Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.128
      1 /*	$NetBSD: ip_output.c,v 1.128 2003/11/19 18:39:34 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.128 2003/11/19 18:39:34 jonathan Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #ifdef FAST_IPSEC
    116 #include <sys/domain.h>
    117 #endif
    118 #include <sys/systm.h>
    119 #include <sys/proc.h>
    120 
    121 #include <net/if.h>
    122 #include <net/route.h>
    123 #include <net/pfil.h>
    124 
    125 #include <netinet/in.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/in_pcb.h>
    129 #include <netinet/in_var.h>
    130 #include <netinet/ip_var.h>
    131 
    132 #ifdef MROUTING
    133 #include <netinet/ip_mroute.h>
    134 #endif
    135 
    136 #include <machine/stdarg.h>
    137 
    138 #ifdef IPSEC
    139 #include <netinet6/ipsec.h>
    140 #include <netkey/key.h>
    141 #include <netkey/key_debug.h>
    142 #endif /*IPSEC*/
    143 
    144 #ifdef FAST_IPSEC
    145 #include <netipsec/ipsec.h>
    146 #include <netipsec/key.h>
    147 #include <netipsec/xform.h>
    148 #endif	/* FAST_IPSEC*/
    149 
    150 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
    151 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
    152 static void ip_mloopback
    153 	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
    154 
    155 #ifdef PFIL_HOOKS
    156 extern struct pfil_head inet_pfil_hook;			/* XXX */
    157 #endif
    158 
    159 /*
    160  * IP output.  The packet in mbuf chain m contains a skeletal IP
    161  * header (with len, off, ttl, proto, tos, src, dst).
    162  * The mbuf chain containing the packet will be freed.
    163  * The mbuf opt, if present, will not be freed.
    164  */
    165 int
    166 #if __STDC__
    167 ip_output(struct mbuf *m0, ...)
    168 #else
    169 ip_output(m0, va_alist)
    170 	struct mbuf *m0;
    171 	va_dcl
    172 #endif
    173 {
    174 	struct ip *ip;
    175 	struct ifnet *ifp;
    176 	struct mbuf *m = m0;
    177 	int hlen = sizeof (struct ip);
    178 	int len, error = 0;
    179 	struct route iproute;
    180 	struct sockaddr_in *dst;
    181 	struct in_ifaddr *ia;
    182 	struct mbuf *opt;
    183 	struct route *ro;
    184 	int flags, sw_csum;
    185 	int *mtu_p;
    186 	u_long mtu;
    187 	struct ip_moptions *imo;
    188 	struct socket *so;
    189 	va_list ap;
    190 #ifdef IPSEC
    191 	struct secpolicy *sp = NULL;
    192 #endif /*IPSEC*/
    193 #ifdef FAST_IPSEC
    194 	struct inpcb *inp;
    195 	struct m_tag *mtag;
    196 	struct secpolicy *sp = NULL;
    197 	struct tdb_ident *tdbi;
    198 	int s;
    199 #endif
    200 	u_int16_t ip_len;
    201 
    202 	len = 0;
    203 	va_start(ap, m0);
    204 	opt = va_arg(ap, struct mbuf *);
    205 	ro = va_arg(ap, struct route *);
    206 	flags = va_arg(ap, int);
    207 	imo = va_arg(ap, struct ip_moptions *);
    208 	so = va_arg(ap, struct socket *);
    209 	if (flags & IP_RETURNMTU)
    210 		mtu_p = va_arg(ap, int *);
    211 	else
    212 		mtu_p = NULL;
    213 	va_end(ap);
    214 
    215 	MCLAIM(m, &ip_tx_mowner);
    216 #ifdef FAST_IPSEC
    217 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    218 		inp = (struct inpcb *)so->so_pcb;
    219 	else
    220 		inp = NULL;
    221 #endif /*IPSEC*/
    222 
    223 #ifdef	DIAGNOSTIC
    224 	if ((m->m_flags & M_PKTHDR) == 0)
    225 		panic("ip_output no HDR");
    226 #endif
    227 	if (opt) {
    228 		m = ip_insertoptions(m, opt, &len);
    229 		if (len >= sizeof(struct ip))
    230 			hlen = len;
    231 	}
    232 	ip = mtod(m, struct ip *);
    233 	/*
    234 	 * Fill in IP header.
    235 	 */
    236 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    237 		ip->ip_v = IPVERSION;
    238 		ip->ip_off = htons(0);
    239 		ip->ip_id = ip_newid();
    240 		ip->ip_hl = hlen >> 2;
    241 		ipstat.ips_localout++;
    242 	} else {
    243 		hlen = ip->ip_hl << 2;
    244 	}
    245 	/*
    246 	 * Route packet.
    247 	 */
    248 	if (ro == 0) {
    249 		ro = &iproute;
    250 		bzero((caddr_t)ro, sizeof (*ro));
    251 	}
    252 	dst = satosin(&ro->ro_dst);
    253 	/*
    254 	 * If there is a cached route,
    255 	 * check that it is to the same destination
    256 	 * and is still up.  If not, free it and try again.
    257 	 * The address family should also be checked in case of sharing the
    258 	 * cache with IPv6.
    259 	 */
    260 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    261 	    dst->sin_family != AF_INET ||
    262 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    263 		RTFREE(ro->ro_rt);
    264 		ro->ro_rt = (struct rtentry *)0;
    265 	}
    266 	if (ro->ro_rt == 0) {
    267 		bzero(dst, sizeof(*dst));
    268 		dst->sin_family = AF_INET;
    269 		dst->sin_len = sizeof(*dst);
    270 		dst->sin_addr = ip->ip_dst;
    271 	}
    272 	/*
    273 	 * If routing to interface only,
    274 	 * short circuit routing lookup.
    275 	 */
    276 	if (flags & IP_ROUTETOIF) {
    277 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    278 			ipstat.ips_noroute++;
    279 			error = ENETUNREACH;
    280 			goto bad;
    281 		}
    282 		ifp = ia->ia_ifp;
    283 		mtu = ifp->if_mtu;
    284 		ip->ip_ttl = 1;
    285 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    286 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    287 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    288 		ifp = imo->imo_multicast_ifp;
    289 		mtu = ifp->if_mtu;
    290 		IFP_TO_IA(ifp, ia);
    291 	} else {
    292 		if (ro->ro_rt == 0)
    293 			rtalloc(ro);
    294 		if (ro->ro_rt == 0) {
    295 			ipstat.ips_noroute++;
    296 			error = EHOSTUNREACH;
    297 			goto bad;
    298 		}
    299 		ia = ifatoia(ro->ro_rt->rt_ifa);
    300 		ifp = ro->ro_rt->rt_ifp;
    301 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    302 			mtu = ifp->if_mtu;
    303 		ro->ro_rt->rt_use++;
    304 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    305 			dst = satosin(ro->ro_rt->rt_gateway);
    306 	}
    307 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    308 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    309 		struct in_multi *inm;
    310 
    311 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    312 			M_BCAST : M_MCAST;
    313 		/*
    314 		 * IP destination address is multicast.  Make sure "dst"
    315 		 * still points to the address in "ro".  (It may have been
    316 		 * changed to point to a gateway address, above.)
    317 		 */
    318 		dst = satosin(&ro->ro_dst);
    319 		/*
    320 		 * See if the caller provided any multicast options
    321 		 */
    322 		if (imo != NULL)
    323 			ip->ip_ttl = imo->imo_multicast_ttl;
    324 		else
    325 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    326 
    327 		/*
    328 		 * if we don't know the outgoing ifp yet, we can't generate
    329 		 * output
    330 		 */
    331 		if (!ifp) {
    332 			ipstat.ips_noroute++;
    333 			error = ENETUNREACH;
    334 			goto bad;
    335 		}
    336 
    337 		/*
    338 		 * If the packet is multicast or broadcast, confirm that
    339 		 * the outgoing interface can transmit it.
    340 		 */
    341 		if (((m->m_flags & M_MCAST) &&
    342 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    343 		    ((m->m_flags & M_BCAST) &&
    344 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    345 			ipstat.ips_noroute++;
    346 			error = ENETUNREACH;
    347 			goto bad;
    348 		}
    349 		/*
    350 		 * If source address not specified yet, use an address
    351 		 * of outgoing interface.
    352 		 */
    353 		if (in_nullhost(ip->ip_src)) {
    354 			struct in_ifaddr *ia;
    355 
    356 			IFP_TO_IA(ifp, ia);
    357 			if (!ia) {
    358 				error = EADDRNOTAVAIL;
    359 				goto bad;
    360 			}
    361 			ip->ip_src = ia->ia_addr.sin_addr;
    362 		}
    363 
    364 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    365 		if (inm != NULL &&
    366 		   (imo == NULL || imo->imo_multicast_loop)) {
    367 			/*
    368 			 * If we belong to the destination multicast group
    369 			 * on the outgoing interface, and the caller did not
    370 			 * forbid loopback, loop back a copy.
    371 			 */
    372 			ip_mloopback(ifp, m, dst);
    373 		}
    374 #ifdef MROUTING
    375 		else {
    376 			/*
    377 			 * If we are acting as a multicast router, perform
    378 			 * multicast forwarding as if the packet had just
    379 			 * arrived on the interface to which we are about
    380 			 * to send.  The multicast forwarding function
    381 			 * recursively calls this function, using the
    382 			 * IP_FORWARDING flag to prevent infinite recursion.
    383 			 *
    384 			 * Multicasts that are looped back by ip_mloopback(),
    385 			 * above, will be forwarded by the ip_input() routine,
    386 			 * if necessary.
    387 			 */
    388 			extern struct socket *ip_mrouter;
    389 
    390 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    391 				if (ip_mforward(m, ifp) != 0) {
    392 					m_freem(m);
    393 					goto done;
    394 				}
    395 			}
    396 		}
    397 #endif
    398 		/*
    399 		 * Multicasts with a time-to-live of zero may be looped-
    400 		 * back, above, but must not be transmitted on a network.
    401 		 * Also, multicasts addressed to the loopback interface
    402 		 * are not sent -- the above call to ip_mloopback() will
    403 		 * loop back a copy if this host actually belongs to the
    404 		 * destination group on the loopback interface.
    405 		 */
    406 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    407 			m_freem(m);
    408 			goto done;
    409 		}
    410 
    411 		goto sendit;
    412 	}
    413 #ifndef notdef
    414 	/*
    415 	 * If source address not specified yet, use address
    416 	 * of outgoing interface.
    417 	 */
    418 	if (in_nullhost(ip->ip_src))
    419 		ip->ip_src = ia->ia_addr.sin_addr;
    420 #endif
    421 
    422 	/*
    423 	 * packets with Class-D address as source are not valid per
    424 	 * RFC 1112
    425 	 */
    426 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    427 		ipstat.ips_odropped++;
    428 		error = EADDRNOTAVAIL;
    429 		goto bad;
    430 	}
    431 
    432 	/*
    433 	 * Look for broadcast address and
    434 	 * and verify user is allowed to send
    435 	 * such a packet.
    436 	 */
    437 	if (in_broadcast(dst->sin_addr, ifp)) {
    438 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    439 			error = EADDRNOTAVAIL;
    440 			goto bad;
    441 		}
    442 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    443 			error = EACCES;
    444 			goto bad;
    445 		}
    446 		/* don't allow broadcast messages to be fragmented */
    447 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    448 			error = EMSGSIZE;
    449 			goto bad;
    450 		}
    451 		m->m_flags |= M_BCAST;
    452 	} else
    453 		m->m_flags &= ~M_BCAST;
    454 
    455 sendit:
    456 	/*
    457 	 * If we're doing Path MTU Discovery, we need to set DF unless
    458 	 * the route's MTU is locked.
    459 	 */
    460 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    461 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    462 		ip->ip_off |= htons(IP_DF);
    463 
    464 	/* Remember the current ip_len */
    465 	ip_len = ntohs(ip->ip_len);
    466 
    467 #ifdef IPSEC
    468 	/* get SP for this packet */
    469 	if (so == NULL)
    470 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    471 		    flags, &error);
    472 	else
    473 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    474 
    475 	if (sp == NULL) {
    476 		ipsecstat.out_inval++;
    477 		goto bad;
    478 	}
    479 
    480 	error = 0;
    481 
    482 	/* check policy */
    483 	switch (sp->policy) {
    484 	case IPSEC_POLICY_DISCARD:
    485 		/*
    486 		 * This packet is just discarded.
    487 		 */
    488 		ipsecstat.out_polvio++;
    489 		goto bad;
    490 
    491 	case IPSEC_POLICY_BYPASS:
    492 	case IPSEC_POLICY_NONE:
    493 		/* no need to do IPsec. */
    494 		goto skip_ipsec;
    495 
    496 	case IPSEC_POLICY_IPSEC:
    497 		if (sp->req == NULL) {
    498 			/* XXX should be panic ? */
    499 			printf("ip_output: No IPsec request specified.\n");
    500 			error = EINVAL;
    501 			goto bad;
    502 		}
    503 		break;
    504 
    505 	case IPSEC_POLICY_ENTRUST:
    506 	default:
    507 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    508 	}
    509 
    510 	/*
    511 	 * ipsec4_output() expects ip_len and ip_off in network
    512 	 * order.  They have been set to network order above.
    513 	 */
    514 
    515     {
    516 	struct ipsec_output_state state;
    517 	bzero(&state, sizeof(state));
    518 	state.m = m;
    519 	if (flags & IP_ROUTETOIF) {
    520 		state.ro = &iproute;
    521 		bzero(&iproute, sizeof(iproute));
    522 	} else
    523 		state.ro = ro;
    524 	state.dst = (struct sockaddr *)dst;
    525 
    526 	/*
    527 	 * We can't defer the checksum of payload data if
    528 	 * we're about to encrypt/authenticate it.
    529 	 *
    530 	 * XXX When we support crypto offloading functions of
    531 	 * XXX network interfaces, we need to reconsider this,
    532 	 * XXX since it's likely that they'll support checksumming,
    533 	 * XXX as well.
    534 	 */
    535 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    536 		in_delayed_cksum(m);
    537 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    538 	}
    539 
    540 	error = ipsec4_output(&state, sp, flags);
    541 
    542 	m = state.m;
    543 	if (flags & IP_ROUTETOIF) {
    544 		/*
    545 		 * if we have tunnel mode SA, we may need to ignore
    546 		 * IP_ROUTETOIF.
    547 		 */
    548 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    549 			flags &= ~IP_ROUTETOIF;
    550 			ro = state.ro;
    551 		}
    552 	} else
    553 		ro = state.ro;
    554 	dst = (struct sockaddr_in *)state.dst;
    555 	if (error) {
    556 		/* mbuf is already reclaimed in ipsec4_output. */
    557 		m0 = NULL;
    558 		switch (error) {
    559 		case EHOSTUNREACH:
    560 		case ENETUNREACH:
    561 		case EMSGSIZE:
    562 		case ENOBUFS:
    563 		case ENOMEM:
    564 			break;
    565 		default:
    566 			printf("ip4_output (ipsec): error code %d\n", error);
    567 			/*fall through*/
    568 		case ENOENT:
    569 			/* don't show these error codes to the user */
    570 			error = 0;
    571 			break;
    572 		}
    573 		goto bad;
    574 	}
    575 
    576 	/* be sure to update variables that are affected by ipsec4_output() */
    577 	ip = mtod(m, struct ip *);
    578 	hlen = ip->ip_hl << 2;
    579 	ip_len = ntohs(ip->ip_len);
    580 
    581 	if (ro->ro_rt == NULL) {
    582 		if ((flags & IP_ROUTETOIF) == 0) {
    583 			printf("ip_output: "
    584 				"can't update route after IPsec processing\n");
    585 			error = EHOSTUNREACH;	/*XXX*/
    586 			goto bad;
    587 		}
    588 	} else {
    589 		/* nobody uses ia beyond here */
    590 		if (state.encap)
    591 			ifp = ro->ro_rt->rt_ifp;
    592 	}
    593     }
    594 skip_ipsec:
    595 #endif /*IPSEC*/
    596 #ifdef FAST_IPSEC
    597 	/*
    598 	 * Check the security policy (SP) for the packet and, if
    599 	 * required, do IPsec-related processing.  There are two
    600 	 * cases here; the first time a packet is sent through
    601 	 * it will be untagged and handled by ipsec4_checkpolicy.
    602 	 * If the packet is resubmitted to ip_output (e.g. after
    603 	 * AH, ESP, etc. processing), there will be a tag to bypass
    604 	 * the lookup and related policy checking.
    605 	 */
    606 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    607 	s = splsoftnet();
    608 	if (mtag != NULL) {
    609 		tdbi = (struct tdb_ident *)(mtag + 1);
    610 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    611 		if (sp == NULL)
    612 			error = -EINVAL;	/* force silent drop */
    613 		m_tag_delete(m, mtag);
    614 	} else {
    615 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    616 					&error, inp);
    617 	}
    618 	/*
    619 	 * There are four return cases:
    620 	 *    sp != NULL	 	    apply IPsec policy
    621 	 *    sp == NULL, error == 0	    no IPsec handling needed
    622 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    623 	 *    sp == NULL, error != 0	    discard packet, report error
    624 	 */
    625 	if (sp != NULL) {
    626 		/* Loop detection, check if ipsec processing already done */
    627 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    628 		for (mtag = m_tag_first(m); mtag != NULL;
    629 		     mtag = m_tag_next(m, mtag)) {
    630 #ifdef MTAG_ABI_COMPAT
    631 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    632 				continue;
    633 #endif
    634 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    635 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    636 				continue;
    637 			/*
    638 			 * Check if policy has an SA associated with it.
    639 			 * This can happen when an SP has yet to acquire
    640 			 * an SA; e.g. on first reference.  If it occurs,
    641 			 * then we let ipsec4_process_packet do its thing.
    642 			 */
    643 			if (sp->req->sav == NULL)
    644 				break;
    645 			tdbi = (struct tdb_ident *)(mtag + 1);
    646 			if (tdbi->spi == sp->req->sav->spi &&
    647 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    648 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    649 				 sizeof (union sockaddr_union)) == 0) {
    650 				/*
    651 				 * No IPsec processing is needed, free
    652 				 * reference to SP.
    653 				 *
    654 				 * NB: null pointer to avoid free at
    655 				 *     done: below.
    656 				 */
    657 				KEY_FREESP(&sp), sp = NULL;
    658 				splx(s);
    659 				goto spd_done;
    660 			}
    661 		}
    662 
    663 		/*
    664 		 * Do delayed checksums now because we send before
    665 		 * this is done in the normal processing path.
    666 		 */
    667 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    668 			in_delayed_cksum(m);
    669 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    670 		}
    671 
    672 #ifdef __FreeBSD__
    673 		ip->ip_len = htons(ip->ip_len);
    674 		ip->ip_off = htons(ip->ip_off);
    675 #endif
    676 
    677 		/* NB: callee frees mbuf */
    678 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    679 		/*
    680 		 * Preserve KAME behaviour: ENOENT can be returned
    681 		 * when an SA acquire is in progress.  Don't propagate
    682 		 * this to user-level; it confuses applications.
    683 		 *
    684 		 * XXX this will go away when the SADB is redone.
    685 		 */
    686 		if (error == ENOENT)
    687 			error = 0;
    688 		splx(s);
    689 		goto done;
    690 	} else {
    691 		splx(s);
    692 
    693 		if (error != 0) {
    694 			/*
    695 			 * Hack: -EINVAL is used to signal that a packet
    696 			 * should be silently discarded.  This is typically
    697 			 * because we asked key management for an SA and
    698 			 * it was delayed (e.g. kicked up to IKE).
    699 			 */
    700 			if (error == -EINVAL)
    701 				error = 0;
    702 			goto bad;
    703 		} else {
    704 			/* No IPsec processing for this packet. */
    705 		}
    706 #ifdef notyet
    707 		/*
    708 		 * If deferred crypto processing is needed, check that
    709 		 * the interface supports it.
    710 		 */
    711 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    712 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    713 			/* notify IPsec to do its own crypto */
    714 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    715 			error = EHOSTUNREACH;
    716 			goto bad;
    717 		}
    718 #endif
    719 	}
    720 spd_done:
    721 #endif /* FAST_IPSEC */
    722 
    723 #ifdef PFIL_HOOKS
    724 	/*
    725 	 * Run through list of hooks for output packets.
    726 	 */
    727 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    728 		goto done;
    729 	if (m == NULL)
    730 		goto done;
    731 
    732 	ip = mtod(m, struct ip *);
    733 	hlen = ip->ip_hl << 2;
    734 #endif /* PFIL_HOOKS */
    735 
    736 	m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    737 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    738 	/*
    739 	 * If small enough for mtu of path, can just send directly.
    740 	 */
    741 	if (ip_len <= mtu) {
    742 #if IFA_STATS
    743 		/*
    744 		 * search for the source address structure to
    745 		 * maintain output statistics.
    746 		 */
    747 		INADDR_TO_IA(ip->ip_src, ia);
    748 		if (ia)
    749 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    750 #endif
    751 		/*
    752 		 * Always initialize the sum to 0!  Some HW assisted
    753 		 * checksumming requires this.
    754 		 */
    755 		ip->ip_sum = 0;
    756 
    757 		/*
    758 		 * Perform any checksums that the hardware can't do
    759 		 * for us.
    760 		 *
    761 		 * XXX Does any hardware require the {th,uh}_sum
    762 		 * XXX fields to be 0?
    763 		 */
    764 		if (sw_csum & M_CSUM_IPv4) {
    765 			ip->ip_sum = in_cksum(m, hlen);
    766 			m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    767 		}
    768 		if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    769 			in_delayed_cksum(m);
    770 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    771 		}
    772 
    773 #ifdef IPSEC
    774 		/* clean ipsec history once it goes out of the node */
    775 		ipsec_delaux(m);
    776 #endif
    777 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    778 		goto done;
    779 	}
    780 
    781 	/*
    782 	 * We can't use HW checksumming if we're about to
    783 	 * to fragment the packet.
    784 	 *
    785 	 * XXX Some hardware can do this.
    786 	 */
    787 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    788 		in_delayed_cksum(m);
    789 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    790 	}
    791 
    792 	/*
    793 	 * Too large for interface; fragment if possible.
    794 	 * Must be able to put at least 8 bytes per fragment.
    795 	 */
    796 	if (ntohs(ip->ip_off) & IP_DF) {
    797 		if (flags & IP_RETURNMTU)
    798 			*mtu_p = mtu;
    799 		error = EMSGSIZE;
    800 		ipstat.ips_cantfrag++;
    801 		goto bad;
    802 	}
    803 
    804 	error = ip_fragment(m, ifp, mtu);
    805 	if (error) {
    806 		m = NULL;
    807 		goto bad;
    808 	}
    809 
    810 	for (; m; m = m0) {
    811 		m0 = m->m_nextpkt;
    812 		m->m_nextpkt = 0;
    813 		if (error == 0) {
    814 #if IFA_STATS
    815 			/*
    816 			 * search for the source address structure to
    817 			 * maintain output statistics.
    818 			 */
    819 			INADDR_TO_IA(ip->ip_src, ia);
    820 			if (ia) {
    821 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    822 				    ntohs(ip->ip_len);
    823 			}
    824 #endif
    825 #ifdef IPSEC
    826 			/* clean ipsec history once it goes out of the node */
    827 			ipsec_delaux(m);
    828 #endif
    829 			KASSERT((m->m_pkthdr.csum_flags &
    830 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    831 			error = (*ifp->if_output)(ifp, m, sintosa(dst),
    832 			    ro->ro_rt);
    833 		} else
    834 			m_freem(m);
    835 	}
    836 
    837 	if (error == 0)
    838 		ipstat.ips_fragmented++;
    839 done:
    840 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
    841 		RTFREE(ro->ro_rt);
    842 		ro->ro_rt = 0;
    843 	}
    844 
    845 #ifdef IPSEC
    846 	if (sp != NULL) {
    847 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    848 			printf("DP ip_output call free SP:%p\n", sp));
    849 		key_freesp(sp);
    850 	}
    851 #endif /* IPSEC */
    852 #ifdef FAST_IPSEC
    853 	if (sp != NULL)
    854 		KEY_FREESP(&sp);
    855 #endif /* FAST_IPSEC */
    856 
    857 	return (error);
    858 bad:
    859 	m_freem(m);
    860 	goto done;
    861 }
    862 
    863 int
    864 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    865 {
    866 	struct ip *ip, *mhip;
    867 	struct mbuf *m0;
    868 	int len, hlen, off;
    869 	int mhlen, firstlen;
    870 	struct mbuf **mnext;
    871 	int sw_csum;
    872 	int fragments = 0;
    873 	int s;
    874 	int error = 0;
    875 
    876 	ip = mtod(m, struct ip *);
    877 	hlen = ip->ip_hl << 2;
    878 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    879 
    880 	len = (mtu - hlen) &~ 7;
    881 	if (len < 8) {
    882 		m_freem(m);
    883 		return (EMSGSIZE);
    884 	}
    885 
    886 	firstlen = len;
    887 	mnext = &m->m_nextpkt;
    888 
    889 	/*
    890 	 * Loop through length of segment after first fragment,
    891 	 * make new header and copy data of each part and link onto chain.
    892 	 */
    893 	m0 = m;
    894 	mhlen = sizeof (struct ip);
    895 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    896 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    897 		if (m == 0) {
    898 			error = ENOBUFS;
    899 			ipstat.ips_odropped++;
    900 			goto sendorfree;
    901 		}
    902 		MCLAIM(m, m0->m_owner);
    903 		*mnext = m;
    904 		mnext = &m->m_nextpkt;
    905 		m->m_data += max_linkhdr;
    906 		mhip = mtod(m, struct ip *);
    907 		*mhip = *ip;
    908 		/* we must inherit MCAST and BCAST flags */
    909 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    910 		if (hlen > sizeof (struct ip)) {
    911 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    912 			mhip->ip_hl = mhlen >> 2;
    913 		}
    914 		m->m_len = mhlen;
    915 		mhip->ip_off = ((off - hlen) >> 3) +
    916 		    (ntohs(ip->ip_off) & ~IP_MF);
    917 		if (ip->ip_off & htons(IP_MF))
    918 			mhip->ip_off |= IP_MF;
    919 		if (off + len >= ntohs(ip->ip_len))
    920 			len = ntohs(ip->ip_len) - off;
    921 		else
    922 			mhip->ip_off |= IP_MF;
    923 		HTONS(mhip->ip_off);
    924 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    925 		m->m_next = m_copy(m0, off, len);
    926 		if (m->m_next == 0) {
    927 			error = ENOBUFS;	/* ??? */
    928 			ipstat.ips_odropped++;
    929 			goto sendorfree;
    930 		}
    931 		m->m_pkthdr.len = mhlen + len;
    932 		m->m_pkthdr.rcvif = (struct ifnet *)0;
    933 		mhip->ip_sum = 0;
    934 		if (sw_csum & M_CSUM_IPv4) {
    935 			mhip->ip_sum = in_cksum(m, mhlen);
    936 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    937 		} else {
    938 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    939 		}
    940 		ipstat.ips_ofragments++;
    941 		fragments++;
    942 	}
    943 	/*
    944 	 * Update first fragment by trimming what's been copied out
    945 	 * and updating header, then send each fragment (in order).
    946 	 */
    947 	m = m0;
    948 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    949 	m->m_pkthdr.len = hlen + firstlen;
    950 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    951 	ip->ip_off |= htons(IP_MF);
    952 	ip->ip_sum = 0;
    953 	if (sw_csum & M_CSUM_IPv4) {
    954 		ip->ip_sum = in_cksum(m, hlen);
    955 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    956 	} else {
    957 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
    958 	}
    959 sendorfree:
    960 	/*
    961 	 * If there is no room for all the fragments, don't queue
    962 	 * any of them.
    963 	 */
    964 	s = splnet();
    965 	if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    966 	    error == 0) {
    967 		error = ENOBUFS;
    968 		ipstat.ips_odropped++;
    969 		IFQ_INC_DROPS(&ifp->if_snd);
    970 	}
    971 	splx(s);
    972 	if (error) {
    973 		for (m = m0; m; m = m0) {
    974 			m0 = m->m_nextpkt;
    975 			m->m_nextpkt = NULL;
    976 			m_freem(m);
    977 		}
    978 	}
    979 	return (error);
    980 }
    981 
    982 /*
    983  * Process a delayed payload checksum calculation.
    984  */
    985 void
    986 in_delayed_cksum(struct mbuf *m)
    987 {
    988 	struct ip *ip;
    989 	u_int16_t csum, offset;
    990 
    991 	ip = mtod(m, struct ip *);
    992 	offset = ip->ip_hl << 2;
    993 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    994 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    995 		csum = 0xffff;
    996 
    997 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
    998 
    999 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1000 		/* This happen when ip options were inserted
   1001 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1002 		    m->m_len, offset, ip->ip_p);
   1003 		 */
   1004 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1005 	} else
   1006 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1007 }
   1008 
   1009 /*
   1010  * Determine the maximum length of the options to be inserted;
   1011  * we would far rather allocate too much space rather than too little.
   1012  */
   1013 
   1014 u_int
   1015 ip_optlen(inp)
   1016 	struct inpcb *inp;
   1017 {
   1018 	struct mbuf *m = inp->inp_options;
   1019 
   1020 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1021 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1022 	else
   1023 		return 0;
   1024 }
   1025 
   1026 
   1027 /*
   1028  * Insert IP options into preformed packet.
   1029  * Adjust IP destination as required for IP source routing,
   1030  * as indicated by a non-zero in_addr at the start of the options.
   1031  */
   1032 static struct mbuf *
   1033 ip_insertoptions(m, opt, phlen)
   1034 	struct mbuf *m;
   1035 	struct mbuf *opt;
   1036 	int *phlen;
   1037 {
   1038 	struct ipoption *p = mtod(opt, struct ipoption *);
   1039 	struct mbuf *n;
   1040 	struct ip *ip = mtod(m, struct ip *);
   1041 	unsigned optlen;
   1042 
   1043 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1044 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1045 		return (m);		/* XXX should fail */
   1046 	if (!in_nullhost(p->ipopt_dst))
   1047 		ip->ip_dst = p->ipopt_dst;
   1048 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1049 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1050 		if (n == 0)
   1051 			return (m);
   1052 		MCLAIM(n, m->m_owner);
   1053 		M_COPY_PKTHDR(n, m);
   1054 		m_tag_delete_chain(m, NULL);
   1055 		m->m_flags &= ~M_PKTHDR;
   1056 		m->m_len -= sizeof(struct ip);
   1057 		m->m_data += sizeof(struct ip);
   1058 		n->m_next = m;
   1059 		m = n;
   1060 		m->m_len = optlen + sizeof(struct ip);
   1061 		m->m_data += max_linkhdr;
   1062 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1063 	} else {
   1064 		m->m_data -= optlen;
   1065 		m->m_len += optlen;
   1066 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1067 	}
   1068 	m->m_pkthdr.len += optlen;
   1069 	ip = mtod(m, struct ip *);
   1070 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1071 	*phlen = sizeof(struct ip) + optlen;
   1072 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1073 	return (m);
   1074 }
   1075 
   1076 /*
   1077  * Copy options from ip to jp,
   1078  * omitting those not copied during fragmentation.
   1079  */
   1080 int
   1081 ip_optcopy(ip, jp)
   1082 	struct ip *ip, *jp;
   1083 {
   1084 	u_char *cp, *dp;
   1085 	int opt, optlen, cnt;
   1086 
   1087 	cp = (u_char *)(ip + 1);
   1088 	dp = (u_char *)(jp + 1);
   1089 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1090 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1091 		opt = cp[0];
   1092 		if (opt == IPOPT_EOL)
   1093 			break;
   1094 		if (opt == IPOPT_NOP) {
   1095 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1096 			*dp++ = IPOPT_NOP;
   1097 			optlen = 1;
   1098 			continue;
   1099 		}
   1100 #ifdef DIAGNOSTIC
   1101 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1102 			panic("malformed IPv4 option passed to ip_optcopy");
   1103 #endif
   1104 		optlen = cp[IPOPT_OLEN];
   1105 #ifdef DIAGNOSTIC
   1106 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1107 			panic("malformed IPv4 option passed to ip_optcopy");
   1108 #endif
   1109 		/* bogus lengths should have been caught by ip_dooptions */
   1110 		if (optlen > cnt)
   1111 			optlen = cnt;
   1112 		if (IPOPT_COPIED(opt)) {
   1113 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1114 			dp += optlen;
   1115 		}
   1116 	}
   1117 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1118 		*dp++ = IPOPT_EOL;
   1119 	return (optlen);
   1120 }
   1121 
   1122 /*
   1123  * IP socket option processing.
   1124  */
   1125 int
   1126 ip_ctloutput(op, so, level, optname, mp)
   1127 	int op;
   1128 	struct socket *so;
   1129 	int level, optname;
   1130 	struct mbuf **mp;
   1131 {
   1132 	struct inpcb *inp = sotoinpcb(so);
   1133 	struct mbuf *m = *mp;
   1134 	int optval = 0;
   1135 	int error = 0;
   1136 #if defined(IPSEC) || defined(FAST_IPSEC)
   1137 	struct proc *p = curproc;	/*XXX*/
   1138 #endif
   1139 
   1140 	if (level != IPPROTO_IP) {
   1141 		error = EINVAL;
   1142 		if (op == PRCO_SETOPT && *mp)
   1143 			(void) m_free(*mp);
   1144 	} else switch (op) {
   1145 
   1146 	case PRCO_SETOPT:
   1147 		switch (optname) {
   1148 		case IP_OPTIONS:
   1149 #ifdef notyet
   1150 		case IP_RETOPTS:
   1151 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1152 #else
   1153 			return (ip_pcbopts(&inp->inp_options, m));
   1154 #endif
   1155 
   1156 		case IP_TOS:
   1157 		case IP_TTL:
   1158 		case IP_RECVOPTS:
   1159 		case IP_RECVRETOPTS:
   1160 		case IP_RECVDSTADDR:
   1161 		case IP_RECVIF:
   1162 			if (m == NULL || m->m_len != sizeof(int))
   1163 				error = EINVAL;
   1164 			else {
   1165 				optval = *mtod(m, int *);
   1166 				switch (optname) {
   1167 
   1168 				case IP_TOS:
   1169 					inp->inp_ip.ip_tos = optval;
   1170 					break;
   1171 
   1172 				case IP_TTL:
   1173 					inp->inp_ip.ip_ttl = optval;
   1174 					break;
   1175 #define	OPTSET(bit) \
   1176 	if (optval) \
   1177 		inp->inp_flags |= bit; \
   1178 	else \
   1179 		inp->inp_flags &= ~bit;
   1180 
   1181 				case IP_RECVOPTS:
   1182 					OPTSET(INP_RECVOPTS);
   1183 					break;
   1184 
   1185 				case IP_RECVRETOPTS:
   1186 					OPTSET(INP_RECVRETOPTS);
   1187 					break;
   1188 
   1189 				case IP_RECVDSTADDR:
   1190 					OPTSET(INP_RECVDSTADDR);
   1191 					break;
   1192 
   1193 				case IP_RECVIF:
   1194 					OPTSET(INP_RECVIF);
   1195 					break;
   1196 				}
   1197 			}
   1198 			break;
   1199 #undef OPTSET
   1200 
   1201 		case IP_MULTICAST_IF:
   1202 		case IP_MULTICAST_TTL:
   1203 		case IP_MULTICAST_LOOP:
   1204 		case IP_ADD_MEMBERSHIP:
   1205 		case IP_DROP_MEMBERSHIP:
   1206 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1207 			break;
   1208 
   1209 		case IP_PORTRANGE:
   1210 			if (m == 0 || m->m_len != sizeof(int))
   1211 				error = EINVAL;
   1212 			else {
   1213 				optval = *mtod(m, int *);
   1214 
   1215 				switch (optval) {
   1216 
   1217 				case IP_PORTRANGE_DEFAULT:
   1218 				case IP_PORTRANGE_HIGH:
   1219 					inp->inp_flags &= ~(INP_LOWPORT);
   1220 					break;
   1221 
   1222 				case IP_PORTRANGE_LOW:
   1223 					inp->inp_flags |= INP_LOWPORT;
   1224 					break;
   1225 
   1226 				default:
   1227 					error = EINVAL;
   1228 					break;
   1229 				}
   1230 			}
   1231 			break;
   1232 
   1233 #if defined(IPSEC) || defined(FAST_IPSEC)
   1234 		case IP_IPSEC_POLICY:
   1235 		{
   1236 			caddr_t req = NULL;
   1237 			size_t len = 0;
   1238 			int priv = 0;
   1239 
   1240 #ifdef __NetBSD__
   1241 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1242 				priv = 0;
   1243 			else
   1244 				priv = 1;
   1245 #else
   1246 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1247 #endif
   1248 			if (m) {
   1249 				req = mtod(m, caddr_t);
   1250 				len = m->m_len;
   1251 			}
   1252 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1253 			break;
   1254 		    }
   1255 #endif /*IPSEC*/
   1256 
   1257 		default:
   1258 			error = ENOPROTOOPT;
   1259 			break;
   1260 		}
   1261 		if (m)
   1262 			(void)m_free(m);
   1263 		break;
   1264 
   1265 	case PRCO_GETOPT:
   1266 		switch (optname) {
   1267 		case IP_OPTIONS:
   1268 		case IP_RETOPTS:
   1269 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1270 			MCLAIM(m, so->so_mowner);
   1271 			if (inp->inp_options) {
   1272 				m->m_len = inp->inp_options->m_len;
   1273 				bcopy(mtod(inp->inp_options, caddr_t),
   1274 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1275 			} else
   1276 				m->m_len = 0;
   1277 			break;
   1278 
   1279 		case IP_TOS:
   1280 		case IP_TTL:
   1281 		case IP_RECVOPTS:
   1282 		case IP_RECVRETOPTS:
   1283 		case IP_RECVDSTADDR:
   1284 		case IP_RECVIF:
   1285 		case IP_ERRORMTU:
   1286 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1287 			MCLAIM(m, so->so_mowner);
   1288 			m->m_len = sizeof(int);
   1289 			switch (optname) {
   1290 
   1291 			case IP_TOS:
   1292 				optval = inp->inp_ip.ip_tos;
   1293 				break;
   1294 
   1295 			case IP_TTL:
   1296 				optval = inp->inp_ip.ip_ttl;
   1297 				break;
   1298 
   1299 			case IP_ERRORMTU:
   1300 				optval = inp->inp_errormtu;
   1301 				break;
   1302 
   1303 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1304 
   1305 			case IP_RECVOPTS:
   1306 				optval = OPTBIT(INP_RECVOPTS);
   1307 				break;
   1308 
   1309 			case IP_RECVRETOPTS:
   1310 				optval = OPTBIT(INP_RECVRETOPTS);
   1311 				break;
   1312 
   1313 			case IP_RECVDSTADDR:
   1314 				optval = OPTBIT(INP_RECVDSTADDR);
   1315 				break;
   1316 
   1317 			case IP_RECVIF:
   1318 				optval = OPTBIT(INP_RECVIF);
   1319 				break;
   1320 			}
   1321 			*mtod(m, int *) = optval;
   1322 			break;
   1323 
   1324 #if defined(IPSEC) || defined(FAST_IPSEC)
   1325 		case IP_IPSEC_POLICY:
   1326 		{
   1327 			caddr_t req = NULL;
   1328 			size_t len = 0;
   1329 
   1330 			if (m) {
   1331 				req = mtod(m, caddr_t);
   1332 				len = m->m_len;
   1333 			}
   1334 			error = ipsec4_get_policy(inp, req, len, mp);
   1335 			break;
   1336 		}
   1337 #endif /*IPSEC*/
   1338 
   1339 		case IP_MULTICAST_IF:
   1340 		case IP_MULTICAST_TTL:
   1341 		case IP_MULTICAST_LOOP:
   1342 		case IP_ADD_MEMBERSHIP:
   1343 		case IP_DROP_MEMBERSHIP:
   1344 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1345 			if (*mp)
   1346 				MCLAIM(*mp, so->so_mowner);
   1347 			break;
   1348 
   1349 		case IP_PORTRANGE:
   1350 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1351 			MCLAIM(m, so->so_mowner);
   1352 			m->m_len = sizeof(int);
   1353 
   1354 			if (inp->inp_flags & INP_LOWPORT)
   1355 				optval = IP_PORTRANGE_LOW;
   1356 			else
   1357 				optval = IP_PORTRANGE_DEFAULT;
   1358 
   1359 			*mtod(m, int *) = optval;
   1360 			break;
   1361 
   1362 		default:
   1363 			error = ENOPROTOOPT;
   1364 			break;
   1365 		}
   1366 		break;
   1367 	}
   1368 	return (error);
   1369 }
   1370 
   1371 /*
   1372  * Set up IP options in pcb for insertion in output packets.
   1373  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1374  * with destination address if source routed.
   1375  */
   1376 int
   1377 #ifdef notyet
   1378 ip_pcbopts(optname, pcbopt, m)
   1379 	int optname;
   1380 #else
   1381 ip_pcbopts(pcbopt, m)
   1382 #endif
   1383 	struct mbuf **pcbopt;
   1384 	struct mbuf *m;
   1385 {
   1386 	int cnt, optlen;
   1387 	u_char *cp;
   1388 	u_char opt;
   1389 
   1390 	/* turn off any old options */
   1391 	if (*pcbopt)
   1392 		(void)m_free(*pcbopt);
   1393 	*pcbopt = 0;
   1394 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1395 		/*
   1396 		 * Only turning off any previous options.
   1397 		 */
   1398 		if (m)
   1399 			(void)m_free(m);
   1400 		return (0);
   1401 	}
   1402 
   1403 #ifndef	__vax__
   1404 	if (m->m_len % sizeof(int32_t))
   1405 		goto bad;
   1406 #endif
   1407 	/*
   1408 	 * IP first-hop destination address will be stored before
   1409 	 * actual options; move other options back
   1410 	 * and clear it when none present.
   1411 	 */
   1412 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1413 		goto bad;
   1414 	cnt = m->m_len;
   1415 	m->m_len += sizeof(struct in_addr);
   1416 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1417 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1418 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1419 
   1420 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1421 		opt = cp[IPOPT_OPTVAL];
   1422 		if (opt == IPOPT_EOL)
   1423 			break;
   1424 		if (opt == IPOPT_NOP)
   1425 			optlen = 1;
   1426 		else {
   1427 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1428 				goto bad;
   1429 			optlen = cp[IPOPT_OLEN];
   1430 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1431 				goto bad;
   1432 		}
   1433 		switch (opt) {
   1434 
   1435 		default:
   1436 			break;
   1437 
   1438 		case IPOPT_LSRR:
   1439 		case IPOPT_SSRR:
   1440 			/*
   1441 			 * user process specifies route as:
   1442 			 *	->A->B->C->D
   1443 			 * D must be our final destination (but we can't
   1444 			 * check that since we may not have connected yet).
   1445 			 * A is first hop destination, which doesn't appear in
   1446 			 * actual IP option, but is stored before the options.
   1447 			 */
   1448 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1449 				goto bad;
   1450 			m->m_len -= sizeof(struct in_addr);
   1451 			cnt -= sizeof(struct in_addr);
   1452 			optlen -= sizeof(struct in_addr);
   1453 			cp[IPOPT_OLEN] = optlen;
   1454 			/*
   1455 			 * Move first hop before start of options.
   1456 			 */
   1457 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1458 			    sizeof(struct in_addr));
   1459 			/*
   1460 			 * Then copy rest of options back
   1461 			 * to close up the deleted entry.
   1462 			 */
   1463 			memmove(&cp[IPOPT_OFFSET+1],
   1464 			    (caddr_t)(&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
   1465 			    (unsigned)cnt + sizeof(struct in_addr));
   1466 			break;
   1467 		}
   1468 	}
   1469 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1470 		goto bad;
   1471 	*pcbopt = m;
   1472 	return (0);
   1473 
   1474 bad:
   1475 	(void)m_free(m);
   1476 	return (EINVAL);
   1477 }
   1478 
   1479 /*
   1480  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1481  */
   1482 static struct ifnet *
   1483 ip_multicast_if(a, ifindexp)
   1484 	struct in_addr *a;
   1485 	int *ifindexp;
   1486 {
   1487 	int ifindex;
   1488 	struct ifnet *ifp = NULL;
   1489 	struct in_ifaddr *ia;
   1490 
   1491 	if (ifindexp)
   1492 		*ifindexp = 0;
   1493 	if (ntohl(a->s_addr) >> 24 == 0) {
   1494 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1495 		if (ifindex < 0 || if_index < ifindex)
   1496 			return NULL;
   1497 		ifp = ifindex2ifnet[ifindex];
   1498 		if (ifindexp)
   1499 			*ifindexp = ifindex;
   1500 	} else {
   1501 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1502 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1503 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1504 				ifp = ia->ia_ifp;
   1505 				break;
   1506 			}
   1507 		}
   1508 	}
   1509 	return ifp;
   1510 }
   1511 
   1512 /*
   1513  * Set the IP multicast options in response to user setsockopt().
   1514  */
   1515 int
   1516 ip_setmoptions(optname, imop, m)
   1517 	int optname;
   1518 	struct ip_moptions **imop;
   1519 	struct mbuf *m;
   1520 {
   1521 	int error = 0;
   1522 	u_char loop;
   1523 	int i;
   1524 	struct in_addr addr;
   1525 	struct ip_mreq *mreq;
   1526 	struct ifnet *ifp;
   1527 	struct ip_moptions *imo = *imop;
   1528 	struct route ro;
   1529 	struct sockaddr_in *dst;
   1530 	int ifindex;
   1531 
   1532 	if (imo == NULL) {
   1533 		/*
   1534 		 * No multicast option buffer attached to the pcb;
   1535 		 * allocate one and initialize to default values.
   1536 		 */
   1537 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1538 		    M_WAITOK);
   1539 
   1540 		if (imo == NULL)
   1541 			return (ENOBUFS);
   1542 		*imop = imo;
   1543 		imo->imo_multicast_ifp = NULL;
   1544 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1545 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1546 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1547 		imo->imo_num_memberships = 0;
   1548 	}
   1549 
   1550 	switch (optname) {
   1551 
   1552 	case IP_MULTICAST_IF:
   1553 		/*
   1554 		 * Select the interface for outgoing multicast packets.
   1555 		 */
   1556 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1557 			error = EINVAL;
   1558 			break;
   1559 		}
   1560 		addr = *(mtod(m, struct in_addr *));
   1561 		/*
   1562 		 * INADDR_ANY is used to remove a previous selection.
   1563 		 * When no interface is selected, a default one is
   1564 		 * chosen every time a multicast packet is sent.
   1565 		 */
   1566 		if (in_nullhost(addr)) {
   1567 			imo->imo_multicast_ifp = NULL;
   1568 			break;
   1569 		}
   1570 		/*
   1571 		 * The selected interface is identified by its local
   1572 		 * IP address.  Find the interface and confirm that
   1573 		 * it supports multicasting.
   1574 		 */
   1575 		ifp = ip_multicast_if(&addr, &ifindex);
   1576 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1577 			error = EADDRNOTAVAIL;
   1578 			break;
   1579 		}
   1580 		imo->imo_multicast_ifp = ifp;
   1581 		if (ifindex)
   1582 			imo->imo_multicast_addr = addr;
   1583 		else
   1584 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1585 		break;
   1586 
   1587 	case IP_MULTICAST_TTL:
   1588 		/*
   1589 		 * Set the IP time-to-live for outgoing multicast packets.
   1590 		 */
   1591 		if (m == NULL || m->m_len != 1) {
   1592 			error = EINVAL;
   1593 			break;
   1594 		}
   1595 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
   1596 		break;
   1597 
   1598 	case IP_MULTICAST_LOOP:
   1599 		/*
   1600 		 * Set the loopback flag for outgoing multicast packets.
   1601 		 * Must be zero or one.
   1602 		 */
   1603 		if (m == NULL || m->m_len != 1 ||
   1604 		   (loop = *(mtod(m, u_char *))) > 1) {
   1605 			error = EINVAL;
   1606 			break;
   1607 		}
   1608 		imo->imo_multicast_loop = loop;
   1609 		break;
   1610 
   1611 	case IP_ADD_MEMBERSHIP:
   1612 		/*
   1613 		 * Add a multicast group membership.
   1614 		 * Group must be a valid IP multicast address.
   1615 		 */
   1616 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1617 			error = EINVAL;
   1618 			break;
   1619 		}
   1620 		mreq = mtod(m, struct ip_mreq *);
   1621 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1622 			error = EINVAL;
   1623 			break;
   1624 		}
   1625 		/*
   1626 		 * If no interface address was provided, use the interface of
   1627 		 * the route to the given multicast address.
   1628 		 */
   1629 		if (in_nullhost(mreq->imr_interface)) {
   1630 			bzero((caddr_t)&ro, sizeof(ro));
   1631 			ro.ro_rt = NULL;
   1632 			dst = satosin(&ro.ro_dst);
   1633 			dst->sin_len = sizeof(*dst);
   1634 			dst->sin_family = AF_INET;
   1635 			dst->sin_addr = mreq->imr_multiaddr;
   1636 			rtalloc(&ro);
   1637 			if (ro.ro_rt == NULL) {
   1638 				error = EADDRNOTAVAIL;
   1639 				break;
   1640 			}
   1641 			ifp = ro.ro_rt->rt_ifp;
   1642 			rtfree(ro.ro_rt);
   1643 		} else {
   1644 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1645 		}
   1646 		/*
   1647 		 * See if we found an interface, and confirm that it
   1648 		 * supports multicast.
   1649 		 */
   1650 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1651 			error = EADDRNOTAVAIL;
   1652 			break;
   1653 		}
   1654 		/*
   1655 		 * See if the membership already exists or if all the
   1656 		 * membership slots are full.
   1657 		 */
   1658 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1659 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1660 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1661 				      mreq->imr_multiaddr))
   1662 				break;
   1663 		}
   1664 		if (i < imo->imo_num_memberships) {
   1665 			error = EADDRINUSE;
   1666 			break;
   1667 		}
   1668 		if (i == IP_MAX_MEMBERSHIPS) {
   1669 			error = ETOOMANYREFS;
   1670 			break;
   1671 		}
   1672 		/*
   1673 		 * Everything looks good; add a new record to the multicast
   1674 		 * address list for the given interface.
   1675 		 */
   1676 		if ((imo->imo_membership[i] =
   1677 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1678 			error = ENOBUFS;
   1679 			break;
   1680 		}
   1681 		++imo->imo_num_memberships;
   1682 		break;
   1683 
   1684 	case IP_DROP_MEMBERSHIP:
   1685 		/*
   1686 		 * Drop a multicast group membership.
   1687 		 * Group must be a valid IP multicast address.
   1688 		 */
   1689 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1690 			error = EINVAL;
   1691 			break;
   1692 		}
   1693 		mreq = mtod(m, struct ip_mreq *);
   1694 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1695 			error = EINVAL;
   1696 			break;
   1697 		}
   1698 		/*
   1699 		 * If an interface address was specified, get a pointer
   1700 		 * to its ifnet structure.
   1701 		 */
   1702 		if (in_nullhost(mreq->imr_interface))
   1703 			ifp = NULL;
   1704 		else {
   1705 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1706 			if (ifp == NULL) {
   1707 				error = EADDRNOTAVAIL;
   1708 				break;
   1709 			}
   1710 		}
   1711 		/*
   1712 		 * Find the membership in the membership array.
   1713 		 */
   1714 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1715 			if ((ifp == NULL ||
   1716 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1717 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1718 				       mreq->imr_multiaddr))
   1719 				break;
   1720 		}
   1721 		if (i == imo->imo_num_memberships) {
   1722 			error = EADDRNOTAVAIL;
   1723 			break;
   1724 		}
   1725 		/*
   1726 		 * Give up the multicast address record to which the
   1727 		 * membership points.
   1728 		 */
   1729 		in_delmulti(imo->imo_membership[i]);
   1730 		/*
   1731 		 * Remove the gap in the membership array.
   1732 		 */
   1733 		for (++i; i < imo->imo_num_memberships; ++i)
   1734 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1735 		--imo->imo_num_memberships;
   1736 		break;
   1737 
   1738 	default:
   1739 		error = EOPNOTSUPP;
   1740 		break;
   1741 	}
   1742 
   1743 	/*
   1744 	 * If all options have default values, no need to keep the mbuf.
   1745 	 */
   1746 	if (imo->imo_multicast_ifp == NULL &&
   1747 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1748 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1749 	    imo->imo_num_memberships == 0) {
   1750 		free(*imop, M_IPMOPTS);
   1751 		*imop = NULL;
   1752 	}
   1753 
   1754 	return (error);
   1755 }
   1756 
   1757 /*
   1758  * Return the IP multicast options in response to user getsockopt().
   1759  */
   1760 int
   1761 ip_getmoptions(optname, imo, mp)
   1762 	int optname;
   1763 	struct ip_moptions *imo;
   1764 	struct mbuf **mp;
   1765 {
   1766 	u_char *ttl;
   1767 	u_char *loop;
   1768 	struct in_addr *addr;
   1769 	struct in_ifaddr *ia;
   1770 
   1771 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1772 
   1773 	switch (optname) {
   1774 
   1775 	case IP_MULTICAST_IF:
   1776 		addr = mtod(*mp, struct in_addr *);
   1777 		(*mp)->m_len = sizeof(struct in_addr);
   1778 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1779 			*addr = zeroin_addr;
   1780 		else if (imo->imo_multicast_addr.s_addr) {
   1781 			/* return the value user has set */
   1782 			*addr = imo->imo_multicast_addr;
   1783 		} else {
   1784 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1785 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1786 		}
   1787 		return (0);
   1788 
   1789 	case IP_MULTICAST_TTL:
   1790 		ttl = mtod(*mp, u_char *);
   1791 		(*mp)->m_len = 1;
   1792 		*ttl = imo ? imo->imo_multicast_ttl
   1793 			   : IP_DEFAULT_MULTICAST_TTL;
   1794 		return (0);
   1795 
   1796 	case IP_MULTICAST_LOOP:
   1797 		loop = mtod(*mp, u_char *);
   1798 		(*mp)->m_len = 1;
   1799 		*loop = imo ? imo->imo_multicast_loop
   1800 			    : IP_DEFAULT_MULTICAST_LOOP;
   1801 		return (0);
   1802 
   1803 	default:
   1804 		return (EOPNOTSUPP);
   1805 	}
   1806 }
   1807 
   1808 /*
   1809  * Discard the IP multicast options.
   1810  */
   1811 void
   1812 ip_freemoptions(imo)
   1813 	struct ip_moptions *imo;
   1814 {
   1815 	int i;
   1816 
   1817 	if (imo != NULL) {
   1818 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1819 			in_delmulti(imo->imo_membership[i]);
   1820 		free(imo, M_IPMOPTS);
   1821 	}
   1822 }
   1823 
   1824 /*
   1825  * Routine called from ip_output() to loop back a copy of an IP multicast
   1826  * packet to the input queue of a specified interface.  Note that this
   1827  * calls the output routine of the loopback "driver", but with an interface
   1828  * pointer that might NOT be &loif -- easier than replicating that code here.
   1829  */
   1830 static void
   1831 ip_mloopback(ifp, m, dst)
   1832 	struct ifnet *ifp;
   1833 	struct mbuf *m;
   1834 	struct sockaddr_in *dst;
   1835 {
   1836 	struct ip *ip;
   1837 	struct mbuf *copym;
   1838 
   1839 	copym = m_copy(m, 0, M_COPYALL);
   1840 	if (copym != NULL
   1841 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1842 		copym = m_pullup(copym, sizeof(struct ip));
   1843 	if (copym != NULL) {
   1844 		/*
   1845 		 * We don't bother to fragment if the IP length is greater
   1846 		 * than the interface's MTU.  Can this possibly matter?
   1847 		 */
   1848 		ip = mtod(copym, struct ip *);
   1849 
   1850 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1851 			in_delayed_cksum(copym);
   1852 			copym->m_pkthdr.csum_flags &=
   1853 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1854 		}
   1855 
   1856 		ip->ip_sum = 0;
   1857 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1858 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1859 	}
   1860 }
   1861