ip_output.c revision 1.128 1 /* $NetBSD: ip_output.c,v 1.128 2003/11/19 18:39:34 jonathan Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.128 2003/11/19 18:39:34 jonathan Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #endif /*IPSEC*/
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #include <netipsec/xform.h>
148 #endif /* FAST_IPSEC*/
149
150 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
151 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
152 static void ip_mloopback
153 __P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
154
155 #ifdef PFIL_HOOKS
156 extern struct pfil_head inet_pfil_hook; /* XXX */
157 #endif
158
159 /*
160 * IP output. The packet in mbuf chain m contains a skeletal IP
161 * header (with len, off, ttl, proto, tos, src, dst).
162 * The mbuf chain containing the packet will be freed.
163 * The mbuf opt, if present, will not be freed.
164 */
165 int
166 #if __STDC__
167 ip_output(struct mbuf *m0, ...)
168 #else
169 ip_output(m0, va_alist)
170 struct mbuf *m0;
171 va_dcl
172 #endif
173 {
174 struct ip *ip;
175 struct ifnet *ifp;
176 struct mbuf *m = m0;
177 int hlen = sizeof (struct ip);
178 int len, error = 0;
179 struct route iproute;
180 struct sockaddr_in *dst;
181 struct in_ifaddr *ia;
182 struct mbuf *opt;
183 struct route *ro;
184 int flags, sw_csum;
185 int *mtu_p;
186 u_long mtu;
187 struct ip_moptions *imo;
188 struct socket *so;
189 va_list ap;
190 #ifdef IPSEC
191 struct secpolicy *sp = NULL;
192 #endif /*IPSEC*/
193 #ifdef FAST_IPSEC
194 struct inpcb *inp;
195 struct m_tag *mtag;
196 struct secpolicy *sp = NULL;
197 struct tdb_ident *tdbi;
198 int s;
199 #endif
200 u_int16_t ip_len;
201
202 len = 0;
203 va_start(ap, m0);
204 opt = va_arg(ap, struct mbuf *);
205 ro = va_arg(ap, struct route *);
206 flags = va_arg(ap, int);
207 imo = va_arg(ap, struct ip_moptions *);
208 so = va_arg(ap, struct socket *);
209 if (flags & IP_RETURNMTU)
210 mtu_p = va_arg(ap, int *);
211 else
212 mtu_p = NULL;
213 va_end(ap);
214
215 MCLAIM(m, &ip_tx_mowner);
216 #ifdef FAST_IPSEC
217 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
218 inp = (struct inpcb *)so->so_pcb;
219 else
220 inp = NULL;
221 #endif /*IPSEC*/
222
223 #ifdef DIAGNOSTIC
224 if ((m->m_flags & M_PKTHDR) == 0)
225 panic("ip_output no HDR");
226 #endif
227 if (opt) {
228 m = ip_insertoptions(m, opt, &len);
229 if (len >= sizeof(struct ip))
230 hlen = len;
231 }
232 ip = mtod(m, struct ip *);
233 /*
234 * Fill in IP header.
235 */
236 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
237 ip->ip_v = IPVERSION;
238 ip->ip_off = htons(0);
239 ip->ip_id = ip_newid();
240 ip->ip_hl = hlen >> 2;
241 ipstat.ips_localout++;
242 } else {
243 hlen = ip->ip_hl << 2;
244 }
245 /*
246 * Route packet.
247 */
248 if (ro == 0) {
249 ro = &iproute;
250 bzero((caddr_t)ro, sizeof (*ro));
251 }
252 dst = satosin(&ro->ro_dst);
253 /*
254 * If there is a cached route,
255 * check that it is to the same destination
256 * and is still up. If not, free it and try again.
257 * The address family should also be checked in case of sharing the
258 * cache with IPv6.
259 */
260 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
261 dst->sin_family != AF_INET ||
262 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
263 RTFREE(ro->ro_rt);
264 ro->ro_rt = (struct rtentry *)0;
265 }
266 if (ro->ro_rt == 0) {
267 bzero(dst, sizeof(*dst));
268 dst->sin_family = AF_INET;
269 dst->sin_len = sizeof(*dst);
270 dst->sin_addr = ip->ip_dst;
271 }
272 /*
273 * If routing to interface only,
274 * short circuit routing lookup.
275 */
276 if (flags & IP_ROUTETOIF) {
277 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
278 ipstat.ips_noroute++;
279 error = ENETUNREACH;
280 goto bad;
281 }
282 ifp = ia->ia_ifp;
283 mtu = ifp->if_mtu;
284 ip->ip_ttl = 1;
285 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
286 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
287 imo != NULL && imo->imo_multicast_ifp != NULL) {
288 ifp = imo->imo_multicast_ifp;
289 mtu = ifp->if_mtu;
290 IFP_TO_IA(ifp, ia);
291 } else {
292 if (ro->ro_rt == 0)
293 rtalloc(ro);
294 if (ro->ro_rt == 0) {
295 ipstat.ips_noroute++;
296 error = EHOSTUNREACH;
297 goto bad;
298 }
299 ia = ifatoia(ro->ro_rt->rt_ifa);
300 ifp = ro->ro_rt->rt_ifp;
301 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
302 mtu = ifp->if_mtu;
303 ro->ro_rt->rt_use++;
304 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
305 dst = satosin(ro->ro_rt->rt_gateway);
306 }
307 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
308 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
309 struct in_multi *inm;
310
311 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
312 M_BCAST : M_MCAST;
313 /*
314 * IP destination address is multicast. Make sure "dst"
315 * still points to the address in "ro". (It may have been
316 * changed to point to a gateway address, above.)
317 */
318 dst = satosin(&ro->ro_dst);
319 /*
320 * See if the caller provided any multicast options
321 */
322 if (imo != NULL)
323 ip->ip_ttl = imo->imo_multicast_ttl;
324 else
325 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
326
327 /*
328 * if we don't know the outgoing ifp yet, we can't generate
329 * output
330 */
331 if (!ifp) {
332 ipstat.ips_noroute++;
333 error = ENETUNREACH;
334 goto bad;
335 }
336
337 /*
338 * If the packet is multicast or broadcast, confirm that
339 * the outgoing interface can transmit it.
340 */
341 if (((m->m_flags & M_MCAST) &&
342 (ifp->if_flags & IFF_MULTICAST) == 0) ||
343 ((m->m_flags & M_BCAST) &&
344 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
345 ipstat.ips_noroute++;
346 error = ENETUNREACH;
347 goto bad;
348 }
349 /*
350 * If source address not specified yet, use an address
351 * of outgoing interface.
352 */
353 if (in_nullhost(ip->ip_src)) {
354 struct in_ifaddr *ia;
355
356 IFP_TO_IA(ifp, ia);
357 if (!ia) {
358 error = EADDRNOTAVAIL;
359 goto bad;
360 }
361 ip->ip_src = ia->ia_addr.sin_addr;
362 }
363
364 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
365 if (inm != NULL &&
366 (imo == NULL || imo->imo_multicast_loop)) {
367 /*
368 * If we belong to the destination multicast group
369 * on the outgoing interface, and the caller did not
370 * forbid loopback, loop back a copy.
371 */
372 ip_mloopback(ifp, m, dst);
373 }
374 #ifdef MROUTING
375 else {
376 /*
377 * If we are acting as a multicast router, perform
378 * multicast forwarding as if the packet had just
379 * arrived on the interface to which we are about
380 * to send. The multicast forwarding function
381 * recursively calls this function, using the
382 * IP_FORWARDING flag to prevent infinite recursion.
383 *
384 * Multicasts that are looped back by ip_mloopback(),
385 * above, will be forwarded by the ip_input() routine,
386 * if necessary.
387 */
388 extern struct socket *ip_mrouter;
389
390 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
391 if (ip_mforward(m, ifp) != 0) {
392 m_freem(m);
393 goto done;
394 }
395 }
396 }
397 #endif
398 /*
399 * Multicasts with a time-to-live of zero may be looped-
400 * back, above, but must not be transmitted on a network.
401 * Also, multicasts addressed to the loopback interface
402 * are not sent -- the above call to ip_mloopback() will
403 * loop back a copy if this host actually belongs to the
404 * destination group on the loopback interface.
405 */
406 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
407 m_freem(m);
408 goto done;
409 }
410
411 goto sendit;
412 }
413 #ifndef notdef
414 /*
415 * If source address not specified yet, use address
416 * of outgoing interface.
417 */
418 if (in_nullhost(ip->ip_src))
419 ip->ip_src = ia->ia_addr.sin_addr;
420 #endif
421
422 /*
423 * packets with Class-D address as source are not valid per
424 * RFC 1112
425 */
426 if (IN_MULTICAST(ip->ip_src.s_addr)) {
427 ipstat.ips_odropped++;
428 error = EADDRNOTAVAIL;
429 goto bad;
430 }
431
432 /*
433 * Look for broadcast address and
434 * and verify user is allowed to send
435 * such a packet.
436 */
437 if (in_broadcast(dst->sin_addr, ifp)) {
438 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
439 error = EADDRNOTAVAIL;
440 goto bad;
441 }
442 if ((flags & IP_ALLOWBROADCAST) == 0) {
443 error = EACCES;
444 goto bad;
445 }
446 /* don't allow broadcast messages to be fragmented */
447 if (ntohs(ip->ip_len) > ifp->if_mtu) {
448 error = EMSGSIZE;
449 goto bad;
450 }
451 m->m_flags |= M_BCAST;
452 } else
453 m->m_flags &= ~M_BCAST;
454
455 sendit:
456 /*
457 * If we're doing Path MTU Discovery, we need to set DF unless
458 * the route's MTU is locked.
459 */
460 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
461 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
462 ip->ip_off |= htons(IP_DF);
463
464 /* Remember the current ip_len */
465 ip_len = ntohs(ip->ip_len);
466
467 #ifdef IPSEC
468 /* get SP for this packet */
469 if (so == NULL)
470 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
471 flags, &error);
472 else
473 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
474
475 if (sp == NULL) {
476 ipsecstat.out_inval++;
477 goto bad;
478 }
479
480 error = 0;
481
482 /* check policy */
483 switch (sp->policy) {
484 case IPSEC_POLICY_DISCARD:
485 /*
486 * This packet is just discarded.
487 */
488 ipsecstat.out_polvio++;
489 goto bad;
490
491 case IPSEC_POLICY_BYPASS:
492 case IPSEC_POLICY_NONE:
493 /* no need to do IPsec. */
494 goto skip_ipsec;
495
496 case IPSEC_POLICY_IPSEC:
497 if (sp->req == NULL) {
498 /* XXX should be panic ? */
499 printf("ip_output: No IPsec request specified.\n");
500 error = EINVAL;
501 goto bad;
502 }
503 break;
504
505 case IPSEC_POLICY_ENTRUST:
506 default:
507 printf("ip_output: Invalid policy found. %d\n", sp->policy);
508 }
509
510 /*
511 * ipsec4_output() expects ip_len and ip_off in network
512 * order. They have been set to network order above.
513 */
514
515 {
516 struct ipsec_output_state state;
517 bzero(&state, sizeof(state));
518 state.m = m;
519 if (flags & IP_ROUTETOIF) {
520 state.ro = &iproute;
521 bzero(&iproute, sizeof(iproute));
522 } else
523 state.ro = ro;
524 state.dst = (struct sockaddr *)dst;
525
526 /*
527 * We can't defer the checksum of payload data if
528 * we're about to encrypt/authenticate it.
529 *
530 * XXX When we support crypto offloading functions of
531 * XXX network interfaces, we need to reconsider this,
532 * XXX since it's likely that they'll support checksumming,
533 * XXX as well.
534 */
535 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
536 in_delayed_cksum(m);
537 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
538 }
539
540 error = ipsec4_output(&state, sp, flags);
541
542 m = state.m;
543 if (flags & IP_ROUTETOIF) {
544 /*
545 * if we have tunnel mode SA, we may need to ignore
546 * IP_ROUTETOIF.
547 */
548 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
549 flags &= ~IP_ROUTETOIF;
550 ro = state.ro;
551 }
552 } else
553 ro = state.ro;
554 dst = (struct sockaddr_in *)state.dst;
555 if (error) {
556 /* mbuf is already reclaimed in ipsec4_output. */
557 m0 = NULL;
558 switch (error) {
559 case EHOSTUNREACH:
560 case ENETUNREACH:
561 case EMSGSIZE:
562 case ENOBUFS:
563 case ENOMEM:
564 break;
565 default:
566 printf("ip4_output (ipsec): error code %d\n", error);
567 /*fall through*/
568 case ENOENT:
569 /* don't show these error codes to the user */
570 error = 0;
571 break;
572 }
573 goto bad;
574 }
575
576 /* be sure to update variables that are affected by ipsec4_output() */
577 ip = mtod(m, struct ip *);
578 hlen = ip->ip_hl << 2;
579 ip_len = ntohs(ip->ip_len);
580
581 if (ro->ro_rt == NULL) {
582 if ((flags & IP_ROUTETOIF) == 0) {
583 printf("ip_output: "
584 "can't update route after IPsec processing\n");
585 error = EHOSTUNREACH; /*XXX*/
586 goto bad;
587 }
588 } else {
589 /* nobody uses ia beyond here */
590 if (state.encap)
591 ifp = ro->ro_rt->rt_ifp;
592 }
593 }
594 skip_ipsec:
595 #endif /*IPSEC*/
596 #ifdef FAST_IPSEC
597 /*
598 * Check the security policy (SP) for the packet and, if
599 * required, do IPsec-related processing. There are two
600 * cases here; the first time a packet is sent through
601 * it will be untagged and handled by ipsec4_checkpolicy.
602 * If the packet is resubmitted to ip_output (e.g. after
603 * AH, ESP, etc. processing), there will be a tag to bypass
604 * the lookup and related policy checking.
605 */
606 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
607 s = splsoftnet();
608 if (mtag != NULL) {
609 tdbi = (struct tdb_ident *)(mtag + 1);
610 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
611 if (sp == NULL)
612 error = -EINVAL; /* force silent drop */
613 m_tag_delete(m, mtag);
614 } else {
615 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
616 &error, inp);
617 }
618 /*
619 * There are four return cases:
620 * sp != NULL apply IPsec policy
621 * sp == NULL, error == 0 no IPsec handling needed
622 * sp == NULL, error == -EINVAL discard packet w/o error
623 * sp == NULL, error != 0 discard packet, report error
624 */
625 if (sp != NULL) {
626 /* Loop detection, check if ipsec processing already done */
627 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
628 for (mtag = m_tag_first(m); mtag != NULL;
629 mtag = m_tag_next(m, mtag)) {
630 #ifdef MTAG_ABI_COMPAT
631 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
632 continue;
633 #endif
634 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
635 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
636 continue;
637 /*
638 * Check if policy has an SA associated with it.
639 * This can happen when an SP has yet to acquire
640 * an SA; e.g. on first reference. If it occurs,
641 * then we let ipsec4_process_packet do its thing.
642 */
643 if (sp->req->sav == NULL)
644 break;
645 tdbi = (struct tdb_ident *)(mtag + 1);
646 if (tdbi->spi == sp->req->sav->spi &&
647 tdbi->proto == sp->req->sav->sah->saidx.proto &&
648 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
649 sizeof (union sockaddr_union)) == 0) {
650 /*
651 * No IPsec processing is needed, free
652 * reference to SP.
653 *
654 * NB: null pointer to avoid free at
655 * done: below.
656 */
657 KEY_FREESP(&sp), sp = NULL;
658 splx(s);
659 goto spd_done;
660 }
661 }
662
663 /*
664 * Do delayed checksums now because we send before
665 * this is done in the normal processing path.
666 */
667 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
668 in_delayed_cksum(m);
669 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
670 }
671
672 #ifdef __FreeBSD__
673 ip->ip_len = htons(ip->ip_len);
674 ip->ip_off = htons(ip->ip_off);
675 #endif
676
677 /* NB: callee frees mbuf */
678 error = ipsec4_process_packet(m, sp->req, flags, 0);
679 /*
680 * Preserve KAME behaviour: ENOENT can be returned
681 * when an SA acquire is in progress. Don't propagate
682 * this to user-level; it confuses applications.
683 *
684 * XXX this will go away when the SADB is redone.
685 */
686 if (error == ENOENT)
687 error = 0;
688 splx(s);
689 goto done;
690 } else {
691 splx(s);
692
693 if (error != 0) {
694 /*
695 * Hack: -EINVAL is used to signal that a packet
696 * should be silently discarded. This is typically
697 * because we asked key management for an SA and
698 * it was delayed (e.g. kicked up to IKE).
699 */
700 if (error == -EINVAL)
701 error = 0;
702 goto bad;
703 } else {
704 /* No IPsec processing for this packet. */
705 }
706 #ifdef notyet
707 /*
708 * If deferred crypto processing is needed, check that
709 * the interface supports it.
710 */
711 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
712 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
713 /* notify IPsec to do its own crypto */
714 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
715 error = EHOSTUNREACH;
716 goto bad;
717 }
718 #endif
719 }
720 spd_done:
721 #endif /* FAST_IPSEC */
722
723 #ifdef PFIL_HOOKS
724 /*
725 * Run through list of hooks for output packets.
726 */
727 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
728 goto done;
729 if (m == NULL)
730 goto done;
731
732 ip = mtod(m, struct ip *);
733 hlen = ip->ip_hl << 2;
734 #endif /* PFIL_HOOKS */
735
736 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
737 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
738 /*
739 * If small enough for mtu of path, can just send directly.
740 */
741 if (ip_len <= mtu) {
742 #if IFA_STATS
743 /*
744 * search for the source address structure to
745 * maintain output statistics.
746 */
747 INADDR_TO_IA(ip->ip_src, ia);
748 if (ia)
749 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
750 #endif
751 /*
752 * Always initialize the sum to 0! Some HW assisted
753 * checksumming requires this.
754 */
755 ip->ip_sum = 0;
756
757 /*
758 * Perform any checksums that the hardware can't do
759 * for us.
760 *
761 * XXX Does any hardware require the {th,uh}_sum
762 * XXX fields to be 0?
763 */
764 if (sw_csum & M_CSUM_IPv4) {
765 ip->ip_sum = in_cksum(m, hlen);
766 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
767 }
768 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
769 in_delayed_cksum(m);
770 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
771 }
772
773 #ifdef IPSEC
774 /* clean ipsec history once it goes out of the node */
775 ipsec_delaux(m);
776 #endif
777 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
778 goto done;
779 }
780
781 /*
782 * We can't use HW checksumming if we're about to
783 * to fragment the packet.
784 *
785 * XXX Some hardware can do this.
786 */
787 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
788 in_delayed_cksum(m);
789 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
790 }
791
792 /*
793 * Too large for interface; fragment if possible.
794 * Must be able to put at least 8 bytes per fragment.
795 */
796 if (ntohs(ip->ip_off) & IP_DF) {
797 if (flags & IP_RETURNMTU)
798 *mtu_p = mtu;
799 error = EMSGSIZE;
800 ipstat.ips_cantfrag++;
801 goto bad;
802 }
803
804 error = ip_fragment(m, ifp, mtu);
805 if (error) {
806 m = NULL;
807 goto bad;
808 }
809
810 for (; m; m = m0) {
811 m0 = m->m_nextpkt;
812 m->m_nextpkt = 0;
813 if (error == 0) {
814 #if IFA_STATS
815 /*
816 * search for the source address structure to
817 * maintain output statistics.
818 */
819 INADDR_TO_IA(ip->ip_src, ia);
820 if (ia) {
821 ia->ia_ifa.ifa_data.ifad_outbytes +=
822 ntohs(ip->ip_len);
823 }
824 #endif
825 #ifdef IPSEC
826 /* clean ipsec history once it goes out of the node */
827 ipsec_delaux(m);
828 #endif
829 KASSERT((m->m_pkthdr.csum_flags &
830 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
831 error = (*ifp->if_output)(ifp, m, sintosa(dst),
832 ro->ro_rt);
833 } else
834 m_freem(m);
835 }
836
837 if (error == 0)
838 ipstat.ips_fragmented++;
839 done:
840 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
841 RTFREE(ro->ro_rt);
842 ro->ro_rt = 0;
843 }
844
845 #ifdef IPSEC
846 if (sp != NULL) {
847 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
848 printf("DP ip_output call free SP:%p\n", sp));
849 key_freesp(sp);
850 }
851 #endif /* IPSEC */
852 #ifdef FAST_IPSEC
853 if (sp != NULL)
854 KEY_FREESP(&sp);
855 #endif /* FAST_IPSEC */
856
857 return (error);
858 bad:
859 m_freem(m);
860 goto done;
861 }
862
863 int
864 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
865 {
866 struct ip *ip, *mhip;
867 struct mbuf *m0;
868 int len, hlen, off;
869 int mhlen, firstlen;
870 struct mbuf **mnext;
871 int sw_csum;
872 int fragments = 0;
873 int s;
874 int error = 0;
875
876 ip = mtod(m, struct ip *);
877 hlen = ip->ip_hl << 2;
878 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
879
880 len = (mtu - hlen) &~ 7;
881 if (len < 8) {
882 m_freem(m);
883 return (EMSGSIZE);
884 }
885
886 firstlen = len;
887 mnext = &m->m_nextpkt;
888
889 /*
890 * Loop through length of segment after first fragment,
891 * make new header and copy data of each part and link onto chain.
892 */
893 m0 = m;
894 mhlen = sizeof (struct ip);
895 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
896 MGETHDR(m, M_DONTWAIT, MT_HEADER);
897 if (m == 0) {
898 error = ENOBUFS;
899 ipstat.ips_odropped++;
900 goto sendorfree;
901 }
902 MCLAIM(m, m0->m_owner);
903 *mnext = m;
904 mnext = &m->m_nextpkt;
905 m->m_data += max_linkhdr;
906 mhip = mtod(m, struct ip *);
907 *mhip = *ip;
908 /* we must inherit MCAST and BCAST flags */
909 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
910 if (hlen > sizeof (struct ip)) {
911 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
912 mhip->ip_hl = mhlen >> 2;
913 }
914 m->m_len = mhlen;
915 mhip->ip_off = ((off - hlen) >> 3) +
916 (ntohs(ip->ip_off) & ~IP_MF);
917 if (ip->ip_off & htons(IP_MF))
918 mhip->ip_off |= IP_MF;
919 if (off + len >= ntohs(ip->ip_len))
920 len = ntohs(ip->ip_len) - off;
921 else
922 mhip->ip_off |= IP_MF;
923 HTONS(mhip->ip_off);
924 mhip->ip_len = htons((u_int16_t)(len + mhlen));
925 m->m_next = m_copy(m0, off, len);
926 if (m->m_next == 0) {
927 error = ENOBUFS; /* ??? */
928 ipstat.ips_odropped++;
929 goto sendorfree;
930 }
931 m->m_pkthdr.len = mhlen + len;
932 m->m_pkthdr.rcvif = (struct ifnet *)0;
933 mhip->ip_sum = 0;
934 if (sw_csum & M_CSUM_IPv4) {
935 mhip->ip_sum = in_cksum(m, mhlen);
936 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
937 } else {
938 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
939 }
940 ipstat.ips_ofragments++;
941 fragments++;
942 }
943 /*
944 * Update first fragment by trimming what's been copied out
945 * and updating header, then send each fragment (in order).
946 */
947 m = m0;
948 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
949 m->m_pkthdr.len = hlen + firstlen;
950 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
951 ip->ip_off |= htons(IP_MF);
952 ip->ip_sum = 0;
953 if (sw_csum & M_CSUM_IPv4) {
954 ip->ip_sum = in_cksum(m, hlen);
955 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
956 } else {
957 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
958 }
959 sendorfree:
960 /*
961 * If there is no room for all the fragments, don't queue
962 * any of them.
963 */
964 s = splnet();
965 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
966 error == 0) {
967 error = ENOBUFS;
968 ipstat.ips_odropped++;
969 IFQ_INC_DROPS(&ifp->if_snd);
970 }
971 splx(s);
972 if (error) {
973 for (m = m0; m; m = m0) {
974 m0 = m->m_nextpkt;
975 m->m_nextpkt = NULL;
976 m_freem(m);
977 }
978 }
979 return (error);
980 }
981
982 /*
983 * Process a delayed payload checksum calculation.
984 */
985 void
986 in_delayed_cksum(struct mbuf *m)
987 {
988 struct ip *ip;
989 u_int16_t csum, offset;
990
991 ip = mtod(m, struct ip *);
992 offset = ip->ip_hl << 2;
993 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
994 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
995 csum = 0xffff;
996
997 offset += m->m_pkthdr.csum_data; /* checksum offset */
998
999 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1000 /* This happen when ip options were inserted
1001 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1002 m->m_len, offset, ip->ip_p);
1003 */
1004 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1005 } else
1006 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1007 }
1008
1009 /*
1010 * Determine the maximum length of the options to be inserted;
1011 * we would far rather allocate too much space rather than too little.
1012 */
1013
1014 u_int
1015 ip_optlen(inp)
1016 struct inpcb *inp;
1017 {
1018 struct mbuf *m = inp->inp_options;
1019
1020 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1021 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1022 else
1023 return 0;
1024 }
1025
1026
1027 /*
1028 * Insert IP options into preformed packet.
1029 * Adjust IP destination as required for IP source routing,
1030 * as indicated by a non-zero in_addr at the start of the options.
1031 */
1032 static struct mbuf *
1033 ip_insertoptions(m, opt, phlen)
1034 struct mbuf *m;
1035 struct mbuf *opt;
1036 int *phlen;
1037 {
1038 struct ipoption *p = mtod(opt, struct ipoption *);
1039 struct mbuf *n;
1040 struct ip *ip = mtod(m, struct ip *);
1041 unsigned optlen;
1042
1043 optlen = opt->m_len - sizeof(p->ipopt_dst);
1044 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1045 return (m); /* XXX should fail */
1046 if (!in_nullhost(p->ipopt_dst))
1047 ip->ip_dst = p->ipopt_dst;
1048 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1049 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1050 if (n == 0)
1051 return (m);
1052 MCLAIM(n, m->m_owner);
1053 M_COPY_PKTHDR(n, m);
1054 m_tag_delete_chain(m, NULL);
1055 m->m_flags &= ~M_PKTHDR;
1056 m->m_len -= sizeof(struct ip);
1057 m->m_data += sizeof(struct ip);
1058 n->m_next = m;
1059 m = n;
1060 m->m_len = optlen + sizeof(struct ip);
1061 m->m_data += max_linkhdr;
1062 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1063 } else {
1064 m->m_data -= optlen;
1065 m->m_len += optlen;
1066 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1067 }
1068 m->m_pkthdr.len += optlen;
1069 ip = mtod(m, struct ip *);
1070 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1071 *phlen = sizeof(struct ip) + optlen;
1072 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1073 return (m);
1074 }
1075
1076 /*
1077 * Copy options from ip to jp,
1078 * omitting those not copied during fragmentation.
1079 */
1080 int
1081 ip_optcopy(ip, jp)
1082 struct ip *ip, *jp;
1083 {
1084 u_char *cp, *dp;
1085 int opt, optlen, cnt;
1086
1087 cp = (u_char *)(ip + 1);
1088 dp = (u_char *)(jp + 1);
1089 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1090 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1091 opt = cp[0];
1092 if (opt == IPOPT_EOL)
1093 break;
1094 if (opt == IPOPT_NOP) {
1095 /* Preserve for IP mcast tunnel's LSRR alignment. */
1096 *dp++ = IPOPT_NOP;
1097 optlen = 1;
1098 continue;
1099 }
1100 #ifdef DIAGNOSTIC
1101 if (cnt < IPOPT_OLEN + sizeof(*cp))
1102 panic("malformed IPv4 option passed to ip_optcopy");
1103 #endif
1104 optlen = cp[IPOPT_OLEN];
1105 #ifdef DIAGNOSTIC
1106 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1107 panic("malformed IPv4 option passed to ip_optcopy");
1108 #endif
1109 /* bogus lengths should have been caught by ip_dooptions */
1110 if (optlen > cnt)
1111 optlen = cnt;
1112 if (IPOPT_COPIED(opt)) {
1113 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1114 dp += optlen;
1115 }
1116 }
1117 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1118 *dp++ = IPOPT_EOL;
1119 return (optlen);
1120 }
1121
1122 /*
1123 * IP socket option processing.
1124 */
1125 int
1126 ip_ctloutput(op, so, level, optname, mp)
1127 int op;
1128 struct socket *so;
1129 int level, optname;
1130 struct mbuf **mp;
1131 {
1132 struct inpcb *inp = sotoinpcb(so);
1133 struct mbuf *m = *mp;
1134 int optval = 0;
1135 int error = 0;
1136 #if defined(IPSEC) || defined(FAST_IPSEC)
1137 struct proc *p = curproc; /*XXX*/
1138 #endif
1139
1140 if (level != IPPROTO_IP) {
1141 error = EINVAL;
1142 if (op == PRCO_SETOPT && *mp)
1143 (void) m_free(*mp);
1144 } else switch (op) {
1145
1146 case PRCO_SETOPT:
1147 switch (optname) {
1148 case IP_OPTIONS:
1149 #ifdef notyet
1150 case IP_RETOPTS:
1151 return (ip_pcbopts(optname, &inp->inp_options, m));
1152 #else
1153 return (ip_pcbopts(&inp->inp_options, m));
1154 #endif
1155
1156 case IP_TOS:
1157 case IP_TTL:
1158 case IP_RECVOPTS:
1159 case IP_RECVRETOPTS:
1160 case IP_RECVDSTADDR:
1161 case IP_RECVIF:
1162 if (m == NULL || m->m_len != sizeof(int))
1163 error = EINVAL;
1164 else {
1165 optval = *mtod(m, int *);
1166 switch (optname) {
1167
1168 case IP_TOS:
1169 inp->inp_ip.ip_tos = optval;
1170 break;
1171
1172 case IP_TTL:
1173 inp->inp_ip.ip_ttl = optval;
1174 break;
1175 #define OPTSET(bit) \
1176 if (optval) \
1177 inp->inp_flags |= bit; \
1178 else \
1179 inp->inp_flags &= ~bit;
1180
1181 case IP_RECVOPTS:
1182 OPTSET(INP_RECVOPTS);
1183 break;
1184
1185 case IP_RECVRETOPTS:
1186 OPTSET(INP_RECVRETOPTS);
1187 break;
1188
1189 case IP_RECVDSTADDR:
1190 OPTSET(INP_RECVDSTADDR);
1191 break;
1192
1193 case IP_RECVIF:
1194 OPTSET(INP_RECVIF);
1195 break;
1196 }
1197 }
1198 break;
1199 #undef OPTSET
1200
1201 case IP_MULTICAST_IF:
1202 case IP_MULTICAST_TTL:
1203 case IP_MULTICAST_LOOP:
1204 case IP_ADD_MEMBERSHIP:
1205 case IP_DROP_MEMBERSHIP:
1206 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1207 break;
1208
1209 case IP_PORTRANGE:
1210 if (m == 0 || m->m_len != sizeof(int))
1211 error = EINVAL;
1212 else {
1213 optval = *mtod(m, int *);
1214
1215 switch (optval) {
1216
1217 case IP_PORTRANGE_DEFAULT:
1218 case IP_PORTRANGE_HIGH:
1219 inp->inp_flags &= ~(INP_LOWPORT);
1220 break;
1221
1222 case IP_PORTRANGE_LOW:
1223 inp->inp_flags |= INP_LOWPORT;
1224 break;
1225
1226 default:
1227 error = EINVAL;
1228 break;
1229 }
1230 }
1231 break;
1232
1233 #if defined(IPSEC) || defined(FAST_IPSEC)
1234 case IP_IPSEC_POLICY:
1235 {
1236 caddr_t req = NULL;
1237 size_t len = 0;
1238 int priv = 0;
1239
1240 #ifdef __NetBSD__
1241 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1242 priv = 0;
1243 else
1244 priv = 1;
1245 #else
1246 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1247 #endif
1248 if (m) {
1249 req = mtod(m, caddr_t);
1250 len = m->m_len;
1251 }
1252 error = ipsec4_set_policy(inp, optname, req, len, priv);
1253 break;
1254 }
1255 #endif /*IPSEC*/
1256
1257 default:
1258 error = ENOPROTOOPT;
1259 break;
1260 }
1261 if (m)
1262 (void)m_free(m);
1263 break;
1264
1265 case PRCO_GETOPT:
1266 switch (optname) {
1267 case IP_OPTIONS:
1268 case IP_RETOPTS:
1269 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1270 MCLAIM(m, so->so_mowner);
1271 if (inp->inp_options) {
1272 m->m_len = inp->inp_options->m_len;
1273 bcopy(mtod(inp->inp_options, caddr_t),
1274 mtod(m, caddr_t), (unsigned)m->m_len);
1275 } else
1276 m->m_len = 0;
1277 break;
1278
1279 case IP_TOS:
1280 case IP_TTL:
1281 case IP_RECVOPTS:
1282 case IP_RECVRETOPTS:
1283 case IP_RECVDSTADDR:
1284 case IP_RECVIF:
1285 case IP_ERRORMTU:
1286 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1287 MCLAIM(m, so->so_mowner);
1288 m->m_len = sizeof(int);
1289 switch (optname) {
1290
1291 case IP_TOS:
1292 optval = inp->inp_ip.ip_tos;
1293 break;
1294
1295 case IP_TTL:
1296 optval = inp->inp_ip.ip_ttl;
1297 break;
1298
1299 case IP_ERRORMTU:
1300 optval = inp->inp_errormtu;
1301 break;
1302
1303 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1304
1305 case IP_RECVOPTS:
1306 optval = OPTBIT(INP_RECVOPTS);
1307 break;
1308
1309 case IP_RECVRETOPTS:
1310 optval = OPTBIT(INP_RECVRETOPTS);
1311 break;
1312
1313 case IP_RECVDSTADDR:
1314 optval = OPTBIT(INP_RECVDSTADDR);
1315 break;
1316
1317 case IP_RECVIF:
1318 optval = OPTBIT(INP_RECVIF);
1319 break;
1320 }
1321 *mtod(m, int *) = optval;
1322 break;
1323
1324 #if defined(IPSEC) || defined(FAST_IPSEC)
1325 case IP_IPSEC_POLICY:
1326 {
1327 caddr_t req = NULL;
1328 size_t len = 0;
1329
1330 if (m) {
1331 req = mtod(m, caddr_t);
1332 len = m->m_len;
1333 }
1334 error = ipsec4_get_policy(inp, req, len, mp);
1335 break;
1336 }
1337 #endif /*IPSEC*/
1338
1339 case IP_MULTICAST_IF:
1340 case IP_MULTICAST_TTL:
1341 case IP_MULTICAST_LOOP:
1342 case IP_ADD_MEMBERSHIP:
1343 case IP_DROP_MEMBERSHIP:
1344 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1345 if (*mp)
1346 MCLAIM(*mp, so->so_mowner);
1347 break;
1348
1349 case IP_PORTRANGE:
1350 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1351 MCLAIM(m, so->so_mowner);
1352 m->m_len = sizeof(int);
1353
1354 if (inp->inp_flags & INP_LOWPORT)
1355 optval = IP_PORTRANGE_LOW;
1356 else
1357 optval = IP_PORTRANGE_DEFAULT;
1358
1359 *mtod(m, int *) = optval;
1360 break;
1361
1362 default:
1363 error = ENOPROTOOPT;
1364 break;
1365 }
1366 break;
1367 }
1368 return (error);
1369 }
1370
1371 /*
1372 * Set up IP options in pcb for insertion in output packets.
1373 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1374 * with destination address if source routed.
1375 */
1376 int
1377 #ifdef notyet
1378 ip_pcbopts(optname, pcbopt, m)
1379 int optname;
1380 #else
1381 ip_pcbopts(pcbopt, m)
1382 #endif
1383 struct mbuf **pcbopt;
1384 struct mbuf *m;
1385 {
1386 int cnt, optlen;
1387 u_char *cp;
1388 u_char opt;
1389
1390 /* turn off any old options */
1391 if (*pcbopt)
1392 (void)m_free(*pcbopt);
1393 *pcbopt = 0;
1394 if (m == (struct mbuf *)0 || m->m_len == 0) {
1395 /*
1396 * Only turning off any previous options.
1397 */
1398 if (m)
1399 (void)m_free(m);
1400 return (0);
1401 }
1402
1403 #ifndef __vax__
1404 if (m->m_len % sizeof(int32_t))
1405 goto bad;
1406 #endif
1407 /*
1408 * IP first-hop destination address will be stored before
1409 * actual options; move other options back
1410 * and clear it when none present.
1411 */
1412 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1413 goto bad;
1414 cnt = m->m_len;
1415 m->m_len += sizeof(struct in_addr);
1416 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1417 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1418 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1419
1420 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1421 opt = cp[IPOPT_OPTVAL];
1422 if (opt == IPOPT_EOL)
1423 break;
1424 if (opt == IPOPT_NOP)
1425 optlen = 1;
1426 else {
1427 if (cnt < IPOPT_OLEN + sizeof(*cp))
1428 goto bad;
1429 optlen = cp[IPOPT_OLEN];
1430 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1431 goto bad;
1432 }
1433 switch (opt) {
1434
1435 default:
1436 break;
1437
1438 case IPOPT_LSRR:
1439 case IPOPT_SSRR:
1440 /*
1441 * user process specifies route as:
1442 * ->A->B->C->D
1443 * D must be our final destination (but we can't
1444 * check that since we may not have connected yet).
1445 * A is first hop destination, which doesn't appear in
1446 * actual IP option, but is stored before the options.
1447 */
1448 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1449 goto bad;
1450 m->m_len -= sizeof(struct in_addr);
1451 cnt -= sizeof(struct in_addr);
1452 optlen -= sizeof(struct in_addr);
1453 cp[IPOPT_OLEN] = optlen;
1454 /*
1455 * Move first hop before start of options.
1456 */
1457 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1458 sizeof(struct in_addr));
1459 /*
1460 * Then copy rest of options back
1461 * to close up the deleted entry.
1462 */
1463 memmove(&cp[IPOPT_OFFSET+1],
1464 (caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1465 (unsigned)cnt + sizeof(struct in_addr));
1466 break;
1467 }
1468 }
1469 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1470 goto bad;
1471 *pcbopt = m;
1472 return (0);
1473
1474 bad:
1475 (void)m_free(m);
1476 return (EINVAL);
1477 }
1478
1479 /*
1480 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1481 */
1482 static struct ifnet *
1483 ip_multicast_if(a, ifindexp)
1484 struct in_addr *a;
1485 int *ifindexp;
1486 {
1487 int ifindex;
1488 struct ifnet *ifp = NULL;
1489 struct in_ifaddr *ia;
1490
1491 if (ifindexp)
1492 *ifindexp = 0;
1493 if (ntohl(a->s_addr) >> 24 == 0) {
1494 ifindex = ntohl(a->s_addr) & 0xffffff;
1495 if (ifindex < 0 || if_index < ifindex)
1496 return NULL;
1497 ifp = ifindex2ifnet[ifindex];
1498 if (ifindexp)
1499 *ifindexp = ifindex;
1500 } else {
1501 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1502 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1503 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1504 ifp = ia->ia_ifp;
1505 break;
1506 }
1507 }
1508 }
1509 return ifp;
1510 }
1511
1512 /*
1513 * Set the IP multicast options in response to user setsockopt().
1514 */
1515 int
1516 ip_setmoptions(optname, imop, m)
1517 int optname;
1518 struct ip_moptions **imop;
1519 struct mbuf *m;
1520 {
1521 int error = 0;
1522 u_char loop;
1523 int i;
1524 struct in_addr addr;
1525 struct ip_mreq *mreq;
1526 struct ifnet *ifp;
1527 struct ip_moptions *imo = *imop;
1528 struct route ro;
1529 struct sockaddr_in *dst;
1530 int ifindex;
1531
1532 if (imo == NULL) {
1533 /*
1534 * No multicast option buffer attached to the pcb;
1535 * allocate one and initialize to default values.
1536 */
1537 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1538 M_WAITOK);
1539
1540 if (imo == NULL)
1541 return (ENOBUFS);
1542 *imop = imo;
1543 imo->imo_multicast_ifp = NULL;
1544 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1545 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1546 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1547 imo->imo_num_memberships = 0;
1548 }
1549
1550 switch (optname) {
1551
1552 case IP_MULTICAST_IF:
1553 /*
1554 * Select the interface for outgoing multicast packets.
1555 */
1556 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1557 error = EINVAL;
1558 break;
1559 }
1560 addr = *(mtod(m, struct in_addr *));
1561 /*
1562 * INADDR_ANY is used to remove a previous selection.
1563 * When no interface is selected, a default one is
1564 * chosen every time a multicast packet is sent.
1565 */
1566 if (in_nullhost(addr)) {
1567 imo->imo_multicast_ifp = NULL;
1568 break;
1569 }
1570 /*
1571 * The selected interface is identified by its local
1572 * IP address. Find the interface and confirm that
1573 * it supports multicasting.
1574 */
1575 ifp = ip_multicast_if(&addr, &ifindex);
1576 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1577 error = EADDRNOTAVAIL;
1578 break;
1579 }
1580 imo->imo_multicast_ifp = ifp;
1581 if (ifindex)
1582 imo->imo_multicast_addr = addr;
1583 else
1584 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1585 break;
1586
1587 case IP_MULTICAST_TTL:
1588 /*
1589 * Set the IP time-to-live for outgoing multicast packets.
1590 */
1591 if (m == NULL || m->m_len != 1) {
1592 error = EINVAL;
1593 break;
1594 }
1595 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1596 break;
1597
1598 case IP_MULTICAST_LOOP:
1599 /*
1600 * Set the loopback flag for outgoing multicast packets.
1601 * Must be zero or one.
1602 */
1603 if (m == NULL || m->m_len != 1 ||
1604 (loop = *(mtod(m, u_char *))) > 1) {
1605 error = EINVAL;
1606 break;
1607 }
1608 imo->imo_multicast_loop = loop;
1609 break;
1610
1611 case IP_ADD_MEMBERSHIP:
1612 /*
1613 * Add a multicast group membership.
1614 * Group must be a valid IP multicast address.
1615 */
1616 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1617 error = EINVAL;
1618 break;
1619 }
1620 mreq = mtod(m, struct ip_mreq *);
1621 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1622 error = EINVAL;
1623 break;
1624 }
1625 /*
1626 * If no interface address was provided, use the interface of
1627 * the route to the given multicast address.
1628 */
1629 if (in_nullhost(mreq->imr_interface)) {
1630 bzero((caddr_t)&ro, sizeof(ro));
1631 ro.ro_rt = NULL;
1632 dst = satosin(&ro.ro_dst);
1633 dst->sin_len = sizeof(*dst);
1634 dst->sin_family = AF_INET;
1635 dst->sin_addr = mreq->imr_multiaddr;
1636 rtalloc(&ro);
1637 if (ro.ro_rt == NULL) {
1638 error = EADDRNOTAVAIL;
1639 break;
1640 }
1641 ifp = ro.ro_rt->rt_ifp;
1642 rtfree(ro.ro_rt);
1643 } else {
1644 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1645 }
1646 /*
1647 * See if we found an interface, and confirm that it
1648 * supports multicast.
1649 */
1650 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1651 error = EADDRNOTAVAIL;
1652 break;
1653 }
1654 /*
1655 * See if the membership already exists or if all the
1656 * membership slots are full.
1657 */
1658 for (i = 0; i < imo->imo_num_memberships; ++i) {
1659 if (imo->imo_membership[i]->inm_ifp == ifp &&
1660 in_hosteq(imo->imo_membership[i]->inm_addr,
1661 mreq->imr_multiaddr))
1662 break;
1663 }
1664 if (i < imo->imo_num_memberships) {
1665 error = EADDRINUSE;
1666 break;
1667 }
1668 if (i == IP_MAX_MEMBERSHIPS) {
1669 error = ETOOMANYREFS;
1670 break;
1671 }
1672 /*
1673 * Everything looks good; add a new record to the multicast
1674 * address list for the given interface.
1675 */
1676 if ((imo->imo_membership[i] =
1677 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1678 error = ENOBUFS;
1679 break;
1680 }
1681 ++imo->imo_num_memberships;
1682 break;
1683
1684 case IP_DROP_MEMBERSHIP:
1685 /*
1686 * Drop a multicast group membership.
1687 * Group must be a valid IP multicast address.
1688 */
1689 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1690 error = EINVAL;
1691 break;
1692 }
1693 mreq = mtod(m, struct ip_mreq *);
1694 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1695 error = EINVAL;
1696 break;
1697 }
1698 /*
1699 * If an interface address was specified, get a pointer
1700 * to its ifnet structure.
1701 */
1702 if (in_nullhost(mreq->imr_interface))
1703 ifp = NULL;
1704 else {
1705 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1706 if (ifp == NULL) {
1707 error = EADDRNOTAVAIL;
1708 break;
1709 }
1710 }
1711 /*
1712 * Find the membership in the membership array.
1713 */
1714 for (i = 0; i < imo->imo_num_memberships; ++i) {
1715 if ((ifp == NULL ||
1716 imo->imo_membership[i]->inm_ifp == ifp) &&
1717 in_hosteq(imo->imo_membership[i]->inm_addr,
1718 mreq->imr_multiaddr))
1719 break;
1720 }
1721 if (i == imo->imo_num_memberships) {
1722 error = EADDRNOTAVAIL;
1723 break;
1724 }
1725 /*
1726 * Give up the multicast address record to which the
1727 * membership points.
1728 */
1729 in_delmulti(imo->imo_membership[i]);
1730 /*
1731 * Remove the gap in the membership array.
1732 */
1733 for (++i; i < imo->imo_num_memberships; ++i)
1734 imo->imo_membership[i-1] = imo->imo_membership[i];
1735 --imo->imo_num_memberships;
1736 break;
1737
1738 default:
1739 error = EOPNOTSUPP;
1740 break;
1741 }
1742
1743 /*
1744 * If all options have default values, no need to keep the mbuf.
1745 */
1746 if (imo->imo_multicast_ifp == NULL &&
1747 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1748 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1749 imo->imo_num_memberships == 0) {
1750 free(*imop, M_IPMOPTS);
1751 *imop = NULL;
1752 }
1753
1754 return (error);
1755 }
1756
1757 /*
1758 * Return the IP multicast options in response to user getsockopt().
1759 */
1760 int
1761 ip_getmoptions(optname, imo, mp)
1762 int optname;
1763 struct ip_moptions *imo;
1764 struct mbuf **mp;
1765 {
1766 u_char *ttl;
1767 u_char *loop;
1768 struct in_addr *addr;
1769 struct in_ifaddr *ia;
1770
1771 *mp = m_get(M_WAIT, MT_SOOPTS);
1772
1773 switch (optname) {
1774
1775 case IP_MULTICAST_IF:
1776 addr = mtod(*mp, struct in_addr *);
1777 (*mp)->m_len = sizeof(struct in_addr);
1778 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1779 *addr = zeroin_addr;
1780 else if (imo->imo_multicast_addr.s_addr) {
1781 /* return the value user has set */
1782 *addr = imo->imo_multicast_addr;
1783 } else {
1784 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1785 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1786 }
1787 return (0);
1788
1789 case IP_MULTICAST_TTL:
1790 ttl = mtod(*mp, u_char *);
1791 (*mp)->m_len = 1;
1792 *ttl = imo ? imo->imo_multicast_ttl
1793 : IP_DEFAULT_MULTICAST_TTL;
1794 return (0);
1795
1796 case IP_MULTICAST_LOOP:
1797 loop = mtod(*mp, u_char *);
1798 (*mp)->m_len = 1;
1799 *loop = imo ? imo->imo_multicast_loop
1800 : IP_DEFAULT_MULTICAST_LOOP;
1801 return (0);
1802
1803 default:
1804 return (EOPNOTSUPP);
1805 }
1806 }
1807
1808 /*
1809 * Discard the IP multicast options.
1810 */
1811 void
1812 ip_freemoptions(imo)
1813 struct ip_moptions *imo;
1814 {
1815 int i;
1816
1817 if (imo != NULL) {
1818 for (i = 0; i < imo->imo_num_memberships; ++i)
1819 in_delmulti(imo->imo_membership[i]);
1820 free(imo, M_IPMOPTS);
1821 }
1822 }
1823
1824 /*
1825 * Routine called from ip_output() to loop back a copy of an IP multicast
1826 * packet to the input queue of a specified interface. Note that this
1827 * calls the output routine of the loopback "driver", but with an interface
1828 * pointer that might NOT be &loif -- easier than replicating that code here.
1829 */
1830 static void
1831 ip_mloopback(ifp, m, dst)
1832 struct ifnet *ifp;
1833 struct mbuf *m;
1834 struct sockaddr_in *dst;
1835 {
1836 struct ip *ip;
1837 struct mbuf *copym;
1838
1839 copym = m_copy(m, 0, M_COPYALL);
1840 if (copym != NULL
1841 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1842 copym = m_pullup(copym, sizeof(struct ip));
1843 if (copym != NULL) {
1844 /*
1845 * We don't bother to fragment if the IP length is greater
1846 * than the interface's MTU. Can this possibly matter?
1847 */
1848 ip = mtod(copym, struct ip *);
1849
1850 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1851 in_delayed_cksum(copym);
1852 copym->m_pkthdr.csum_flags &=
1853 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1854 }
1855
1856 ip->ip_sum = 0;
1857 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1858 (void) looutput(ifp, copym, sintosa(dst), NULL);
1859 }
1860 }
1861