ip_output.c revision 1.122 1 /* $NetBSD: ip_output.c,v 1.122 2003/10/01 23:54:40 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.122 2003/10/01 23:54:40 itojun Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_ipsec.h"
105 #include "opt_mrouting.h"
106
107 #include <sys/param.h>
108 #include <sys/malloc.h>
109 #include <sys/mbuf.h>
110 #include <sys/errno.h>
111 #include <sys/protosw.h>
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #ifdef FAST_IPSEC
115 #include <sys/domain.h>
116 #endif
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119
120 #include <net/if.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/in_var.h>
129 #include <netinet/ip_var.h>
130
131 #ifdef MROUTING
132 #include <netinet/ip_mroute.h>
133 #endif
134
135 #include <machine/stdarg.h>
136
137 #ifdef IPSEC
138 #include <netinet6/ipsec.h>
139 #include <netkey/key.h>
140 #include <netkey/key_debug.h>
141 #endif /*IPSEC*/
142
143 #ifdef FAST_IPSEC
144 #include <netipsec/ipsec.h>
145 #include <netipsec/key.h>
146 #include <netipsec/xform.h>
147 #endif /* FAST_IPSEC*/
148
149 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
150 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
151 static void ip_mloopback
152 __P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
153
154 #ifdef PFIL_HOOKS
155 extern struct pfil_head inet_pfil_hook; /* XXX */
156 #endif
157
158 /*
159 * IP output. The packet in mbuf chain m contains a skeletal IP
160 * header (with len, off, ttl, proto, tos, src, dst).
161 * The mbuf chain containing the packet will be freed.
162 * The mbuf opt, if present, will not be freed.
163 */
164 int
165 #if __STDC__
166 ip_output(struct mbuf *m0, ...)
167 #else
168 ip_output(m0, va_alist)
169 struct mbuf *m0;
170 va_dcl
171 #endif
172 {
173 struct ip *ip;
174 struct ifnet *ifp;
175 struct mbuf *m = m0;
176 int hlen = sizeof (struct ip);
177 int len, error = 0;
178 struct route iproute;
179 struct sockaddr_in *dst;
180 struct in_ifaddr *ia;
181 struct mbuf *opt;
182 struct route *ro;
183 int flags, sw_csum;
184 int *mtu_p;
185 u_long mtu;
186 struct ip_moptions *imo;
187 struct socket *so;
188 va_list ap;
189 #ifdef IPSEC
190 struct secpolicy *sp = NULL;
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /*IPSEC*/
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = htons(ip_randomid());
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else
472 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
473
474 if (sp == NULL) {
475 ipsecstat.out_inval++;
476 goto bad;
477 }
478
479 error = 0;
480
481 /* check policy */
482 switch (sp->policy) {
483 case IPSEC_POLICY_DISCARD:
484 /*
485 * This packet is just discarded.
486 */
487 ipsecstat.out_polvio++;
488 goto bad;
489
490 case IPSEC_POLICY_BYPASS:
491 case IPSEC_POLICY_NONE:
492 /* no need to do IPsec. */
493 goto skip_ipsec;
494
495 case IPSEC_POLICY_IPSEC:
496 if (sp->req == NULL) {
497 /* XXX should be panic ? */
498 printf("ip_output: No IPsec request specified.\n");
499 error = EINVAL;
500 goto bad;
501 }
502 break;
503
504 case IPSEC_POLICY_ENTRUST:
505 default:
506 printf("ip_output: Invalid policy found. %d\n", sp->policy);
507 }
508
509 /*
510 * ipsec4_output() expects ip_len and ip_off in network
511 * order. They have been set to network order above.
512 */
513
514 {
515 struct ipsec_output_state state;
516 bzero(&state, sizeof(state));
517 state.m = m;
518 if (flags & IP_ROUTETOIF) {
519 state.ro = &iproute;
520 bzero(&iproute, sizeof(iproute));
521 } else
522 state.ro = ro;
523 state.dst = (struct sockaddr *)dst;
524
525 /*
526 * We can't defer the checksum of payload data if
527 * we're about to encrypt/authenticate it.
528 *
529 * XXX When we support crypto offloading functions of
530 * XXX network interfaces, we need to reconsider this,
531 * XXX since it's likely that they'll support checksumming,
532 * XXX as well.
533 */
534 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
535 in_delayed_cksum(m);
536 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
537 }
538
539 error = ipsec4_output(&state, sp, flags);
540
541 m = state.m;
542 if (flags & IP_ROUTETOIF) {
543 /*
544 * if we have tunnel mode SA, we may need to ignore
545 * IP_ROUTETOIF.
546 */
547 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
548 flags &= ~IP_ROUTETOIF;
549 ro = state.ro;
550 }
551 } else
552 ro = state.ro;
553 dst = (struct sockaddr_in *)state.dst;
554 if (error) {
555 /* mbuf is already reclaimed in ipsec4_output. */
556 m0 = NULL;
557 switch (error) {
558 case EHOSTUNREACH:
559 case ENETUNREACH:
560 case EMSGSIZE:
561 case ENOBUFS:
562 case ENOMEM:
563 break;
564 default:
565 printf("ip4_output (ipsec): error code %d\n", error);
566 /*fall through*/
567 case ENOENT:
568 /* don't show these error codes to the user */
569 error = 0;
570 break;
571 }
572 goto bad;
573 }
574
575 /* be sure to update variables that are affected by ipsec4_output() */
576 ip = mtod(m, struct ip *);
577 hlen = ip->ip_hl << 2;
578 ip_len = ntohs(ip->ip_len);
579
580 if (ro->ro_rt == NULL) {
581 if ((flags & IP_ROUTETOIF) == 0) {
582 printf("ip_output: "
583 "can't update route after IPsec processing\n");
584 error = EHOSTUNREACH; /*XXX*/
585 goto bad;
586 }
587 } else {
588 /* nobody uses ia beyond here */
589 if (state.encap)
590 ifp = ro->ro_rt->rt_ifp;
591 }
592 }
593 skip_ipsec:
594 #endif /*IPSEC*/
595 #ifdef FAST_IPSEC
596 /*
597 * Check the security policy (SP) for the packet and, if
598 * required, do IPsec-related processing. There are two
599 * cases here; the first time a packet is sent through
600 * it will be untagged and handled by ipsec4_checkpolicy.
601 * If the packet is resubmitted to ip_output (e.g. after
602 * AH, ESP, etc. processing), there will be a tag to bypass
603 * the lookup and related policy checking.
604 */
605 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
606 s = splsoftnet();
607 if (mtag != NULL) {
608 tdbi = (struct tdb_ident *)(mtag + 1);
609 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
610 if (sp == NULL)
611 error = -EINVAL; /* force silent drop */
612 m_tag_delete(m, mtag);
613 } else {
614 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
615 &error, inp);
616 }
617 /*
618 * There are four return cases:
619 * sp != NULL apply IPsec policy
620 * sp == NULL, error == 0 no IPsec handling needed
621 * sp == NULL, error == -EINVAL discard packet w/o error
622 * sp == NULL, error != 0 discard packet, report error
623 */
624 if (sp != NULL) {
625 /* Loop detection, check if ipsec processing already done */
626 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
627 for (mtag = m_tag_first(m); mtag != NULL;
628 mtag = m_tag_next(m, mtag)) {
629 #ifdef MTAG_ABI_COMPAT
630 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
631 continue;
632 #endif
633 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
634 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
635 continue;
636 /*
637 * Check if policy has an SA associated with it.
638 * This can happen when an SP has yet to acquire
639 * an SA; e.g. on first reference. If it occurs,
640 * then we let ipsec4_process_packet do its thing.
641 */
642 if (sp->req->sav == NULL)
643 break;
644 tdbi = (struct tdb_ident *)(mtag + 1);
645 if (tdbi->spi == sp->req->sav->spi &&
646 tdbi->proto == sp->req->sav->sah->saidx.proto &&
647 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
648 sizeof (union sockaddr_union)) == 0) {
649 /*
650 * No IPsec processing is needed, free
651 * reference to SP.
652 *
653 * NB: null pointer to avoid free at
654 * done: below.
655 */
656 KEY_FREESP(&sp), sp = NULL;
657 splx(s);
658 goto spd_done;
659 }
660 }
661
662 /*
663 * Do delayed checksums now because we send before
664 * this is done in the normal processing path.
665 */
666 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
667 in_delayed_cksum(m);
668 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
669 }
670
671 #ifdef __FreeBSD__
672 ip->ip_len = htons(ip->ip_len);
673 ip->ip_off = htons(ip->ip_off);
674 #endif
675
676 /* NB: callee frees mbuf */
677 error = ipsec4_process_packet(m, sp->req, flags, 0);
678 /*
679 * Preserve KAME behaviour: ENOENT can be returned
680 * when an SA acquire is in progress. Don't propagate
681 * this to user-level; it confuses applications.
682 *
683 * XXX this will go away when the SADB is redone.
684 */
685 if (error == ENOENT)
686 error = 0;
687 splx(s);
688 goto done;
689 } else {
690 splx(s);
691
692 if (error != 0) {
693 /*
694 * Hack: -EINVAL is used to signal that a packet
695 * should be silently discarded. This is typically
696 * because we asked key management for an SA and
697 * it was delayed (e.g. kicked up to IKE).
698 */
699 if (error == -EINVAL)
700 error = 0;
701 goto bad;
702 } else {
703 /* No IPsec processing for this packet. */
704 }
705 #ifdef notyet
706 /*
707 * If deferred crypto processing is needed, check that
708 * the interface supports it.
709 */
710 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
711 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
712 /* notify IPsec to do its own crypto */
713 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
714 error = EHOSTUNREACH;
715 goto bad;
716 }
717 #endif
718 }
719 spd_done:
720 #endif /* FAST_IPSEC */
721
722 #ifdef PFIL_HOOKS
723 /*
724 * Run through list of hooks for output packets.
725 */
726 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
727 goto done;
728 if (m == NULL)
729 goto done;
730
731 ip = mtod(m, struct ip *);
732 hlen = ip->ip_hl << 2;
733 #endif /* PFIL_HOOKS */
734
735 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
736 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
737 /*
738 * If small enough for mtu of path, can just send directly.
739 */
740 if (ip_len <= mtu) {
741 #if IFA_STATS
742 /*
743 * search for the source address structure to
744 * maintain output statistics.
745 */
746 INADDR_TO_IA(ip->ip_src, ia);
747 if (ia)
748 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
749 #endif
750 /*
751 * Always initialize the sum to 0! Some HW assisted
752 * checksumming requires this.
753 */
754 ip->ip_sum = 0;
755
756 /*
757 * Perform any checksums that the hardware can't do
758 * for us.
759 *
760 * XXX Does any hardware require the {th,uh}_sum
761 * XXX fields to be 0?
762 */
763 if (sw_csum & M_CSUM_IPv4) {
764 ip->ip_sum = in_cksum(m, hlen);
765 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
766 }
767 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
768 in_delayed_cksum(m);
769 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
770 }
771
772 #ifdef IPSEC
773 /* clean ipsec history once it goes out of the node */
774 ipsec_delaux(m);
775 #endif
776 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
777 goto done;
778 }
779
780 /*
781 * We can't use HW checksumming if we're about to
782 * to fragment the packet.
783 *
784 * XXX Some hardware can do this.
785 */
786 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
787 in_delayed_cksum(m);
788 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
789 }
790
791 /*
792 * Too large for interface; fragment if possible.
793 * Must be able to put at least 8 bytes per fragment.
794 */
795 if (ntohs(ip->ip_off) & IP_DF) {
796 if (flags & IP_RETURNMTU)
797 *mtu_p = mtu;
798 error = EMSGSIZE;
799 ipstat.ips_cantfrag++;
800 goto bad;
801 }
802
803 error = ip_fragment(m, ifp, mtu);
804 if (error)
805 goto bad;
806
807 for (; m; m = m0) {
808 m0 = m->m_nextpkt;
809 m->m_nextpkt = 0;
810 if (error == 0) {
811 #if IFA_STATS
812 /*
813 * search for the source address structure to
814 * maintain output statistics.
815 */
816 INADDR_TO_IA(ip->ip_src, ia);
817 if (ia) {
818 ia->ia_ifa.ifa_data.ifad_outbytes +=
819 ntohs(ip->ip_len);
820 }
821 #endif
822 #ifdef IPSEC
823 /* clean ipsec history once it goes out of the node */
824 ipsec_delaux(m);
825 #endif
826 KASSERT((m->m_pkthdr.csum_flags &
827 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
828 error = (*ifp->if_output)(ifp, m, sintosa(dst),
829 ro->ro_rt);
830 } else
831 m_freem(m);
832 }
833
834 if (error == 0)
835 ipstat.ips_fragmented++;
836 done:
837 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
838 RTFREE(ro->ro_rt);
839 ro->ro_rt = 0;
840 }
841
842 #ifdef IPSEC
843 if (sp != NULL) {
844 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
845 printf("DP ip_output call free SP:%p\n", sp));
846 key_freesp(sp);
847 }
848 #endif /* IPSEC */
849 #ifdef FAST_IPSEC
850 if (sp != NULL)
851 KEY_FREESP(&sp);
852 #endif /* FAST_IPSEC */
853
854 return (error);
855 bad:
856 m_freem(m);
857 goto done;
858 }
859
860 int
861 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
862 {
863 struct ip *ip, *mhip;
864 struct mbuf *m0;
865 int len, hlen, off;
866 int mhlen, firstlen;
867 struct mbuf **mnext;
868 int sw_csum;
869 int fragments = 0;
870 int s;
871 int error = 0;
872
873 ip = mtod(m, struct ip *);
874 hlen = ip->ip_hl << 2;
875 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
876
877 len = (mtu - hlen) &~ 7;
878 if (len < 8)
879 return (EMSGSIZE);
880
881 firstlen = len;
882 mnext = &m->m_nextpkt;
883
884 /*
885 * Loop through length of segment after first fragment,
886 * make new header and copy data of each part and link onto chain.
887 */
888 m0 = m;
889 mhlen = sizeof (struct ip);
890 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
891 MGETHDR(m, M_DONTWAIT, MT_HEADER);
892 if (m == 0) {
893 error = ENOBUFS;
894 ipstat.ips_odropped++;
895 goto sendorfree;
896 }
897 MCLAIM(m, m0->m_owner);
898 *mnext = m;
899 mnext = &m->m_nextpkt;
900 m->m_data += max_linkhdr;
901 mhip = mtod(m, struct ip *);
902 *mhip = *ip;
903 /* we must inherit MCAST and BCAST flags */
904 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
905 if (hlen > sizeof (struct ip)) {
906 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
907 mhip->ip_hl = mhlen >> 2;
908 }
909 m->m_len = mhlen;
910 mhip->ip_off = ((off - hlen) >> 3) +
911 (ntohs(ip->ip_off) & ~IP_MF);
912 if (ip->ip_off & htons(IP_MF))
913 mhip->ip_off |= IP_MF;
914 if (off + len >= ntohs(ip->ip_len))
915 len = ntohs(ip->ip_len) - off;
916 else
917 mhip->ip_off |= IP_MF;
918 HTONS(mhip->ip_off);
919 mhip->ip_len = htons((u_int16_t)(len + mhlen));
920 m->m_next = m_copy(m0, off, len);
921 if (m->m_next == 0) {
922 error = ENOBUFS; /* ??? */
923 ipstat.ips_odropped++;
924 goto sendorfree;
925 }
926 m->m_pkthdr.len = mhlen + len;
927 m->m_pkthdr.rcvif = (struct ifnet *)0;
928 mhip->ip_sum = 0;
929 if (sw_csum & M_CSUM_IPv4) {
930 mhip->ip_sum = in_cksum(m, mhlen);
931 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
932 } else {
933 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
934 }
935 ipstat.ips_ofragments++;
936 fragments++;
937 }
938 /*
939 * Update first fragment by trimming what's been copied out
940 * and updating header, then send each fragment (in order).
941 */
942 m = m0;
943 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
944 m->m_pkthdr.len = hlen + firstlen;
945 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
946 ip->ip_off |= htons(IP_MF);
947 ip->ip_sum = 0;
948 if (sw_csum & M_CSUM_IPv4) {
949 ip->ip_sum = in_cksum(m, hlen);
950 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
951 } else {
952 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
953 }
954 sendorfree:
955 /*
956 * If there is no room for all the fragments, don't queue
957 * any of them.
958 */
959 s = splnet();
960 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments)
961 error = ENOBUFS;
962 splx(s);
963 return (error);
964 }
965
966 /*
967 * Process a delayed payload checksum calculation.
968 */
969 void
970 in_delayed_cksum(struct mbuf *m)
971 {
972 struct ip *ip;
973 u_int16_t csum, offset;
974
975 ip = mtod(m, struct ip *);
976 offset = ip->ip_hl << 2;
977 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
978 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
979 csum = 0xffff;
980
981 offset += m->m_pkthdr.csum_data; /* checksum offset */
982
983 if ((offset + sizeof(u_int16_t)) > m->m_len) {
984 /* This happen when ip options were inserted
985 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
986 m->m_len, offset, ip->ip_p);
987 */
988 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
989 } else
990 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
991 }
992
993 /*
994 * Determine the maximum length of the options to be inserted;
995 * we would far rather allocate too much space rather than too little.
996 */
997
998 u_int
999 ip_optlen(inp)
1000 struct inpcb *inp;
1001 {
1002 struct mbuf *m = inp->inp_options;
1003
1004 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1005 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1006 else
1007 return 0;
1008 }
1009
1010
1011 /*
1012 * Insert IP options into preformed packet.
1013 * Adjust IP destination as required for IP source routing,
1014 * as indicated by a non-zero in_addr at the start of the options.
1015 */
1016 static struct mbuf *
1017 ip_insertoptions(m, opt, phlen)
1018 struct mbuf *m;
1019 struct mbuf *opt;
1020 int *phlen;
1021 {
1022 struct ipoption *p = mtod(opt, struct ipoption *);
1023 struct mbuf *n;
1024 struct ip *ip = mtod(m, struct ip *);
1025 unsigned optlen;
1026
1027 optlen = opt->m_len - sizeof(p->ipopt_dst);
1028 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1029 return (m); /* XXX should fail */
1030 if (!in_nullhost(p->ipopt_dst))
1031 ip->ip_dst = p->ipopt_dst;
1032 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1033 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1034 if (n == 0)
1035 return (m);
1036 MCLAIM(n, m->m_owner);
1037 M_COPY_PKTHDR(n, m);
1038 m->m_flags &= ~M_PKTHDR;
1039 m->m_len -= sizeof(struct ip);
1040 m->m_data += sizeof(struct ip);
1041 n->m_next = m;
1042 m = n;
1043 m->m_len = optlen + sizeof(struct ip);
1044 m->m_data += max_linkhdr;
1045 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1046 } else {
1047 m->m_data -= optlen;
1048 m->m_len += optlen;
1049 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1050 }
1051 m->m_pkthdr.len += optlen;
1052 ip = mtod(m, struct ip *);
1053 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1054 *phlen = sizeof(struct ip) + optlen;
1055 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1056 return (m);
1057 }
1058
1059 /*
1060 * Copy options from ip to jp,
1061 * omitting those not copied during fragmentation.
1062 */
1063 int
1064 ip_optcopy(ip, jp)
1065 struct ip *ip, *jp;
1066 {
1067 u_char *cp, *dp;
1068 int opt, optlen, cnt;
1069
1070 cp = (u_char *)(ip + 1);
1071 dp = (u_char *)(jp + 1);
1072 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1073 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1074 opt = cp[0];
1075 if (opt == IPOPT_EOL)
1076 break;
1077 if (opt == IPOPT_NOP) {
1078 /* Preserve for IP mcast tunnel's LSRR alignment. */
1079 *dp++ = IPOPT_NOP;
1080 optlen = 1;
1081 continue;
1082 }
1083 #ifdef DIAGNOSTIC
1084 if (cnt < IPOPT_OLEN + sizeof(*cp))
1085 panic("malformed IPv4 option passed to ip_optcopy");
1086 #endif
1087 optlen = cp[IPOPT_OLEN];
1088 #ifdef DIAGNOSTIC
1089 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1090 panic("malformed IPv4 option passed to ip_optcopy");
1091 #endif
1092 /* bogus lengths should have been caught by ip_dooptions */
1093 if (optlen > cnt)
1094 optlen = cnt;
1095 if (IPOPT_COPIED(opt)) {
1096 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1097 dp += optlen;
1098 }
1099 }
1100 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1101 *dp++ = IPOPT_EOL;
1102 return (optlen);
1103 }
1104
1105 /*
1106 * IP socket option processing.
1107 */
1108 int
1109 ip_ctloutput(op, so, level, optname, mp)
1110 int op;
1111 struct socket *so;
1112 int level, optname;
1113 struct mbuf **mp;
1114 {
1115 struct inpcb *inp = sotoinpcb(so);
1116 struct mbuf *m = *mp;
1117 int optval = 0;
1118 int error = 0;
1119 #if defined(IPSEC) || defined(FAST_IPSEC)
1120 struct proc *p = curproc; /*XXX*/
1121 #endif
1122
1123 if (level != IPPROTO_IP) {
1124 error = EINVAL;
1125 if (op == PRCO_SETOPT && *mp)
1126 (void) m_free(*mp);
1127 } else switch (op) {
1128
1129 case PRCO_SETOPT:
1130 switch (optname) {
1131 case IP_OPTIONS:
1132 #ifdef notyet
1133 case IP_RETOPTS:
1134 return (ip_pcbopts(optname, &inp->inp_options, m));
1135 #else
1136 return (ip_pcbopts(&inp->inp_options, m));
1137 #endif
1138
1139 case IP_TOS:
1140 case IP_TTL:
1141 case IP_RECVOPTS:
1142 case IP_RECVRETOPTS:
1143 case IP_RECVDSTADDR:
1144 case IP_RECVIF:
1145 if (m == NULL || m->m_len != sizeof(int))
1146 error = EINVAL;
1147 else {
1148 optval = *mtod(m, int *);
1149 switch (optname) {
1150
1151 case IP_TOS:
1152 inp->inp_ip.ip_tos = optval;
1153 break;
1154
1155 case IP_TTL:
1156 inp->inp_ip.ip_ttl = optval;
1157 break;
1158 #define OPTSET(bit) \
1159 if (optval) \
1160 inp->inp_flags |= bit; \
1161 else \
1162 inp->inp_flags &= ~bit;
1163
1164 case IP_RECVOPTS:
1165 OPTSET(INP_RECVOPTS);
1166 break;
1167
1168 case IP_RECVRETOPTS:
1169 OPTSET(INP_RECVRETOPTS);
1170 break;
1171
1172 case IP_RECVDSTADDR:
1173 OPTSET(INP_RECVDSTADDR);
1174 break;
1175
1176 case IP_RECVIF:
1177 OPTSET(INP_RECVIF);
1178 break;
1179 }
1180 }
1181 break;
1182 #undef OPTSET
1183
1184 case IP_MULTICAST_IF:
1185 case IP_MULTICAST_TTL:
1186 case IP_MULTICAST_LOOP:
1187 case IP_ADD_MEMBERSHIP:
1188 case IP_DROP_MEMBERSHIP:
1189 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1190 break;
1191
1192 case IP_PORTRANGE:
1193 if (m == 0 || m->m_len != sizeof(int))
1194 error = EINVAL;
1195 else {
1196 optval = *mtod(m, int *);
1197
1198 switch (optval) {
1199
1200 case IP_PORTRANGE_DEFAULT:
1201 case IP_PORTRANGE_HIGH:
1202 inp->inp_flags &= ~(INP_LOWPORT);
1203 break;
1204
1205 case IP_PORTRANGE_LOW:
1206 inp->inp_flags |= INP_LOWPORT;
1207 break;
1208
1209 default:
1210 error = EINVAL;
1211 break;
1212 }
1213 }
1214 break;
1215
1216 #if defined(IPSEC) || defined(FAST_IPSEC)
1217 case IP_IPSEC_POLICY:
1218 {
1219 caddr_t req = NULL;
1220 size_t len = 0;
1221 int priv = 0;
1222
1223 #ifdef __NetBSD__
1224 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1225 priv = 0;
1226 else
1227 priv = 1;
1228 #else
1229 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1230 #endif
1231 if (m) {
1232 req = mtod(m, caddr_t);
1233 len = m->m_len;
1234 }
1235 error = ipsec4_set_policy(inp, optname, req, len, priv);
1236 break;
1237 }
1238 #endif /*IPSEC*/
1239
1240 default:
1241 error = ENOPROTOOPT;
1242 break;
1243 }
1244 if (m)
1245 (void)m_free(m);
1246 break;
1247
1248 case PRCO_GETOPT:
1249 switch (optname) {
1250 case IP_OPTIONS:
1251 case IP_RETOPTS:
1252 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1253 MCLAIM(m, so->so_mowner);
1254 if (inp->inp_options) {
1255 m->m_len = inp->inp_options->m_len;
1256 bcopy(mtod(inp->inp_options, caddr_t),
1257 mtod(m, caddr_t), (unsigned)m->m_len);
1258 } else
1259 m->m_len = 0;
1260 break;
1261
1262 case IP_TOS:
1263 case IP_TTL:
1264 case IP_RECVOPTS:
1265 case IP_RECVRETOPTS:
1266 case IP_RECVDSTADDR:
1267 case IP_RECVIF:
1268 case IP_ERRORMTU:
1269 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1270 MCLAIM(m, so->so_mowner);
1271 m->m_len = sizeof(int);
1272 switch (optname) {
1273
1274 case IP_TOS:
1275 optval = inp->inp_ip.ip_tos;
1276 break;
1277
1278 case IP_TTL:
1279 optval = inp->inp_ip.ip_ttl;
1280 break;
1281
1282 case IP_ERRORMTU:
1283 optval = inp->inp_errormtu;
1284 break;
1285
1286 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1287
1288 case IP_RECVOPTS:
1289 optval = OPTBIT(INP_RECVOPTS);
1290 break;
1291
1292 case IP_RECVRETOPTS:
1293 optval = OPTBIT(INP_RECVRETOPTS);
1294 break;
1295
1296 case IP_RECVDSTADDR:
1297 optval = OPTBIT(INP_RECVDSTADDR);
1298 break;
1299
1300 case IP_RECVIF:
1301 optval = OPTBIT(INP_RECVIF);
1302 break;
1303 }
1304 *mtod(m, int *) = optval;
1305 break;
1306
1307 #if defined(IPSEC) || defined(FAST_IPSEC)
1308 case IP_IPSEC_POLICY:
1309 {
1310 caddr_t req = NULL;
1311 size_t len = 0;
1312
1313 if (m) {
1314 req = mtod(m, caddr_t);
1315 len = m->m_len;
1316 }
1317 error = ipsec4_get_policy(inp, req, len, mp);
1318 break;
1319 }
1320 #endif /*IPSEC*/
1321
1322 case IP_MULTICAST_IF:
1323 case IP_MULTICAST_TTL:
1324 case IP_MULTICAST_LOOP:
1325 case IP_ADD_MEMBERSHIP:
1326 case IP_DROP_MEMBERSHIP:
1327 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1328 if (*mp)
1329 MCLAIM(*mp, so->so_mowner);
1330 break;
1331
1332 case IP_PORTRANGE:
1333 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1334 MCLAIM(m, so->so_mowner);
1335 m->m_len = sizeof(int);
1336
1337 if (inp->inp_flags & INP_LOWPORT)
1338 optval = IP_PORTRANGE_LOW;
1339 else
1340 optval = IP_PORTRANGE_DEFAULT;
1341
1342 *mtod(m, int *) = optval;
1343 break;
1344
1345 default:
1346 error = ENOPROTOOPT;
1347 break;
1348 }
1349 break;
1350 }
1351 return (error);
1352 }
1353
1354 /*
1355 * Set up IP options in pcb for insertion in output packets.
1356 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1357 * with destination address if source routed.
1358 */
1359 int
1360 #ifdef notyet
1361 ip_pcbopts(optname, pcbopt, m)
1362 int optname;
1363 #else
1364 ip_pcbopts(pcbopt, m)
1365 #endif
1366 struct mbuf **pcbopt;
1367 struct mbuf *m;
1368 {
1369 int cnt, optlen;
1370 u_char *cp;
1371 u_char opt;
1372
1373 /* turn off any old options */
1374 if (*pcbopt)
1375 (void)m_free(*pcbopt);
1376 *pcbopt = 0;
1377 if (m == (struct mbuf *)0 || m->m_len == 0) {
1378 /*
1379 * Only turning off any previous options.
1380 */
1381 if (m)
1382 (void)m_free(m);
1383 return (0);
1384 }
1385
1386 #ifndef __vax__
1387 if (m->m_len % sizeof(int32_t))
1388 goto bad;
1389 #endif
1390 /*
1391 * IP first-hop destination address will be stored before
1392 * actual options; move other options back
1393 * and clear it when none present.
1394 */
1395 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1396 goto bad;
1397 cnt = m->m_len;
1398 m->m_len += sizeof(struct in_addr);
1399 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1400 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1401 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1402
1403 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1404 opt = cp[IPOPT_OPTVAL];
1405 if (opt == IPOPT_EOL)
1406 break;
1407 if (opt == IPOPT_NOP)
1408 optlen = 1;
1409 else {
1410 if (cnt < IPOPT_OLEN + sizeof(*cp))
1411 goto bad;
1412 optlen = cp[IPOPT_OLEN];
1413 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1414 goto bad;
1415 }
1416 switch (opt) {
1417
1418 default:
1419 break;
1420
1421 case IPOPT_LSRR:
1422 case IPOPT_SSRR:
1423 /*
1424 * user process specifies route as:
1425 * ->A->B->C->D
1426 * D must be our final destination (but we can't
1427 * check that since we may not have connected yet).
1428 * A is first hop destination, which doesn't appear in
1429 * actual IP option, but is stored before the options.
1430 */
1431 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1432 goto bad;
1433 m->m_len -= sizeof(struct in_addr);
1434 cnt -= sizeof(struct in_addr);
1435 optlen -= sizeof(struct in_addr);
1436 cp[IPOPT_OLEN] = optlen;
1437 /*
1438 * Move first hop before start of options.
1439 */
1440 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1441 sizeof(struct in_addr));
1442 /*
1443 * Then copy rest of options back
1444 * to close up the deleted entry.
1445 */
1446 memmove(&cp[IPOPT_OFFSET+1],
1447 (caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1448 (unsigned)cnt + sizeof(struct in_addr));
1449 break;
1450 }
1451 }
1452 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1453 goto bad;
1454 *pcbopt = m;
1455 return (0);
1456
1457 bad:
1458 (void)m_free(m);
1459 return (EINVAL);
1460 }
1461
1462 /*
1463 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1464 */
1465 static struct ifnet *
1466 ip_multicast_if(a, ifindexp)
1467 struct in_addr *a;
1468 int *ifindexp;
1469 {
1470 int ifindex;
1471 struct ifnet *ifp = NULL;
1472 struct in_ifaddr *ia;
1473
1474 if (ifindexp)
1475 *ifindexp = 0;
1476 if (ntohl(a->s_addr) >> 24 == 0) {
1477 ifindex = ntohl(a->s_addr) & 0xffffff;
1478 if (ifindex < 0 || if_index < ifindex)
1479 return NULL;
1480 ifp = ifindex2ifnet[ifindex];
1481 if (ifindexp)
1482 *ifindexp = ifindex;
1483 } else {
1484 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1485 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1486 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1487 ifp = ia->ia_ifp;
1488 break;
1489 }
1490 }
1491 }
1492 return ifp;
1493 }
1494
1495 /*
1496 * Set the IP multicast options in response to user setsockopt().
1497 */
1498 int
1499 ip_setmoptions(optname, imop, m)
1500 int optname;
1501 struct ip_moptions **imop;
1502 struct mbuf *m;
1503 {
1504 int error = 0;
1505 u_char loop;
1506 int i;
1507 struct in_addr addr;
1508 struct ip_mreq *mreq;
1509 struct ifnet *ifp;
1510 struct ip_moptions *imo = *imop;
1511 struct route ro;
1512 struct sockaddr_in *dst;
1513 int ifindex;
1514
1515 if (imo == NULL) {
1516 /*
1517 * No multicast option buffer attached to the pcb;
1518 * allocate one and initialize to default values.
1519 */
1520 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1521 M_WAITOK);
1522
1523 if (imo == NULL)
1524 return (ENOBUFS);
1525 *imop = imo;
1526 imo->imo_multicast_ifp = NULL;
1527 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1528 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1529 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1530 imo->imo_num_memberships = 0;
1531 }
1532
1533 switch (optname) {
1534
1535 case IP_MULTICAST_IF:
1536 /*
1537 * Select the interface for outgoing multicast packets.
1538 */
1539 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1540 error = EINVAL;
1541 break;
1542 }
1543 addr = *(mtod(m, struct in_addr *));
1544 /*
1545 * INADDR_ANY is used to remove a previous selection.
1546 * When no interface is selected, a default one is
1547 * chosen every time a multicast packet is sent.
1548 */
1549 if (in_nullhost(addr)) {
1550 imo->imo_multicast_ifp = NULL;
1551 break;
1552 }
1553 /*
1554 * The selected interface is identified by its local
1555 * IP address. Find the interface and confirm that
1556 * it supports multicasting.
1557 */
1558 ifp = ip_multicast_if(&addr, &ifindex);
1559 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1560 error = EADDRNOTAVAIL;
1561 break;
1562 }
1563 imo->imo_multicast_ifp = ifp;
1564 if (ifindex)
1565 imo->imo_multicast_addr = addr;
1566 else
1567 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1568 break;
1569
1570 case IP_MULTICAST_TTL:
1571 /*
1572 * Set the IP time-to-live for outgoing multicast packets.
1573 */
1574 if (m == NULL || m->m_len != 1) {
1575 error = EINVAL;
1576 break;
1577 }
1578 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1579 break;
1580
1581 case IP_MULTICAST_LOOP:
1582 /*
1583 * Set the loopback flag for outgoing multicast packets.
1584 * Must be zero or one.
1585 */
1586 if (m == NULL || m->m_len != 1 ||
1587 (loop = *(mtod(m, u_char *))) > 1) {
1588 error = EINVAL;
1589 break;
1590 }
1591 imo->imo_multicast_loop = loop;
1592 break;
1593
1594 case IP_ADD_MEMBERSHIP:
1595 /*
1596 * Add a multicast group membership.
1597 * Group must be a valid IP multicast address.
1598 */
1599 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1600 error = EINVAL;
1601 break;
1602 }
1603 mreq = mtod(m, struct ip_mreq *);
1604 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1605 error = EINVAL;
1606 break;
1607 }
1608 /*
1609 * If no interface address was provided, use the interface of
1610 * the route to the given multicast address.
1611 */
1612 if (in_nullhost(mreq->imr_interface)) {
1613 bzero((caddr_t)&ro, sizeof(ro));
1614 ro.ro_rt = NULL;
1615 dst = satosin(&ro.ro_dst);
1616 dst->sin_len = sizeof(*dst);
1617 dst->sin_family = AF_INET;
1618 dst->sin_addr = mreq->imr_multiaddr;
1619 rtalloc(&ro);
1620 if (ro.ro_rt == NULL) {
1621 error = EADDRNOTAVAIL;
1622 break;
1623 }
1624 ifp = ro.ro_rt->rt_ifp;
1625 rtfree(ro.ro_rt);
1626 } else {
1627 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1628 }
1629 /*
1630 * See if we found an interface, and confirm that it
1631 * supports multicast.
1632 */
1633 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1634 error = EADDRNOTAVAIL;
1635 break;
1636 }
1637 /*
1638 * See if the membership already exists or if all the
1639 * membership slots are full.
1640 */
1641 for (i = 0; i < imo->imo_num_memberships; ++i) {
1642 if (imo->imo_membership[i]->inm_ifp == ifp &&
1643 in_hosteq(imo->imo_membership[i]->inm_addr,
1644 mreq->imr_multiaddr))
1645 break;
1646 }
1647 if (i < imo->imo_num_memberships) {
1648 error = EADDRINUSE;
1649 break;
1650 }
1651 if (i == IP_MAX_MEMBERSHIPS) {
1652 error = ETOOMANYREFS;
1653 break;
1654 }
1655 /*
1656 * Everything looks good; add a new record to the multicast
1657 * address list for the given interface.
1658 */
1659 if ((imo->imo_membership[i] =
1660 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1661 error = ENOBUFS;
1662 break;
1663 }
1664 ++imo->imo_num_memberships;
1665 break;
1666
1667 case IP_DROP_MEMBERSHIP:
1668 /*
1669 * Drop a multicast group membership.
1670 * Group must be a valid IP multicast address.
1671 */
1672 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1673 error = EINVAL;
1674 break;
1675 }
1676 mreq = mtod(m, struct ip_mreq *);
1677 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1678 error = EINVAL;
1679 break;
1680 }
1681 /*
1682 * If an interface address was specified, get a pointer
1683 * to its ifnet structure.
1684 */
1685 if (in_nullhost(mreq->imr_interface))
1686 ifp = NULL;
1687 else {
1688 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1689 if (ifp == NULL) {
1690 error = EADDRNOTAVAIL;
1691 break;
1692 }
1693 }
1694 /*
1695 * Find the membership in the membership array.
1696 */
1697 for (i = 0; i < imo->imo_num_memberships; ++i) {
1698 if ((ifp == NULL ||
1699 imo->imo_membership[i]->inm_ifp == ifp) &&
1700 in_hosteq(imo->imo_membership[i]->inm_addr,
1701 mreq->imr_multiaddr))
1702 break;
1703 }
1704 if (i == imo->imo_num_memberships) {
1705 error = EADDRNOTAVAIL;
1706 break;
1707 }
1708 /*
1709 * Give up the multicast address record to which the
1710 * membership points.
1711 */
1712 in_delmulti(imo->imo_membership[i]);
1713 /*
1714 * Remove the gap in the membership array.
1715 */
1716 for (++i; i < imo->imo_num_memberships; ++i)
1717 imo->imo_membership[i-1] = imo->imo_membership[i];
1718 --imo->imo_num_memberships;
1719 break;
1720
1721 default:
1722 error = EOPNOTSUPP;
1723 break;
1724 }
1725
1726 /*
1727 * If all options have default values, no need to keep the mbuf.
1728 */
1729 if (imo->imo_multicast_ifp == NULL &&
1730 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1731 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1732 imo->imo_num_memberships == 0) {
1733 free(*imop, M_IPMOPTS);
1734 *imop = NULL;
1735 }
1736
1737 return (error);
1738 }
1739
1740 /*
1741 * Return the IP multicast options in response to user getsockopt().
1742 */
1743 int
1744 ip_getmoptions(optname, imo, mp)
1745 int optname;
1746 struct ip_moptions *imo;
1747 struct mbuf **mp;
1748 {
1749 u_char *ttl;
1750 u_char *loop;
1751 struct in_addr *addr;
1752 struct in_ifaddr *ia;
1753
1754 *mp = m_get(M_WAIT, MT_SOOPTS);
1755
1756 switch (optname) {
1757
1758 case IP_MULTICAST_IF:
1759 addr = mtod(*mp, struct in_addr *);
1760 (*mp)->m_len = sizeof(struct in_addr);
1761 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1762 *addr = zeroin_addr;
1763 else if (imo->imo_multicast_addr.s_addr) {
1764 /* return the value user has set */
1765 *addr = imo->imo_multicast_addr;
1766 } else {
1767 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1768 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1769 }
1770 return (0);
1771
1772 case IP_MULTICAST_TTL:
1773 ttl = mtod(*mp, u_char *);
1774 (*mp)->m_len = 1;
1775 *ttl = imo ? imo->imo_multicast_ttl
1776 : IP_DEFAULT_MULTICAST_TTL;
1777 return (0);
1778
1779 case IP_MULTICAST_LOOP:
1780 loop = mtod(*mp, u_char *);
1781 (*mp)->m_len = 1;
1782 *loop = imo ? imo->imo_multicast_loop
1783 : IP_DEFAULT_MULTICAST_LOOP;
1784 return (0);
1785
1786 default:
1787 return (EOPNOTSUPP);
1788 }
1789 }
1790
1791 /*
1792 * Discard the IP multicast options.
1793 */
1794 void
1795 ip_freemoptions(imo)
1796 struct ip_moptions *imo;
1797 {
1798 int i;
1799
1800 if (imo != NULL) {
1801 for (i = 0; i < imo->imo_num_memberships; ++i)
1802 in_delmulti(imo->imo_membership[i]);
1803 free(imo, M_IPMOPTS);
1804 }
1805 }
1806
1807 /*
1808 * Routine called from ip_output() to loop back a copy of an IP multicast
1809 * packet to the input queue of a specified interface. Note that this
1810 * calls the output routine of the loopback "driver", but with an interface
1811 * pointer that might NOT be &loif -- easier than replicating that code here.
1812 */
1813 static void
1814 ip_mloopback(ifp, m, dst)
1815 struct ifnet *ifp;
1816 struct mbuf *m;
1817 struct sockaddr_in *dst;
1818 {
1819 struct ip *ip;
1820 struct mbuf *copym;
1821
1822 copym = m_copy(m, 0, M_COPYALL);
1823 if (copym != NULL
1824 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1825 copym = m_pullup(copym, sizeof(struct ip));
1826 if (copym != NULL) {
1827 /*
1828 * We don't bother to fragment if the IP length is greater
1829 * than the interface's MTU. Can this possibly matter?
1830 */
1831 ip = mtod(copym, struct ip *);
1832
1833 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1834 in_delayed_cksum(copym);
1835 copym->m_pkthdr.csum_flags &=
1836 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1837 }
1838
1839 ip->ip_sum = 0;
1840 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1841 (void) looutput(ifp, copym, sintosa(dst), NULL);
1842 }
1843 }
1844