ip_output.c revision 1.125 1 /* $NetBSD: ip_output.c,v 1.125 2003/10/14 06:36:48 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.125 2003/10/14 06:36:48 itojun Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_ipsec.h"
105 #include "opt_mrouting.h"
106
107 #include <sys/param.h>
108 #include <sys/malloc.h>
109 #include <sys/mbuf.h>
110 #include <sys/errno.h>
111 #include <sys/protosw.h>
112 #include <sys/socket.h>
113 #include <sys/socketvar.h>
114 #ifdef FAST_IPSEC
115 #include <sys/domain.h>
116 #endif
117 #include <sys/systm.h>
118 #include <sys/proc.h>
119
120 #include <net/if.h>
121 #include <net/route.h>
122 #include <net/pfil.h>
123
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/ip.h>
127 #include <netinet/in_pcb.h>
128 #include <netinet/in_var.h>
129 #include <netinet/ip_var.h>
130
131 #ifdef MROUTING
132 #include <netinet/ip_mroute.h>
133 #endif
134
135 #include <machine/stdarg.h>
136
137 #ifdef IPSEC
138 #include <netinet6/ipsec.h>
139 #include <netkey/key.h>
140 #include <netkey/key_debug.h>
141 #endif /*IPSEC*/
142
143 #ifdef FAST_IPSEC
144 #include <netipsec/ipsec.h>
145 #include <netipsec/key.h>
146 #include <netipsec/xform.h>
147 #endif /* FAST_IPSEC*/
148
149 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
150 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
151 static void ip_mloopback
152 __P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
153
154 #ifdef PFIL_HOOKS
155 extern struct pfil_head inet_pfil_hook; /* XXX */
156 #endif
157
158 /*
159 * IP output. The packet in mbuf chain m contains a skeletal IP
160 * header (with len, off, ttl, proto, tos, src, dst).
161 * The mbuf chain containing the packet will be freed.
162 * The mbuf opt, if present, will not be freed.
163 */
164 int
165 #if __STDC__
166 ip_output(struct mbuf *m0, ...)
167 #else
168 ip_output(m0, va_alist)
169 struct mbuf *m0;
170 va_dcl
171 #endif
172 {
173 struct ip *ip;
174 struct ifnet *ifp;
175 struct mbuf *m = m0;
176 int hlen = sizeof (struct ip);
177 int len, error = 0;
178 struct route iproute;
179 struct sockaddr_in *dst;
180 struct in_ifaddr *ia;
181 struct mbuf *opt;
182 struct route *ro;
183 int flags, sw_csum;
184 int *mtu_p;
185 u_long mtu;
186 struct ip_moptions *imo;
187 struct socket *so;
188 va_list ap;
189 #ifdef IPSEC
190 struct secpolicy *sp = NULL;
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /*IPSEC*/
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = htons(ip_randomid());
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else
472 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
473
474 if (sp == NULL) {
475 ipsecstat.out_inval++;
476 goto bad;
477 }
478
479 error = 0;
480
481 /* check policy */
482 switch (sp->policy) {
483 case IPSEC_POLICY_DISCARD:
484 /*
485 * This packet is just discarded.
486 */
487 ipsecstat.out_polvio++;
488 goto bad;
489
490 case IPSEC_POLICY_BYPASS:
491 case IPSEC_POLICY_NONE:
492 /* no need to do IPsec. */
493 goto skip_ipsec;
494
495 case IPSEC_POLICY_IPSEC:
496 if (sp->req == NULL) {
497 /* XXX should be panic ? */
498 printf("ip_output: No IPsec request specified.\n");
499 error = EINVAL;
500 goto bad;
501 }
502 break;
503
504 case IPSEC_POLICY_ENTRUST:
505 default:
506 printf("ip_output: Invalid policy found. %d\n", sp->policy);
507 }
508
509 /*
510 * ipsec4_output() expects ip_len and ip_off in network
511 * order. They have been set to network order above.
512 */
513
514 {
515 struct ipsec_output_state state;
516 bzero(&state, sizeof(state));
517 state.m = m;
518 if (flags & IP_ROUTETOIF) {
519 state.ro = &iproute;
520 bzero(&iproute, sizeof(iproute));
521 } else
522 state.ro = ro;
523 state.dst = (struct sockaddr *)dst;
524
525 /*
526 * We can't defer the checksum of payload data if
527 * we're about to encrypt/authenticate it.
528 *
529 * XXX When we support crypto offloading functions of
530 * XXX network interfaces, we need to reconsider this,
531 * XXX since it's likely that they'll support checksumming,
532 * XXX as well.
533 */
534 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
535 in_delayed_cksum(m);
536 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
537 }
538
539 error = ipsec4_output(&state, sp, flags);
540
541 m = state.m;
542 if (flags & IP_ROUTETOIF) {
543 /*
544 * if we have tunnel mode SA, we may need to ignore
545 * IP_ROUTETOIF.
546 */
547 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
548 flags &= ~IP_ROUTETOIF;
549 ro = state.ro;
550 }
551 } else
552 ro = state.ro;
553 dst = (struct sockaddr_in *)state.dst;
554 if (error) {
555 /* mbuf is already reclaimed in ipsec4_output. */
556 m0 = NULL;
557 switch (error) {
558 case EHOSTUNREACH:
559 case ENETUNREACH:
560 case EMSGSIZE:
561 case ENOBUFS:
562 case ENOMEM:
563 break;
564 default:
565 printf("ip4_output (ipsec): error code %d\n", error);
566 /*fall through*/
567 case ENOENT:
568 /* don't show these error codes to the user */
569 error = 0;
570 break;
571 }
572 goto bad;
573 }
574
575 /* be sure to update variables that are affected by ipsec4_output() */
576 ip = mtod(m, struct ip *);
577 hlen = ip->ip_hl << 2;
578 ip_len = ntohs(ip->ip_len);
579
580 if (ro->ro_rt == NULL) {
581 if ((flags & IP_ROUTETOIF) == 0) {
582 printf("ip_output: "
583 "can't update route after IPsec processing\n");
584 error = EHOSTUNREACH; /*XXX*/
585 goto bad;
586 }
587 } else {
588 /* nobody uses ia beyond here */
589 if (state.encap)
590 ifp = ro->ro_rt->rt_ifp;
591 }
592 }
593 skip_ipsec:
594 #endif /*IPSEC*/
595 #ifdef FAST_IPSEC
596 /*
597 * Check the security policy (SP) for the packet and, if
598 * required, do IPsec-related processing. There are two
599 * cases here; the first time a packet is sent through
600 * it will be untagged and handled by ipsec4_checkpolicy.
601 * If the packet is resubmitted to ip_output (e.g. after
602 * AH, ESP, etc. processing), there will be a tag to bypass
603 * the lookup and related policy checking.
604 */
605 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
606 s = splsoftnet();
607 if (mtag != NULL) {
608 tdbi = (struct tdb_ident *)(mtag + 1);
609 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
610 if (sp == NULL)
611 error = -EINVAL; /* force silent drop */
612 m_tag_delete(m, mtag);
613 } else {
614 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
615 &error, inp);
616 }
617 /*
618 * There are four return cases:
619 * sp != NULL apply IPsec policy
620 * sp == NULL, error == 0 no IPsec handling needed
621 * sp == NULL, error == -EINVAL discard packet w/o error
622 * sp == NULL, error != 0 discard packet, report error
623 */
624 if (sp != NULL) {
625 /* Loop detection, check if ipsec processing already done */
626 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
627 for (mtag = m_tag_first(m); mtag != NULL;
628 mtag = m_tag_next(m, mtag)) {
629 #ifdef MTAG_ABI_COMPAT
630 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
631 continue;
632 #endif
633 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
634 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
635 continue;
636 /*
637 * Check if policy has an SA associated with it.
638 * This can happen when an SP has yet to acquire
639 * an SA; e.g. on first reference. If it occurs,
640 * then we let ipsec4_process_packet do its thing.
641 */
642 if (sp->req->sav == NULL)
643 break;
644 tdbi = (struct tdb_ident *)(mtag + 1);
645 if (tdbi->spi == sp->req->sav->spi &&
646 tdbi->proto == sp->req->sav->sah->saidx.proto &&
647 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
648 sizeof (union sockaddr_union)) == 0) {
649 /*
650 * No IPsec processing is needed, free
651 * reference to SP.
652 *
653 * NB: null pointer to avoid free at
654 * done: below.
655 */
656 KEY_FREESP(&sp), sp = NULL;
657 splx(s);
658 goto spd_done;
659 }
660 }
661
662 /*
663 * Do delayed checksums now because we send before
664 * this is done in the normal processing path.
665 */
666 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
667 in_delayed_cksum(m);
668 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
669 }
670
671 #ifdef __FreeBSD__
672 ip->ip_len = htons(ip->ip_len);
673 ip->ip_off = htons(ip->ip_off);
674 #endif
675
676 /* NB: callee frees mbuf */
677 error = ipsec4_process_packet(m, sp->req, flags, 0);
678 /*
679 * Preserve KAME behaviour: ENOENT can be returned
680 * when an SA acquire is in progress. Don't propagate
681 * this to user-level; it confuses applications.
682 *
683 * XXX this will go away when the SADB is redone.
684 */
685 if (error == ENOENT)
686 error = 0;
687 splx(s);
688 goto done;
689 } else {
690 splx(s);
691
692 if (error != 0) {
693 /*
694 * Hack: -EINVAL is used to signal that a packet
695 * should be silently discarded. This is typically
696 * because we asked key management for an SA and
697 * it was delayed (e.g. kicked up to IKE).
698 */
699 if (error == -EINVAL)
700 error = 0;
701 goto bad;
702 } else {
703 /* No IPsec processing for this packet. */
704 }
705 #ifdef notyet
706 /*
707 * If deferred crypto processing is needed, check that
708 * the interface supports it.
709 */
710 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
711 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
712 /* notify IPsec to do its own crypto */
713 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
714 error = EHOSTUNREACH;
715 goto bad;
716 }
717 #endif
718 }
719 spd_done:
720 #endif /* FAST_IPSEC */
721
722 #ifdef PFIL_HOOKS
723 /*
724 * Run through list of hooks for output packets.
725 */
726 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
727 goto done;
728 if (m == NULL)
729 goto done;
730
731 ip = mtod(m, struct ip *);
732 hlen = ip->ip_hl << 2;
733 #endif /* PFIL_HOOKS */
734
735 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
736 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
737 /*
738 * If small enough for mtu of path, can just send directly.
739 */
740 if (ip_len <= mtu) {
741 #if IFA_STATS
742 /*
743 * search for the source address structure to
744 * maintain output statistics.
745 */
746 INADDR_TO_IA(ip->ip_src, ia);
747 if (ia)
748 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
749 #endif
750 /*
751 * Always initialize the sum to 0! Some HW assisted
752 * checksumming requires this.
753 */
754 ip->ip_sum = 0;
755
756 /*
757 * Perform any checksums that the hardware can't do
758 * for us.
759 *
760 * XXX Does any hardware require the {th,uh}_sum
761 * XXX fields to be 0?
762 */
763 if (sw_csum & M_CSUM_IPv4) {
764 ip->ip_sum = in_cksum(m, hlen);
765 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
766 }
767 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
768 in_delayed_cksum(m);
769 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
770 }
771
772 #ifdef IPSEC
773 /* clean ipsec history once it goes out of the node */
774 ipsec_delaux(m);
775 #endif
776 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
777 goto done;
778 }
779
780 /*
781 * We can't use HW checksumming if we're about to
782 * to fragment the packet.
783 *
784 * XXX Some hardware can do this.
785 */
786 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
787 in_delayed_cksum(m);
788 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
789 }
790
791 /*
792 * Too large for interface; fragment if possible.
793 * Must be able to put at least 8 bytes per fragment.
794 */
795 if (ntohs(ip->ip_off) & IP_DF) {
796 if (flags & IP_RETURNMTU)
797 *mtu_p = mtu;
798 error = EMSGSIZE;
799 ipstat.ips_cantfrag++;
800 goto bad;
801 }
802
803 error = ip_fragment(m, ifp, mtu);
804 if (error) {
805 m = NULL;
806 goto bad;
807 }
808
809 for (; m; m = m0) {
810 m0 = m->m_nextpkt;
811 m->m_nextpkt = 0;
812 if (error == 0) {
813 #if IFA_STATS
814 /*
815 * search for the source address structure to
816 * maintain output statistics.
817 */
818 INADDR_TO_IA(ip->ip_src, ia);
819 if (ia) {
820 ia->ia_ifa.ifa_data.ifad_outbytes +=
821 ntohs(ip->ip_len);
822 }
823 #endif
824 #ifdef IPSEC
825 /* clean ipsec history once it goes out of the node */
826 ipsec_delaux(m);
827 #endif
828 KASSERT((m->m_pkthdr.csum_flags &
829 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
830 error = (*ifp->if_output)(ifp, m, sintosa(dst),
831 ro->ro_rt);
832 } else
833 m_freem(m);
834 }
835
836 if (error == 0)
837 ipstat.ips_fragmented++;
838 done:
839 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
840 RTFREE(ro->ro_rt);
841 ro->ro_rt = 0;
842 }
843
844 #ifdef IPSEC
845 if (sp != NULL) {
846 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
847 printf("DP ip_output call free SP:%p\n", sp));
848 key_freesp(sp);
849 }
850 #endif /* IPSEC */
851 #ifdef FAST_IPSEC
852 if (sp != NULL)
853 KEY_FREESP(&sp);
854 #endif /* FAST_IPSEC */
855
856 return (error);
857 bad:
858 m_freem(m);
859 goto done;
860 }
861
862 int
863 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
864 {
865 struct ip *ip, *mhip;
866 struct mbuf *m0;
867 int len, hlen, off;
868 int mhlen, firstlen;
869 struct mbuf **mnext;
870 int sw_csum;
871 int fragments = 0;
872 int s;
873 int error = 0;
874
875 ip = mtod(m, struct ip *);
876 hlen = ip->ip_hl << 2;
877 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
878
879 len = (mtu - hlen) &~ 7;
880 if (len < 8) {
881 m_freem(m);
882 return (EMSGSIZE);
883 }
884
885 firstlen = len;
886 mnext = &m->m_nextpkt;
887
888 /*
889 * Loop through length of segment after first fragment,
890 * make new header and copy data of each part and link onto chain.
891 */
892 m0 = m;
893 mhlen = sizeof (struct ip);
894 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
895 MGETHDR(m, M_DONTWAIT, MT_HEADER);
896 if (m == 0) {
897 error = ENOBUFS;
898 ipstat.ips_odropped++;
899 goto sendorfree;
900 }
901 MCLAIM(m, m0->m_owner);
902 *mnext = m;
903 mnext = &m->m_nextpkt;
904 m->m_data += max_linkhdr;
905 mhip = mtod(m, struct ip *);
906 *mhip = *ip;
907 /* we must inherit MCAST and BCAST flags */
908 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
909 if (hlen > sizeof (struct ip)) {
910 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
911 mhip->ip_hl = mhlen >> 2;
912 }
913 m->m_len = mhlen;
914 mhip->ip_off = ((off - hlen) >> 3) +
915 (ntohs(ip->ip_off) & ~IP_MF);
916 if (ip->ip_off & htons(IP_MF))
917 mhip->ip_off |= IP_MF;
918 if (off + len >= ntohs(ip->ip_len))
919 len = ntohs(ip->ip_len) - off;
920 else
921 mhip->ip_off |= IP_MF;
922 HTONS(mhip->ip_off);
923 mhip->ip_len = htons((u_int16_t)(len + mhlen));
924 m->m_next = m_copy(m0, off, len);
925 if (m->m_next == 0) {
926 error = ENOBUFS; /* ??? */
927 ipstat.ips_odropped++;
928 goto sendorfree;
929 }
930 m->m_pkthdr.len = mhlen + len;
931 m->m_pkthdr.rcvif = (struct ifnet *)0;
932 mhip->ip_sum = 0;
933 if (sw_csum & M_CSUM_IPv4) {
934 mhip->ip_sum = in_cksum(m, mhlen);
935 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
936 } else {
937 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
938 }
939 ipstat.ips_ofragments++;
940 fragments++;
941 }
942 /*
943 * Update first fragment by trimming what's been copied out
944 * and updating header, then send each fragment (in order).
945 */
946 m = m0;
947 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
948 m->m_pkthdr.len = hlen + firstlen;
949 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
950 ip->ip_off |= htons(IP_MF);
951 ip->ip_sum = 0;
952 if (sw_csum & M_CSUM_IPv4) {
953 ip->ip_sum = in_cksum(m, hlen);
954 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
955 } else {
956 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
957 }
958 sendorfree:
959 /*
960 * If there is no room for all the fragments, don't queue
961 * any of them.
962 */
963 s = splnet();
964 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments)
965 error = ENOBUFS;
966 splx(s);
967 if (error) {
968 for (m = m0; m; m = m0) {
969 m0 = m->m_nextpkt;
970 m->m_nextpkt = NULL;
971 m_freem(m);
972 }
973 }
974 return (error);
975 }
976
977 /*
978 * Process a delayed payload checksum calculation.
979 */
980 void
981 in_delayed_cksum(struct mbuf *m)
982 {
983 struct ip *ip;
984 u_int16_t csum, offset;
985
986 ip = mtod(m, struct ip *);
987 offset = ip->ip_hl << 2;
988 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
989 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
990 csum = 0xffff;
991
992 offset += m->m_pkthdr.csum_data; /* checksum offset */
993
994 if ((offset + sizeof(u_int16_t)) > m->m_len) {
995 /* This happen when ip options were inserted
996 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
997 m->m_len, offset, ip->ip_p);
998 */
999 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1000 } else
1001 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1002 }
1003
1004 /*
1005 * Determine the maximum length of the options to be inserted;
1006 * we would far rather allocate too much space rather than too little.
1007 */
1008
1009 u_int
1010 ip_optlen(inp)
1011 struct inpcb *inp;
1012 {
1013 struct mbuf *m = inp->inp_options;
1014
1015 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1016 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1017 else
1018 return 0;
1019 }
1020
1021
1022 /*
1023 * Insert IP options into preformed packet.
1024 * Adjust IP destination as required for IP source routing,
1025 * as indicated by a non-zero in_addr at the start of the options.
1026 */
1027 static struct mbuf *
1028 ip_insertoptions(m, opt, phlen)
1029 struct mbuf *m;
1030 struct mbuf *opt;
1031 int *phlen;
1032 {
1033 struct ipoption *p = mtod(opt, struct ipoption *);
1034 struct mbuf *n;
1035 struct ip *ip = mtod(m, struct ip *);
1036 unsigned optlen;
1037
1038 optlen = opt->m_len - sizeof(p->ipopt_dst);
1039 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1040 return (m); /* XXX should fail */
1041 if (!in_nullhost(p->ipopt_dst))
1042 ip->ip_dst = p->ipopt_dst;
1043 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1044 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1045 if (n == 0)
1046 return (m);
1047 MCLAIM(n, m->m_owner);
1048 M_COPY_PKTHDR(n, m);
1049 m_tag_delete_chain(m, NULL);
1050 m->m_flags &= ~M_PKTHDR;
1051 m->m_len -= sizeof(struct ip);
1052 m->m_data += sizeof(struct ip);
1053 n->m_next = m;
1054 m = n;
1055 m->m_len = optlen + sizeof(struct ip);
1056 m->m_data += max_linkhdr;
1057 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1058 } else {
1059 m->m_data -= optlen;
1060 m->m_len += optlen;
1061 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1062 }
1063 m->m_pkthdr.len += optlen;
1064 ip = mtod(m, struct ip *);
1065 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1066 *phlen = sizeof(struct ip) + optlen;
1067 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1068 return (m);
1069 }
1070
1071 /*
1072 * Copy options from ip to jp,
1073 * omitting those not copied during fragmentation.
1074 */
1075 int
1076 ip_optcopy(ip, jp)
1077 struct ip *ip, *jp;
1078 {
1079 u_char *cp, *dp;
1080 int opt, optlen, cnt;
1081
1082 cp = (u_char *)(ip + 1);
1083 dp = (u_char *)(jp + 1);
1084 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1085 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1086 opt = cp[0];
1087 if (opt == IPOPT_EOL)
1088 break;
1089 if (opt == IPOPT_NOP) {
1090 /* Preserve for IP mcast tunnel's LSRR alignment. */
1091 *dp++ = IPOPT_NOP;
1092 optlen = 1;
1093 continue;
1094 }
1095 #ifdef DIAGNOSTIC
1096 if (cnt < IPOPT_OLEN + sizeof(*cp))
1097 panic("malformed IPv4 option passed to ip_optcopy");
1098 #endif
1099 optlen = cp[IPOPT_OLEN];
1100 #ifdef DIAGNOSTIC
1101 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1102 panic("malformed IPv4 option passed to ip_optcopy");
1103 #endif
1104 /* bogus lengths should have been caught by ip_dooptions */
1105 if (optlen > cnt)
1106 optlen = cnt;
1107 if (IPOPT_COPIED(opt)) {
1108 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1109 dp += optlen;
1110 }
1111 }
1112 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1113 *dp++ = IPOPT_EOL;
1114 return (optlen);
1115 }
1116
1117 /*
1118 * IP socket option processing.
1119 */
1120 int
1121 ip_ctloutput(op, so, level, optname, mp)
1122 int op;
1123 struct socket *so;
1124 int level, optname;
1125 struct mbuf **mp;
1126 {
1127 struct inpcb *inp = sotoinpcb(so);
1128 struct mbuf *m = *mp;
1129 int optval = 0;
1130 int error = 0;
1131 #if defined(IPSEC) || defined(FAST_IPSEC)
1132 struct proc *p = curproc; /*XXX*/
1133 #endif
1134
1135 if (level != IPPROTO_IP) {
1136 error = EINVAL;
1137 if (op == PRCO_SETOPT && *mp)
1138 (void) m_free(*mp);
1139 } else switch (op) {
1140
1141 case PRCO_SETOPT:
1142 switch (optname) {
1143 case IP_OPTIONS:
1144 #ifdef notyet
1145 case IP_RETOPTS:
1146 return (ip_pcbopts(optname, &inp->inp_options, m));
1147 #else
1148 return (ip_pcbopts(&inp->inp_options, m));
1149 #endif
1150
1151 case IP_TOS:
1152 case IP_TTL:
1153 case IP_RECVOPTS:
1154 case IP_RECVRETOPTS:
1155 case IP_RECVDSTADDR:
1156 case IP_RECVIF:
1157 if (m == NULL || m->m_len != sizeof(int))
1158 error = EINVAL;
1159 else {
1160 optval = *mtod(m, int *);
1161 switch (optname) {
1162
1163 case IP_TOS:
1164 inp->inp_ip.ip_tos = optval;
1165 break;
1166
1167 case IP_TTL:
1168 inp->inp_ip.ip_ttl = optval;
1169 break;
1170 #define OPTSET(bit) \
1171 if (optval) \
1172 inp->inp_flags |= bit; \
1173 else \
1174 inp->inp_flags &= ~bit;
1175
1176 case IP_RECVOPTS:
1177 OPTSET(INP_RECVOPTS);
1178 break;
1179
1180 case IP_RECVRETOPTS:
1181 OPTSET(INP_RECVRETOPTS);
1182 break;
1183
1184 case IP_RECVDSTADDR:
1185 OPTSET(INP_RECVDSTADDR);
1186 break;
1187
1188 case IP_RECVIF:
1189 OPTSET(INP_RECVIF);
1190 break;
1191 }
1192 }
1193 break;
1194 #undef OPTSET
1195
1196 case IP_MULTICAST_IF:
1197 case IP_MULTICAST_TTL:
1198 case IP_MULTICAST_LOOP:
1199 case IP_ADD_MEMBERSHIP:
1200 case IP_DROP_MEMBERSHIP:
1201 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1202 break;
1203
1204 case IP_PORTRANGE:
1205 if (m == 0 || m->m_len != sizeof(int))
1206 error = EINVAL;
1207 else {
1208 optval = *mtod(m, int *);
1209
1210 switch (optval) {
1211
1212 case IP_PORTRANGE_DEFAULT:
1213 case IP_PORTRANGE_HIGH:
1214 inp->inp_flags &= ~(INP_LOWPORT);
1215 break;
1216
1217 case IP_PORTRANGE_LOW:
1218 inp->inp_flags |= INP_LOWPORT;
1219 break;
1220
1221 default:
1222 error = EINVAL;
1223 break;
1224 }
1225 }
1226 break;
1227
1228 #if defined(IPSEC) || defined(FAST_IPSEC)
1229 case IP_IPSEC_POLICY:
1230 {
1231 caddr_t req = NULL;
1232 size_t len = 0;
1233 int priv = 0;
1234
1235 #ifdef __NetBSD__
1236 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1237 priv = 0;
1238 else
1239 priv = 1;
1240 #else
1241 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1242 #endif
1243 if (m) {
1244 req = mtod(m, caddr_t);
1245 len = m->m_len;
1246 }
1247 error = ipsec4_set_policy(inp, optname, req, len, priv);
1248 break;
1249 }
1250 #endif /*IPSEC*/
1251
1252 default:
1253 error = ENOPROTOOPT;
1254 break;
1255 }
1256 if (m)
1257 (void)m_free(m);
1258 break;
1259
1260 case PRCO_GETOPT:
1261 switch (optname) {
1262 case IP_OPTIONS:
1263 case IP_RETOPTS:
1264 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1265 MCLAIM(m, so->so_mowner);
1266 if (inp->inp_options) {
1267 m->m_len = inp->inp_options->m_len;
1268 bcopy(mtod(inp->inp_options, caddr_t),
1269 mtod(m, caddr_t), (unsigned)m->m_len);
1270 } else
1271 m->m_len = 0;
1272 break;
1273
1274 case IP_TOS:
1275 case IP_TTL:
1276 case IP_RECVOPTS:
1277 case IP_RECVRETOPTS:
1278 case IP_RECVDSTADDR:
1279 case IP_RECVIF:
1280 case IP_ERRORMTU:
1281 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1282 MCLAIM(m, so->so_mowner);
1283 m->m_len = sizeof(int);
1284 switch (optname) {
1285
1286 case IP_TOS:
1287 optval = inp->inp_ip.ip_tos;
1288 break;
1289
1290 case IP_TTL:
1291 optval = inp->inp_ip.ip_ttl;
1292 break;
1293
1294 case IP_ERRORMTU:
1295 optval = inp->inp_errormtu;
1296 break;
1297
1298 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1299
1300 case IP_RECVOPTS:
1301 optval = OPTBIT(INP_RECVOPTS);
1302 break;
1303
1304 case IP_RECVRETOPTS:
1305 optval = OPTBIT(INP_RECVRETOPTS);
1306 break;
1307
1308 case IP_RECVDSTADDR:
1309 optval = OPTBIT(INP_RECVDSTADDR);
1310 break;
1311
1312 case IP_RECVIF:
1313 optval = OPTBIT(INP_RECVIF);
1314 break;
1315 }
1316 *mtod(m, int *) = optval;
1317 break;
1318
1319 #if defined(IPSEC) || defined(FAST_IPSEC)
1320 case IP_IPSEC_POLICY:
1321 {
1322 caddr_t req = NULL;
1323 size_t len = 0;
1324
1325 if (m) {
1326 req = mtod(m, caddr_t);
1327 len = m->m_len;
1328 }
1329 error = ipsec4_get_policy(inp, req, len, mp);
1330 break;
1331 }
1332 #endif /*IPSEC*/
1333
1334 case IP_MULTICAST_IF:
1335 case IP_MULTICAST_TTL:
1336 case IP_MULTICAST_LOOP:
1337 case IP_ADD_MEMBERSHIP:
1338 case IP_DROP_MEMBERSHIP:
1339 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1340 if (*mp)
1341 MCLAIM(*mp, so->so_mowner);
1342 break;
1343
1344 case IP_PORTRANGE:
1345 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1346 MCLAIM(m, so->so_mowner);
1347 m->m_len = sizeof(int);
1348
1349 if (inp->inp_flags & INP_LOWPORT)
1350 optval = IP_PORTRANGE_LOW;
1351 else
1352 optval = IP_PORTRANGE_DEFAULT;
1353
1354 *mtod(m, int *) = optval;
1355 break;
1356
1357 default:
1358 error = ENOPROTOOPT;
1359 break;
1360 }
1361 break;
1362 }
1363 return (error);
1364 }
1365
1366 /*
1367 * Set up IP options in pcb for insertion in output packets.
1368 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1369 * with destination address if source routed.
1370 */
1371 int
1372 #ifdef notyet
1373 ip_pcbopts(optname, pcbopt, m)
1374 int optname;
1375 #else
1376 ip_pcbopts(pcbopt, m)
1377 #endif
1378 struct mbuf **pcbopt;
1379 struct mbuf *m;
1380 {
1381 int cnt, optlen;
1382 u_char *cp;
1383 u_char opt;
1384
1385 /* turn off any old options */
1386 if (*pcbopt)
1387 (void)m_free(*pcbopt);
1388 *pcbopt = 0;
1389 if (m == (struct mbuf *)0 || m->m_len == 0) {
1390 /*
1391 * Only turning off any previous options.
1392 */
1393 if (m)
1394 (void)m_free(m);
1395 return (0);
1396 }
1397
1398 #ifndef __vax__
1399 if (m->m_len % sizeof(int32_t))
1400 goto bad;
1401 #endif
1402 /*
1403 * IP first-hop destination address will be stored before
1404 * actual options; move other options back
1405 * and clear it when none present.
1406 */
1407 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1408 goto bad;
1409 cnt = m->m_len;
1410 m->m_len += sizeof(struct in_addr);
1411 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1412 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1413 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1414
1415 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1416 opt = cp[IPOPT_OPTVAL];
1417 if (opt == IPOPT_EOL)
1418 break;
1419 if (opt == IPOPT_NOP)
1420 optlen = 1;
1421 else {
1422 if (cnt < IPOPT_OLEN + sizeof(*cp))
1423 goto bad;
1424 optlen = cp[IPOPT_OLEN];
1425 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1426 goto bad;
1427 }
1428 switch (opt) {
1429
1430 default:
1431 break;
1432
1433 case IPOPT_LSRR:
1434 case IPOPT_SSRR:
1435 /*
1436 * user process specifies route as:
1437 * ->A->B->C->D
1438 * D must be our final destination (but we can't
1439 * check that since we may not have connected yet).
1440 * A is first hop destination, which doesn't appear in
1441 * actual IP option, but is stored before the options.
1442 */
1443 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1444 goto bad;
1445 m->m_len -= sizeof(struct in_addr);
1446 cnt -= sizeof(struct in_addr);
1447 optlen -= sizeof(struct in_addr);
1448 cp[IPOPT_OLEN] = optlen;
1449 /*
1450 * Move first hop before start of options.
1451 */
1452 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1453 sizeof(struct in_addr));
1454 /*
1455 * Then copy rest of options back
1456 * to close up the deleted entry.
1457 */
1458 memmove(&cp[IPOPT_OFFSET+1],
1459 (caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1460 (unsigned)cnt + sizeof(struct in_addr));
1461 break;
1462 }
1463 }
1464 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1465 goto bad;
1466 *pcbopt = m;
1467 return (0);
1468
1469 bad:
1470 (void)m_free(m);
1471 return (EINVAL);
1472 }
1473
1474 /*
1475 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1476 */
1477 static struct ifnet *
1478 ip_multicast_if(a, ifindexp)
1479 struct in_addr *a;
1480 int *ifindexp;
1481 {
1482 int ifindex;
1483 struct ifnet *ifp = NULL;
1484 struct in_ifaddr *ia;
1485
1486 if (ifindexp)
1487 *ifindexp = 0;
1488 if (ntohl(a->s_addr) >> 24 == 0) {
1489 ifindex = ntohl(a->s_addr) & 0xffffff;
1490 if (ifindex < 0 || if_index < ifindex)
1491 return NULL;
1492 ifp = ifindex2ifnet[ifindex];
1493 if (ifindexp)
1494 *ifindexp = ifindex;
1495 } else {
1496 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1497 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1498 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1499 ifp = ia->ia_ifp;
1500 break;
1501 }
1502 }
1503 }
1504 return ifp;
1505 }
1506
1507 /*
1508 * Set the IP multicast options in response to user setsockopt().
1509 */
1510 int
1511 ip_setmoptions(optname, imop, m)
1512 int optname;
1513 struct ip_moptions **imop;
1514 struct mbuf *m;
1515 {
1516 int error = 0;
1517 u_char loop;
1518 int i;
1519 struct in_addr addr;
1520 struct ip_mreq *mreq;
1521 struct ifnet *ifp;
1522 struct ip_moptions *imo = *imop;
1523 struct route ro;
1524 struct sockaddr_in *dst;
1525 int ifindex;
1526
1527 if (imo == NULL) {
1528 /*
1529 * No multicast option buffer attached to the pcb;
1530 * allocate one and initialize to default values.
1531 */
1532 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1533 M_WAITOK);
1534
1535 if (imo == NULL)
1536 return (ENOBUFS);
1537 *imop = imo;
1538 imo->imo_multicast_ifp = NULL;
1539 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1540 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1541 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1542 imo->imo_num_memberships = 0;
1543 }
1544
1545 switch (optname) {
1546
1547 case IP_MULTICAST_IF:
1548 /*
1549 * Select the interface for outgoing multicast packets.
1550 */
1551 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1552 error = EINVAL;
1553 break;
1554 }
1555 addr = *(mtod(m, struct in_addr *));
1556 /*
1557 * INADDR_ANY is used to remove a previous selection.
1558 * When no interface is selected, a default one is
1559 * chosen every time a multicast packet is sent.
1560 */
1561 if (in_nullhost(addr)) {
1562 imo->imo_multicast_ifp = NULL;
1563 break;
1564 }
1565 /*
1566 * The selected interface is identified by its local
1567 * IP address. Find the interface and confirm that
1568 * it supports multicasting.
1569 */
1570 ifp = ip_multicast_if(&addr, &ifindex);
1571 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1572 error = EADDRNOTAVAIL;
1573 break;
1574 }
1575 imo->imo_multicast_ifp = ifp;
1576 if (ifindex)
1577 imo->imo_multicast_addr = addr;
1578 else
1579 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1580 break;
1581
1582 case IP_MULTICAST_TTL:
1583 /*
1584 * Set the IP time-to-live for outgoing multicast packets.
1585 */
1586 if (m == NULL || m->m_len != 1) {
1587 error = EINVAL;
1588 break;
1589 }
1590 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1591 break;
1592
1593 case IP_MULTICAST_LOOP:
1594 /*
1595 * Set the loopback flag for outgoing multicast packets.
1596 * Must be zero or one.
1597 */
1598 if (m == NULL || m->m_len != 1 ||
1599 (loop = *(mtod(m, u_char *))) > 1) {
1600 error = EINVAL;
1601 break;
1602 }
1603 imo->imo_multicast_loop = loop;
1604 break;
1605
1606 case IP_ADD_MEMBERSHIP:
1607 /*
1608 * Add a multicast group membership.
1609 * Group must be a valid IP multicast address.
1610 */
1611 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1612 error = EINVAL;
1613 break;
1614 }
1615 mreq = mtod(m, struct ip_mreq *);
1616 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1617 error = EINVAL;
1618 break;
1619 }
1620 /*
1621 * If no interface address was provided, use the interface of
1622 * the route to the given multicast address.
1623 */
1624 if (in_nullhost(mreq->imr_interface)) {
1625 bzero((caddr_t)&ro, sizeof(ro));
1626 ro.ro_rt = NULL;
1627 dst = satosin(&ro.ro_dst);
1628 dst->sin_len = sizeof(*dst);
1629 dst->sin_family = AF_INET;
1630 dst->sin_addr = mreq->imr_multiaddr;
1631 rtalloc(&ro);
1632 if (ro.ro_rt == NULL) {
1633 error = EADDRNOTAVAIL;
1634 break;
1635 }
1636 ifp = ro.ro_rt->rt_ifp;
1637 rtfree(ro.ro_rt);
1638 } else {
1639 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1640 }
1641 /*
1642 * See if we found an interface, and confirm that it
1643 * supports multicast.
1644 */
1645 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1646 error = EADDRNOTAVAIL;
1647 break;
1648 }
1649 /*
1650 * See if the membership already exists or if all the
1651 * membership slots are full.
1652 */
1653 for (i = 0; i < imo->imo_num_memberships; ++i) {
1654 if (imo->imo_membership[i]->inm_ifp == ifp &&
1655 in_hosteq(imo->imo_membership[i]->inm_addr,
1656 mreq->imr_multiaddr))
1657 break;
1658 }
1659 if (i < imo->imo_num_memberships) {
1660 error = EADDRINUSE;
1661 break;
1662 }
1663 if (i == IP_MAX_MEMBERSHIPS) {
1664 error = ETOOMANYREFS;
1665 break;
1666 }
1667 /*
1668 * Everything looks good; add a new record to the multicast
1669 * address list for the given interface.
1670 */
1671 if ((imo->imo_membership[i] =
1672 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1673 error = ENOBUFS;
1674 break;
1675 }
1676 ++imo->imo_num_memberships;
1677 break;
1678
1679 case IP_DROP_MEMBERSHIP:
1680 /*
1681 * Drop a multicast group membership.
1682 * Group must be a valid IP multicast address.
1683 */
1684 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1685 error = EINVAL;
1686 break;
1687 }
1688 mreq = mtod(m, struct ip_mreq *);
1689 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1690 error = EINVAL;
1691 break;
1692 }
1693 /*
1694 * If an interface address was specified, get a pointer
1695 * to its ifnet structure.
1696 */
1697 if (in_nullhost(mreq->imr_interface))
1698 ifp = NULL;
1699 else {
1700 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1701 if (ifp == NULL) {
1702 error = EADDRNOTAVAIL;
1703 break;
1704 }
1705 }
1706 /*
1707 * Find the membership in the membership array.
1708 */
1709 for (i = 0; i < imo->imo_num_memberships; ++i) {
1710 if ((ifp == NULL ||
1711 imo->imo_membership[i]->inm_ifp == ifp) &&
1712 in_hosteq(imo->imo_membership[i]->inm_addr,
1713 mreq->imr_multiaddr))
1714 break;
1715 }
1716 if (i == imo->imo_num_memberships) {
1717 error = EADDRNOTAVAIL;
1718 break;
1719 }
1720 /*
1721 * Give up the multicast address record to which the
1722 * membership points.
1723 */
1724 in_delmulti(imo->imo_membership[i]);
1725 /*
1726 * Remove the gap in the membership array.
1727 */
1728 for (++i; i < imo->imo_num_memberships; ++i)
1729 imo->imo_membership[i-1] = imo->imo_membership[i];
1730 --imo->imo_num_memberships;
1731 break;
1732
1733 default:
1734 error = EOPNOTSUPP;
1735 break;
1736 }
1737
1738 /*
1739 * If all options have default values, no need to keep the mbuf.
1740 */
1741 if (imo->imo_multicast_ifp == NULL &&
1742 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1743 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1744 imo->imo_num_memberships == 0) {
1745 free(*imop, M_IPMOPTS);
1746 *imop = NULL;
1747 }
1748
1749 return (error);
1750 }
1751
1752 /*
1753 * Return the IP multicast options in response to user getsockopt().
1754 */
1755 int
1756 ip_getmoptions(optname, imo, mp)
1757 int optname;
1758 struct ip_moptions *imo;
1759 struct mbuf **mp;
1760 {
1761 u_char *ttl;
1762 u_char *loop;
1763 struct in_addr *addr;
1764 struct in_ifaddr *ia;
1765
1766 *mp = m_get(M_WAIT, MT_SOOPTS);
1767
1768 switch (optname) {
1769
1770 case IP_MULTICAST_IF:
1771 addr = mtod(*mp, struct in_addr *);
1772 (*mp)->m_len = sizeof(struct in_addr);
1773 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1774 *addr = zeroin_addr;
1775 else if (imo->imo_multicast_addr.s_addr) {
1776 /* return the value user has set */
1777 *addr = imo->imo_multicast_addr;
1778 } else {
1779 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1780 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1781 }
1782 return (0);
1783
1784 case IP_MULTICAST_TTL:
1785 ttl = mtod(*mp, u_char *);
1786 (*mp)->m_len = 1;
1787 *ttl = imo ? imo->imo_multicast_ttl
1788 : IP_DEFAULT_MULTICAST_TTL;
1789 return (0);
1790
1791 case IP_MULTICAST_LOOP:
1792 loop = mtod(*mp, u_char *);
1793 (*mp)->m_len = 1;
1794 *loop = imo ? imo->imo_multicast_loop
1795 : IP_DEFAULT_MULTICAST_LOOP;
1796 return (0);
1797
1798 default:
1799 return (EOPNOTSUPP);
1800 }
1801 }
1802
1803 /*
1804 * Discard the IP multicast options.
1805 */
1806 void
1807 ip_freemoptions(imo)
1808 struct ip_moptions *imo;
1809 {
1810 int i;
1811
1812 if (imo != NULL) {
1813 for (i = 0; i < imo->imo_num_memberships; ++i)
1814 in_delmulti(imo->imo_membership[i]);
1815 free(imo, M_IPMOPTS);
1816 }
1817 }
1818
1819 /*
1820 * Routine called from ip_output() to loop back a copy of an IP multicast
1821 * packet to the input queue of a specified interface. Note that this
1822 * calls the output routine of the loopback "driver", but with an interface
1823 * pointer that might NOT be &loif -- easier than replicating that code here.
1824 */
1825 static void
1826 ip_mloopback(ifp, m, dst)
1827 struct ifnet *ifp;
1828 struct mbuf *m;
1829 struct sockaddr_in *dst;
1830 {
1831 struct ip *ip;
1832 struct mbuf *copym;
1833
1834 copym = m_copy(m, 0, M_COPYALL);
1835 if (copym != NULL
1836 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1837 copym = m_pullup(copym, sizeof(struct ip));
1838 if (copym != NULL) {
1839 /*
1840 * We don't bother to fragment if the IP length is greater
1841 * than the interface's MTU. Can this possibly matter?
1842 */
1843 ip = mtod(copym, struct ip *);
1844
1845 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1846 in_delayed_cksum(copym);
1847 copym->m_pkthdr.csum_flags &=
1848 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1849 }
1850
1851 ip->ip_sum = 0;
1852 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1853 (void) looutput(ifp, copym, sintosa(dst), NULL);
1854 }
1855 }
1856