ip_output.c revision 1.109 1 /* $NetBSD: ip_output.c,v 1.109 2003/08/15 03:42:03 jonathan Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.109 2003/08/15 03:42:03 jonathan Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_ipsec.h"
105 #include "opt_mrouting.h"
106
107 #include <sys/param.h>
108 #include <sys/malloc.h>
109 #include <sys/mbuf.h>
110 #include <sys/errno.h>
111 #include <sys/protosw.h>
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #include <sys/systm.h>
115 #include <sys/proc.h>
116
117 #include <net/if.h>
118 #include <net/route.h>
119 #include <net/pfil.h>
120
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127
128 #ifdef MROUTING
129 #include <netinet/ip_mroute.h>
130 #endif
131
132 #include <machine/stdarg.h>
133
134 #ifdef IPSEC
135 #include <netinet6/ipsec.h>
136 #include <netkey/key.h>
137 #include <netkey/key_debug.h>
138 #endif /*IPSEC*/
139
140 #ifdef FAST_IPSEC
141 #include <netipsec/ipsec.h>
142 #include <netipsec/key.h>
143 #include <netipsec/xform.h>
144 #endif /* FAST_IPSEC*/
145
146 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
147 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
148 static void ip_mloopback
149 __P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
150
151 #ifdef PFIL_HOOKS
152 extern struct pfil_head inet_pfil_hook; /* XXX */
153 #endif
154
155 /*
156 * IP output. The packet in mbuf chain m contains a skeletal IP
157 * header (with len, off, ttl, proto, tos, src, dst).
158 * The mbuf chain containing the packet will be freed.
159 * The mbuf opt, if present, will not be freed.
160 */
161 int
162 #if __STDC__
163 ip_output(struct mbuf *m0, ...)
164 #else
165 ip_output(m0, va_alist)
166 struct mbuf *m0;
167 va_dcl
168 #endif
169 {
170 struct ip *ip, *mhip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, off, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct inpcb *inp;
185 va_list ap;
186 #ifdef IPSEC
187 struct socket *so;
188 struct secpolicy *sp = NULL;
189 #endif /*IPSEC*/
190 #ifdef FAST_IPSEC
191 struct m_tag *mtag;
192 struct secpolicy *sp = NULL;
193 struct tdb_ident *tdbi;
194 int s;
195 #endif
196 u_int16_t ip_len;
197
198 len = 0;
199 va_start(ap, m0);
200 opt = va_arg(ap, struct mbuf *);
201 ro = va_arg(ap, struct route *);
202 flags = va_arg(ap, int);
203 imo = va_arg(ap, struct ip_moptions *);
204 inp = va_arg(ap, struct inpcb *);
205 if (flags & IP_RETURNMTU)
206 mtu_p = va_arg(ap, int *);
207 else
208 mtu_p = NULL;
209 va_end(ap);
210
211 MCLAIM(m, &ip_tx_mowner);
212 #ifdef IPSEC /* XXX so = ((inp == NULL) ? NULL : inp->inp_socket; */
213 so = ipsec_getsocket(m);
214 (void)ipsec_setsocket(m, NULL);
215 #endif /*IPSEC*/
216
217 #ifdef DIAGNOSTIC
218 if ((m->m_flags & M_PKTHDR) == 0)
219 panic("ip_output no HDR");
220 #endif
221 if (opt) {
222 m = ip_insertoptions(m, opt, &len);
223 if (len >= sizeof(struct ip))
224 hlen = len;
225 }
226 ip = mtod(m, struct ip *);
227 /*
228 * Fill in IP header.
229 */
230 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
231 ip->ip_v = IPVERSION;
232 ip->ip_off = htons(0);
233 ip->ip_id = htons(ip_id++);
234 ip->ip_hl = hlen >> 2;
235 ipstat.ips_localout++;
236 } else {
237 hlen = ip->ip_hl << 2;
238 }
239 /*
240 * Route packet.
241 */
242 if (ro == 0) {
243 ro = &iproute;
244 bzero((caddr_t)ro, sizeof (*ro));
245 }
246 dst = satosin(&ro->ro_dst);
247 /*
248 * If there is a cached route,
249 * check that it is to the same destination
250 * and is still up. If not, free it and try again.
251 * The address family should also be checked in case of sharing the
252 * cache with IPv6.
253 */
254 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
255 dst->sin_family != AF_INET ||
256 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
257 RTFREE(ro->ro_rt);
258 ro->ro_rt = (struct rtentry *)0;
259 }
260 if (ro->ro_rt == 0) {
261 bzero(dst, sizeof(*dst));
262 dst->sin_family = AF_INET;
263 dst->sin_len = sizeof(*dst);
264 dst->sin_addr = ip->ip_dst;
265 }
266 /*
267 * If routing to interface only,
268 * short circuit routing lookup.
269 */
270 if (flags & IP_ROUTETOIF) {
271 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
272 ipstat.ips_noroute++;
273 error = ENETUNREACH;
274 goto bad;
275 }
276 ifp = ia->ia_ifp;
277 mtu = ifp->if_mtu;
278 ip->ip_ttl = 1;
279 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
280 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
281 imo != NULL && imo->imo_multicast_ifp != NULL) {
282 ifp = imo->imo_multicast_ifp;
283 mtu = ifp->if_mtu;
284 IFP_TO_IA(ifp, ia);
285 } else {
286 if (ro->ro_rt == 0)
287 rtalloc(ro);
288 if (ro->ro_rt == 0) {
289 ipstat.ips_noroute++;
290 error = EHOSTUNREACH;
291 goto bad;
292 }
293 ia = ifatoia(ro->ro_rt->rt_ifa);
294 ifp = ro->ro_rt->rt_ifp;
295 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
296 mtu = ifp->if_mtu;
297 ro->ro_rt->rt_use++;
298 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
299 dst = satosin(ro->ro_rt->rt_gateway);
300 }
301 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
302 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
303 struct in_multi *inm;
304
305 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
306 M_BCAST : M_MCAST;
307 /*
308 * IP destination address is multicast. Make sure "dst"
309 * still points to the address in "ro". (It may have been
310 * changed to point to a gateway address, above.)
311 */
312 dst = satosin(&ro->ro_dst);
313 /*
314 * See if the caller provided any multicast options
315 */
316 if (imo != NULL)
317 ip->ip_ttl = imo->imo_multicast_ttl;
318 else
319 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
320
321 /*
322 * if we don't know the outgoing ifp yet, we can't generate
323 * output
324 */
325 if (!ifp) {
326 ipstat.ips_noroute++;
327 error = ENETUNREACH;
328 goto bad;
329 }
330
331 /*
332 * If the packet is multicast or broadcast, confirm that
333 * the outgoing interface can transmit it.
334 */
335 if (((m->m_flags & M_MCAST) &&
336 (ifp->if_flags & IFF_MULTICAST) == 0) ||
337 ((m->m_flags & M_BCAST) &&
338 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
339 ipstat.ips_noroute++;
340 error = ENETUNREACH;
341 goto bad;
342 }
343 /*
344 * If source address not specified yet, use an address
345 * of outgoing interface.
346 */
347 if (in_nullhost(ip->ip_src)) {
348 struct in_ifaddr *ia;
349
350 IFP_TO_IA(ifp, ia);
351 if (!ia) {
352 error = EADDRNOTAVAIL;
353 goto bad;
354 }
355 ip->ip_src = ia->ia_addr.sin_addr;
356 }
357
358 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
359 if (inm != NULL &&
360 (imo == NULL || imo->imo_multicast_loop)) {
361 /*
362 * If we belong to the destination multicast group
363 * on the outgoing interface, and the caller did not
364 * forbid loopback, loop back a copy.
365 */
366 ip_mloopback(ifp, m, dst);
367 }
368 #ifdef MROUTING
369 else {
370 /*
371 * If we are acting as a multicast router, perform
372 * multicast forwarding as if the packet had just
373 * arrived on the interface to which we are about
374 * to send. The multicast forwarding function
375 * recursively calls this function, using the
376 * IP_FORWARDING flag to prevent infinite recursion.
377 *
378 * Multicasts that are looped back by ip_mloopback(),
379 * above, will be forwarded by the ip_input() routine,
380 * if necessary.
381 */
382 extern struct socket *ip_mrouter;
383
384 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
385 if (ip_mforward(m, ifp) != 0) {
386 m_freem(m);
387 goto done;
388 }
389 }
390 }
391 #endif
392 /*
393 * Multicasts with a time-to-live of zero may be looped-
394 * back, above, but must not be transmitted on a network.
395 * Also, multicasts addressed to the loopback interface
396 * are not sent -- the above call to ip_mloopback() will
397 * loop back a copy if this host actually belongs to the
398 * destination group on the loopback interface.
399 */
400 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
401 m_freem(m);
402 goto done;
403 }
404
405 goto sendit;
406 }
407 #ifndef notdef
408 /*
409 * If source address not specified yet, use address
410 * of outgoing interface.
411 */
412 if (in_nullhost(ip->ip_src))
413 ip->ip_src = ia->ia_addr.sin_addr;
414 #endif
415
416 /*
417 * packets with Class-D address as source are not valid per
418 * RFC 1112
419 */
420 if (IN_MULTICAST(ip->ip_src.s_addr)) {
421 ipstat.ips_odropped++;
422 error = EADDRNOTAVAIL;
423 goto bad;
424 }
425
426 /*
427 * Look for broadcast address and
428 * and verify user is allowed to send
429 * such a packet.
430 */
431 if (in_broadcast(dst->sin_addr, ifp)) {
432 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
433 error = EADDRNOTAVAIL;
434 goto bad;
435 }
436 if ((flags & IP_ALLOWBROADCAST) == 0) {
437 error = EACCES;
438 goto bad;
439 }
440 /* don't allow broadcast messages to be fragmented */
441 if (ntohs(ip->ip_len) > ifp->if_mtu) {
442 error = EMSGSIZE;
443 goto bad;
444 }
445 m->m_flags |= M_BCAST;
446 } else
447 m->m_flags &= ~M_BCAST;
448
449 sendit:
450 /*
451 * If we're doing Path MTU Discovery, we need to set DF unless
452 * the route's MTU is locked.
453 */
454 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
455 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
456 ip->ip_off |= htons(IP_DF);
457
458 /* Remember the current ip_len */
459 ip_len = ntohs(ip->ip_len);
460
461 #ifdef IPSEC
462 /* get SP for this packet */
463 if (so == NULL)
464 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
465 else
466 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
467
468 if (sp == NULL) {
469 ipsecstat.out_inval++;
470 goto bad;
471 }
472
473 error = 0;
474
475 /* check policy */
476 switch (sp->policy) {
477 case IPSEC_POLICY_DISCARD:
478 /*
479 * This packet is just discarded.
480 */
481 ipsecstat.out_polvio++;
482 goto bad;
483
484 case IPSEC_POLICY_BYPASS:
485 case IPSEC_POLICY_NONE:
486 /* no need to do IPsec. */
487 goto skip_ipsec;
488
489 case IPSEC_POLICY_IPSEC:
490 if (sp->req == NULL) {
491 /* XXX should be panic ? */
492 printf("ip_output: No IPsec request specified.\n");
493 error = EINVAL;
494 goto bad;
495 }
496 break;
497
498 case IPSEC_POLICY_ENTRUST:
499 default:
500 printf("ip_output: Invalid policy found. %d\n", sp->policy);
501 }
502
503 /*
504 * ipsec4_output() expects ip_len and ip_off in network
505 * order. They have been set to network order above.
506 */
507
508 {
509 struct ipsec_output_state state;
510 bzero(&state, sizeof(state));
511 state.m = m;
512 if (flags & IP_ROUTETOIF) {
513 state.ro = &iproute;
514 bzero(&iproute, sizeof(iproute));
515 } else
516 state.ro = ro;
517 state.dst = (struct sockaddr *)dst;
518
519 /*
520 * We can't defer the checksum of payload data if
521 * we're about to encrypt/authenticate it.
522 *
523 * XXX When we support crypto offloading functions of
524 * XXX network interfaces, we need to reconsider this,
525 * XXX since it's likely that they'll support checksumming,
526 * XXX as well.
527 */
528 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
529 in_delayed_cksum(m);
530 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
531 }
532
533 error = ipsec4_output(&state, sp, flags);
534
535 m = state.m;
536 if (flags & IP_ROUTETOIF) {
537 /*
538 * if we have tunnel mode SA, we may need to ignore
539 * IP_ROUTETOIF.
540 */
541 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
542 flags &= ~IP_ROUTETOIF;
543 ro = state.ro;
544 }
545 } else
546 ro = state.ro;
547 dst = (struct sockaddr_in *)state.dst;
548 if (error) {
549 /* mbuf is already reclaimed in ipsec4_output. */
550 m0 = NULL;
551 switch (error) {
552 case EHOSTUNREACH:
553 case ENETUNREACH:
554 case EMSGSIZE:
555 case ENOBUFS:
556 case ENOMEM:
557 break;
558 default:
559 printf("ip4_output (ipsec): error code %d\n", error);
560 /*fall through*/
561 case ENOENT:
562 /* don't show these error codes to the user */
563 error = 0;
564 break;
565 }
566 goto bad;
567 }
568
569 /* be sure to update variables that are affected by ipsec4_output() */
570 ip = mtod(m, struct ip *);
571 hlen = ip->ip_hl << 2;
572 ip_len = ntohs(ip->ip_len);
573
574 if (ro->ro_rt == NULL) {
575 if ((flags & IP_ROUTETOIF) == 0) {
576 printf("ip_output: "
577 "can't update route after IPsec processing\n");
578 error = EHOSTUNREACH; /*XXX*/
579 goto bad;
580 }
581 } else {
582 /* nobody uses ia beyond here */
583 if (state.encap)
584 ifp = ro->ro_rt->rt_ifp;
585 }
586 }
587
588 skip_ipsec:
589 #endif /*IPSEC*/
590 #ifdef FAST_IPSEC
591 /*
592 * Check the security policy (SP) for the packet and, if
593 * required, do IPsec-related processing. There are two
594 * cases here; the first time a packet is sent through
595 * it will be untagged and handled by ipsec4_checkpolicy.
596 * If the packet is resubmitted to ip_output (e.g. after
597 * AH, ESP, etc. processing), there will be a tag to bypass
598 * the lookup and related policy checking.
599 */
600 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
601 s = splsoftnet();
602 if (mtag != NULL) {
603 tdbi = (struct tdb_ident *)(mtag + 1);
604 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
605 if (sp == NULL)
606 error = -EINVAL; /* force silent drop */
607 m_tag_delete(m, mtag);
608 } else {
609 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
610 &error, inp);
611 }
612 /*
613 * There are four return cases:
614 * sp != NULL apply IPsec policy
615 * sp == NULL, error == 0 no IPsec handling needed
616 * sp == NULL, error == -EINVAL discard packet w/o error
617 * sp == NULL, error != 0 discard packet, report error
618 */
619 if (sp != NULL) {
620 /* Loop detection, check if ipsec processing already done */
621 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
622 for (mtag = m_tag_first(m); mtag != NULL;
623 mtag = m_tag_next(m, mtag)) {
624 #ifdef MTAG_ABI_COMPAT
625 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
626 continue;
627 #endif
628 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
629 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
630 continue;
631 /*
632 * Check if policy has an SA associated with it.
633 * This can happen when an SP has yet to acquire
634 * an SA; e.g. on first reference. If it occurs,
635 * then we let ipsec4_process_packet do its thing.
636 */
637 if (sp->req->sav == NULL)
638 break;
639 tdbi = (struct tdb_ident *)(mtag + 1);
640 if (tdbi->spi == sp->req->sav->spi &&
641 tdbi->proto == sp->req->sav->sah->saidx.proto &&
642 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
643 sizeof (union sockaddr_union)) == 0) {
644 /*
645 * No IPsec processing is needed, free
646 * reference to SP.
647 *
648 * NB: null pointer to avoid free at
649 * done: below.
650 */
651 KEY_FREESP(&sp), sp = NULL;
652 splx(s);
653 goto spd_done;
654 }
655 }
656
657 /*
658 * Do delayed checksums now because we send before
659 * this is done in the normal processing path.
660 */
661 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
662 in_delayed_cksum(m);
663 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
664 }
665
666 #ifdef __FreeBSD__
667 ip->ip_len = htons(ip->ip_len);
668 ip->ip_off = htons(ip->ip_off);
669 #endif
670
671 /* NB: callee frees mbuf */
672 error = ipsec4_process_packet(m, sp->req, flags, 0);
673 /*
674 * Preserve KAME behaviour: ENOENT can be returned
675 * when an SA acquire is in progress. Don't propagate
676 * this to user-level; it confuses applications.
677 *
678 * XXX this will go away when the SADB is redone.
679 */
680 if (error == ENOENT)
681 error = 0;
682 splx(s);
683 goto done;
684 } else {
685 splx(s);
686
687 if (error != 0) {
688 /*
689 * Hack: -EINVAL is used to signal that a packet
690 * should be silently discarded. This is typically
691 * because we asked key management for an SA and
692 * it was delayed (e.g. kicked up to IKE).
693 */
694 if (error == -EINVAL)
695 error = 0;
696 goto bad;
697 } else {
698 /* No IPsec processing for this packet. */
699 }
700 #ifdef notyet
701 /*
702 * If deferred crypto processing is needed, check that
703 * the interface supports it.
704 */
705 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
706 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
707 /* notify IPsec to do its own crypto */
708 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
709 error = EHOSTUNREACH;
710 goto bad;
711 }
712 #endif
713 }
714 spd_done:
715 #endif /* FAST_IPSEC */
716
717 #ifdef PFIL_HOOKS
718 /*
719 * Run through list of hooks for output packets.
720 */
721 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
722 goto done;
723 if (m == NULL)
724 goto done;
725
726 ip = mtod(m, struct ip *);
727 hlen = ip->ip_hl << 2;
728 #endif /* PFIL_HOOKS */
729
730 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
731 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
732 /*
733 * If small enough for mtu of path, can just send directly.
734 */
735 if (ip_len <= mtu) {
736 #if IFA_STATS
737 /*
738 * search for the source address structure to
739 * maintain output statistics.
740 */
741 INADDR_TO_IA(ip->ip_src, ia);
742 if (ia)
743 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
744 #endif
745 /*
746 * Always initialize the sum to 0! Some HW assisted
747 * checksumming requires this.
748 */
749 ip->ip_sum = 0;
750
751 /*
752 * Perform any checksums that the hardware can't do
753 * for us.
754 *
755 * XXX Does any hardware require the {th,uh}_sum
756 * XXX fields to be 0?
757 */
758 if (sw_csum & M_CSUM_IPv4) {
759 ip->ip_sum = in_cksum(m, hlen);
760 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
761 }
762 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
763 in_delayed_cksum(m);
764 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
765 }
766
767 #ifdef IPSEC
768 /* clean ipsec history once it goes out of the node */
769 ipsec_delaux(m);
770 #endif
771 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
772 goto done;
773 }
774
775 /*
776 * We can't use HW checksumming if we're about to
777 * to fragment the packet.
778 *
779 * XXX Some hardware can do this.
780 */
781 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
782 in_delayed_cksum(m);
783 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
784 }
785
786 /*
787 * Too large for interface; fragment if possible.
788 * Must be able to put at least 8 bytes per fragment.
789 */
790 if (ntohs(ip->ip_off) & IP_DF) {
791 if (flags & IP_RETURNMTU)
792 *mtu_p = mtu;
793 error = EMSGSIZE;
794 ipstat.ips_cantfrag++;
795 goto bad;
796 }
797 len = (mtu - hlen) &~ 7;
798 if (len < 8) {
799 error = EMSGSIZE;
800 goto bad;
801 }
802
803 {
804 int mhlen, firstlen = len;
805 struct mbuf **mnext = &m->m_nextpkt;
806 int fragments = 0;
807 int s;
808
809 /*
810 * Loop through length of segment after first fragment,
811 * make new header and copy data of each part and link onto chain.
812 */
813 m0 = m;
814 mhlen = sizeof (struct ip);
815 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
816 MGETHDR(m, M_DONTWAIT, MT_HEADER);
817 if (m == 0) {
818 error = ENOBUFS;
819 ipstat.ips_odropped++;
820 goto sendorfree;
821 }
822 MCLAIM(m, m0->m_owner);
823 *mnext = m;
824 mnext = &m->m_nextpkt;
825 m->m_data += max_linkhdr;
826 mhip = mtod(m, struct ip *);
827 *mhip = *ip;
828 /* we must inherit MCAST and BCAST flags */
829 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
830 if (hlen > sizeof (struct ip)) {
831 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
832 mhip->ip_hl = mhlen >> 2;
833 }
834 m->m_len = mhlen;
835 mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
836 if (ip->ip_off & IP_MF)
837 mhip->ip_off |= IP_MF;
838 if (off + len >= ntohs(ip->ip_len))
839 len = ntohs(ip->ip_len) - off;
840 else
841 mhip->ip_off |= IP_MF;
842 HTONS(mhip->ip_off);
843 mhip->ip_len = htons((u_int16_t)(len + mhlen));
844 m->m_next = m_copy(m0, off, len);
845 if (m->m_next == 0) {
846 error = ENOBUFS; /* ??? */
847 ipstat.ips_odropped++;
848 goto sendorfree;
849 }
850 m->m_pkthdr.len = mhlen + len;
851 m->m_pkthdr.rcvif = (struct ifnet *)0;
852 mhip->ip_sum = 0;
853 if (sw_csum & M_CSUM_IPv4) {
854 mhip->ip_sum = in_cksum(m, mhlen);
855 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
856 } else {
857 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
858 }
859 ipstat.ips_ofragments++;
860 fragments++;
861 }
862 /*
863 * Update first fragment by trimming what's been copied out
864 * and updating header, then send each fragment (in order).
865 */
866 m = m0;
867 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
868 m->m_pkthdr.len = hlen + firstlen;
869 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
870 ip->ip_off |= htons(IP_MF);
871 ip->ip_sum = 0;
872 if (sw_csum & M_CSUM_IPv4) {
873 ip->ip_sum = in_cksum(m, hlen);
874 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
875 } else {
876 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
877 }
878 sendorfree:
879 /*
880 * If there is no room for all the fragments, don't queue
881 * any of them.
882 */
883 s = splnet();
884 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments)
885 error = ENOBUFS;
886 splx(s);
887 for (m = m0; m; m = m0) {
888 m0 = m->m_nextpkt;
889 m->m_nextpkt = 0;
890 if (error == 0) {
891 #if IFA_STATS
892 /*
893 * search for the source address structure to
894 * maintain output statistics.
895 */
896 INADDR_TO_IA(ip->ip_src, ia);
897 if (ia) {
898 ia->ia_ifa.ifa_data.ifad_outbytes +=
899 ntohs(ip->ip_len);
900 }
901 #endif
902 #ifdef IPSEC
903 /* clean ipsec history once it goes out of the node */
904 ipsec_delaux(m);
905 #endif
906 KASSERT((m->m_pkthdr.csum_flags &
907 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
908 error = (*ifp->if_output)(ifp, m, sintosa(dst),
909 ro->ro_rt);
910 } else
911 m_freem(m);
912 }
913
914 if (error == 0)
915 ipstat.ips_fragmented++;
916 }
917 done:
918 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
919 RTFREE(ro->ro_rt);
920 ro->ro_rt = 0;
921 }
922
923 #ifdef IPSEC
924 if (sp != NULL) {
925 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
926 printf("DP ip_output call free SP:%p\n", sp));
927 key_freesp(sp);
928 }
929 #endif /* IPSEC */
930 #ifdef FAST_IPSEC
931 if (sp != NULL)
932 KEY_FREESP(&sp);
933 #endif /* FAST_IPSEC */
934
935 return (error);
936 bad:
937 m_freem(m);
938 goto done;
939 }
940
941 /*
942 * Process a delayed payload checksum calculation.
943 */
944 void
945 in_delayed_cksum(struct mbuf *m)
946 {
947 struct ip *ip;
948 u_int16_t csum, offset;
949
950 ip = mtod(m, struct ip *);
951 offset = ip->ip_hl << 2;
952 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
953 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
954 csum = 0xffff;
955
956 offset += m->m_pkthdr.csum_data; /* checksum offset */
957
958 if ((offset + sizeof(u_int16_t)) > m->m_len) {
959 /* This happen when ip options were inserted
960 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
961 m->m_len, offset, ip->ip_p);
962 */
963 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
964 } else
965 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
966 }
967
968 /*
969 * Determine the maximum length of the options to be inserted;
970 * we would far rather allocate too much space rather than too little.
971 */
972
973 u_int
974 ip_optlen(inp)
975 struct inpcb *inp;
976 {
977 struct mbuf *m = inp->inp_options;
978
979 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
980 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
981 else
982 return 0;
983 }
984
985
986 /*
987 * Insert IP options into preformed packet.
988 * Adjust IP destination as required for IP source routing,
989 * as indicated by a non-zero in_addr at the start of the options.
990 */
991 static struct mbuf *
992 ip_insertoptions(m, opt, phlen)
993 struct mbuf *m;
994 struct mbuf *opt;
995 int *phlen;
996 {
997 struct ipoption *p = mtod(opt, struct ipoption *);
998 struct mbuf *n;
999 struct ip *ip = mtod(m, struct ip *);
1000 unsigned optlen;
1001
1002 optlen = opt->m_len - sizeof(p->ipopt_dst);
1003 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1004 return (m); /* XXX should fail */
1005 if (!in_nullhost(p->ipopt_dst))
1006 ip->ip_dst = p->ipopt_dst;
1007 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1008 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1009 if (n == 0)
1010 return (m);
1011 MCLAIM(n, m->m_owner);
1012 M_COPY_PKTHDR(n, m);
1013 m->m_flags &= ~M_PKTHDR;
1014 m->m_len -= sizeof(struct ip);
1015 m->m_data += sizeof(struct ip);
1016 n->m_next = m;
1017 m = n;
1018 m->m_len = optlen + sizeof(struct ip);
1019 m->m_data += max_linkhdr;
1020 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1021 } else {
1022 m->m_data -= optlen;
1023 m->m_len += optlen;
1024 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1025 }
1026 m->m_pkthdr.len += optlen;
1027 ip = mtod(m, struct ip *);
1028 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1029 *phlen = sizeof(struct ip) + optlen;
1030 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1031 return (m);
1032 }
1033
1034 /*
1035 * Copy options from ip to jp,
1036 * omitting those not copied during fragmentation.
1037 */
1038 int
1039 ip_optcopy(ip, jp)
1040 struct ip *ip, *jp;
1041 {
1042 u_char *cp, *dp;
1043 int opt, optlen, cnt;
1044
1045 cp = (u_char *)(ip + 1);
1046 dp = (u_char *)(jp + 1);
1047 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1048 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1049 opt = cp[0];
1050 if (opt == IPOPT_EOL)
1051 break;
1052 if (opt == IPOPT_NOP) {
1053 /* Preserve for IP mcast tunnel's LSRR alignment. */
1054 *dp++ = IPOPT_NOP;
1055 optlen = 1;
1056 continue;
1057 }
1058 #ifdef DIAGNOSTIC
1059 if (cnt < IPOPT_OLEN + sizeof(*cp))
1060 panic("malformed IPv4 option passed to ip_optcopy");
1061 #endif
1062 optlen = cp[IPOPT_OLEN];
1063 #ifdef DIAGNOSTIC
1064 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1065 panic("malformed IPv4 option passed to ip_optcopy");
1066 #endif
1067 /* bogus lengths should have been caught by ip_dooptions */
1068 if (optlen > cnt)
1069 optlen = cnt;
1070 if (IPOPT_COPIED(opt)) {
1071 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1072 dp += optlen;
1073 }
1074 }
1075 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1076 *dp++ = IPOPT_EOL;
1077 return (optlen);
1078 }
1079
1080 /*
1081 * IP socket option processing.
1082 */
1083 int
1084 ip_ctloutput(op, so, level, optname, mp)
1085 int op;
1086 struct socket *so;
1087 int level, optname;
1088 struct mbuf **mp;
1089 {
1090 struct inpcb *inp = sotoinpcb(so);
1091 struct mbuf *m = *mp;
1092 int optval = 0;
1093 int error = 0;
1094 #if defined(IPSEC) || defined(FAST_IPSEC)
1095 #ifdef __NetBSD__
1096 struct proc *p = curproc; /*XXX*/
1097 #endif
1098 #endif
1099
1100 if (level != IPPROTO_IP) {
1101 error = EINVAL;
1102 if (op == PRCO_SETOPT && *mp)
1103 (void) m_free(*mp);
1104 } else switch (op) {
1105
1106 case PRCO_SETOPT:
1107 switch (optname) {
1108 case IP_OPTIONS:
1109 #ifdef notyet
1110 case IP_RETOPTS:
1111 return (ip_pcbopts(optname, &inp->inp_options, m));
1112 #else
1113 return (ip_pcbopts(&inp->inp_options, m));
1114 #endif
1115
1116 case IP_TOS:
1117 case IP_TTL:
1118 case IP_RECVOPTS:
1119 case IP_RECVRETOPTS:
1120 case IP_RECVDSTADDR:
1121 case IP_RECVIF:
1122 if (m == NULL || m->m_len != sizeof(int))
1123 error = EINVAL;
1124 else {
1125 optval = *mtod(m, int *);
1126 switch (optname) {
1127
1128 case IP_TOS:
1129 inp->inp_ip.ip_tos = optval;
1130 break;
1131
1132 case IP_TTL:
1133 inp->inp_ip.ip_ttl = optval;
1134 break;
1135 #define OPTSET(bit) \
1136 if (optval) \
1137 inp->inp_flags |= bit; \
1138 else \
1139 inp->inp_flags &= ~bit;
1140
1141 case IP_RECVOPTS:
1142 OPTSET(INP_RECVOPTS);
1143 break;
1144
1145 case IP_RECVRETOPTS:
1146 OPTSET(INP_RECVRETOPTS);
1147 break;
1148
1149 case IP_RECVDSTADDR:
1150 OPTSET(INP_RECVDSTADDR);
1151 break;
1152
1153 case IP_RECVIF:
1154 OPTSET(INP_RECVIF);
1155 break;
1156 }
1157 }
1158 break;
1159 #undef OPTSET
1160
1161 case IP_MULTICAST_IF:
1162 case IP_MULTICAST_TTL:
1163 case IP_MULTICAST_LOOP:
1164 case IP_ADD_MEMBERSHIP:
1165 case IP_DROP_MEMBERSHIP:
1166 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1167 break;
1168
1169 case IP_PORTRANGE:
1170 if (m == 0 || m->m_len != sizeof(int))
1171 error = EINVAL;
1172 else {
1173 optval = *mtod(m, int *);
1174
1175 switch (optval) {
1176
1177 case IP_PORTRANGE_DEFAULT:
1178 case IP_PORTRANGE_HIGH:
1179 inp->inp_flags &= ~(INP_LOWPORT);
1180 break;
1181
1182 case IP_PORTRANGE_LOW:
1183 inp->inp_flags |= INP_LOWPORT;
1184 break;
1185
1186 default:
1187 error = EINVAL;
1188 break;
1189 }
1190 }
1191 break;
1192
1193 #if defined(IPSEC) || defined(FAST_IPSEC)
1194 case IP_IPSEC_POLICY:
1195 {
1196 caddr_t req = NULL;
1197 size_t len = 0;
1198 int priv = 0;
1199
1200 #ifdef __NetBSD__
1201 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1202 priv = 0;
1203 else
1204 priv = 1;
1205 #else
1206 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1207 #endif
1208 if (m) {
1209 req = mtod(m, caddr_t);
1210 len = m->m_len;
1211 }
1212 error = ipsec4_set_policy(inp, optname, req, len, priv);
1213 break;
1214 }
1215 #endif /*IPSEC*/
1216
1217 default:
1218 error = ENOPROTOOPT;
1219 break;
1220 }
1221 if (m)
1222 (void)m_free(m);
1223 break;
1224
1225 case PRCO_GETOPT:
1226 switch (optname) {
1227 case IP_OPTIONS:
1228 case IP_RETOPTS:
1229 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1230 MCLAIM(m, so->so_mowner);
1231 if (inp->inp_options) {
1232 m->m_len = inp->inp_options->m_len;
1233 bcopy(mtod(inp->inp_options, caddr_t),
1234 mtod(m, caddr_t), (unsigned)m->m_len);
1235 } else
1236 m->m_len = 0;
1237 break;
1238
1239 case IP_TOS:
1240 case IP_TTL:
1241 case IP_RECVOPTS:
1242 case IP_RECVRETOPTS:
1243 case IP_RECVDSTADDR:
1244 case IP_RECVIF:
1245 case IP_ERRORMTU:
1246 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1247 MCLAIM(m, so->so_mowner);
1248 m->m_len = sizeof(int);
1249 switch (optname) {
1250
1251 case IP_TOS:
1252 optval = inp->inp_ip.ip_tos;
1253 break;
1254
1255 case IP_TTL:
1256 optval = inp->inp_ip.ip_ttl;
1257 break;
1258
1259 case IP_ERRORMTU:
1260 optval = inp->inp_errormtu;
1261 break;
1262
1263 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1264
1265 case IP_RECVOPTS:
1266 optval = OPTBIT(INP_RECVOPTS);
1267 break;
1268
1269 case IP_RECVRETOPTS:
1270 optval = OPTBIT(INP_RECVRETOPTS);
1271 break;
1272
1273 case IP_RECVDSTADDR:
1274 optval = OPTBIT(INP_RECVDSTADDR);
1275 break;
1276
1277 case IP_RECVIF:
1278 optval = OPTBIT(INP_RECVIF);
1279 break;
1280 }
1281 *mtod(m, int *) = optval;
1282 break;
1283
1284 #if defined(IPSEC) || defined(FAST_IPSEC)
1285 case IP_IPSEC_POLICY:
1286 {
1287 caddr_t req = NULL;
1288 size_t len = 0;
1289
1290 if (m) {
1291 req = mtod(m, caddr_t);
1292 len = m->m_len;
1293 }
1294 error = ipsec4_get_policy(inp, req, len, mp);
1295 break;
1296 }
1297 #endif /*IPSEC*/
1298
1299 case IP_MULTICAST_IF:
1300 case IP_MULTICAST_TTL:
1301 case IP_MULTICAST_LOOP:
1302 case IP_ADD_MEMBERSHIP:
1303 case IP_DROP_MEMBERSHIP:
1304 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1305 if (*mp)
1306 MCLAIM(*mp, so->so_mowner);
1307 break;
1308
1309 case IP_PORTRANGE:
1310 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1311 MCLAIM(m, so->so_mowner);
1312 m->m_len = sizeof(int);
1313
1314 if (inp->inp_flags & INP_LOWPORT)
1315 optval = IP_PORTRANGE_LOW;
1316 else
1317 optval = IP_PORTRANGE_DEFAULT;
1318
1319 *mtod(m, int *) = optval;
1320 break;
1321
1322 default:
1323 error = ENOPROTOOPT;
1324 break;
1325 }
1326 break;
1327 }
1328 return (error);
1329 }
1330
1331 /*
1332 * Set up IP options in pcb for insertion in output packets.
1333 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1334 * with destination address if source routed.
1335 */
1336 int
1337 #ifdef notyet
1338 ip_pcbopts(optname, pcbopt, m)
1339 int optname;
1340 #else
1341 ip_pcbopts(pcbopt, m)
1342 #endif
1343 struct mbuf **pcbopt;
1344 struct mbuf *m;
1345 {
1346 int cnt, optlen;
1347 u_char *cp;
1348 u_char opt;
1349
1350 /* turn off any old options */
1351 if (*pcbopt)
1352 (void)m_free(*pcbopt);
1353 *pcbopt = 0;
1354 if (m == (struct mbuf *)0 || m->m_len == 0) {
1355 /*
1356 * Only turning off any previous options.
1357 */
1358 if (m)
1359 (void)m_free(m);
1360 return (0);
1361 }
1362
1363 #ifndef __vax__
1364 if (m->m_len % sizeof(int32_t))
1365 goto bad;
1366 #endif
1367 /*
1368 * IP first-hop destination address will be stored before
1369 * actual options; move other options back
1370 * and clear it when none present.
1371 */
1372 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1373 goto bad;
1374 cnt = m->m_len;
1375 m->m_len += sizeof(struct in_addr);
1376 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1377 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1378 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1379
1380 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1381 opt = cp[IPOPT_OPTVAL];
1382 if (opt == IPOPT_EOL)
1383 break;
1384 if (opt == IPOPT_NOP)
1385 optlen = 1;
1386 else {
1387 if (cnt < IPOPT_OLEN + sizeof(*cp))
1388 goto bad;
1389 optlen = cp[IPOPT_OLEN];
1390 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1391 goto bad;
1392 }
1393 switch (opt) {
1394
1395 default:
1396 break;
1397
1398 case IPOPT_LSRR:
1399 case IPOPT_SSRR:
1400 /*
1401 * user process specifies route as:
1402 * ->A->B->C->D
1403 * D must be our final destination (but we can't
1404 * check that since we may not have connected yet).
1405 * A is first hop destination, which doesn't appear in
1406 * actual IP option, but is stored before the options.
1407 */
1408 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1409 goto bad;
1410 m->m_len -= sizeof(struct in_addr);
1411 cnt -= sizeof(struct in_addr);
1412 optlen -= sizeof(struct in_addr);
1413 cp[IPOPT_OLEN] = optlen;
1414 /*
1415 * Move first hop before start of options.
1416 */
1417 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1418 sizeof(struct in_addr));
1419 /*
1420 * Then copy rest of options back
1421 * to close up the deleted entry.
1422 */
1423 memmove(&cp[IPOPT_OFFSET+1],
1424 (caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1425 (unsigned)cnt + sizeof(struct in_addr));
1426 break;
1427 }
1428 }
1429 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1430 goto bad;
1431 *pcbopt = m;
1432 return (0);
1433
1434 bad:
1435 (void)m_free(m);
1436 return (EINVAL);
1437 }
1438
1439 /*
1440 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1441 */
1442 static struct ifnet *
1443 ip_multicast_if(a, ifindexp)
1444 struct in_addr *a;
1445 int *ifindexp;
1446 {
1447 int ifindex;
1448 struct ifnet *ifp;
1449
1450 if (ifindexp)
1451 *ifindexp = 0;
1452 if (ntohl(a->s_addr) >> 24 == 0) {
1453 ifindex = ntohl(a->s_addr) & 0xffffff;
1454 if (ifindex < 0 || if_index < ifindex)
1455 return NULL;
1456 ifp = ifindex2ifnet[ifindex];
1457 if (ifindexp)
1458 *ifindexp = ifindex;
1459 } else {
1460 INADDR_TO_IFP(*a, ifp);
1461 }
1462 return ifp;
1463 }
1464
1465 /*
1466 * Set the IP multicast options in response to user setsockopt().
1467 */
1468 int
1469 ip_setmoptions(optname, imop, m)
1470 int optname;
1471 struct ip_moptions **imop;
1472 struct mbuf *m;
1473 {
1474 int error = 0;
1475 u_char loop;
1476 int i;
1477 struct in_addr addr;
1478 struct ip_mreq *mreq;
1479 struct ifnet *ifp;
1480 struct ip_moptions *imo = *imop;
1481 struct route ro;
1482 struct sockaddr_in *dst;
1483 int ifindex;
1484
1485 if (imo == NULL) {
1486 /*
1487 * No multicast option buffer attached to the pcb;
1488 * allocate one and initialize to default values.
1489 */
1490 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1491 M_WAITOK);
1492
1493 if (imo == NULL)
1494 return (ENOBUFS);
1495 *imop = imo;
1496 imo->imo_multicast_ifp = NULL;
1497 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1498 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1499 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1500 imo->imo_num_memberships = 0;
1501 }
1502
1503 switch (optname) {
1504
1505 case IP_MULTICAST_IF:
1506 /*
1507 * Select the interface for outgoing multicast packets.
1508 */
1509 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1510 error = EINVAL;
1511 break;
1512 }
1513 addr = *(mtod(m, struct in_addr *));
1514 /*
1515 * INADDR_ANY is used to remove a previous selection.
1516 * When no interface is selected, a default one is
1517 * chosen every time a multicast packet is sent.
1518 */
1519 if (in_nullhost(addr)) {
1520 imo->imo_multicast_ifp = NULL;
1521 break;
1522 }
1523 /*
1524 * The selected interface is identified by its local
1525 * IP address. Find the interface and confirm that
1526 * it supports multicasting.
1527 */
1528 ifp = ip_multicast_if(&addr, &ifindex);
1529 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1530 error = EADDRNOTAVAIL;
1531 break;
1532 }
1533 imo->imo_multicast_ifp = ifp;
1534 if (ifindex)
1535 imo->imo_multicast_addr = addr;
1536 else
1537 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1538 break;
1539
1540 case IP_MULTICAST_TTL:
1541 /*
1542 * Set the IP time-to-live for outgoing multicast packets.
1543 */
1544 if (m == NULL || m->m_len != 1) {
1545 error = EINVAL;
1546 break;
1547 }
1548 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1549 break;
1550
1551 case IP_MULTICAST_LOOP:
1552 /*
1553 * Set the loopback flag for outgoing multicast packets.
1554 * Must be zero or one.
1555 */
1556 if (m == NULL || m->m_len != 1 ||
1557 (loop = *(mtod(m, u_char *))) > 1) {
1558 error = EINVAL;
1559 break;
1560 }
1561 imo->imo_multicast_loop = loop;
1562 break;
1563
1564 case IP_ADD_MEMBERSHIP:
1565 /*
1566 * Add a multicast group membership.
1567 * Group must be a valid IP multicast address.
1568 */
1569 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1570 error = EINVAL;
1571 break;
1572 }
1573 mreq = mtod(m, struct ip_mreq *);
1574 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1575 error = EINVAL;
1576 break;
1577 }
1578 /*
1579 * If no interface address was provided, use the interface of
1580 * the route to the given multicast address.
1581 */
1582 if (in_nullhost(mreq->imr_interface)) {
1583 bzero((caddr_t)&ro, sizeof(ro));
1584 ro.ro_rt = NULL;
1585 dst = satosin(&ro.ro_dst);
1586 dst->sin_len = sizeof(*dst);
1587 dst->sin_family = AF_INET;
1588 dst->sin_addr = mreq->imr_multiaddr;
1589 rtalloc(&ro);
1590 if (ro.ro_rt == NULL) {
1591 error = EADDRNOTAVAIL;
1592 break;
1593 }
1594 ifp = ro.ro_rt->rt_ifp;
1595 rtfree(ro.ro_rt);
1596 } else {
1597 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1598 }
1599 /*
1600 * See if we found an interface, and confirm that it
1601 * supports multicast.
1602 */
1603 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1604 error = EADDRNOTAVAIL;
1605 break;
1606 }
1607 /*
1608 * See if the membership already exists or if all the
1609 * membership slots are full.
1610 */
1611 for (i = 0; i < imo->imo_num_memberships; ++i) {
1612 if (imo->imo_membership[i]->inm_ifp == ifp &&
1613 in_hosteq(imo->imo_membership[i]->inm_addr,
1614 mreq->imr_multiaddr))
1615 break;
1616 }
1617 if (i < imo->imo_num_memberships) {
1618 error = EADDRINUSE;
1619 break;
1620 }
1621 if (i == IP_MAX_MEMBERSHIPS) {
1622 error = ETOOMANYREFS;
1623 break;
1624 }
1625 /*
1626 * Everything looks good; add a new record to the multicast
1627 * address list for the given interface.
1628 */
1629 if ((imo->imo_membership[i] =
1630 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1631 error = ENOBUFS;
1632 break;
1633 }
1634 ++imo->imo_num_memberships;
1635 break;
1636
1637 case IP_DROP_MEMBERSHIP:
1638 /*
1639 * Drop a multicast group membership.
1640 * Group must be a valid IP multicast address.
1641 */
1642 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1643 error = EINVAL;
1644 break;
1645 }
1646 mreq = mtod(m, struct ip_mreq *);
1647 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1648 error = EINVAL;
1649 break;
1650 }
1651 /*
1652 * If an interface address was specified, get a pointer
1653 * to its ifnet structure.
1654 */
1655 if (in_nullhost(mreq->imr_interface))
1656 ifp = NULL;
1657 else {
1658 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1659 if (ifp == NULL) {
1660 error = EADDRNOTAVAIL;
1661 break;
1662 }
1663 }
1664 /*
1665 * Find the membership in the membership array.
1666 */
1667 for (i = 0; i < imo->imo_num_memberships; ++i) {
1668 if ((ifp == NULL ||
1669 imo->imo_membership[i]->inm_ifp == ifp) &&
1670 in_hosteq(imo->imo_membership[i]->inm_addr,
1671 mreq->imr_multiaddr))
1672 break;
1673 }
1674 if (i == imo->imo_num_memberships) {
1675 error = EADDRNOTAVAIL;
1676 break;
1677 }
1678 /*
1679 * Give up the multicast address record to which the
1680 * membership points.
1681 */
1682 in_delmulti(imo->imo_membership[i]);
1683 /*
1684 * Remove the gap in the membership array.
1685 */
1686 for (++i; i < imo->imo_num_memberships; ++i)
1687 imo->imo_membership[i-1] = imo->imo_membership[i];
1688 --imo->imo_num_memberships;
1689 break;
1690
1691 default:
1692 error = EOPNOTSUPP;
1693 break;
1694 }
1695
1696 /*
1697 * If all options have default values, no need to keep the mbuf.
1698 */
1699 if (imo->imo_multicast_ifp == NULL &&
1700 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1701 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1702 imo->imo_num_memberships == 0) {
1703 free(*imop, M_IPMOPTS);
1704 *imop = NULL;
1705 }
1706
1707 return (error);
1708 }
1709
1710 /*
1711 * Return the IP multicast options in response to user getsockopt().
1712 */
1713 int
1714 ip_getmoptions(optname, imo, mp)
1715 int optname;
1716 struct ip_moptions *imo;
1717 struct mbuf **mp;
1718 {
1719 u_char *ttl;
1720 u_char *loop;
1721 struct in_addr *addr;
1722 struct in_ifaddr *ia;
1723
1724 *mp = m_get(M_WAIT, MT_SOOPTS);
1725
1726 switch (optname) {
1727
1728 case IP_MULTICAST_IF:
1729 addr = mtod(*mp, struct in_addr *);
1730 (*mp)->m_len = sizeof(struct in_addr);
1731 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1732 *addr = zeroin_addr;
1733 else if (imo->imo_multicast_addr.s_addr) {
1734 /* return the value user has set */
1735 *addr = imo->imo_multicast_addr;
1736 } else {
1737 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1738 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1739 }
1740 return (0);
1741
1742 case IP_MULTICAST_TTL:
1743 ttl = mtod(*mp, u_char *);
1744 (*mp)->m_len = 1;
1745 *ttl = imo ? imo->imo_multicast_ttl
1746 : IP_DEFAULT_MULTICAST_TTL;
1747 return (0);
1748
1749 case IP_MULTICAST_LOOP:
1750 loop = mtod(*mp, u_char *);
1751 (*mp)->m_len = 1;
1752 *loop = imo ? imo->imo_multicast_loop
1753 : IP_DEFAULT_MULTICAST_LOOP;
1754 return (0);
1755
1756 default:
1757 return (EOPNOTSUPP);
1758 }
1759 }
1760
1761 /*
1762 * Discard the IP multicast options.
1763 */
1764 void
1765 ip_freemoptions(imo)
1766 struct ip_moptions *imo;
1767 {
1768 int i;
1769
1770 if (imo != NULL) {
1771 for (i = 0; i < imo->imo_num_memberships; ++i)
1772 in_delmulti(imo->imo_membership[i]);
1773 free(imo, M_IPMOPTS);
1774 }
1775 }
1776
1777 /*
1778 * Routine called from ip_output() to loop back a copy of an IP multicast
1779 * packet to the input queue of a specified interface. Note that this
1780 * calls the output routine of the loopback "driver", but with an interface
1781 * pointer that might NOT be &loif -- easier than replicating that code here.
1782 */
1783 static void
1784 ip_mloopback(ifp, m, dst)
1785 struct ifnet *ifp;
1786 struct mbuf *m;
1787 struct sockaddr_in *dst;
1788 {
1789 struct ip *ip;
1790 struct mbuf *copym;
1791
1792 copym = m_copy(m, 0, M_COPYALL);
1793 if (copym != NULL
1794 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1795 copym = m_pullup(copym, sizeof(struct ip));
1796 if (copym != NULL) {
1797 /*
1798 * We don't bother to fragment if the IP length is greater
1799 * than the interface's MTU. Can this possibly matter?
1800 */
1801 ip = mtod(copym, struct ip *);
1802
1803 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1804 in_delayed_cksum(copym);
1805 copym->m_pkthdr.csum_flags &=
1806 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1807 }
1808
1809 ip->ip_sum = 0;
1810 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1811 (void) looutput(ifp, copym, sintosa(dst), NULL);
1812 }
1813 }
1814