintosa(dst), NULL);
1913 }
1914 }
1915