ip_output.c revision 1.107.2.9 1 /* $NetBSD: ip_output.c,v 1.107.2.9 2005/03/08 13:53:12 skrll Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.107.2.9 2005/03/08 13:53:12 skrll Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = ip_newid();
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else {
472 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
473 IPSEC_DIR_OUTBOUND))
474 goto skip_ipsec;
475 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 }
477
478 if (sp == NULL) {
479 ipsecstat.out_inval++;
480 goto bad;
481 }
482
483 error = 0;
484
485 /* check policy */
486 switch (sp->policy) {
487 case IPSEC_POLICY_DISCARD:
488 /*
489 * This packet is just discarded.
490 */
491 ipsecstat.out_polvio++;
492 goto bad;
493
494 case IPSEC_POLICY_BYPASS:
495 case IPSEC_POLICY_NONE:
496 /* no need to do IPsec. */
497 goto skip_ipsec;
498
499 case IPSEC_POLICY_IPSEC:
500 if (sp->req == NULL) {
501 /* XXX should be panic ? */
502 printf("ip_output: No IPsec request specified.\n");
503 error = EINVAL;
504 goto bad;
505 }
506 break;
507
508 case IPSEC_POLICY_ENTRUST:
509 default:
510 printf("ip_output: Invalid policy found. %d\n", sp->policy);
511 }
512
513 #ifdef IPSEC_NAT_T
514 /*
515 * NAT-T ESP fragmentation: don't do IPSec processing now,
516 * we'll do it on each fragmented packet.
517 */
518 if (sp->req->sav &&
519 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
520 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
521 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
522 natt_frag = 1;
523 mtu = sp->req->sav->esp_frag;
524 goto skip_ipsec;
525 }
526 }
527 #endif /* IPSEC_NAT_T */
528
529 /*
530 * ipsec4_output() expects ip_len and ip_off in network
531 * order. They have been set to network order above.
532 */
533
534 {
535 struct ipsec_output_state state;
536 bzero(&state, sizeof(state));
537 state.m = m;
538 if (flags & IP_ROUTETOIF) {
539 state.ro = &iproute;
540 bzero(&iproute, sizeof(iproute));
541 } else
542 state.ro = ro;
543 state.dst = (struct sockaddr *)dst;
544
545 /*
546 * We can't defer the checksum of payload data if
547 * we're about to encrypt/authenticate it.
548 *
549 * XXX When we support crypto offloading functions of
550 * XXX network interfaces, we need to reconsider this,
551 * XXX since it's likely that they'll support checksumming,
552 * XXX as well.
553 */
554 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
555 in_delayed_cksum(m);
556 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
557 }
558
559 error = ipsec4_output(&state, sp, flags);
560
561 m = state.m;
562 if (flags & IP_ROUTETOIF) {
563 /*
564 * if we have tunnel mode SA, we may need to ignore
565 * IP_ROUTETOIF.
566 */
567 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
568 flags &= ~IP_ROUTETOIF;
569 ro = state.ro;
570 }
571 } else
572 ro = state.ro;
573 dst = (struct sockaddr_in *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec4_output. */
576 m0 = NULL;
577 switch (error) {
578 case EHOSTUNREACH:
579 case ENETUNREACH:
580 case EMSGSIZE:
581 case ENOBUFS:
582 case ENOMEM:
583 break;
584 default:
585 printf("ip4_output (ipsec): error code %d\n", error);
586 /*fall through*/
587 case ENOENT:
588 /* don't show these error codes to the user */
589 error = 0;
590 break;
591 }
592 goto bad;
593 }
594
595 /* be sure to update variables that are affected by ipsec4_output() */
596 ip = mtod(m, struct ip *);
597 hlen = ip->ip_hl << 2;
598 ip_len = ntohs(ip->ip_len);
599
600 if (ro->ro_rt == NULL) {
601 if ((flags & IP_ROUTETOIF) == 0) {
602 printf("ip_output: "
603 "can't update route after IPsec processing\n");
604 error = EHOSTUNREACH; /*XXX*/
605 goto bad;
606 }
607 } else {
608 /* nobody uses ia beyond here */
609 if (state.encap) {
610 ifp = ro->ro_rt->rt_ifp;
611 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
612 mtu = ifp->if_mtu;
613 }
614 }
615 }
616 skip_ipsec:
617 #endif /*IPSEC*/
618 #ifdef FAST_IPSEC
619 /*
620 * Check the security policy (SP) for the packet and, if
621 * required, do IPsec-related processing. There are two
622 * cases here; the first time a packet is sent through
623 * it will be untagged and handled by ipsec4_checkpolicy.
624 * If the packet is resubmitted to ip_output (e.g. after
625 * AH, ESP, etc. processing), there will be a tag to bypass
626 * the lookup and related policy checking.
627 */
628 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629 s = splsoftnet();
630 if (mtag != NULL) {
631 tdbi = (struct tdb_ident *)(mtag + 1);
632 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633 if (sp == NULL)
634 error = -EINVAL; /* force silent drop */
635 m_tag_delete(m, mtag);
636 } else {
637 if (inp != NULL &&
638 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
639 goto spd_done;
640 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
641 &error, inp);
642 }
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp != NULL) {
651 /* Loop detection, check if ipsec processing already done */
652 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
653 for (mtag = m_tag_first(m); mtag != NULL;
654 mtag = m_tag_next(m, mtag)) {
655 #ifdef MTAG_ABI_COMPAT
656 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
657 continue;
658 #endif
659 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
660 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
661 continue;
662 /*
663 * Check if policy has an SA associated with it.
664 * This can happen when an SP has yet to acquire
665 * an SA; e.g. on first reference. If it occurs,
666 * then we let ipsec4_process_packet do its thing.
667 */
668 if (sp->req->sav == NULL)
669 break;
670 tdbi = (struct tdb_ident *)(mtag + 1);
671 if (tdbi->spi == sp->req->sav->spi &&
672 tdbi->proto == sp->req->sav->sah->saidx.proto &&
673 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
674 sizeof (union sockaddr_union)) == 0) {
675 /*
676 * No IPsec processing is needed, free
677 * reference to SP.
678 *
679 * NB: null pointer to avoid free at
680 * done: below.
681 */
682 KEY_FREESP(&sp), sp = NULL;
683 splx(s);
684 goto spd_done;
685 }
686 }
687
688 /*
689 * Do delayed checksums now because we send before
690 * this is done in the normal processing path.
691 */
692 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
693 in_delayed_cksum(m);
694 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
695 }
696
697 #ifdef __FreeBSD__
698 ip->ip_len = htons(ip->ip_len);
699 ip->ip_off = htons(ip->ip_off);
700 #endif
701
702 /* NB: callee frees mbuf */
703 error = ipsec4_process_packet(m, sp->req, flags, 0);
704 /*
705 * Preserve KAME behaviour: ENOENT can be returned
706 * when an SA acquire is in progress. Don't propagate
707 * this to user-level; it confuses applications.
708 *
709 * XXX this will go away when the SADB is redone.
710 */
711 if (error == ENOENT)
712 error = 0;
713 splx(s);
714 goto done;
715 } else {
716 splx(s);
717
718 if (error != 0) {
719 /*
720 * Hack: -EINVAL is used to signal that a packet
721 * should be silently discarded. This is typically
722 * because we asked key management for an SA and
723 * it was delayed (e.g. kicked up to IKE).
724 */
725 if (error == -EINVAL)
726 error = 0;
727 goto bad;
728 } else {
729 /* No IPsec processing for this packet. */
730 }
731 #ifdef notyet
732 /*
733 * If deferred crypto processing is needed, check that
734 * the interface supports it.
735 */
736 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
737 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
738 /* notify IPsec to do its own crypto */
739 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
740 error = EHOSTUNREACH;
741 goto bad;
742 }
743 #endif
744 }
745 spd_done:
746 #endif /* FAST_IPSEC */
747
748 #ifdef PFIL_HOOKS
749 /*
750 * Run through list of hooks for output packets.
751 */
752 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
753 goto done;
754 if (m == NULL)
755 goto done;
756
757 ip = mtod(m, struct ip *);
758 hlen = ip->ip_hl << 2;
759 #endif /* PFIL_HOOKS */
760
761 m->m_pkthdr.csum_data |= hlen << 16;
762
763 #if IFA_STATS
764 /*
765 * search for the source address structure to
766 * maintain output statistics.
767 */
768 INADDR_TO_IA(ip->ip_src, ia);
769 #endif
770
771 if (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) {
772 #if IFA_STATS
773 if (ia)
774 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
775 #endif
776 #ifdef IPSEC
777 /* clean ipsec history once it goes out of the node */
778 ipsec_delaux(m);
779 #endif
780 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
781 goto done;
782 }
783
784 /* Maybe skip checksums on loopback interfaces. */
785 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
786 ip_do_loopback_cksum))
787 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
788 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
789 /*
790 * If small enough for mtu of path, can just send directly.
791 */
792 if (ip_len <= mtu) {
793 #if IFA_STATS
794 if (ia)
795 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
796 #endif
797 /*
798 * Always initialize the sum to 0! Some HW assisted
799 * checksumming requires this.
800 */
801 ip->ip_sum = 0;
802
803 /*
804 * Perform any checksums that the hardware can't do
805 * for us.
806 *
807 * XXX Does any hardware require the {th,uh}_sum
808 * XXX fields to be 0?
809 */
810 if (sw_csum & M_CSUM_IPv4) {
811 ip->ip_sum = in_cksum(m, hlen);
812 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
813 }
814 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
815 in_delayed_cksum(m);
816 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
817 }
818
819 #ifdef IPSEC
820 /* clean ipsec history once it goes out of the node */
821 ipsec_delaux(m);
822 #endif
823 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
824 goto done;
825 }
826
827 /*
828 * We can't use HW checksumming if we're about to
829 * to fragment the packet.
830 *
831 * XXX Some hardware can do this.
832 */
833 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
834 in_delayed_cksum(m);
835 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
836 }
837
838 /*
839 * Too large for interface; fragment if possible.
840 * Must be able to put at least 8 bytes per fragment.
841 */
842 if (ntohs(ip->ip_off) & IP_DF) {
843 if (flags & IP_RETURNMTU)
844 *mtu_p = mtu;
845 error = EMSGSIZE;
846 ipstat.ips_cantfrag++;
847 goto bad;
848 }
849
850 error = ip_fragment(m, ifp, mtu);
851 if (error) {
852 m = NULL;
853 goto bad;
854 }
855
856 for (; m; m = m0) {
857 m0 = m->m_nextpkt;
858 m->m_nextpkt = 0;
859 if (error == 0) {
860 #if IFA_STATS
861 if (ia)
862 ia->ia_ifa.ifa_data.ifad_outbytes +=
863 ntohs(ip->ip_len);
864 #endif
865 #ifdef IPSEC
866 /* clean ipsec history once it goes out of the node */
867 ipsec_delaux(m);
868
869 #ifdef IPSEC_NAT_T
870 /*
871 * If we get there, the packet has not been handeld by
872 * IPSec whereas it should have. Now that it has been
873 * fragmented, re-inject it in ip_output so that IPsec
874 * processing can occur.
875 */
876 if (natt_frag) {
877 error = ip_output(m, opt,
878 ro, flags, imo, so, mtu_p);
879 } else
880 #endif /* IPSEC_NAT_T */
881 #endif /* IPSEC */
882 {
883 KASSERT((m->m_pkthdr.csum_flags &
884 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
885 error = (*ifp->if_output)(ifp, m, sintosa(dst),
886 ro->ro_rt);
887 }
888 } else
889 m_freem(m);
890 }
891
892 if (error == 0)
893 ipstat.ips_fragmented++;
894 done:
895 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
896 RTFREE(ro->ro_rt);
897 ro->ro_rt = 0;
898 }
899
900 #ifdef IPSEC
901 if (sp != NULL) {
902 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
903 printf("DP ip_output call free SP:%p\n", sp));
904 key_freesp(sp);
905 }
906 #endif /* IPSEC */
907 #ifdef FAST_IPSEC
908 if (sp != NULL)
909 KEY_FREESP(&sp);
910 #endif /* FAST_IPSEC */
911
912 return (error);
913 bad:
914 m_freem(m);
915 goto done;
916 }
917
918 int
919 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
920 {
921 struct ip *ip, *mhip;
922 struct mbuf *m0;
923 int len, hlen, off;
924 int mhlen, firstlen;
925 struct mbuf **mnext;
926 int sw_csum = m->m_pkthdr.csum_flags;
927 int fragments = 0;
928 int s;
929 int error = 0;
930
931 ip = mtod(m, struct ip *);
932 hlen = ip->ip_hl << 2;
933 if (ifp != NULL)
934 sw_csum &= ~ifp->if_csum_flags_tx;
935
936 len = (mtu - hlen) &~ 7;
937 if (len < 8) {
938 m_freem(m);
939 return (EMSGSIZE);
940 }
941
942 firstlen = len;
943 mnext = &m->m_nextpkt;
944
945 /*
946 * Loop through length of segment after first fragment,
947 * make new header and copy data of each part and link onto chain.
948 */
949 m0 = m;
950 mhlen = sizeof (struct ip);
951 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
952 MGETHDR(m, M_DONTWAIT, MT_HEADER);
953 if (m == 0) {
954 error = ENOBUFS;
955 ipstat.ips_odropped++;
956 goto sendorfree;
957 }
958 MCLAIM(m, m0->m_owner);
959 *mnext = m;
960 mnext = &m->m_nextpkt;
961 m->m_data += max_linkhdr;
962 mhip = mtod(m, struct ip *);
963 *mhip = *ip;
964 /* we must inherit MCAST and BCAST flags */
965 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
966 if (hlen > sizeof (struct ip)) {
967 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
968 mhip->ip_hl = mhlen >> 2;
969 }
970 m->m_len = mhlen;
971 mhip->ip_off = ((off - hlen) >> 3) +
972 (ntohs(ip->ip_off) & ~IP_MF);
973 if (ip->ip_off & htons(IP_MF))
974 mhip->ip_off |= IP_MF;
975 if (off + len >= ntohs(ip->ip_len))
976 len = ntohs(ip->ip_len) - off;
977 else
978 mhip->ip_off |= IP_MF;
979 HTONS(mhip->ip_off);
980 mhip->ip_len = htons((u_int16_t)(len + mhlen));
981 m->m_next = m_copy(m0, off, len);
982 if (m->m_next == 0) {
983 error = ENOBUFS; /* ??? */
984 ipstat.ips_odropped++;
985 goto sendorfree;
986 }
987 m->m_pkthdr.len = mhlen + len;
988 m->m_pkthdr.rcvif = (struct ifnet *)0;
989 mhip->ip_sum = 0;
990 if (sw_csum & M_CSUM_IPv4) {
991 mhip->ip_sum = in_cksum(m, mhlen);
992 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
993 } else {
994 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
995 m->m_pkthdr.csum_data |= hlen << 16;
996 }
997 ipstat.ips_ofragments++;
998 fragments++;
999 }
1000 /*
1001 * Update first fragment by trimming what's been copied out
1002 * and updating header, then send each fragment (in order).
1003 */
1004 m = m0;
1005 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1006 m->m_pkthdr.len = hlen + firstlen;
1007 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1008 ip->ip_off |= htons(IP_MF);
1009 ip->ip_sum = 0;
1010 if (sw_csum & M_CSUM_IPv4) {
1011 ip->ip_sum = in_cksum(m, hlen);
1012 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1013 } else {
1014 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1015 m->m_pkthdr.csum_data |= hlen << 16;
1016 }
1017 sendorfree:
1018 /*
1019 * If there is no room for all the fragments, don't queue
1020 * any of them.
1021 */
1022 if (ifp != NULL) {
1023 s = splnet();
1024 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1025 error == 0) {
1026 error = ENOBUFS;
1027 ipstat.ips_odropped++;
1028 IFQ_INC_DROPS(&ifp->if_snd);
1029 }
1030 splx(s);
1031 }
1032 if (error) {
1033 for (m = m0; m; m = m0) {
1034 m0 = m->m_nextpkt;
1035 m->m_nextpkt = NULL;
1036 m_freem(m);
1037 }
1038 }
1039 return (error);
1040 }
1041
1042 /*
1043 * Process a delayed payload checksum calculation.
1044 */
1045 void
1046 in_delayed_cksum(struct mbuf *m)
1047 {
1048 struct ip *ip;
1049 u_int16_t csum, offset;
1050
1051 ip = mtod(m, struct ip *);
1052 offset = ip->ip_hl << 2;
1053 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1054 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1055 csum = 0xffff;
1056
1057 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1058
1059 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1060 /* This happen when ip options were inserted
1061 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1062 m->m_len, offset, ip->ip_p);
1063 */
1064 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1065 } else
1066 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1067 }
1068
1069 /*
1070 * Determine the maximum length of the options to be inserted;
1071 * we would far rather allocate too much space rather than too little.
1072 */
1073
1074 u_int
1075 ip_optlen(struct inpcb *inp)
1076 {
1077 struct mbuf *m = inp->inp_options;
1078
1079 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1080 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1081 else
1082 return 0;
1083 }
1084
1085
1086 /*
1087 * Insert IP options into preformed packet.
1088 * Adjust IP destination as required for IP source routing,
1089 * as indicated by a non-zero in_addr at the start of the options.
1090 */
1091 static struct mbuf *
1092 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1093 {
1094 struct ipoption *p = mtod(opt, struct ipoption *);
1095 struct mbuf *n;
1096 struct ip *ip = mtod(m, struct ip *);
1097 unsigned optlen;
1098
1099 optlen = opt->m_len - sizeof(p->ipopt_dst);
1100 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1101 return (m); /* XXX should fail */
1102 if (!in_nullhost(p->ipopt_dst))
1103 ip->ip_dst = p->ipopt_dst;
1104 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1105 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1106 if (n == 0)
1107 return (m);
1108 MCLAIM(n, m->m_owner);
1109 M_COPY_PKTHDR(n, m);
1110 m_tag_delete_chain(m, NULL);
1111 m->m_flags &= ~M_PKTHDR;
1112 m->m_len -= sizeof(struct ip);
1113 m->m_data += sizeof(struct ip);
1114 n->m_next = m;
1115 m = n;
1116 m->m_len = optlen + sizeof(struct ip);
1117 m->m_data += max_linkhdr;
1118 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1119 } else {
1120 m->m_data -= optlen;
1121 m->m_len += optlen;
1122 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1123 }
1124 m->m_pkthdr.len += optlen;
1125 ip = mtod(m, struct ip *);
1126 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1127 *phlen = sizeof(struct ip) + optlen;
1128 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1129 return (m);
1130 }
1131
1132 /*
1133 * Copy options from ip to jp,
1134 * omitting those not copied during fragmentation.
1135 */
1136 int
1137 ip_optcopy(struct ip *ip, struct ip *jp)
1138 {
1139 u_char *cp, *dp;
1140 int opt, optlen, cnt;
1141
1142 cp = (u_char *)(ip + 1);
1143 dp = (u_char *)(jp + 1);
1144 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1145 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1146 opt = cp[0];
1147 if (opt == IPOPT_EOL)
1148 break;
1149 if (opt == IPOPT_NOP) {
1150 /* Preserve for IP mcast tunnel's LSRR alignment. */
1151 *dp++ = IPOPT_NOP;
1152 optlen = 1;
1153 continue;
1154 }
1155 #ifdef DIAGNOSTIC
1156 if (cnt < IPOPT_OLEN + sizeof(*cp))
1157 panic("malformed IPv4 option passed to ip_optcopy");
1158 #endif
1159 optlen = cp[IPOPT_OLEN];
1160 #ifdef DIAGNOSTIC
1161 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1162 panic("malformed IPv4 option passed to ip_optcopy");
1163 #endif
1164 /* bogus lengths should have been caught by ip_dooptions */
1165 if (optlen > cnt)
1166 optlen = cnt;
1167 if (IPOPT_COPIED(opt)) {
1168 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1169 dp += optlen;
1170 }
1171 }
1172 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1173 *dp++ = IPOPT_EOL;
1174 return (optlen);
1175 }
1176
1177 /*
1178 * IP socket option processing.
1179 */
1180 int
1181 ip_ctloutput(int op, struct socket *so, int level, int optname,
1182 struct mbuf **mp)
1183 {
1184 struct inpcb *inp = sotoinpcb(so);
1185 struct mbuf *m = *mp;
1186 int optval = 0;
1187 int error = 0;
1188 #if defined(IPSEC) || defined(FAST_IPSEC)
1189 struct proc *p = curproc; /*XXX*/
1190 #endif
1191
1192 if (level != IPPROTO_IP) {
1193 error = EINVAL;
1194 if (op == PRCO_SETOPT && *mp)
1195 (void) m_free(*mp);
1196 } else switch (op) {
1197
1198 case PRCO_SETOPT:
1199 switch (optname) {
1200 case IP_OPTIONS:
1201 #ifdef notyet
1202 case IP_RETOPTS:
1203 return (ip_pcbopts(optname, &inp->inp_options, m));
1204 #else
1205 return (ip_pcbopts(&inp->inp_options, m));
1206 #endif
1207
1208 case IP_TOS:
1209 case IP_TTL:
1210 case IP_RECVOPTS:
1211 case IP_RECVRETOPTS:
1212 case IP_RECVDSTADDR:
1213 case IP_RECVIF:
1214 if (m == NULL || m->m_len != sizeof(int))
1215 error = EINVAL;
1216 else {
1217 optval = *mtod(m, int *);
1218 switch (optname) {
1219
1220 case IP_TOS:
1221 inp->inp_ip.ip_tos = optval;
1222 break;
1223
1224 case IP_TTL:
1225 inp->inp_ip.ip_ttl = optval;
1226 break;
1227 #define OPTSET(bit) \
1228 if (optval) \
1229 inp->inp_flags |= bit; \
1230 else \
1231 inp->inp_flags &= ~bit;
1232
1233 case IP_RECVOPTS:
1234 OPTSET(INP_RECVOPTS);
1235 break;
1236
1237 case IP_RECVRETOPTS:
1238 OPTSET(INP_RECVRETOPTS);
1239 break;
1240
1241 case IP_RECVDSTADDR:
1242 OPTSET(INP_RECVDSTADDR);
1243 break;
1244
1245 case IP_RECVIF:
1246 OPTSET(INP_RECVIF);
1247 break;
1248 }
1249 }
1250 break;
1251 #undef OPTSET
1252
1253 case IP_MULTICAST_IF:
1254 case IP_MULTICAST_TTL:
1255 case IP_MULTICAST_LOOP:
1256 case IP_ADD_MEMBERSHIP:
1257 case IP_DROP_MEMBERSHIP:
1258 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1259 break;
1260
1261 case IP_PORTRANGE:
1262 if (m == 0 || m->m_len != sizeof(int))
1263 error = EINVAL;
1264 else {
1265 optval = *mtod(m, int *);
1266
1267 switch (optval) {
1268
1269 case IP_PORTRANGE_DEFAULT:
1270 case IP_PORTRANGE_HIGH:
1271 inp->inp_flags &= ~(INP_LOWPORT);
1272 break;
1273
1274 case IP_PORTRANGE_LOW:
1275 inp->inp_flags |= INP_LOWPORT;
1276 break;
1277
1278 default:
1279 error = EINVAL;
1280 break;
1281 }
1282 }
1283 break;
1284
1285 #if defined(IPSEC) || defined(FAST_IPSEC)
1286 case IP_IPSEC_POLICY:
1287 {
1288 caddr_t req = NULL;
1289 size_t len = 0;
1290 int priv = 0;
1291
1292 #ifdef __NetBSD__
1293 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1294 priv = 0;
1295 else
1296 priv = 1;
1297 #else
1298 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1299 #endif
1300 if (m) {
1301 req = mtod(m, caddr_t);
1302 len = m->m_len;
1303 }
1304 error = ipsec4_set_policy(inp, optname, req, len, priv);
1305 break;
1306 }
1307 #endif /*IPSEC*/
1308
1309 default:
1310 error = ENOPROTOOPT;
1311 break;
1312 }
1313 if (m)
1314 (void)m_free(m);
1315 break;
1316
1317 case PRCO_GETOPT:
1318 switch (optname) {
1319 case IP_OPTIONS:
1320 case IP_RETOPTS:
1321 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1322 MCLAIM(m, so->so_mowner);
1323 if (inp->inp_options) {
1324 m->m_len = inp->inp_options->m_len;
1325 bcopy(mtod(inp->inp_options, caddr_t),
1326 mtod(m, caddr_t), (unsigned)m->m_len);
1327 } else
1328 m->m_len = 0;
1329 break;
1330
1331 case IP_TOS:
1332 case IP_TTL:
1333 case IP_RECVOPTS:
1334 case IP_RECVRETOPTS:
1335 case IP_RECVDSTADDR:
1336 case IP_RECVIF:
1337 case IP_ERRORMTU:
1338 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1339 MCLAIM(m, so->so_mowner);
1340 m->m_len = sizeof(int);
1341 switch (optname) {
1342
1343 case IP_TOS:
1344 optval = inp->inp_ip.ip_tos;
1345 break;
1346
1347 case IP_TTL:
1348 optval = inp->inp_ip.ip_ttl;
1349 break;
1350
1351 case IP_ERRORMTU:
1352 optval = inp->inp_errormtu;
1353 break;
1354
1355 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1356
1357 case IP_RECVOPTS:
1358 optval = OPTBIT(INP_RECVOPTS);
1359 break;
1360
1361 case IP_RECVRETOPTS:
1362 optval = OPTBIT(INP_RECVRETOPTS);
1363 break;
1364
1365 case IP_RECVDSTADDR:
1366 optval = OPTBIT(INP_RECVDSTADDR);
1367 break;
1368
1369 case IP_RECVIF:
1370 optval = OPTBIT(INP_RECVIF);
1371 break;
1372 }
1373 *mtod(m, int *) = optval;
1374 break;
1375
1376 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1377 /* XXX: code broken */
1378 case IP_IPSEC_POLICY:
1379 {
1380 caddr_t req = NULL;
1381 size_t len = 0;
1382
1383 if (m) {
1384 req = mtod(m, caddr_t);
1385 len = m->m_len;
1386 }
1387 error = ipsec4_get_policy(inp, req, len, mp);
1388 break;
1389 }
1390 #endif /*IPSEC*/
1391
1392 case IP_MULTICAST_IF:
1393 case IP_MULTICAST_TTL:
1394 case IP_MULTICAST_LOOP:
1395 case IP_ADD_MEMBERSHIP:
1396 case IP_DROP_MEMBERSHIP:
1397 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1398 if (*mp)
1399 MCLAIM(*mp, so->so_mowner);
1400 break;
1401
1402 case IP_PORTRANGE:
1403 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1404 MCLAIM(m, so->so_mowner);
1405 m->m_len = sizeof(int);
1406
1407 if (inp->inp_flags & INP_LOWPORT)
1408 optval = IP_PORTRANGE_LOW;
1409 else
1410 optval = IP_PORTRANGE_DEFAULT;
1411
1412 *mtod(m, int *) = optval;
1413 break;
1414
1415 default:
1416 error = ENOPROTOOPT;
1417 break;
1418 }
1419 break;
1420 }
1421 return (error);
1422 }
1423
1424 /*
1425 * Set up IP options in pcb for insertion in output packets.
1426 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1427 * with destination address if source routed.
1428 */
1429 int
1430 #ifdef notyet
1431 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1432 #else
1433 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1434 #endif
1435 {
1436 int cnt, optlen;
1437 u_char *cp;
1438 u_char opt;
1439
1440 /* turn off any old options */
1441 if (*pcbopt)
1442 (void)m_free(*pcbopt);
1443 *pcbopt = 0;
1444 if (m == (struct mbuf *)0 || m->m_len == 0) {
1445 /*
1446 * Only turning off any previous options.
1447 */
1448 if (m)
1449 (void)m_free(m);
1450 return (0);
1451 }
1452
1453 #ifndef __vax__
1454 if (m->m_len % sizeof(int32_t))
1455 goto bad;
1456 #endif
1457 /*
1458 * IP first-hop destination address will be stored before
1459 * actual options; move other options back
1460 * and clear it when none present.
1461 */
1462 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1463 goto bad;
1464 cnt = m->m_len;
1465 m->m_len += sizeof(struct in_addr);
1466 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1467 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1468 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1469
1470 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1471 opt = cp[IPOPT_OPTVAL];
1472 if (opt == IPOPT_EOL)
1473 break;
1474 if (opt == IPOPT_NOP)
1475 optlen = 1;
1476 else {
1477 if (cnt < IPOPT_OLEN + sizeof(*cp))
1478 goto bad;
1479 optlen = cp[IPOPT_OLEN];
1480 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1481 goto bad;
1482 }
1483 switch (opt) {
1484
1485 default:
1486 break;
1487
1488 case IPOPT_LSRR:
1489 case IPOPT_SSRR:
1490 /*
1491 * user process specifies route as:
1492 * ->A->B->C->D
1493 * D must be our final destination (but we can't
1494 * check that since we may not have connected yet).
1495 * A is first hop destination, which doesn't appear in
1496 * actual IP option, but is stored before the options.
1497 */
1498 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1499 goto bad;
1500 m->m_len -= sizeof(struct in_addr);
1501 cnt -= sizeof(struct in_addr);
1502 optlen -= sizeof(struct in_addr);
1503 cp[IPOPT_OLEN] = optlen;
1504 /*
1505 * Move first hop before start of options.
1506 */
1507 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1508 sizeof(struct in_addr));
1509 /*
1510 * Then copy rest of options back
1511 * to close up the deleted entry.
1512 */
1513 (void)memmove(&cp[IPOPT_OFFSET+1],
1514 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1515 (unsigned)cnt - (IPOPT_MINOFF - 1));
1516 break;
1517 }
1518 }
1519 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1520 goto bad;
1521 *pcbopt = m;
1522 return (0);
1523
1524 bad:
1525 (void)m_free(m);
1526 return (EINVAL);
1527 }
1528
1529 /*
1530 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1531 */
1532 static struct ifnet *
1533 ip_multicast_if(struct in_addr *a, int *ifindexp)
1534 {
1535 int ifindex;
1536 struct ifnet *ifp = NULL;
1537 struct in_ifaddr *ia;
1538
1539 if (ifindexp)
1540 *ifindexp = 0;
1541 if (ntohl(a->s_addr) >> 24 == 0) {
1542 ifindex = ntohl(a->s_addr) & 0xffffff;
1543 if (ifindex < 0 || if_indexlim <= ifindex)
1544 return NULL;
1545 ifp = ifindex2ifnet[ifindex];
1546 if (!ifp)
1547 return NULL;
1548 if (ifindexp)
1549 *ifindexp = ifindex;
1550 } else {
1551 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1552 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1553 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1554 ifp = ia->ia_ifp;
1555 break;
1556 }
1557 }
1558 }
1559 return ifp;
1560 }
1561
1562 /*
1563 * Set the IP multicast options in response to user setsockopt().
1564 */
1565 int
1566 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1567 {
1568 int error = 0;
1569 u_char loop;
1570 int i;
1571 struct in_addr addr;
1572 struct ip_mreq *mreq;
1573 struct ifnet *ifp;
1574 struct ip_moptions *imo = *imop;
1575 struct route ro;
1576 struct sockaddr_in *dst;
1577 int ifindex;
1578
1579 if (imo == NULL) {
1580 /*
1581 * No multicast option buffer attached to the pcb;
1582 * allocate one and initialize to default values.
1583 */
1584 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1585 M_WAITOK);
1586
1587 if (imo == NULL)
1588 return (ENOBUFS);
1589 *imop = imo;
1590 imo->imo_multicast_ifp = NULL;
1591 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1592 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1593 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1594 imo->imo_num_memberships = 0;
1595 }
1596
1597 switch (optname) {
1598
1599 case IP_MULTICAST_IF:
1600 /*
1601 * Select the interface for outgoing multicast packets.
1602 */
1603 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1604 error = EINVAL;
1605 break;
1606 }
1607 addr = *(mtod(m, struct in_addr *));
1608 /*
1609 * INADDR_ANY is used to remove a previous selection.
1610 * When no interface is selected, a default one is
1611 * chosen every time a multicast packet is sent.
1612 */
1613 if (in_nullhost(addr)) {
1614 imo->imo_multicast_ifp = NULL;
1615 break;
1616 }
1617 /*
1618 * The selected interface is identified by its local
1619 * IP address. Find the interface and confirm that
1620 * it supports multicasting.
1621 */
1622 ifp = ip_multicast_if(&addr, &ifindex);
1623 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1624 error = EADDRNOTAVAIL;
1625 break;
1626 }
1627 imo->imo_multicast_ifp = ifp;
1628 if (ifindex)
1629 imo->imo_multicast_addr = addr;
1630 else
1631 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1632 break;
1633
1634 case IP_MULTICAST_TTL:
1635 /*
1636 * Set the IP time-to-live for outgoing multicast packets.
1637 */
1638 if (m == NULL || m->m_len != 1) {
1639 error = EINVAL;
1640 break;
1641 }
1642 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1643 break;
1644
1645 case IP_MULTICAST_LOOP:
1646 /*
1647 * Set the loopback flag for outgoing multicast packets.
1648 * Must be zero or one.
1649 */
1650 if (m == NULL || m->m_len != 1 ||
1651 (loop = *(mtod(m, u_char *))) > 1) {
1652 error = EINVAL;
1653 break;
1654 }
1655 imo->imo_multicast_loop = loop;
1656 break;
1657
1658 case IP_ADD_MEMBERSHIP:
1659 /*
1660 * Add a multicast group membership.
1661 * Group must be a valid IP multicast address.
1662 */
1663 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1664 error = EINVAL;
1665 break;
1666 }
1667 mreq = mtod(m, struct ip_mreq *);
1668 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1669 error = EINVAL;
1670 break;
1671 }
1672 /*
1673 * If no interface address was provided, use the interface of
1674 * the route to the given multicast address.
1675 */
1676 if (in_nullhost(mreq->imr_interface)) {
1677 bzero((caddr_t)&ro, sizeof(ro));
1678 ro.ro_rt = NULL;
1679 dst = satosin(&ro.ro_dst);
1680 dst->sin_len = sizeof(*dst);
1681 dst->sin_family = AF_INET;
1682 dst->sin_addr = mreq->imr_multiaddr;
1683 rtalloc(&ro);
1684 if (ro.ro_rt == NULL) {
1685 error = EADDRNOTAVAIL;
1686 break;
1687 }
1688 ifp = ro.ro_rt->rt_ifp;
1689 rtfree(ro.ro_rt);
1690 } else {
1691 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1692 }
1693 /*
1694 * See if we found an interface, and confirm that it
1695 * supports multicast.
1696 */
1697 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1698 error = EADDRNOTAVAIL;
1699 break;
1700 }
1701 /*
1702 * See if the membership already exists or if all the
1703 * membership slots are full.
1704 */
1705 for (i = 0; i < imo->imo_num_memberships; ++i) {
1706 if (imo->imo_membership[i]->inm_ifp == ifp &&
1707 in_hosteq(imo->imo_membership[i]->inm_addr,
1708 mreq->imr_multiaddr))
1709 break;
1710 }
1711 if (i < imo->imo_num_memberships) {
1712 error = EADDRINUSE;
1713 break;
1714 }
1715 if (i == IP_MAX_MEMBERSHIPS) {
1716 error = ETOOMANYREFS;
1717 break;
1718 }
1719 /*
1720 * Everything looks good; add a new record to the multicast
1721 * address list for the given interface.
1722 */
1723 if ((imo->imo_membership[i] =
1724 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1725 error = ENOBUFS;
1726 break;
1727 }
1728 ++imo->imo_num_memberships;
1729 break;
1730
1731 case IP_DROP_MEMBERSHIP:
1732 /*
1733 * Drop a multicast group membership.
1734 * Group must be a valid IP multicast address.
1735 */
1736 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1737 error = EINVAL;
1738 break;
1739 }
1740 mreq = mtod(m, struct ip_mreq *);
1741 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1742 error = EINVAL;
1743 break;
1744 }
1745 /*
1746 * If an interface address was specified, get a pointer
1747 * to its ifnet structure.
1748 */
1749 if (in_nullhost(mreq->imr_interface))
1750 ifp = NULL;
1751 else {
1752 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1753 if (ifp == NULL) {
1754 error = EADDRNOTAVAIL;
1755 break;
1756 }
1757 }
1758 /*
1759 * Find the membership in the membership array.
1760 */
1761 for (i = 0; i < imo->imo_num_memberships; ++i) {
1762 if ((ifp == NULL ||
1763 imo->imo_membership[i]->inm_ifp == ifp) &&
1764 in_hosteq(imo->imo_membership[i]->inm_addr,
1765 mreq->imr_multiaddr))
1766 break;
1767 }
1768 if (i == imo->imo_num_memberships) {
1769 error = EADDRNOTAVAIL;
1770 break;
1771 }
1772 /*
1773 * Give up the multicast address record to which the
1774 * membership points.
1775 */
1776 in_delmulti(imo->imo_membership[i]);
1777 /*
1778 * Remove the gap in the membership array.
1779 */
1780 for (++i; i < imo->imo_num_memberships; ++i)
1781 imo->imo_membership[i-1] = imo->imo_membership[i];
1782 --imo->imo_num_memberships;
1783 break;
1784
1785 default:
1786 error = EOPNOTSUPP;
1787 break;
1788 }
1789
1790 /*
1791 * If all options have default values, no need to keep the mbuf.
1792 */
1793 if (imo->imo_multicast_ifp == NULL &&
1794 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1795 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1796 imo->imo_num_memberships == 0) {
1797 free(*imop, M_IPMOPTS);
1798 *imop = NULL;
1799 }
1800
1801 return (error);
1802 }
1803
1804 /*
1805 * Return the IP multicast options in response to user getsockopt().
1806 */
1807 int
1808 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1809 {
1810 u_char *ttl;
1811 u_char *loop;
1812 struct in_addr *addr;
1813 struct in_ifaddr *ia;
1814
1815 *mp = m_get(M_WAIT, MT_SOOPTS);
1816
1817 switch (optname) {
1818
1819 case IP_MULTICAST_IF:
1820 addr = mtod(*mp, struct in_addr *);
1821 (*mp)->m_len = sizeof(struct in_addr);
1822 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1823 *addr = zeroin_addr;
1824 else if (imo->imo_multicast_addr.s_addr) {
1825 /* return the value user has set */
1826 *addr = imo->imo_multicast_addr;
1827 } else {
1828 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1829 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1830 }
1831 return (0);
1832
1833 case IP_MULTICAST_TTL:
1834 ttl = mtod(*mp, u_char *);
1835 (*mp)->m_len = 1;
1836 *ttl = imo ? imo->imo_multicast_ttl
1837 : IP_DEFAULT_MULTICAST_TTL;
1838 return (0);
1839
1840 case IP_MULTICAST_LOOP:
1841 loop = mtod(*mp, u_char *);
1842 (*mp)->m_len = 1;
1843 *loop = imo ? imo->imo_multicast_loop
1844 : IP_DEFAULT_MULTICAST_LOOP;
1845 return (0);
1846
1847 default:
1848 return (EOPNOTSUPP);
1849 }
1850 }
1851
1852 /*
1853 * Discard the IP multicast options.
1854 */
1855 void
1856 ip_freemoptions(struct ip_moptions *imo)
1857 {
1858 int i;
1859
1860 if (imo != NULL) {
1861 for (i = 0; i < imo->imo_num_memberships; ++i)
1862 in_delmulti(imo->imo_membership[i]);
1863 free(imo, M_IPMOPTS);
1864 }
1865 }
1866
1867 /*
1868 * Routine called from ip_output() to loop back a copy of an IP multicast
1869 * packet to the input queue of a specified interface. Note that this
1870 * calls the output routine of the loopback "driver", but with an interface
1871 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1872 */
1873 static void
1874 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1875 {
1876 struct ip *ip;
1877 struct mbuf *copym;
1878
1879 copym = m_copy(m, 0, M_COPYALL);
1880 if (copym != NULL
1881 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1882 copym = m_pullup(copym, sizeof(struct ip));
1883 if (copym != NULL) {
1884 /*
1885 * We don't bother to fragment if the IP length is greater
1886 * than the interface's MTU. Can this possibly matter?
1887 */
1888 ip = mtod(copym, struct ip *);
1889
1890 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1891 in_delayed_cksum(copym);
1892 copym->m_pkthdr.csum_flags &=
1893 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1894 }
1895
1896 ip->ip_sum = 0;
1897 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1898 (void) looutput(ifp, copym, sintosa(dst), NULL);
1899 }
1900 }
1901