Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.125
      1 /*	$NetBSD: ip_output.c,v 1.125 2003/10/14 06:36:48 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.125 2003/10/14 06:36:48 itojun Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_mrouting.h"
    106 
    107 #include <sys/param.h>
    108 #include <sys/malloc.h>
    109 #include <sys/mbuf.h>
    110 #include <sys/errno.h>
    111 #include <sys/protosw.h>
    112 #include <sys/socket.h>
    113 #include <sys/socketvar.h>
    114 #ifdef FAST_IPSEC
    115 #include <sys/domain.h>
    116 #endif
    117 #include <sys/systm.h>
    118 #include <sys/proc.h>
    119 
    120 #include <net/if.h>
    121 #include <net/route.h>
    122 #include <net/pfil.h>
    123 
    124 #include <netinet/in.h>
    125 #include <netinet/in_systm.h>
    126 #include <netinet/ip.h>
    127 #include <netinet/in_pcb.h>
    128 #include <netinet/in_var.h>
    129 #include <netinet/ip_var.h>
    130 
    131 #ifdef MROUTING
    132 #include <netinet/ip_mroute.h>
    133 #endif
    134 
    135 #include <machine/stdarg.h>
    136 
    137 #ifdef IPSEC
    138 #include <netinet6/ipsec.h>
    139 #include <netkey/key.h>
    140 #include <netkey/key_debug.h>
    141 #endif /*IPSEC*/
    142 
    143 #ifdef FAST_IPSEC
    144 #include <netipsec/ipsec.h>
    145 #include <netipsec/key.h>
    146 #include <netipsec/xform.h>
    147 #endif	/* FAST_IPSEC*/
    148 
    149 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
    150 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
    151 static void ip_mloopback
    152 	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
    153 
    154 #ifdef PFIL_HOOKS
    155 extern struct pfil_head inet_pfil_hook;			/* XXX */
    156 #endif
    157 
    158 /*
    159  * IP output.  The packet in mbuf chain m contains a skeletal IP
    160  * header (with len, off, ttl, proto, tos, src, dst).
    161  * The mbuf chain containing the packet will be freed.
    162  * The mbuf opt, if present, will not be freed.
    163  */
    164 int
    165 #if __STDC__
    166 ip_output(struct mbuf *m0, ...)
    167 #else
    168 ip_output(m0, va_alist)
    169 	struct mbuf *m0;
    170 	va_dcl
    171 #endif
    172 {
    173 	struct ip *ip;
    174 	struct ifnet *ifp;
    175 	struct mbuf *m = m0;
    176 	int hlen = sizeof (struct ip);
    177 	int len, error = 0;
    178 	struct route iproute;
    179 	struct sockaddr_in *dst;
    180 	struct in_ifaddr *ia;
    181 	struct mbuf *opt;
    182 	struct route *ro;
    183 	int flags, sw_csum;
    184 	int *mtu_p;
    185 	u_long mtu;
    186 	struct ip_moptions *imo;
    187 	struct socket *so;
    188 	va_list ap;
    189 #ifdef IPSEC
    190 	struct secpolicy *sp = NULL;
    191 #endif /*IPSEC*/
    192 #ifdef FAST_IPSEC
    193 	struct inpcb *inp;
    194 	struct m_tag *mtag;
    195 	struct secpolicy *sp = NULL;
    196 	struct tdb_ident *tdbi;
    197 	int s;
    198 #endif
    199 	u_int16_t ip_len;
    200 
    201 	len = 0;
    202 	va_start(ap, m0);
    203 	opt = va_arg(ap, struct mbuf *);
    204 	ro = va_arg(ap, struct route *);
    205 	flags = va_arg(ap, int);
    206 	imo = va_arg(ap, struct ip_moptions *);
    207 	so = va_arg(ap, struct socket *);
    208 	if (flags & IP_RETURNMTU)
    209 		mtu_p = va_arg(ap, int *);
    210 	else
    211 		mtu_p = NULL;
    212 	va_end(ap);
    213 
    214 	MCLAIM(m, &ip_tx_mowner);
    215 #ifdef FAST_IPSEC
    216 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    217 		inp = (struct inpcb *)so->so_pcb;
    218 	else
    219 		inp = NULL;
    220 #endif /*IPSEC*/
    221 
    222 #ifdef	DIAGNOSTIC
    223 	if ((m->m_flags & M_PKTHDR) == 0)
    224 		panic("ip_output no HDR");
    225 #endif
    226 	if (opt) {
    227 		m = ip_insertoptions(m, opt, &len);
    228 		if (len >= sizeof(struct ip))
    229 			hlen = len;
    230 	}
    231 	ip = mtod(m, struct ip *);
    232 	/*
    233 	 * Fill in IP header.
    234 	 */
    235 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    236 		ip->ip_v = IPVERSION;
    237 		ip->ip_off = htons(0);
    238 		ip->ip_id = htons(ip_randomid());
    239 		ip->ip_hl = hlen >> 2;
    240 		ipstat.ips_localout++;
    241 	} else {
    242 		hlen = ip->ip_hl << 2;
    243 	}
    244 	/*
    245 	 * Route packet.
    246 	 */
    247 	if (ro == 0) {
    248 		ro = &iproute;
    249 		bzero((caddr_t)ro, sizeof (*ro));
    250 	}
    251 	dst = satosin(&ro->ro_dst);
    252 	/*
    253 	 * If there is a cached route,
    254 	 * check that it is to the same destination
    255 	 * and is still up.  If not, free it and try again.
    256 	 * The address family should also be checked in case of sharing the
    257 	 * cache with IPv6.
    258 	 */
    259 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    260 	    dst->sin_family != AF_INET ||
    261 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    262 		RTFREE(ro->ro_rt);
    263 		ro->ro_rt = (struct rtentry *)0;
    264 	}
    265 	if (ro->ro_rt == 0) {
    266 		bzero(dst, sizeof(*dst));
    267 		dst->sin_family = AF_INET;
    268 		dst->sin_len = sizeof(*dst);
    269 		dst->sin_addr = ip->ip_dst;
    270 	}
    271 	/*
    272 	 * If routing to interface only,
    273 	 * short circuit routing lookup.
    274 	 */
    275 	if (flags & IP_ROUTETOIF) {
    276 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    277 			ipstat.ips_noroute++;
    278 			error = ENETUNREACH;
    279 			goto bad;
    280 		}
    281 		ifp = ia->ia_ifp;
    282 		mtu = ifp->if_mtu;
    283 		ip->ip_ttl = 1;
    284 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    285 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    286 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    287 		ifp = imo->imo_multicast_ifp;
    288 		mtu = ifp->if_mtu;
    289 		IFP_TO_IA(ifp, ia);
    290 	} else {
    291 		if (ro->ro_rt == 0)
    292 			rtalloc(ro);
    293 		if (ro->ro_rt == 0) {
    294 			ipstat.ips_noroute++;
    295 			error = EHOSTUNREACH;
    296 			goto bad;
    297 		}
    298 		ia = ifatoia(ro->ro_rt->rt_ifa);
    299 		ifp = ro->ro_rt->rt_ifp;
    300 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    301 			mtu = ifp->if_mtu;
    302 		ro->ro_rt->rt_use++;
    303 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    304 			dst = satosin(ro->ro_rt->rt_gateway);
    305 	}
    306 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    307 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    308 		struct in_multi *inm;
    309 
    310 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    311 			M_BCAST : M_MCAST;
    312 		/*
    313 		 * IP destination address is multicast.  Make sure "dst"
    314 		 * still points to the address in "ro".  (It may have been
    315 		 * changed to point to a gateway address, above.)
    316 		 */
    317 		dst = satosin(&ro->ro_dst);
    318 		/*
    319 		 * See if the caller provided any multicast options
    320 		 */
    321 		if (imo != NULL)
    322 			ip->ip_ttl = imo->imo_multicast_ttl;
    323 		else
    324 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    325 
    326 		/*
    327 		 * if we don't know the outgoing ifp yet, we can't generate
    328 		 * output
    329 		 */
    330 		if (!ifp) {
    331 			ipstat.ips_noroute++;
    332 			error = ENETUNREACH;
    333 			goto bad;
    334 		}
    335 
    336 		/*
    337 		 * If the packet is multicast or broadcast, confirm that
    338 		 * the outgoing interface can transmit it.
    339 		 */
    340 		if (((m->m_flags & M_MCAST) &&
    341 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    342 		    ((m->m_flags & M_BCAST) &&
    343 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    344 			ipstat.ips_noroute++;
    345 			error = ENETUNREACH;
    346 			goto bad;
    347 		}
    348 		/*
    349 		 * If source address not specified yet, use an address
    350 		 * of outgoing interface.
    351 		 */
    352 		if (in_nullhost(ip->ip_src)) {
    353 			struct in_ifaddr *ia;
    354 
    355 			IFP_TO_IA(ifp, ia);
    356 			if (!ia) {
    357 				error = EADDRNOTAVAIL;
    358 				goto bad;
    359 			}
    360 			ip->ip_src = ia->ia_addr.sin_addr;
    361 		}
    362 
    363 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    364 		if (inm != NULL &&
    365 		   (imo == NULL || imo->imo_multicast_loop)) {
    366 			/*
    367 			 * If we belong to the destination multicast group
    368 			 * on the outgoing interface, and the caller did not
    369 			 * forbid loopback, loop back a copy.
    370 			 */
    371 			ip_mloopback(ifp, m, dst);
    372 		}
    373 #ifdef MROUTING
    374 		else {
    375 			/*
    376 			 * If we are acting as a multicast router, perform
    377 			 * multicast forwarding as if the packet had just
    378 			 * arrived on the interface to which we are about
    379 			 * to send.  The multicast forwarding function
    380 			 * recursively calls this function, using the
    381 			 * IP_FORWARDING flag to prevent infinite recursion.
    382 			 *
    383 			 * Multicasts that are looped back by ip_mloopback(),
    384 			 * above, will be forwarded by the ip_input() routine,
    385 			 * if necessary.
    386 			 */
    387 			extern struct socket *ip_mrouter;
    388 
    389 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    390 				if (ip_mforward(m, ifp) != 0) {
    391 					m_freem(m);
    392 					goto done;
    393 				}
    394 			}
    395 		}
    396 #endif
    397 		/*
    398 		 * Multicasts with a time-to-live of zero may be looped-
    399 		 * back, above, but must not be transmitted on a network.
    400 		 * Also, multicasts addressed to the loopback interface
    401 		 * are not sent -- the above call to ip_mloopback() will
    402 		 * loop back a copy if this host actually belongs to the
    403 		 * destination group on the loopback interface.
    404 		 */
    405 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    406 			m_freem(m);
    407 			goto done;
    408 		}
    409 
    410 		goto sendit;
    411 	}
    412 #ifndef notdef
    413 	/*
    414 	 * If source address not specified yet, use address
    415 	 * of outgoing interface.
    416 	 */
    417 	if (in_nullhost(ip->ip_src))
    418 		ip->ip_src = ia->ia_addr.sin_addr;
    419 #endif
    420 
    421 	/*
    422 	 * packets with Class-D address as source are not valid per
    423 	 * RFC 1112
    424 	 */
    425 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    426 		ipstat.ips_odropped++;
    427 		error = EADDRNOTAVAIL;
    428 		goto bad;
    429 	}
    430 
    431 	/*
    432 	 * Look for broadcast address and
    433 	 * and verify user is allowed to send
    434 	 * such a packet.
    435 	 */
    436 	if (in_broadcast(dst->sin_addr, ifp)) {
    437 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    438 			error = EADDRNOTAVAIL;
    439 			goto bad;
    440 		}
    441 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    442 			error = EACCES;
    443 			goto bad;
    444 		}
    445 		/* don't allow broadcast messages to be fragmented */
    446 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    447 			error = EMSGSIZE;
    448 			goto bad;
    449 		}
    450 		m->m_flags |= M_BCAST;
    451 	} else
    452 		m->m_flags &= ~M_BCAST;
    453 
    454 sendit:
    455 	/*
    456 	 * If we're doing Path MTU Discovery, we need to set DF unless
    457 	 * the route's MTU is locked.
    458 	 */
    459 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    460 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    461 		ip->ip_off |= htons(IP_DF);
    462 
    463 	/* Remember the current ip_len */
    464 	ip_len = ntohs(ip->ip_len);
    465 
    466 #ifdef IPSEC
    467 	/* get SP for this packet */
    468 	if (so == NULL)
    469 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    470 		    flags, &error);
    471 	else
    472 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    473 
    474 	if (sp == NULL) {
    475 		ipsecstat.out_inval++;
    476 		goto bad;
    477 	}
    478 
    479 	error = 0;
    480 
    481 	/* check policy */
    482 	switch (sp->policy) {
    483 	case IPSEC_POLICY_DISCARD:
    484 		/*
    485 		 * This packet is just discarded.
    486 		 */
    487 		ipsecstat.out_polvio++;
    488 		goto bad;
    489 
    490 	case IPSEC_POLICY_BYPASS:
    491 	case IPSEC_POLICY_NONE:
    492 		/* no need to do IPsec. */
    493 		goto skip_ipsec;
    494 
    495 	case IPSEC_POLICY_IPSEC:
    496 		if (sp->req == NULL) {
    497 			/* XXX should be panic ? */
    498 			printf("ip_output: No IPsec request specified.\n");
    499 			error = EINVAL;
    500 			goto bad;
    501 		}
    502 		break;
    503 
    504 	case IPSEC_POLICY_ENTRUST:
    505 	default:
    506 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    507 	}
    508 
    509 	/*
    510 	 * ipsec4_output() expects ip_len and ip_off in network
    511 	 * order.  They have been set to network order above.
    512 	 */
    513 
    514     {
    515 	struct ipsec_output_state state;
    516 	bzero(&state, sizeof(state));
    517 	state.m = m;
    518 	if (flags & IP_ROUTETOIF) {
    519 		state.ro = &iproute;
    520 		bzero(&iproute, sizeof(iproute));
    521 	} else
    522 		state.ro = ro;
    523 	state.dst = (struct sockaddr *)dst;
    524 
    525 	/*
    526 	 * We can't defer the checksum of payload data if
    527 	 * we're about to encrypt/authenticate it.
    528 	 *
    529 	 * XXX When we support crypto offloading functions of
    530 	 * XXX network interfaces, we need to reconsider this,
    531 	 * XXX since it's likely that they'll support checksumming,
    532 	 * XXX as well.
    533 	 */
    534 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    535 		in_delayed_cksum(m);
    536 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    537 	}
    538 
    539 	error = ipsec4_output(&state, sp, flags);
    540 
    541 	m = state.m;
    542 	if (flags & IP_ROUTETOIF) {
    543 		/*
    544 		 * if we have tunnel mode SA, we may need to ignore
    545 		 * IP_ROUTETOIF.
    546 		 */
    547 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    548 			flags &= ~IP_ROUTETOIF;
    549 			ro = state.ro;
    550 		}
    551 	} else
    552 		ro = state.ro;
    553 	dst = (struct sockaddr_in *)state.dst;
    554 	if (error) {
    555 		/* mbuf is already reclaimed in ipsec4_output. */
    556 		m0 = NULL;
    557 		switch (error) {
    558 		case EHOSTUNREACH:
    559 		case ENETUNREACH:
    560 		case EMSGSIZE:
    561 		case ENOBUFS:
    562 		case ENOMEM:
    563 			break;
    564 		default:
    565 			printf("ip4_output (ipsec): error code %d\n", error);
    566 			/*fall through*/
    567 		case ENOENT:
    568 			/* don't show these error codes to the user */
    569 			error = 0;
    570 			break;
    571 		}
    572 		goto bad;
    573 	}
    574 
    575 	/* be sure to update variables that are affected by ipsec4_output() */
    576 	ip = mtod(m, struct ip *);
    577 	hlen = ip->ip_hl << 2;
    578 	ip_len = ntohs(ip->ip_len);
    579 
    580 	if (ro->ro_rt == NULL) {
    581 		if ((flags & IP_ROUTETOIF) == 0) {
    582 			printf("ip_output: "
    583 				"can't update route after IPsec processing\n");
    584 			error = EHOSTUNREACH;	/*XXX*/
    585 			goto bad;
    586 		}
    587 	} else {
    588 		/* nobody uses ia beyond here */
    589 		if (state.encap)
    590 			ifp = ro->ro_rt->rt_ifp;
    591 	}
    592     }
    593 skip_ipsec:
    594 #endif /*IPSEC*/
    595 #ifdef FAST_IPSEC
    596 	/*
    597 	 * Check the security policy (SP) for the packet and, if
    598 	 * required, do IPsec-related processing.  There are two
    599 	 * cases here; the first time a packet is sent through
    600 	 * it will be untagged and handled by ipsec4_checkpolicy.
    601 	 * If the packet is resubmitted to ip_output (e.g. after
    602 	 * AH, ESP, etc. processing), there will be a tag to bypass
    603 	 * the lookup and related policy checking.
    604 	 */
    605 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    606 	s = splsoftnet();
    607 	if (mtag != NULL) {
    608 		tdbi = (struct tdb_ident *)(mtag + 1);
    609 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    610 		if (sp == NULL)
    611 			error = -EINVAL;	/* force silent drop */
    612 		m_tag_delete(m, mtag);
    613 	} else {
    614 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    615 					&error, inp);
    616 	}
    617 	/*
    618 	 * There are four return cases:
    619 	 *    sp != NULL	 	    apply IPsec policy
    620 	 *    sp == NULL, error == 0	    no IPsec handling needed
    621 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    622 	 *    sp == NULL, error != 0	    discard packet, report error
    623 	 */
    624 	if (sp != NULL) {
    625 		/* Loop detection, check if ipsec processing already done */
    626 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    627 		for (mtag = m_tag_first(m); mtag != NULL;
    628 		     mtag = m_tag_next(m, mtag)) {
    629 #ifdef MTAG_ABI_COMPAT
    630 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    631 				continue;
    632 #endif
    633 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    634 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    635 				continue;
    636 			/*
    637 			 * Check if policy has an SA associated with it.
    638 			 * This can happen when an SP has yet to acquire
    639 			 * an SA; e.g. on first reference.  If it occurs,
    640 			 * then we let ipsec4_process_packet do its thing.
    641 			 */
    642 			if (sp->req->sav == NULL)
    643 				break;
    644 			tdbi = (struct tdb_ident *)(mtag + 1);
    645 			if (tdbi->spi == sp->req->sav->spi &&
    646 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    647 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    648 				 sizeof (union sockaddr_union)) == 0) {
    649 				/*
    650 				 * No IPsec processing is needed, free
    651 				 * reference to SP.
    652 				 *
    653 				 * NB: null pointer to avoid free at
    654 				 *     done: below.
    655 				 */
    656 				KEY_FREESP(&sp), sp = NULL;
    657 				splx(s);
    658 				goto spd_done;
    659 			}
    660 		}
    661 
    662 		/*
    663 		 * Do delayed checksums now because we send before
    664 		 * this is done in the normal processing path.
    665 		 */
    666 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    667 			in_delayed_cksum(m);
    668 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    669 		}
    670 
    671 #ifdef __FreeBSD__
    672 		ip->ip_len = htons(ip->ip_len);
    673 		ip->ip_off = htons(ip->ip_off);
    674 #endif
    675 
    676 		/* NB: callee frees mbuf */
    677 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    678 		/*
    679 		 * Preserve KAME behaviour: ENOENT can be returned
    680 		 * when an SA acquire is in progress.  Don't propagate
    681 		 * this to user-level; it confuses applications.
    682 		 *
    683 		 * XXX this will go away when the SADB is redone.
    684 		 */
    685 		if (error == ENOENT)
    686 			error = 0;
    687 		splx(s);
    688 		goto done;
    689 	} else {
    690 		splx(s);
    691 
    692 		if (error != 0) {
    693 			/*
    694 			 * Hack: -EINVAL is used to signal that a packet
    695 			 * should be silently discarded.  This is typically
    696 			 * because we asked key management for an SA and
    697 			 * it was delayed (e.g. kicked up to IKE).
    698 			 */
    699 			if (error == -EINVAL)
    700 				error = 0;
    701 			goto bad;
    702 		} else {
    703 			/* No IPsec processing for this packet. */
    704 		}
    705 #ifdef notyet
    706 		/*
    707 		 * If deferred crypto processing is needed, check that
    708 		 * the interface supports it.
    709 		 */
    710 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    711 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    712 			/* notify IPsec to do its own crypto */
    713 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    714 			error = EHOSTUNREACH;
    715 			goto bad;
    716 		}
    717 #endif
    718 	}
    719 spd_done:
    720 #endif /* FAST_IPSEC */
    721 
    722 #ifdef PFIL_HOOKS
    723 	/*
    724 	 * Run through list of hooks for output packets.
    725 	 */
    726 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    727 		goto done;
    728 	if (m == NULL)
    729 		goto done;
    730 
    731 	ip = mtod(m, struct ip *);
    732 	hlen = ip->ip_hl << 2;
    733 #endif /* PFIL_HOOKS */
    734 
    735 	m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    736 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    737 	/*
    738 	 * If small enough for mtu of path, can just send directly.
    739 	 */
    740 	if (ip_len <= mtu) {
    741 #if IFA_STATS
    742 		/*
    743 		 * search for the source address structure to
    744 		 * maintain output statistics.
    745 		 */
    746 		INADDR_TO_IA(ip->ip_src, ia);
    747 		if (ia)
    748 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    749 #endif
    750 		/*
    751 		 * Always initialize the sum to 0!  Some HW assisted
    752 		 * checksumming requires this.
    753 		 */
    754 		ip->ip_sum = 0;
    755 
    756 		/*
    757 		 * Perform any checksums that the hardware can't do
    758 		 * for us.
    759 		 *
    760 		 * XXX Does any hardware require the {th,uh}_sum
    761 		 * XXX fields to be 0?
    762 		 */
    763 		if (sw_csum & M_CSUM_IPv4) {
    764 			ip->ip_sum = in_cksum(m, hlen);
    765 			m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    766 		}
    767 		if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    768 			in_delayed_cksum(m);
    769 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    770 		}
    771 
    772 #ifdef IPSEC
    773 		/* clean ipsec history once it goes out of the node */
    774 		ipsec_delaux(m);
    775 #endif
    776 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    777 		goto done;
    778 	}
    779 
    780 	/*
    781 	 * We can't use HW checksumming if we're about to
    782 	 * to fragment the packet.
    783 	 *
    784 	 * XXX Some hardware can do this.
    785 	 */
    786 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    787 		in_delayed_cksum(m);
    788 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    789 	}
    790 
    791 	/*
    792 	 * Too large for interface; fragment if possible.
    793 	 * Must be able to put at least 8 bytes per fragment.
    794 	 */
    795 	if (ntohs(ip->ip_off) & IP_DF) {
    796 		if (flags & IP_RETURNMTU)
    797 			*mtu_p = mtu;
    798 		error = EMSGSIZE;
    799 		ipstat.ips_cantfrag++;
    800 		goto bad;
    801 	}
    802 
    803 	error = ip_fragment(m, ifp, mtu);
    804 	if (error) {
    805 		m = NULL;
    806 		goto bad;
    807 	}
    808 
    809 	for (; m; m = m0) {
    810 		m0 = m->m_nextpkt;
    811 		m->m_nextpkt = 0;
    812 		if (error == 0) {
    813 #if IFA_STATS
    814 			/*
    815 			 * search for the source address structure to
    816 			 * maintain output statistics.
    817 			 */
    818 			INADDR_TO_IA(ip->ip_src, ia);
    819 			if (ia) {
    820 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    821 				    ntohs(ip->ip_len);
    822 			}
    823 #endif
    824 #ifdef IPSEC
    825 			/* clean ipsec history once it goes out of the node */
    826 			ipsec_delaux(m);
    827 #endif
    828 			KASSERT((m->m_pkthdr.csum_flags &
    829 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    830 			error = (*ifp->if_output)(ifp, m, sintosa(dst),
    831 			    ro->ro_rt);
    832 		} else
    833 			m_freem(m);
    834 	}
    835 
    836 	if (error == 0)
    837 		ipstat.ips_fragmented++;
    838 done:
    839 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
    840 		RTFREE(ro->ro_rt);
    841 		ro->ro_rt = 0;
    842 	}
    843 
    844 #ifdef IPSEC
    845 	if (sp != NULL) {
    846 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    847 			printf("DP ip_output call free SP:%p\n", sp));
    848 		key_freesp(sp);
    849 	}
    850 #endif /* IPSEC */
    851 #ifdef FAST_IPSEC
    852 	if (sp != NULL)
    853 		KEY_FREESP(&sp);
    854 #endif /* FAST_IPSEC */
    855 
    856 	return (error);
    857 bad:
    858 	m_freem(m);
    859 	goto done;
    860 }
    861 
    862 int
    863 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    864 {
    865 	struct ip *ip, *mhip;
    866 	struct mbuf *m0;
    867 	int len, hlen, off;
    868 	int mhlen, firstlen;
    869 	struct mbuf **mnext;
    870 	int sw_csum;
    871 	int fragments = 0;
    872 	int s;
    873 	int error = 0;
    874 
    875 	ip = mtod(m, struct ip *);
    876 	hlen = ip->ip_hl << 2;
    877 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    878 
    879 	len = (mtu - hlen) &~ 7;
    880 	if (len < 8) {
    881 		m_freem(m);
    882 		return (EMSGSIZE);
    883 	}
    884 
    885 	firstlen = len;
    886 	mnext = &m->m_nextpkt;
    887 
    888 	/*
    889 	 * Loop through length of segment after first fragment,
    890 	 * make new header and copy data of each part and link onto chain.
    891 	 */
    892 	m0 = m;
    893 	mhlen = sizeof (struct ip);
    894 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    895 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    896 		if (m == 0) {
    897 			error = ENOBUFS;
    898 			ipstat.ips_odropped++;
    899 			goto sendorfree;
    900 		}
    901 		MCLAIM(m, m0->m_owner);
    902 		*mnext = m;
    903 		mnext = &m->m_nextpkt;
    904 		m->m_data += max_linkhdr;
    905 		mhip = mtod(m, struct ip *);
    906 		*mhip = *ip;
    907 		/* we must inherit MCAST and BCAST flags */
    908 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    909 		if (hlen > sizeof (struct ip)) {
    910 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    911 			mhip->ip_hl = mhlen >> 2;
    912 		}
    913 		m->m_len = mhlen;
    914 		mhip->ip_off = ((off - hlen) >> 3) +
    915 		    (ntohs(ip->ip_off) & ~IP_MF);
    916 		if (ip->ip_off & htons(IP_MF))
    917 			mhip->ip_off |= IP_MF;
    918 		if (off + len >= ntohs(ip->ip_len))
    919 			len = ntohs(ip->ip_len) - off;
    920 		else
    921 			mhip->ip_off |= IP_MF;
    922 		HTONS(mhip->ip_off);
    923 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    924 		m->m_next = m_copy(m0, off, len);
    925 		if (m->m_next == 0) {
    926 			error = ENOBUFS;	/* ??? */
    927 			ipstat.ips_odropped++;
    928 			goto sendorfree;
    929 		}
    930 		m->m_pkthdr.len = mhlen + len;
    931 		m->m_pkthdr.rcvif = (struct ifnet *)0;
    932 		mhip->ip_sum = 0;
    933 		if (sw_csum & M_CSUM_IPv4) {
    934 			mhip->ip_sum = in_cksum(m, mhlen);
    935 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    936 		} else {
    937 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    938 		}
    939 		ipstat.ips_ofragments++;
    940 		fragments++;
    941 	}
    942 	/*
    943 	 * Update first fragment by trimming what's been copied out
    944 	 * and updating header, then send each fragment (in order).
    945 	 */
    946 	m = m0;
    947 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    948 	m->m_pkthdr.len = hlen + firstlen;
    949 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    950 	ip->ip_off |= htons(IP_MF);
    951 	ip->ip_sum = 0;
    952 	if (sw_csum & M_CSUM_IPv4) {
    953 		ip->ip_sum = in_cksum(m, hlen);
    954 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    955 	} else {
    956 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
    957 	}
    958 sendorfree:
    959 	/*
    960 	 * If there is no room for all the fragments, don't queue
    961 	 * any of them.
    962 	 */
    963 	s = splnet();
    964 	if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments)
    965 		error = ENOBUFS;
    966 	splx(s);
    967 	if (error) {
    968 		for (m = m0; m; m = m0) {
    969 			m0 = m->m_nextpkt;
    970 			m->m_nextpkt = NULL;
    971 			m_freem(m);
    972 		}
    973 	}
    974 	return (error);
    975 }
    976 
    977 /*
    978  * Process a delayed payload checksum calculation.
    979  */
    980 void
    981 in_delayed_cksum(struct mbuf *m)
    982 {
    983 	struct ip *ip;
    984 	u_int16_t csum, offset;
    985 
    986 	ip = mtod(m, struct ip *);
    987 	offset = ip->ip_hl << 2;
    988 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    989 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    990 		csum = 0xffff;
    991 
    992 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
    993 
    994 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
    995 		/* This happen when ip options were inserted
    996 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
    997 		    m->m_len, offset, ip->ip_p);
    998 		 */
    999 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1000 	} else
   1001 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1002 }
   1003 
   1004 /*
   1005  * Determine the maximum length of the options to be inserted;
   1006  * we would far rather allocate too much space rather than too little.
   1007  */
   1008 
   1009 u_int
   1010 ip_optlen(inp)
   1011 	struct inpcb *inp;
   1012 {
   1013 	struct mbuf *m = inp->inp_options;
   1014 
   1015 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1016 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1017 	else
   1018 		return 0;
   1019 }
   1020 
   1021 
   1022 /*
   1023  * Insert IP options into preformed packet.
   1024  * Adjust IP destination as required for IP source routing,
   1025  * as indicated by a non-zero in_addr at the start of the options.
   1026  */
   1027 static struct mbuf *
   1028 ip_insertoptions(m, opt, phlen)
   1029 	struct mbuf *m;
   1030 	struct mbuf *opt;
   1031 	int *phlen;
   1032 {
   1033 	struct ipoption *p = mtod(opt, struct ipoption *);
   1034 	struct mbuf *n;
   1035 	struct ip *ip = mtod(m, struct ip *);
   1036 	unsigned optlen;
   1037 
   1038 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1039 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1040 		return (m);		/* XXX should fail */
   1041 	if (!in_nullhost(p->ipopt_dst))
   1042 		ip->ip_dst = p->ipopt_dst;
   1043 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1044 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1045 		if (n == 0)
   1046 			return (m);
   1047 		MCLAIM(n, m->m_owner);
   1048 		M_COPY_PKTHDR(n, m);
   1049 		m_tag_delete_chain(m, NULL);
   1050 		m->m_flags &= ~M_PKTHDR;
   1051 		m->m_len -= sizeof(struct ip);
   1052 		m->m_data += sizeof(struct ip);
   1053 		n->m_next = m;
   1054 		m = n;
   1055 		m->m_len = optlen + sizeof(struct ip);
   1056 		m->m_data += max_linkhdr;
   1057 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1058 	} else {
   1059 		m->m_data -= optlen;
   1060 		m->m_len += optlen;
   1061 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1062 	}
   1063 	m->m_pkthdr.len += optlen;
   1064 	ip = mtod(m, struct ip *);
   1065 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1066 	*phlen = sizeof(struct ip) + optlen;
   1067 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1068 	return (m);
   1069 }
   1070 
   1071 /*
   1072  * Copy options from ip to jp,
   1073  * omitting those not copied during fragmentation.
   1074  */
   1075 int
   1076 ip_optcopy(ip, jp)
   1077 	struct ip *ip, *jp;
   1078 {
   1079 	u_char *cp, *dp;
   1080 	int opt, optlen, cnt;
   1081 
   1082 	cp = (u_char *)(ip + 1);
   1083 	dp = (u_char *)(jp + 1);
   1084 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1085 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1086 		opt = cp[0];
   1087 		if (opt == IPOPT_EOL)
   1088 			break;
   1089 		if (opt == IPOPT_NOP) {
   1090 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1091 			*dp++ = IPOPT_NOP;
   1092 			optlen = 1;
   1093 			continue;
   1094 		}
   1095 #ifdef DIAGNOSTIC
   1096 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1097 			panic("malformed IPv4 option passed to ip_optcopy");
   1098 #endif
   1099 		optlen = cp[IPOPT_OLEN];
   1100 #ifdef DIAGNOSTIC
   1101 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1102 			panic("malformed IPv4 option passed to ip_optcopy");
   1103 #endif
   1104 		/* bogus lengths should have been caught by ip_dooptions */
   1105 		if (optlen > cnt)
   1106 			optlen = cnt;
   1107 		if (IPOPT_COPIED(opt)) {
   1108 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1109 			dp += optlen;
   1110 		}
   1111 	}
   1112 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1113 		*dp++ = IPOPT_EOL;
   1114 	return (optlen);
   1115 }
   1116 
   1117 /*
   1118  * IP socket option processing.
   1119  */
   1120 int
   1121 ip_ctloutput(op, so, level, optname, mp)
   1122 	int op;
   1123 	struct socket *so;
   1124 	int level, optname;
   1125 	struct mbuf **mp;
   1126 {
   1127 	struct inpcb *inp = sotoinpcb(so);
   1128 	struct mbuf *m = *mp;
   1129 	int optval = 0;
   1130 	int error = 0;
   1131 #if defined(IPSEC) || defined(FAST_IPSEC)
   1132 	struct proc *p = curproc;	/*XXX*/
   1133 #endif
   1134 
   1135 	if (level != IPPROTO_IP) {
   1136 		error = EINVAL;
   1137 		if (op == PRCO_SETOPT && *mp)
   1138 			(void) m_free(*mp);
   1139 	} else switch (op) {
   1140 
   1141 	case PRCO_SETOPT:
   1142 		switch (optname) {
   1143 		case IP_OPTIONS:
   1144 #ifdef notyet
   1145 		case IP_RETOPTS:
   1146 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1147 #else
   1148 			return (ip_pcbopts(&inp->inp_options, m));
   1149 #endif
   1150 
   1151 		case IP_TOS:
   1152 		case IP_TTL:
   1153 		case IP_RECVOPTS:
   1154 		case IP_RECVRETOPTS:
   1155 		case IP_RECVDSTADDR:
   1156 		case IP_RECVIF:
   1157 			if (m == NULL || m->m_len != sizeof(int))
   1158 				error = EINVAL;
   1159 			else {
   1160 				optval = *mtod(m, int *);
   1161 				switch (optname) {
   1162 
   1163 				case IP_TOS:
   1164 					inp->inp_ip.ip_tos = optval;
   1165 					break;
   1166 
   1167 				case IP_TTL:
   1168 					inp->inp_ip.ip_ttl = optval;
   1169 					break;
   1170 #define	OPTSET(bit) \
   1171 	if (optval) \
   1172 		inp->inp_flags |= bit; \
   1173 	else \
   1174 		inp->inp_flags &= ~bit;
   1175 
   1176 				case IP_RECVOPTS:
   1177 					OPTSET(INP_RECVOPTS);
   1178 					break;
   1179 
   1180 				case IP_RECVRETOPTS:
   1181 					OPTSET(INP_RECVRETOPTS);
   1182 					break;
   1183 
   1184 				case IP_RECVDSTADDR:
   1185 					OPTSET(INP_RECVDSTADDR);
   1186 					break;
   1187 
   1188 				case IP_RECVIF:
   1189 					OPTSET(INP_RECVIF);
   1190 					break;
   1191 				}
   1192 			}
   1193 			break;
   1194 #undef OPTSET
   1195 
   1196 		case IP_MULTICAST_IF:
   1197 		case IP_MULTICAST_TTL:
   1198 		case IP_MULTICAST_LOOP:
   1199 		case IP_ADD_MEMBERSHIP:
   1200 		case IP_DROP_MEMBERSHIP:
   1201 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1202 			break;
   1203 
   1204 		case IP_PORTRANGE:
   1205 			if (m == 0 || m->m_len != sizeof(int))
   1206 				error = EINVAL;
   1207 			else {
   1208 				optval = *mtod(m, int *);
   1209 
   1210 				switch (optval) {
   1211 
   1212 				case IP_PORTRANGE_DEFAULT:
   1213 				case IP_PORTRANGE_HIGH:
   1214 					inp->inp_flags &= ~(INP_LOWPORT);
   1215 					break;
   1216 
   1217 				case IP_PORTRANGE_LOW:
   1218 					inp->inp_flags |= INP_LOWPORT;
   1219 					break;
   1220 
   1221 				default:
   1222 					error = EINVAL;
   1223 					break;
   1224 				}
   1225 			}
   1226 			break;
   1227 
   1228 #if defined(IPSEC) || defined(FAST_IPSEC)
   1229 		case IP_IPSEC_POLICY:
   1230 		{
   1231 			caddr_t req = NULL;
   1232 			size_t len = 0;
   1233 			int priv = 0;
   1234 
   1235 #ifdef __NetBSD__
   1236 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1237 				priv = 0;
   1238 			else
   1239 				priv = 1;
   1240 #else
   1241 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1242 #endif
   1243 			if (m) {
   1244 				req = mtod(m, caddr_t);
   1245 				len = m->m_len;
   1246 			}
   1247 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1248 			break;
   1249 		    }
   1250 #endif /*IPSEC*/
   1251 
   1252 		default:
   1253 			error = ENOPROTOOPT;
   1254 			break;
   1255 		}
   1256 		if (m)
   1257 			(void)m_free(m);
   1258 		break;
   1259 
   1260 	case PRCO_GETOPT:
   1261 		switch (optname) {
   1262 		case IP_OPTIONS:
   1263 		case IP_RETOPTS:
   1264 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1265 			MCLAIM(m, so->so_mowner);
   1266 			if (inp->inp_options) {
   1267 				m->m_len = inp->inp_options->m_len;
   1268 				bcopy(mtod(inp->inp_options, caddr_t),
   1269 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1270 			} else
   1271 				m->m_len = 0;
   1272 			break;
   1273 
   1274 		case IP_TOS:
   1275 		case IP_TTL:
   1276 		case IP_RECVOPTS:
   1277 		case IP_RECVRETOPTS:
   1278 		case IP_RECVDSTADDR:
   1279 		case IP_RECVIF:
   1280 		case IP_ERRORMTU:
   1281 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1282 			MCLAIM(m, so->so_mowner);
   1283 			m->m_len = sizeof(int);
   1284 			switch (optname) {
   1285 
   1286 			case IP_TOS:
   1287 				optval = inp->inp_ip.ip_tos;
   1288 				break;
   1289 
   1290 			case IP_TTL:
   1291 				optval = inp->inp_ip.ip_ttl;
   1292 				break;
   1293 
   1294 			case IP_ERRORMTU:
   1295 				optval = inp->inp_errormtu;
   1296 				break;
   1297 
   1298 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1299 
   1300 			case IP_RECVOPTS:
   1301 				optval = OPTBIT(INP_RECVOPTS);
   1302 				break;
   1303 
   1304 			case IP_RECVRETOPTS:
   1305 				optval = OPTBIT(INP_RECVRETOPTS);
   1306 				break;
   1307 
   1308 			case IP_RECVDSTADDR:
   1309 				optval = OPTBIT(INP_RECVDSTADDR);
   1310 				break;
   1311 
   1312 			case IP_RECVIF:
   1313 				optval = OPTBIT(INP_RECVIF);
   1314 				break;
   1315 			}
   1316 			*mtod(m, int *) = optval;
   1317 			break;
   1318 
   1319 #if defined(IPSEC) || defined(FAST_IPSEC)
   1320 		case IP_IPSEC_POLICY:
   1321 		{
   1322 			caddr_t req = NULL;
   1323 			size_t len = 0;
   1324 
   1325 			if (m) {
   1326 				req = mtod(m, caddr_t);
   1327 				len = m->m_len;
   1328 			}
   1329 			error = ipsec4_get_policy(inp, req, len, mp);
   1330 			break;
   1331 		}
   1332 #endif /*IPSEC*/
   1333 
   1334 		case IP_MULTICAST_IF:
   1335 		case IP_MULTICAST_TTL:
   1336 		case IP_MULTICAST_LOOP:
   1337 		case IP_ADD_MEMBERSHIP:
   1338 		case IP_DROP_MEMBERSHIP:
   1339 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1340 			if (*mp)
   1341 				MCLAIM(*mp, so->so_mowner);
   1342 			break;
   1343 
   1344 		case IP_PORTRANGE:
   1345 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1346 			MCLAIM(m, so->so_mowner);
   1347 			m->m_len = sizeof(int);
   1348 
   1349 			if (inp->inp_flags & INP_LOWPORT)
   1350 				optval = IP_PORTRANGE_LOW;
   1351 			else
   1352 				optval = IP_PORTRANGE_DEFAULT;
   1353 
   1354 			*mtod(m, int *) = optval;
   1355 			break;
   1356 
   1357 		default:
   1358 			error = ENOPROTOOPT;
   1359 			break;
   1360 		}
   1361 		break;
   1362 	}
   1363 	return (error);
   1364 }
   1365 
   1366 /*
   1367  * Set up IP options in pcb for insertion in output packets.
   1368  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1369  * with destination address if source routed.
   1370  */
   1371 int
   1372 #ifdef notyet
   1373 ip_pcbopts(optname, pcbopt, m)
   1374 	int optname;
   1375 #else
   1376 ip_pcbopts(pcbopt, m)
   1377 #endif
   1378 	struct mbuf **pcbopt;
   1379 	struct mbuf *m;
   1380 {
   1381 	int cnt, optlen;
   1382 	u_char *cp;
   1383 	u_char opt;
   1384 
   1385 	/* turn off any old options */
   1386 	if (*pcbopt)
   1387 		(void)m_free(*pcbopt);
   1388 	*pcbopt = 0;
   1389 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1390 		/*
   1391 		 * Only turning off any previous options.
   1392 		 */
   1393 		if (m)
   1394 			(void)m_free(m);
   1395 		return (0);
   1396 	}
   1397 
   1398 #ifndef	__vax__
   1399 	if (m->m_len % sizeof(int32_t))
   1400 		goto bad;
   1401 #endif
   1402 	/*
   1403 	 * IP first-hop destination address will be stored before
   1404 	 * actual options; move other options back
   1405 	 * and clear it when none present.
   1406 	 */
   1407 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1408 		goto bad;
   1409 	cnt = m->m_len;
   1410 	m->m_len += sizeof(struct in_addr);
   1411 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1412 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1413 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1414 
   1415 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1416 		opt = cp[IPOPT_OPTVAL];
   1417 		if (opt == IPOPT_EOL)
   1418 			break;
   1419 		if (opt == IPOPT_NOP)
   1420 			optlen = 1;
   1421 		else {
   1422 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1423 				goto bad;
   1424 			optlen = cp[IPOPT_OLEN];
   1425 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1426 				goto bad;
   1427 		}
   1428 		switch (opt) {
   1429 
   1430 		default:
   1431 			break;
   1432 
   1433 		case IPOPT_LSRR:
   1434 		case IPOPT_SSRR:
   1435 			/*
   1436 			 * user process specifies route as:
   1437 			 *	->A->B->C->D
   1438 			 * D must be our final destination (but we can't
   1439 			 * check that since we may not have connected yet).
   1440 			 * A is first hop destination, which doesn't appear in
   1441 			 * actual IP option, but is stored before the options.
   1442 			 */
   1443 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1444 				goto bad;
   1445 			m->m_len -= sizeof(struct in_addr);
   1446 			cnt -= sizeof(struct in_addr);
   1447 			optlen -= sizeof(struct in_addr);
   1448 			cp[IPOPT_OLEN] = optlen;
   1449 			/*
   1450 			 * Move first hop before start of options.
   1451 			 */
   1452 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1453 			    sizeof(struct in_addr));
   1454 			/*
   1455 			 * Then copy rest of options back
   1456 			 * to close up the deleted entry.
   1457 			 */
   1458 			memmove(&cp[IPOPT_OFFSET+1],
   1459 			    (caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
   1460 			    (unsigned)cnt + sizeof(struct in_addr));
   1461 			break;
   1462 		}
   1463 	}
   1464 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1465 		goto bad;
   1466 	*pcbopt = m;
   1467 	return (0);
   1468 
   1469 bad:
   1470 	(void)m_free(m);
   1471 	return (EINVAL);
   1472 }
   1473 
   1474 /*
   1475  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1476  */
   1477 static struct ifnet *
   1478 ip_multicast_if(a, ifindexp)
   1479 	struct in_addr *a;
   1480 	int *ifindexp;
   1481 {
   1482 	int ifindex;
   1483 	struct ifnet *ifp = NULL;
   1484 	struct in_ifaddr *ia;
   1485 
   1486 	if (ifindexp)
   1487 		*ifindexp = 0;
   1488 	if (ntohl(a->s_addr) >> 24 == 0) {
   1489 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1490 		if (ifindex < 0 || if_index < ifindex)
   1491 			return NULL;
   1492 		ifp = ifindex2ifnet[ifindex];
   1493 		if (ifindexp)
   1494 			*ifindexp = ifindex;
   1495 	} else {
   1496 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1497 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1498 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1499 				ifp = ia->ia_ifp;
   1500 				break;
   1501 			}
   1502 		}
   1503 	}
   1504 	return ifp;
   1505 }
   1506 
   1507 /*
   1508  * Set the IP multicast options in response to user setsockopt().
   1509  */
   1510 int
   1511 ip_setmoptions(optname, imop, m)
   1512 	int optname;
   1513 	struct ip_moptions **imop;
   1514 	struct mbuf *m;
   1515 {
   1516 	int error = 0;
   1517 	u_char loop;
   1518 	int i;
   1519 	struct in_addr addr;
   1520 	struct ip_mreq *mreq;
   1521 	struct ifnet *ifp;
   1522 	struct ip_moptions *imo = *imop;
   1523 	struct route ro;
   1524 	struct sockaddr_in *dst;
   1525 	int ifindex;
   1526 
   1527 	if (imo == NULL) {
   1528 		/*
   1529 		 * No multicast option buffer attached to the pcb;
   1530 		 * allocate one and initialize to default values.
   1531 		 */
   1532 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1533 		    M_WAITOK);
   1534 
   1535 		if (imo == NULL)
   1536 			return (ENOBUFS);
   1537 		*imop = imo;
   1538 		imo->imo_multicast_ifp = NULL;
   1539 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1540 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1541 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1542 		imo->imo_num_memberships = 0;
   1543 	}
   1544 
   1545 	switch (optname) {
   1546 
   1547 	case IP_MULTICAST_IF:
   1548 		/*
   1549 		 * Select the interface for outgoing multicast packets.
   1550 		 */
   1551 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1552 			error = EINVAL;
   1553 			break;
   1554 		}
   1555 		addr = *(mtod(m, struct in_addr *));
   1556 		/*
   1557 		 * INADDR_ANY is used to remove a previous selection.
   1558 		 * When no interface is selected, a default one is
   1559 		 * chosen every time a multicast packet is sent.
   1560 		 */
   1561 		if (in_nullhost(addr)) {
   1562 			imo->imo_multicast_ifp = NULL;
   1563 			break;
   1564 		}
   1565 		/*
   1566 		 * The selected interface is identified by its local
   1567 		 * IP address.  Find the interface and confirm that
   1568 		 * it supports multicasting.
   1569 		 */
   1570 		ifp = ip_multicast_if(&addr, &ifindex);
   1571 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1572 			error = EADDRNOTAVAIL;
   1573 			break;
   1574 		}
   1575 		imo->imo_multicast_ifp = ifp;
   1576 		if (ifindex)
   1577 			imo->imo_multicast_addr = addr;
   1578 		else
   1579 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1580 		break;
   1581 
   1582 	case IP_MULTICAST_TTL:
   1583 		/*
   1584 		 * Set the IP time-to-live for outgoing multicast packets.
   1585 		 */
   1586 		if (m == NULL || m->m_len != 1) {
   1587 			error = EINVAL;
   1588 			break;
   1589 		}
   1590 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
   1591 		break;
   1592 
   1593 	case IP_MULTICAST_LOOP:
   1594 		/*
   1595 		 * Set the loopback flag for outgoing multicast packets.
   1596 		 * Must be zero or one.
   1597 		 */
   1598 		if (m == NULL || m->m_len != 1 ||
   1599 		   (loop = *(mtod(m, u_char *))) > 1) {
   1600 			error = EINVAL;
   1601 			break;
   1602 		}
   1603 		imo->imo_multicast_loop = loop;
   1604 		break;
   1605 
   1606 	case IP_ADD_MEMBERSHIP:
   1607 		/*
   1608 		 * Add a multicast group membership.
   1609 		 * Group must be a valid IP multicast address.
   1610 		 */
   1611 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1612 			error = EINVAL;
   1613 			break;
   1614 		}
   1615 		mreq = mtod(m, struct ip_mreq *);
   1616 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1617 			error = EINVAL;
   1618 			break;
   1619 		}
   1620 		/*
   1621 		 * If no interface address was provided, use the interface of
   1622 		 * the route to the given multicast address.
   1623 		 */
   1624 		if (in_nullhost(mreq->imr_interface)) {
   1625 			bzero((caddr_t)&ro, sizeof(ro));
   1626 			ro.ro_rt = NULL;
   1627 			dst = satosin(&ro.ro_dst);
   1628 			dst->sin_len = sizeof(*dst);
   1629 			dst->sin_family = AF_INET;
   1630 			dst->sin_addr = mreq->imr_multiaddr;
   1631 			rtalloc(&ro);
   1632 			if (ro.ro_rt == NULL) {
   1633 				error = EADDRNOTAVAIL;
   1634 				break;
   1635 			}
   1636 			ifp = ro.ro_rt->rt_ifp;
   1637 			rtfree(ro.ro_rt);
   1638 		} else {
   1639 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1640 		}
   1641 		/*
   1642 		 * See if we found an interface, and confirm that it
   1643 		 * supports multicast.
   1644 		 */
   1645 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1646 			error = EADDRNOTAVAIL;
   1647 			break;
   1648 		}
   1649 		/*
   1650 		 * See if the membership already exists or if all the
   1651 		 * membership slots are full.
   1652 		 */
   1653 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1654 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1655 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1656 				      mreq->imr_multiaddr))
   1657 				break;
   1658 		}
   1659 		if (i < imo->imo_num_memberships) {
   1660 			error = EADDRINUSE;
   1661 			break;
   1662 		}
   1663 		if (i == IP_MAX_MEMBERSHIPS) {
   1664 			error = ETOOMANYREFS;
   1665 			break;
   1666 		}
   1667 		/*
   1668 		 * Everything looks good; add a new record to the multicast
   1669 		 * address list for the given interface.
   1670 		 */
   1671 		if ((imo->imo_membership[i] =
   1672 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1673 			error = ENOBUFS;
   1674 			break;
   1675 		}
   1676 		++imo->imo_num_memberships;
   1677 		break;
   1678 
   1679 	case IP_DROP_MEMBERSHIP:
   1680 		/*
   1681 		 * Drop a multicast group membership.
   1682 		 * Group must be a valid IP multicast address.
   1683 		 */
   1684 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1685 			error = EINVAL;
   1686 			break;
   1687 		}
   1688 		mreq = mtod(m, struct ip_mreq *);
   1689 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1690 			error = EINVAL;
   1691 			break;
   1692 		}
   1693 		/*
   1694 		 * If an interface address was specified, get a pointer
   1695 		 * to its ifnet structure.
   1696 		 */
   1697 		if (in_nullhost(mreq->imr_interface))
   1698 			ifp = NULL;
   1699 		else {
   1700 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1701 			if (ifp == NULL) {
   1702 				error = EADDRNOTAVAIL;
   1703 				break;
   1704 			}
   1705 		}
   1706 		/*
   1707 		 * Find the membership in the membership array.
   1708 		 */
   1709 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1710 			if ((ifp == NULL ||
   1711 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1712 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1713 				       mreq->imr_multiaddr))
   1714 				break;
   1715 		}
   1716 		if (i == imo->imo_num_memberships) {
   1717 			error = EADDRNOTAVAIL;
   1718 			break;
   1719 		}
   1720 		/*
   1721 		 * Give up the multicast address record to which the
   1722 		 * membership points.
   1723 		 */
   1724 		in_delmulti(imo->imo_membership[i]);
   1725 		/*
   1726 		 * Remove the gap in the membership array.
   1727 		 */
   1728 		for (++i; i < imo->imo_num_memberships; ++i)
   1729 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1730 		--imo->imo_num_memberships;
   1731 		break;
   1732 
   1733 	default:
   1734 		error = EOPNOTSUPP;
   1735 		break;
   1736 	}
   1737 
   1738 	/*
   1739 	 * If all options have default values, no need to keep the mbuf.
   1740 	 */
   1741 	if (imo->imo_multicast_ifp == NULL &&
   1742 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1743 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1744 	    imo->imo_num_memberships == 0) {
   1745 		free(*imop, M_IPMOPTS);
   1746 		*imop = NULL;
   1747 	}
   1748 
   1749 	return (error);
   1750 }
   1751 
   1752 /*
   1753  * Return the IP multicast options in response to user getsockopt().
   1754  */
   1755 int
   1756 ip_getmoptions(optname, imo, mp)
   1757 	int optname;
   1758 	struct ip_moptions *imo;
   1759 	struct mbuf **mp;
   1760 {
   1761 	u_char *ttl;
   1762 	u_char *loop;
   1763 	struct in_addr *addr;
   1764 	struct in_ifaddr *ia;
   1765 
   1766 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1767 
   1768 	switch (optname) {
   1769 
   1770 	case IP_MULTICAST_IF:
   1771 		addr = mtod(*mp, struct in_addr *);
   1772 		(*mp)->m_len = sizeof(struct in_addr);
   1773 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1774 			*addr = zeroin_addr;
   1775 		else if (imo->imo_multicast_addr.s_addr) {
   1776 			/* return the value user has set */
   1777 			*addr = imo->imo_multicast_addr;
   1778 		} else {
   1779 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1780 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1781 		}
   1782 		return (0);
   1783 
   1784 	case IP_MULTICAST_TTL:
   1785 		ttl = mtod(*mp, u_char *);
   1786 		(*mp)->m_len = 1;
   1787 		*ttl = imo ? imo->imo_multicast_ttl
   1788 			   : IP_DEFAULT_MULTICAST_TTL;
   1789 		return (0);
   1790 
   1791 	case IP_MULTICAST_LOOP:
   1792 		loop = mtod(*mp, u_char *);
   1793 		(*mp)->m_len = 1;
   1794 		*loop = imo ? imo->imo_multicast_loop
   1795 			    : IP_DEFAULT_MULTICAST_LOOP;
   1796 		return (0);
   1797 
   1798 	default:
   1799 		return (EOPNOTSUPP);
   1800 	}
   1801 }
   1802 
   1803 /*
   1804  * Discard the IP multicast options.
   1805  */
   1806 void
   1807 ip_freemoptions(imo)
   1808 	struct ip_moptions *imo;
   1809 {
   1810 	int i;
   1811 
   1812 	if (imo != NULL) {
   1813 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1814 			in_delmulti(imo->imo_membership[i]);
   1815 		free(imo, M_IPMOPTS);
   1816 	}
   1817 }
   1818 
   1819 /*
   1820  * Routine called from ip_output() to loop back a copy of an IP multicast
   1821  * packet to the input queue of a specified interface.  Note that this
   1822  * calls the output routine of the loopback "driver", but with an interface
   1823  * pointer that might NOT be &loif -- easier than replicating that code here.
   1824  */
   1825 static void
   1826 ip_mloopback(ifp, m, dst)
   1827 	struct ifnet *ifp;
   1828 	struct mbuf *m;
   1829 	struct sockaddr_in *dst;
   1830 {
   1831 	struct ip *ip;
   1832 	struct mbuf *copym;
   1833 
   1834 	copym = m_copy(m, 0, M_COPYALL);
   1835 	if (copym != NULL
   1836 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1837 		copym = m_pullup(copym, sizeof(struct ip));
   1838 	if (copym != NULL) {
   1839 		/*
   1840 		 * We don't bother to fragment if the IP length is greater
   1841 		 * than the interface's MTU.  Can this possibly matter?
   1842 		 */
   1843 		ip = mtod(copym, struct ip *);
   1844 
   1845 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1846 			in_delayed_cksum(copym);
   1847 			copym->m_pkthdr.csum_flags &=
   1848 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1849 		}
   1850 
   1851 		ip->ip_sum = 0;
   1852 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1853 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1854 	}
   1855 }
   1856