Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.132
      1 /*	$NetBSD: ip_output.c,v 1.132 2004/05/18 16:47:08 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.132 2004/05/18 16:47:08 christos Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #ifdef FAST_IPSEC
    116 #include <sys/domain.h>
    117 #endif
    118 #include <sys/systm.h>
    119 #include <sys/proc.h>
    120 
    121 #include <net/if.h>
    122 #include <net/route.h>
    123 #include <net/pfil.h>
    124 
    125 #include <netinet/in.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/in_pcb.h>
    129 #include <netinet/in_var.h>
    130 #include <netinet/ip_var.h>
    131 
    132 #ifdef MROUTING
    133 #include <netinet/ip_mroute.h>
    134 #endif
    135 
    136 #include <machine/stdarg.h>
    137 
    138 #ifdef IPSEC
    139 #include <netinet6/ipsec.h>
    140 #include <netkey/key.h>
    141 #include <netkey/key_debug.h>
    142 #endif /*IPSEC*/
    143 
    144 #ifdef FAST_IPSEC
    145 #include <netipsec/ipsec.h>
    146 #include <netipsec/key.h>
    147 #include <netipsec/xform.h>
    148 #endif	/* FAST_IPSEC*/
    149 
    150 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
    151 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
    152 static void ip_mloopback
    153 	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
    154 
    155 #ifdef PFIL_HOOKS
    156 extern struct pfil_head inet_pfil_hook;			/* XXX */
    157 #endif
    158 
    159 /*
    160  * IP output.  The packet in mbuf chain m contains a skeletal IP
    161  * header (with len, off, ttl, proto, tos, src, dst).
    162  * The mbuf chain containing the packet will be freed.
    163  * The mbuf opt, if present, will not be freed.
    164  */
    165 int
    166 ip_output(struct mbuf *m0, ...)
    167 {
    168 	struct ip *ip;
    169 	struct ifnet *ifp;
    170 	struct mbuf *m = m0;
    171 	int hlen = sizeof (struct ip);
    172 	int len, error = 0;
    173 	struct route iproute;
    174 	struct sockaddr_in *dst;
    175 	struct in_ifaddr *ia;
    176 	struct mbuf *opt;
    177 	struct route *ro;
    178 	int flags, sw_csum;
    179 	int *mtu_p;
    180 	u_long mtu;
    181 	struct ip_moptions *imo;
    182 	struct socket *so;
    183 	va_list ap;
    184 #ifdef IPSEC
    185 	struct secpolicy *sp = NULL;
    186 #endif /*IPSEC*/
    187 #ifdef FAST_IPSEC
    188 	struct inpcb *inp;
    189 	struct m_tag *mtag;
    190 	struct secpolicy *sp = NULL;
    191 	struct tdb_ident *tdbi;
    192 	int s;
    193 #endif
    194 	u_int16_t ip_len;
    195 
    196 	len = 0;
    197 	va_start(ap, m0);
    198 	opt = va_arg(ap, struct mbuf *);
    199 	ro = va_arg(ap, struct route *);
    200 	flags = va_arg(ap, int);
    201 	imo = va_arg(ap, struct ip_moptions *);
    202 	so = va_arg(ap, struct socket *);
    203 	if (flags & IP_RETURNMTU)
    204 		mtu_p = va_arg(ap, int *);
    205 	else
    206 		mtu_p = NULL;
    207 	va_end(ap);
    208 
    209 	MCLAIM(m, &ip_tx_mowner);
    210 #ifdef FAST_IPSEC
    211 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    212 		inp = (struct inpcb *)so->so_pcb;
    213 	else
    214 		inp = NULL;
    215 #endif /* FAST_IPSEC */
    216 
    217 #ifdef	DIAGNOSTIC
    218 	if ((m->m_flags & M_PKTHDR) == 0)
    219 		panic("ip_output no HDR");
    220 #endif
    221 	if (opt) {
    222 		m = ip_insertoptions(m, opt, &len);
    223 		if (len >= sizeof(struct ip))
    224 			hlen = len;
    225 	}
    226 	ip = mtod(m, struct ip *);
    227 	/*
    228 	 * Fill in IP header.
    229 	 */
    230 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    231 		ip->ip_v = IPVERSION;
    232 		ip->ip_off = htons(0);
    233 		ip->ip_id = ip_newid();
    234 		ip->ip_hl = hlen >> 2;
    235 		ipstat.ips_localout++;
    236 	} else {
    237 		hlen = ip->ip_hl << 2;
    238 	}
    239 	/*
    240 	 * Route packet.
    241 	 */
    242 	if (ro == 0) {
    243 		ro = &iproute;
    244 		bzero((caddr_t)ro, sizeof (*ro));
    245 	}
    246 	dst = satosin(&ro->ro_dst);
    247 	/*
    248 	 * If there is a cached route,
    249 	 * check that it is to the same destination
    250 	 * and is still up.  If not, free it and try again.
    251 	 * The address family should also be checked in case of sharing the
    252 	 * cache with IPv6.
    253 	 */
    254 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    255 	    dst->sin_family != AF_INET ||
    256 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    257 		RTFREE(ro->ro_rt);
    258 		ro->ro_rt = (struct rtentry *)0;
    259 	}
    260 	if (ro->ro_rt == 0) {
    261 		bzero(dst, sizeof(*dst));
    262 		dst->sin_family = AF_INET;
    263 		dst->sin_len = sizeof(*dst);
    264 		dst->sin_addr = ip->ip_dst;
    265 	}
    266 	/*
    267 	 * If routing to interface only,
    268 	 * short circuit routing lookup.
    269 	 */
    270 	if (flags & IP_ROUTETOIF) {
    271 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    272 			ipstat.ips_noroute++;
    273 			error = ENETUNREACH;
    274 			goto bad;
    275 		}
    276 		ifp = ia->ia_ifp;
    277 		mtu = ifp->if_mtu;
    278 		ip->ip_ttl = 1;
    279 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    280 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    281 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    282 		ifp = imo->imo_multicast_ifp;
    283 		mtu = ifp->if_mtu;
    284 		IFP_TO_IA(ifp, ia);
    285 	} else {
    286 		if (ro->ro_rt == 0)
    287 			rtalloc(ro);
    288 		if (ro->ro_rt == 0) {
    289 			ipstat.ips_noroute++;
    290 			error = EHOSTUNREACH;
    291 			goto bad;
    292 		}
    293 		ia = ifatoia(ro->ro_rt->rt_ifa);
    294 		ifp = ro->ro_rt->rt_ifp;
    295 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    296 			mtu = ifp->if_mtu;
    297 		ro->ro_rt->rt_use++;
    298 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    299 			dst = satosin(ro->ro_rt->rt_gateway);
    300 	}
    301 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    302 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    303 		struct in_multi *inm;
    304 
    305 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    306 			M_BCAST : M_MCAST;
    307 		/*
    308 		 * IP destination address is multicast.  Make sure "dst"
    309 		 * still points to the address in "ro".  (It may have been
    310 		 * changed to point to a gateway address, above.)
    311 		 */
    312 		dst = satosin(&ro->ro_dst);
    313 		/*
    314 		 * See if the caller provided any multicast options
    315 		 */
    316 		if (imo != NULL)
    317 			ip->ip_ttl = imo->imo_multicast_ttl;
    318 		else
    319 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    320 
    321 		/*
    322 		 * if we don't know the outgoing ifp yet, we can't generate
    323 		 * output
    324 		 */
    325 		if (!ifp) {
    326 			ipstat.ips_noroute++;
    327 			error = ENETUNREACH;
    328 			goto bad;
    329 		}
    330 
    331 		/*
    332 		 * If the packet is multicast or broadcast, confirm that
    333 		 * the outgoing interface can transmit it.
    334 		 */
    335 		if (((m->m_flags & M_MCAST) &&
    336 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    337 		    ((m->m_flags & M_BCAST) &&
    338 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    339 			ipstat.ips_noroute++;
    340 			error = ENETUNREACH;
    341 			goto bad;
    342 		}
    343 		/*
    344 		 * If source address not specified yet, use an address
    345 		 * of outgoing interface.
    346 		 */
    347 		if (in_nullhost(ip->ip_src)) {
    348 			struct in_ifaddr *ia;
    349 
    350 			IFP_TO_IA(ifp, ia);
    351 			if (!ia) {
    352 				error = EADDRNOTAVAIL;
    353 				goto bad;
    354 			}
    355 			ip->ip_src = ia->ia_addr.sin_addr;
    356 		}
    357 
    358 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    359 		if (inm != NULL &&
    360 		   (imo == NULL || imo->imo_multicast_loop)) {
    361 			/*
    362 			 * If we belong to the destination multicast group
    363 			 * on the outgoing interface, and the caller did not
    364 			 * forbid loopback, loop back a copy.
    365 			 */
    366 			ip_mloopback(ifp, m, dst);
    367 		}
    368 #ifdef MROUTING
    369 		else {
    370 			/*
    371 			 * If we are acting as a multicast router, perform
    372 			 * multicast forwarding as if the packet had just
    373 			 * arrived on the interface to which we are about
    374 			 * to send.  The multicast forwarding function
    375 			 * recursively calls this function, using the
    376 			 * IP_FORWARDING flag to prevent infinite recursion.
    377 			 *
    378 			 * Multicasts that are looped back by ip_mloopback(),
    379 			 * above, will be forwarded by the ip_input() routine,
    380 			 * if necessary.
    381 			 */
    382 			extern struct socket *ip_mrouter;
    383 
    384 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    385 				if (ip_mforward(m, ifp) != 0) {
    386 					m_freem(m);
    387 					goto done;
    388 				}
    389 			}
    390 		}
    391 #endif
    392 		/*
    393 		 * Multicasts with a time-to-live of zero may be looped-
    394 		 * back, above, but must not be transmitted on a network.
    395 		 * Also, multicasts addressed to the loopback interface
    396 		 * are not sent -- the above call to ip_mloopback() will
    397 		 * loop back a copy if this host actually belongs to the
    398 		 * destination group on the loopback interface.
    399 		 */
    400 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    401 			m_freem(m);
    402 			goto done;
    403 		}
    404 
    405 		goto sendit;
    406 	}
    407 #ifndef notdef
    408 	/*
    409 	 * If source address not specified yet, use address
    410 	 * of outgoing interface.
    411 	 */
    412 	if (in_nullhost(ip->ip_src))
    413 		ip->ip_src = ia->ia_addr.sin_addr;
    414 #endif
    415 
    416 	/*
    417 	 * packets with Class-D address as source are not valid per
    418 	 * RFC 1112
    419 	 */
    420 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    421 		ipstat.ips_odropped++;
    422 		error = EADDRNOTAVAIL;
    423 		goto bad;
    424 	}
    425 
    426 	/*
    427 	 * Look for broadcast address and
    428 	 * and verify user is allowed to send
    429 	 * such a packet.
    430 	 */
    431 	if (in_broadcast(dst->sin_addr, ifp)) {
    432 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    433 			error = EADDRNOTAVAIL;
    434 			goto bad;
    435 		}
    436 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    437 			error = EACCES;
    438 			goto bad;
    439 		}
    440 		/* don't allow broadcast messages to be fragmented */
    441 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    442 			error = EMSGSIZE;
    443 			goto bad;
    444 		}
    445 		m->m_flags |= M_BCAST;
    446 	} else
    447 		m->m_flags &= ~M_BCAST;
    448 
    449 sendit:
    450 	/*
    451 	 * If we're doing Path MTU Discovery, we need to set DF unless
    452 	 * the route's MTU is locked.
    453 	 */
    454 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    455 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    456 		ip->ip_off |= htons(IP_DF);
    457 
    458 	/* Remember the current ip_len */
    459 	ip_len = ntohs(ip->ip_len);
    460 
    461 #ifdef IPSEC
    462 	/* get SP for this packet */
    463 	if (so == NULL)
    464 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    465 		    flags, &error);
    466 	else {
    467 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    468 					 IPSEC_DIR_OUTBOUND))
    469 			goto skip_ipsec;
    470 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    471 	}
    472 
    473 	if (sp == NULL) {
    474 		ipsecstat.out_inval++;
    475 		goto bad;
    476 	}
    477 
    478 	error = 0;
    479 
    480 	/* check policy */
    481 	switch (sp->policy) {
    482 	case IPSEC_POLICY_DISCARD:
    483 		/*
    484 		 * This packet is just discarded.
    485 		 */
    486 		ipsecstat.out_polvio++;
    487 		goto bad;
    488 
    489 	case IPSEC_POLICY_BYPASS:
    490 	case IPSEC_POLICY_NONE:
    491 		/* no need to do IPsec. */
    492 		goto skip_ipsec;
    493 
    494 	case IPSEC_POLICY_IPSEC:
    495 		if (sp->req == NULL) {
    496 			/* XXX should be panic ? */
    497 			printf("ip_output: No IPsec request specified.\n");
    498 			error = EINVAL;
    499 			goto bad;
    500 		}
    501 		break;
    502 
    503 	case IPSEC_POLICY_ENTRUST:
    504 	default:
    505 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    506 	}
    507 
    508 	/*
    509 	 * ipsec4_output() expects ip_len and ip_off in network
    510 	 * order.  They have been set to network order above.
    511 	 */
    512 
    513     {
    514 	struct ipsec_output_state state;
    515 	bzero(&state, sizeof(state));
    516 	state.m = m;
    517 	if (flags & IP_ROUTETOIF) {
    518 		state.ro = &iproute;
    519 		bzero(&iproute, sizeof(iproute));
    520 	} else
    521 		state.ro = ro;
    522 	state.dst = (struct sockaddr *)dst;
    523 
    524 	/*
    525 	 * We can't defer the checksum of payload data if
    526 	 * we're about to encrypt/authenticate it.
    527 	 *
    528 	 * XXX When we support crypto offloading functions of
    529 	 * XXX network interfaces, we need to reconsider this,
    530 	 * XXX since it's likely that they'll support checksumming,
    531 	 * XXX as well.
    532 	 */
    533 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    534 		in_delayed_cksum(m);
    535 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    536 	}
    537 
    538 	error = ipsec4_output(&state, sp, flags);
    539 
    540 	m = state.m;
    541 	if (flags & IP_ROUTETOIF) {
    542 		/*
    543 		 * if we have tunnel mode SA, we may need to ignore
    544 		 * IP_ROUTETOIF.
    545 		 */
    546 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    547 			flags &= ~IP_ROUTETOIF;
    548 			ro = state.ro;
    549 		}
    550 	} else
    551 		ro = state.ro;
    552 	dst = (struct sockaddr_in *)state.dst;
    553 	if (error) {
    554 		/* mbuf is already reclaimed in ipsec4_output. */
    555 		m0 = NULL;
    556 		switch (error) {
    557 		case EHOSTUNREACH:
    558 		case ENETUNREACH:
    559 		case EMSGSIZE:
    560 		case ENOBUFS:
    561 		case ENOMEM:
    562 			break;
    563 		default:
    564 			printf("ip4_output (ipsec): error code %d\n", error);
    565 			/*fall through*/
    566 		case ENOENT:
    567 			/* don't show these error codes to the user */
    568 			error = 0;
    569 			break;
    570 		}
    571 		goto bad;
    572 	}
    573 
    574 	/* be sure to update variables that are affected by ipsec4_output() */
    575 	ip = mtod(m, struct ip *);
    576 	hlen = ip->ip_hl << 2;
    577 	ip_len = ntohs(ip->ip_len);
    578 
    579 	if (ro->ro_rt == NULL) {
    580 		if ((flags & IP_ROUTETOIF) == 0) {
    581 			printf("ip_output: "
    582 				"can't update route after IPsec processing\n");
    583 			error = EHOSTUNREACH;	/*XXX*/
    584 			goto bad;
    585 		}
    586 	} else {
    587 		/* nobody uses ia beyond here */
    588 		if (state.encap)
    589 			ifp = ro->ro_rt->rt_ifp;
    590 	}
    591     }
    592 skip_ipsec:
    593 #endif /*IPSEC*/
    594 #ifdef FAST_IPSEC
    595 	/*
    596 	 * Check the security policy (SP) for the packet and, if
    597 	 * required, do IPsec-related processing.  There are two
    598 	 * cases here; the first time a packet is sent through
    599 	 * it will be untagged and handled by ipsec4_checkpolicy.
    600 	 * If the packet is resubmitted to ip_output (e.g. after
    601 	 * AH, ESP, etc. processing), there will be a tag to bypass
    602 	 * the lookup and related policy checking.
    603 	 */
    604 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    605 	s = splsoftnet();
    606 	if (mtag != NULL) {
    607 		tdbi = (struct tdb_ident *)(mtag + 1);
    608 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    609 		if (sp == NULL)
    610 			error = -EINVAL;	/* force silent drop */
    611 		m_tag_delete(m, mtag);
    612 	} else {
    613 		if (inp != NULL &&
    614 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    615 			goto spd_done;
    616 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    617 					&error, inp);
    618 	}
    619 	/*
    620 	 * There are four return cases:
    621 	 *    sp != NULL	 	    apply IPsec policy
    622 	 *    sp == NULL, error == 0	    no IPsec handling needed
    623 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    624 	 *    sp == NULL, error != 0	    discard packet, report error
    625 	 */
    626 	if (sp != NULL) {
    627 		/* Loop detection, check if ipsec processing already done */
    628 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    629 		for (mtag = m_tag_first(m); mtag != NULL;
    630 		     mtag = m_tag_next(m, mtag)) {
    631 #ifdef MTAG_ABI_COMPAT
    632 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    633 				continue;
    634 #endif
    635 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    636 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    637 				continue;
    638 			/*
    639 			 * Check if policy has an SA associated with it.
    640 			 * This can happen when an SP has yet to acquire
    641 			 * an SA; e.g. on first reference.  If it occurs,
    642 			 * then we let ipsec4_process_packet do its thing.
    643 			 */
    644 			if (sp->req->sav == NULL)
    645 				break;
    646 			tdbi = (struct tdb_ident *)(mtag + 1);
    647 			if (tdbi->spi == sp->req->sav->spi &&
    648 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    649 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    650 				 sizeof (union sockaddr_union)) == 0) {
    651 				/*
    652 				 * No IPsec processing is needed, free
    653 				 * reference to SP.
    654 				 *
    655 				 * NB: null pointer to avoid free at
    656 				 *     done: below.
    657 				 */
    658 				KEY_FREESP(&sp), sp = NULL;
    659 				splx(s);
    660 				goto spd_done;
    661 			}
    662 		}
    663 
    664 		/*
    665 		 * Do delayed checksums now because we send before
    666 		 * this is done in the normal processing path.
    667 		 */
    668 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    669 			in_delayed_cksum(m);
    670 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    671 		}
    672 
    673 #ifdef __FreeBSD__
    674 		ip->ip_len = htons(ip->ip_len);
    675 		ip->ip_off = htons(ip->ip_off);
    676 #endif
    677 
    678 		/* NB: callee frees mbuf */
    679 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    680 		/*
    681 		 * Preserve KAME behaviour: ENOENT can be returned
    682 		 * when an SA acquire is in progress.  Don't propagate
    683 		 * this to user-level; it confuses applications.
    684 		 *
    685 		 * XXX this will go away when the SADB is redone.
    686 		 */
    687 		if (error == ENOENT)
    688 			error = 0;
    689 		splx(s);
    690 		goto done;
    691 	} else {
    692 		splx(s);
    693 
    694 		if (error != 0) {
    695 			/*
    696 			 * Hack: -EINVAL is used to signal that a packet
    697 			 * should be silently discarded.  This is typically
    698 			 * because we asked key management for an SA and
    699 			 * it was delayed (e.g. kicked up to IKE).
    700 			 */
    701 			if (error == -EINVAL)
    702 				error = 0;
    703 			goto bad;
    704 		} else {
    705 			/* No IPsec processing for this packet. */
    706 		}
    707 #ifdef notyet
    708 		/*
    709 		 * If deferred crypto processing is needed, check that
    710 		 * the interface supports it.
    711 		 */
    712 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    713 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    714 			/* notify IPsec to do its own crypto */
    715 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    716 			error = EHOSTUNREACH;
    717 			goto bad;
    718 		}
    719 #endif
    720 	}
    721 spd_done:
    722 #endif /* FAST_IPSEC */
    723 
    724 #ifdef PFIL_HOOKS
    725 	/*
    726 	 * Run through list of hooks for output packets.
    727 	 */
    728 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    729 		goto done;
    730 	if (m == NULL)
    731 		goto done;
    732 
    733 	ip = mtod(m, struct ip *);
    734 	hlen = ip->ip_hl << 2;
    735 #endif /* PFIL_HOOKS */
    736 
    737 	m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    738 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    739 	/*
    740 	 * If small enough for mtu of path, can just send directly.
    741 	 */
    742 	if (ip_len <= mtu) {
    743 #if IFA_STATS
    744 		/*
    745 		 * search for the source address structure to
    746 		 * maintain output statistics.
    747 		 */
    748 		INADDR_TO_IA(ip->ip_src, ia);
    749 		if (ia)
    750 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    751 #endif
    752 		/*
    753 		 * Always initialize the sum to 0!  Some HW assisted
    754 		 * checksumming requires this.
    755 		 */
    756 		ip->ip_sum = 0;
    757 
    758 		/*
    759 		 * Perform any checksums that the hardware can't do
    760 		 * for us.
    761 		 *
    762 		 * XXX Does any hardware require the {th,uh}_sum
    763 		 * XXX fields to be 0?
    764 		 */
    765 		if (sw_csum & M_CSUM_IPv4) {
    766 			ip->ip_sum = in_cksum(m, hlen);
    767 			m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    768 		}
    769 		if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    770 			in_delayed_cksum(m);
    771 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    772 		}
    773 
    774 #ifdef IPSEC
    775 		/* clean ipsec history once it goes out of the node */
    776 		ipsec_delaux(m);
    777 #endif
    778 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    779 		goto done;
    780 	}
    781 
    782 	/*
    783 	 * We can't use HW checksumming if we're about to
    784 	 * to fragment the packet.
    785 	 *
    786 	 * XXX Some hardware can do this.
    787 	 */
    788 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    789 		in_delayed_cksum(m);
    790 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    791 	}
    792 
    793 	/*
    794 	 * Too large for interface; fragment if possible.
    795 	 * Must be able to put at least 8 bytes per fragment.
    796 	 */
    797 	if (ntohs(ip->ip_off) & IP_DF) {
    798 		if (flags & IP_RETURNMTU)
    799 			*mtu_p = mtu;
    800 		error = EMSGSIZE;
    801 		ipstat.ips_cantfrag++;
    802 		goto bad;
    803 	}
    804 
    805 	error = ip_fragment(m, ifp, mtu);
    806 	if (error) {
    807 		m = NULL;
    808 		goto bad;
    809 	}
    810 
    811 	for (; m; m = m0) {
    812 		m0 = m->m_nextpkt;
    813 		m->m_nextpkt = 0;
    814 		if (error == 0) {
    815 #if IFA_STATS
    816 			/*
    817 			 * search for the source address structure to
    818 			 * maintain output statistics.
    819 			 */
    820 			INADDR_TO_IA(ip->ip_src, ia);
    821 			if (ia) {
    822 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    823 				    ntohs(ip->ip_len);
    824 			}
    825 #endif
    826 #ifdef IPSEC
    827 			/* clean ipsec history once it goes out of the node */
    828 			ipsec_delaux(m);
    829 #endif
    830 			KASSERT((m->m_pkthdr.csum_flags &
    831 			    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    832 			error = (*ifp->if_output)(ifp, m, sintosa(dst),
    833 			    ro->ro_rt);
    834 		} else
    835 			m_freem(m);
    836 	}
    837 
    838 	if (error == 0)
    839 		ipstat.ips_fragmented++;
    840 done:
    841 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
    842 		RTFREE(ro->ro_rt);
    843 		ro->ro_rt = 0;
    844 	}
    845 
    846 #ifdef IPSEC
    847 	if (sp != NULL) {
    848 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    849 			printf("DP ip_output call free SP:%p\n", sp));
    850 		key_freesp(sp);
    851 	}
    852 #endif /* IPSEC */
    853 #ifdef FAST_IPSEC
    854 	if (sp != NULL)
    855 		KEY_FREESP(&sp);
    856 #endif /* FAST_IPSEC */
    857 
    858 	return (error);
    859 bad:
    860 	m_freem(m);
    861 	goto done;
    862 }
    863 
    864 int
    865 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    866 {
    867 	struct ip *ip, *mhip;
    868 	struct mbuf *m0;
    869 	int len, hlen, off;
    870 	int mhlen, firstlen;
    871 	struct mbuf **mnext;
    872 	int sw_csum;
    873 	int fragments = 0;
    874 	int s;
    875 	int error = 0;
    876 
    877 	ip = mtod(m, struct ip *);
    878 	hlen = ip->ip_hl << 2;
    879 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    880 
    881 	len = (mtu - hlen) &~ 7;
    882 	if (len < 8) {
    883 		m_freem(m);
    884 		return (EMSGSIZE);
    885 	}
    886 
    887 	firstlen = len;
    888 	mnext = &m->m_nextpkt;
    889 
    890 	/*
    891 	 * Loop through length of segment after first fragment,
    892 	 * make new header and copy data of each part and link onto chain.
    893 	 */
    894 	m0 = m;
    895 	mhlen = sizeof (struct ip);
    896 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    897 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    898 		if (m == 0) {
    899 			error = ENOBUFS;
    900 			ipstat.ips_odropped++;
    901 			goto sendorfree;
    902 		}
    903 		MCLAIM(m, m0->m_owner);
    904 		*mnext = m;
    905 		mnext = &m->m_nextpkt;
    906 		m->m_data += max_linkhdr;
    907 		mhip = mtod(m, struct ip *);
    908 		*mhip = *ip;
    909 		/* we must inherit MCAST and BCAST flags */
    910 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    911 		if (hlen > sizeof (struct ip)) {
    912 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    913 			mhip->ip_hl = mhlen >> 2;
    914 		}
    915 		m->m_len = mhlen;
    916 		mhip->ip_off = ((off - hlen) >> 3) +
    917 		    (ntohs(ip->ip_off) & ~IP_MF);
    918 		if (ip->ip_off & htons(IP_MF))
    919 			mhip->ip_off |= IP_MF;
    920 		if (off + len >= ntohs(ip->ip_len))
    921 			len = ntohs(ip->ip_len) - off;
    922 		else
    923 			mhip->ip_off |= IP_MF;
    924 		HTONS(mhip->ip_off);
    925 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    926 		m->m_next = m_copy(m0, off, len);
    927 		if (m->m_next == 0) {
    928 			error = ENOBUFS;	/* ??? */
    929 			ipstat.ips_odropped++;
    930 			goto sendorfree;
    931 		}
    932 		m->m_pkthdr.len = mhlen + len;
    933 		m->m_pkthdr.rcvif = (struct ifnet *)0;
    934 		mhip->ip_sum = 0;
    935 		if (sw_csum & M_CSUM_IPv4) {
    936 			mhip->ip_sum = in_cksum(m, mhlen);
    937 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
    938 		} else {
    939 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    940 		}
    941 		ipstat.ips_ofragments++;
    942 		fragments++;
    943 	}
    944 	/*
    945 	 * Update first fragment by trimming what's been copied out
    946 	 * and updating header, then send each fragment (in order).
    947 	 */
    948 	m = m0;
    949 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
    950 	m->m_pkthdr.len = hlen + firstlen;
    951 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
    952 	ip->ip_off |= htons(IP_MF);
    953 	ip->ip_sum = 0;
    954 	if (sw_csum & M_CSUM_IPv4) {
    955 		ip->ip_sum = in_cksum(m, hlen);
    956 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    957 	} else {
    958 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
    959 	}
    960 sendorfree:
    961 	/*
    962 	 * If there is no room for all the fragments, don't queue
    963 	 * any of them.
    964 	 */
    965 	s = splnet();
    966 	if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
    967 	    error == 0) {
    968 		error = ENOBUFS;
    969 		ipstat.ips_odropped++;
    970 		IFQ_INC_DROPS(&ifp->if_snd);
    971 	}
    972 	splx(s);
    973 	if (error) {
    974 		for (m = m0; m; m = m0) {
    975 			m0 = m->m_nextpkt;
    976 			m->m_nextpkt = NULL;
    977 			m_freem(m);
    978 		}
    979 	}
    980 	return (error);
    981 }
    982 
    983 /*
    984  * Process a delayed payload checksum calculation.
    985  */
    986 void
    987 in_delayed_cksum(struct mbuf *m)
    988 {
    989 	struct ip *ip;
    990 	u_int16_t csum, offset;
    991 
    992 	ip = mtod(m, struct ip *);
    993 	offset = ip->ip_hl << 2;
    994 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
    995 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
    996 		csum = 0xffff;
    997 
    998 	offset += m->m_pkthdr.csum_data;	/* checksum offset */
    999 
   1000 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1001 		/* This happen when ip options were inserted
   1002 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1003 		    m->m_len, offset, ip->ip_p);
   1004 		 */
   1005 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1006 	} else
   1007 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1008 }
   1009 
   1010 /*
   1011  * Determine the maximum length of the options to be inserted;
   1012  * we would far rather allocate too much space rather than too little.
   1013  */
   1014 
   1015 u_int
   1016 ip_optlen(inp)
   1017 	struct inpcb *inp;
   1018 {
   1019 	struct mbuf *m = inp->inp_options;
   1020 
   1021 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1022 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1023 	else
   1024 		return 0;
   1025 }
   1026 
   1027 
   1028 /*
   1029  * Insert IP options into preformed packet.
   1030  * Adjust IP destination as required for IP source routing,
   1031  * as indicated by a non-zero in_addr at the start of the options.
   1032  */
   1033 static struct mbuf *
   1034 ip_insertoptions(m, opt, phlen)
   1035 	struct mbuf *m;
   1036 	struct mbuf *opt;
   1037 	int *phlen;
   1038 {
   1039 	struct ipoption *p = mtod(opt, struct ipoption *);
   1040 	struct mbuf *n;
   1041 	struct ip *ip = mtod(m, struct ip *);
   1042 	unsigned optlen;
   1043 
   1044 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1045 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1046 		return (m);		/* XXX should fail */
   1047 	if (!in_nullhost(p->ipopt_dst))
   1048 		ip->ip_dst = p->ipopt_dst;
   1049 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1050 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1051 		if (n == 0)
   1052 			return (m);
   1053 		MCLAIM(n, m->m_owner);
   1054 		M_COPY_PKTHDR(n, m);
   1055 		m_tag_delete_chain(m, NULL);
   1056 		m->m_flags &= ~M_PKTHDR;
   1057 		m->m_len -= sizeof(struct ip);
   1058 		m->m_data += sizeof(struct ip);
   1059 		n->m_next = m;
   1060 		m = n;
   1061 		m->m_len = optlen + sizeof(struct ip);
   1062 		m->m_data += max_linkhdr;
   1063 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1064 	} else {
   1065 		m->m_data -= optlen;
   1066 		m->m_len += optlen;
   1067 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1068 	}
   1069 	m->m_pkthdr.len += optlen;
   1070 	ip = mtod(m, struct ip *);
   1071 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1072 	*phlen = sizeof(struct ip) + optlen;
   1073 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1074 	return (m);
   1075 }
   1076 
   1077 /*
   1078  * Copy options from ip to jp,
   1079  * omitting those not copied during fragmentation.
   1080  */
   1081 int
   1082 ip_optcopy(ip, jp)
   1083 	struct ip *ip, *jp;
   1084 {
   1085 	u_char *cp, *dp;
   1086 	int opt, optlen, cnt;
   1087 
   1088 	cp = (u_char *)(ip + 1);
   1089 	dp = (u_char *)(jp + 1);
   1090 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1091 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1092 		opt = cp[0];
   1093 		if (opt == IPOPT_EOL)
   1094 			break;
   1095 		if (opt == IPOPT_NOP) {
   1096 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1097 			*dp++ = IPOPT_NOP;
   1098 			optlen = 1;
   1099 			continue;
   1100 		}
   1101 #ifdef DIAGNOSTIC
   1102 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1103 			panic("malformed IPv4 option passed to ip_optcopy");
   1104 #endif
   1105 		optlen = cp[IPOPT_OLEN];
   1106 #ifdef DIAGNOSTIC
   1107 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1108 			panic("malformed IPv4 option passed to ip_optcopy");
   1109 #endif
   1110 		/* bogus lengths should have been caught by ip_dooptions */
   1111 		if (optlen > cnt)
   1112 			optlen = cnt;
   1113 		if (IPOPT_COPIED(opt)) {
   1114 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1115 			dp += optlen;
   1116 		}
   1117 	}
   1118 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1119 		*dp++ = IPOPT_EOL;
   1120 	return (optlen);
   1121 }
   1122 
   1123 /*
   1124  * IP socket option processing.
   1125  */
   1126 int
   1127 ip_ctloutput(op, so, level, optname, mp)
   1128 	int op;
   1129 	struct socket *so;
   1130 	int level, optname;
   1131 	struct mbuf **mp;
   1132 {
   1133 	struct inpcb *inp = sotoinpcb(so);
   1134 	struct mbuf *m = *mp;
   1135 	int optval = 0;
   1136 	int error = 0;
   1137 #if defined(IPSEC) || defined(FAST_IPSEC)
   1138 	struct proc *p = curproc;	/*XXX*/
   1139 #endif
   1140 
   1141 	if (level != IPPROTO_IP) {
   1142 		error = EINVAL;
   1143 		if (op == PRCO_SETOPT && *mp)
   1144 			(void) m_free(*mp);
   1145 	} else switch (op) {
   1146 
   1147 	case PRCO_SETOPT:
   1148 		switch (optname) {
   1149 		case IP_OPTIONS:
   1150 #ifdef notyet
   1151 		case IP_RETOPTS:
   1152 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1153 #else
   1154 			return (ip_pcbopts(&inp->inp_options, m));
   1155 #endif
   1156 
   1157 		case IP_TOS:
   1158 		case IP_TTL:
   1159 		case IP_RECVOPTS:
   1160 		case IP_RECVRETOPTS:
   1161 		case IP_RECVDSTADDR:
   1162 		case IP_RECVIF:
   1163 			if (m == NULL || m->m_len != sizeof(int))
   1164 				error = EINVAL;
   1165 			else {
   1166 				optval = *mtod(m, int *);
   1167 				switch (optname) {
   1168 
   1169 				case IP_TOS:
   1170 					inp->inp_ip.ip_tos = optval;
   1171 					break;
   1172 
   1173 				case IP_TTL:
   1174 					inp->inp_ip.ip_ttl = optval;
   1175 					break;
   1176 #define	OPTSET(bit) \
   1177 	if (optval) \
   1178 		inp->inp_flags |= bit; \
   1179 	else \
   1180 		inp->inp_flags &= ~bit;
   1181 
   1182 				case IP_RECVOPTS:
   1183 					OPTSET(INP_RECVOPTS);
   1184 					break;
   1185 
   1186 				case IP_RECVRETOPTS:
   1187 					OPTSET(INP_RECVRETOPTS);
   1188 					break;
   1189 
   1190 				case IP_RECVDSTADDR:
   1191 					OPTSET(INP_RECVDSTADDR);
   1192 					break;
   1193 
   1194 				case IP_RECVIF:
   1195 					OPTSET(INP_RECVIF);
   1196 					break;
   1197 				}
   1198 			}
   1199 			break;
   1200 #undef OPTSET
   1201 
   1202 		case IP_MULTICAST_IF:
   1203 		case IP_MULTICAST_TTL:
   1204 		case IP_MULTICAST_LOOP:
   1205 		case IP_ADD_MEMBERSHIP:
   1206 		case IP_DROP_MEMBERSHIP:
   1207 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1208 			break;
   1209 
   1210 		case IP_PORTRANGE:
   1211 			if (m == 0 || m->m_len != sizeof(int))
   1212 				error = EINVAL;
   1213 			else {
   1214 				optval = *mtod(m, int *);
   1215 
   1216 				switch (optval) {
   1217 
   1218 				case IP_PORTRANGE_DEFAULT:
   1219 				case IP_PORTRANGE_HIGH:
   1220 					inp->inp_flags &= ~(INP_LOWPORT);
   1221 					break;
   1222 
   1223 				case IP_PORTRANGE_LOW:
   1224 					inp->inp_flags |= INP_LOWPORT;
   1225 					break;
   1226 
   1227 				default:
   1228 					error = EINVAL;
   1229 					break;
   1230 				}
   1231 			}
   1232 			break;
   1233 
   1234 #if defined(IPSEC) || defined(FAST_IPSEC)
   1235 		case IP_IPSEC_POLICY:
   1236 		{
   1237 			caddr_t req = NULL;
   1238 			size_t len = 0;
   1239 			int priv = 0;
   1240 
   1241 #ifdef __NetBSD__
   1242 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1243 				priv = 0;
   1244 			else
   1245 				priv = 1;
   1246 #else
   1247 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1248 #endif
   1249 			if (m) {
   1250 				req = mtod(m, caddr_t);
   1251 				len = m->m_len;
   1252 			}
   1253 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1254 			break;
   1255 		    }
   1256 #endif /*IPSEC*/
   1257 
   1258 		default:
   1259 			error = ENOPROTOOPT;
   1260 			break;
   1261 		}
   1262 		if (m)
   1263 			(void)m_free(m);
   1264 		break;
   1265 
   1266 	case PRCO_GETOPT:
   1267 		switch (optname) {
   1268 		case IP_OPTIONS:
   1269 		case IP_RETOPTS:
   1270 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1271 			MCLAIM(m, so->so_mowner);
   1272 			if (inp->inp_options) {
   1273 				m->m_len = inp->inp_options->m_len;
   1274 				bcopy(mtod(inp->inp_options, caddr_t),
   1275 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1276 			} else
   1277 				m->m_len = 0;
   1278 			break;
   1279 
   1280 		case IP_TOS:
   1281 		case IP_TTL:
   1282 		case IP_RECVOPTS:
   1283 		case IP_RECVRETOPTS:
   1284 		case IP_RECVDSTADDR:
   1285 		case IP_RECVIF:
   1286 		case IP_ERRORMTU:
   1287 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1288 			MCLAIM(m, so->so_mowner);
   1289 			m->m_len = sizeof(int);
   1290 			switch (optname) {
   1291 
   1292 			case IP_TOS:
   1293 				optval = inp->inp_ip.ip_tos;
   1294 				break;
   1295 
   1296 			case IP_TTL:
   1297 				optval = inp->inp_ip.ip_ttl;
   1298 				break;
   1299 
   1300 			case IP_ERRORMTU:
   1301 				optval = inp->inp_errormtu;
   1302 				break;
   1303 
   1304 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1305 
   1306 			case IP_RECVOPTS:
   1307 				optval = OPTBIT(INP_RECVOPTS);
   1308 				break;
   1309 
   1310 			case IP_RECVRETOPTS:
   1311 				optval = OPTBIT(INP_RECVRETOPTS);
   1312 				break;
   1313 
   1314 			case IP_RECVDSTADDR:
   1315 				optval = OPTBIT(INP_RECVDSTADDR);
   1316 				break;
   1317 
   1318 			case IP_RECVIF:
   1319 				optval = OPTBIT(INP_RECVIF);
   1320 				break;
   1321 			}
   1322 			*mtod(m, int *) = optval;
   1323 			break;
   1324 
   1325 #if defined(IPSEC) || defined(FAST_IPSEC)
   1326 		case IP_IPSEC_POLICY:
   1327 		{
   1328 			caddr_t req = NULL;
   1329 			size_t len = 0;
   1330 
   1331 			if (m) {
   1332 				req = mtod(m, caddr_t);
   1333 				len = m->m_len;
   1334 			}
   1335 			error = ipsec4_get_policy(inp, req, len, mp);
   1336 			break;
   1337 		}
   1338 #endif /*IPSEC*/
   1339 
   1340 		case IP_MULTICAST_IF:
   1341 		case IP_MULTICAST_TTL:
   1342 		case IP_MULTICAST_LOOP:
   1343 		case IP_ADD_MEMBERSHIP:
   1344 		case IP_DROP_MEMBERSHIP:
   1345 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1346 			if (*mp)
   1347 				MCLAIM(*mp, so->so_mowner);
   1348 			break;
   1349 
   1350 		case IP_PORTRANGE:
   1351 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1352 			MCLAIM(m, so->so_mowner);
   1353 			m->m_len = sizeof(int);
   1354 
   1355 			if (inp->inp_flags & INP_LOWPORT)
   1356 				optval = IP_PORTRANGE_LOW;
   1357 			else
   1358 				optval = IP_PORTRANGE_DEFAULT;
   1359 
   1360 			*mtod(m, int *) = optval;
   1361 			break;
   1362 
   1363 		default:
   1364 			error = ENOPROTOOPT;
   1365 			break;
   1366 		}
   1367 		break;
   1368 	}
   1369 	return (error);
   1370 }
   1371 
   1372 /*
   1373  * Set up IP options in pcb for insertion in output packets.
   1374  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1375  * with destination address if source routed.
   1376  */
   1377 int
   1378 #ifdef notyet
   1379 ip_pcbopts(optname, pcbopt, m)
   1380 	int optname;
   1381 #else
   1382 ip_pcbopts(pcbopt, m)
   1383 #endif
   1384 	struct mbuf **pcbopt;
   1385 	struct mbuf *m;
   1386 {
   1387 	int cnt, optlen;
   1388 	u_char *cp;
   1389 	u_char opt;
   1390 
   1391 	/* turn off any old options */
   1392 	if (*pcbopt)
   1393 		(void)m_free(*pcbopt);
   1394 	*pcbopt = 0;
   1395 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1396 		/*
   1397 		 * Only turning off any previous options.
   1398 		 */
   1399 		if (m)
   1400 			(void)m_free(m);
   1401 		return (0);
   1402 	}
   1403 
   1404 #ifndef	__vax__
   1405 	if (m->m_len % sizeof(int32_t))
   1406 		goto bad;
   1407 #endif
   1408 	/*
   1409 	 * IP first-hop destination address will be stored before
   1410 	 * actual options; move other options back
   1411 	 * and clear it when none present.
   1412 	 */
   1413 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1414 		goto bad;
   1415 	cnt = m->m_len;
   1416 	m->m_len += sizeof(struct in_addr);
   1417 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1418 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1419 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1420 
   1421 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1422 		opt = cp[IPOPT_OPTVAL];
   1423 		if (opt == IPOPT_EOL)
   1424 			break;
   1425 		if (opt == IPOPT_NOP)
   1426 			optlen = 1;
   1427 		else {
   1428 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1429 				goto bad;
   1430 			optlen = cp[IPOPT_OLEN];
   1431 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1432 				goto bad;
   1433 		}
   1434 		switch (opt) {
   1435 
   1436 		default:
   1437 			break;
   1438 
   1439 		case IPOPT_LSRR:
   1440 		case IPOPT_SSRR:
   1441 			/*
   1442 			 * user process specifies route as:
   1443 			 *	->A->B->C->D
   1444 			 * D must be our final destination (but we can't
   1445 			 * check that since we may not have connected yet).
   1446 			 * A is first hop destination, which doesn't appear in
   1447 			 * actual IP option, but is stored before the options.
   1448 			 */
   1449 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1450 				goto bad;
   1451 			m->m_len -= sizeof(struct in_addr);
   1452 			cnt -= sizeof(struct in_addr);
   1453 			optlen -= sizeof(struct in_addr);
   1454 			cp[IPOPT_OLEN] = optlen;
   1455 			/*
   1456 			 * Move first hop before start of options.
   1457 			 */
   1458 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1459 			    sizeof(struct in_addr));
   1460 			/*
   1461 			 * Then copy rest of options back
   1462 			 * to close up the deleted entry.
   1463 			 */
   1464 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1465 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1466 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1467 			break;
   1468 		}
   1469 	}
   1470 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1471 		goto bad;
   1472 	*pcbopt = m;
   1473 	return (0);
   1474 
   1475 bad:
   1476 	(void)m_free(m);
   1477 	return (EINVAL);
   1478 }
   1479 
   1480 /*
   1481  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1482  */
   1483 static struct ifnet *
   1484 ip_multicast_if(a, ifindexp)
   1485 	struct in_addr *a;
   1486 	int *ifindexp;
   1487 {
   1488 	int ifindex;
   1489 	struct ifnet *ifp = NULL;
   1490 	struct in_ifaddr *ia;
   1491 
   1492 	if (ifindexp)
   1493 		*ifindexp = 0;
   1494 	if (ntohl(a->s_addr) >> 24 == 0) {
   1495 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1496 		if (ifindex < 0 || if_indexlim <= ifindex)
   1497 			return NULL;
   1498 		ifp = ifindex2ifnet[ifindex];
   1499 		if (!ifp)
   1500 			return NULL;
   1501 		if (ifindexp)
   1502 			*ifindexp = ifindex;
   1503 	} else {
   1504 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1505 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1506 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1507 				ifp = ia->ia_ifp;
   1508 				break;
   1509 			}
   1510 		}
   1511 	}
   1512 	return ifp;
   1513 }
   1514 
   1515 /*
   1516  * Set the IP multicast options in response to user setsockopt().
   1517  */
   1518 int
   1519 ip_setmoptions(optname, imop, m)
   1520 	int optname;
   1521 	struct ip_moptions **imop;
   1522 	struct mbuf *m;
   1523 {
   1524 	int error = 0;
   1525 	u_char loop;
   1526 	int i;
   1527 	struct in_addr addr;
   1528 	struct ip_mreq *mreq;
   1529 	struct ifnet *ifp;
   1530 	struct ip_moptions *imo = *imop;
   1531 	struct route ro;
   1532 	struct sockaddr_in *dst;
   1533 	int ifindex;
   1534 
   1535 	if (imo == NULL) {
   1536 		/*
   1537 		 * No multicast option buffer attached to the pcb;
   1538 		 * allocate one and initialize to default values.
   1539 		 */
   1540 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1541 		    M_WAITOK);
   1542 
   1543 		if (imo == NULL)
   1544 			return (ENOBUFS);
   1545 		*imop = imo;
   1546 		imo->imo_multicast_ifp = NULL;
   1547 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1548 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1549 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1550 		imo->imo_num_memberships = 0;
   1551 	}
   1552 
   1553 	switch (optname) {
   1554 
   1555 	case IP_MULTICAST_IF:
   1556 		/*
   1557 		 * Select the interface for outgoing multicast packets.
   1558 		 */
   1559 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1560 			error = EINVAL;
   1561 			break;
   1562 		}
   1563 		addr = *(mtod(m, struct in_addr *));
   1564 		/*
   1565 		 * INADDR_ANY is used to remove a previous selection.
   1566 		 * When no interface is selected, a default one is
   1567 		 * chosen every time a multicast packet is sent.
   1568 		 */
   1569 		if (in_nullhost(addr)) {
   1570 			imo->imo_multicast_ifp = NULL;
   1571 			break;
   1572 		}
   1573 		/*
   1574 		 * The selected interface is identified by its local
   1575 		 * IP address.  Find the interface and confirm that
   1576 		 * it supports multicasting.
   1577 		 */
   1578 		ifp = ip_multicast_if(&addr, &ifindex);
   1579 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1580 			error = EADDRNOTAVAIL;
   1581 			break;
   1582 		}
   1583 		imo->imo_multicast_ifp = ifp;
   1584 		if (ifindex)
   1585 			imo->imo_multicast_addr = addr;
   1586 		else
   1587 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1588 		break;
   1589 
   1590 	case IP_MULTICAST_TTL:
   1591 		/*
   1592 		 * Set the IP time-to-live for outgoing multicast packets.
   1593 		 */
   1594 		if (m == NULL || m->m_len != 1) {
   1595 			error = EINVAL;
   1596 			break;
   1597 		}
   1598 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
   1599 		break;
   1600 
   1601 	case IP_MULTICAST_LOOP:
   1602 		/*
   1603 		 * Set the loopback flag for outgoing multicast packets.
   1604 		 * Must be zero or one.
   1605 		 */
   1606 		if (m == NULL || m->m_len != 1 ||
   1607 		   (loop = *(mtod(m, u_char *))) > 1) {
   1608 			error = EINVAL;
   1609 			break;
   1610 		}
   1611 		imo->imo_multicast_loop = loop;
   1612 		break;
   1613 
   1614 	case IP_ADD_MEMBERSHIP:
   1615 		/*
   1616 		 * Add a multicast group membership.
   1617 		 * Group must be a valid IP multicast address.
   1618 		 */
   1619 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1620 			error = EINVAL;
   1621 			break;
   1622 		}
   1623 		mreq = mtod(m, struct ip_mreq *);
   1624 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1625 			error = EINVAL;
   1626 			break;
   1627 		}
   1628 		/*
   1629 		 * If no interface address was provided, use the interface of
   1630 		 * the route to the given multicast address.
   1631 		 */
   1632 		if (in_nullhost(mreq->imr_interface)) {
   1633 			bzero((caddr_t)&ro, sizeof(ro));
   1634 			ro.ro_rt = NULL;
   1635 			dst = satosin(&ro.ro_dst);
   1636 			dst->sin_len = sizeof(*dst);
   1637 			dst->sin_family = AF_INET;
   1638 			dst->sin_addr = mreq->imr_multiaddr;
   1639 			rtalloc(&ro);
   1640 			if (ro.ro_rt == NULL) {
   1641 				error = EADDRNOTAVAIL;
   1642 				break;
   1643 			}
   1644 			ifp = ro.ro_rt->rt_ifp;
   1645 			rtfree(ro.ro_rt);
   1646 		} else {
   1647 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1648 		}
   1649 		/*
   1650 		 * See if we found an interface, and confirm that it
   1651 		 * supports multicast.
   1652 		 */
   1653 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1654 			error = EADDRNOTAVAIL;
   1655 			break;
   1656 		}
   1657 		/*
   1658 		 * See if the membership already exists or if all the
   1659 		 * membership slots are full.
   1660 		 */
   1661 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1662 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1663 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1664 				      mreq->imr_multiaddr))
   1665 				break;
   1666 		}
   1667 		if (i < imo->imo_num_memberships) {
   1668 			error = EADDRINUSE;
   1669 			break;
   1670 		}
   1671 		if (i == IP_MAX_MEMBERSHIPS) {
   1672 			error = ETOOMANYREFS;
   1673 			break;
   1674 		}
   1675 		/*
   1676 		 * Everything looks good; add a new record to the multicast
   1677 		 * address list for the given interface.
   1678 		 */
   1679 		if ((imo->imo_membership[i] =
   1680 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1681 			error = ENOBUFS;
   1682 			break;
   1683 		}
   1684 		++imo->imo_num_memberships;
   1685 		break;
   1686 
   1687 	case IP_DROP_MEMBERSHIP:
   1688 		/*
   1689 		 * Drop a multicast group membership.
   1690 		 * Group must be a valid IP multicast address.
   1691 		 */
   1692 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1693 			error = EINVAL;
   1694 			break;
   1695 		}
   1696 		mreq = mtod(m, struct ip_mreq *);
   1697 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1698 			error = EINVAL;
   1699 			break;
   1700 		}
   1701 		/*
   1702 		 * If an interface address was specified, get a pointer
   1703 		 * to its ifnet structure.
   1704 		 */
   1705 		if (in_nullhost(mreq->imr_interface))
   1706 			ifp = NULL;
   1707 		else {
   1708 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1709 			if (ifp == NULL) {
   1710 				error = EADDRNOTAVAIL;
   1711 				break;
   1712 			}
   1713 		}
   1714 		/*
   1715 		 * Find the membership in the membership array.
   1716 		 */
   1717 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1718 			if ((ifp == NULL ||
   1719 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1720 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1721 				       mreq->imr_multiaddr))
   1722 				break;
   1723 		}
   1724 		if (i == imo->imo_num_memberships) {
   1725 			error = EADDRNOTAVAIL;
   1726 			break;
   1727 		}
   1728 		/*
   1729 		 * Give up the multicast address record to which the
   1730 		 * membership points.
   1731 		 */
   1732 		in_delmulti(imo->imo_membership[i]);
   1733 		/*
   1734 		 * Remove the gap in the membership array.
   1735 		 */
   1736 		for (++i; i < imo->imo_num_memberships; ++i)
   1737 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1738 		--imo->imo_num_memberships;
   1739 		break;
   1740 
   1741 	default:
   1742 		error = EOPNOTSUPP;
   1743 		break;
   1744 	}
   1745 
   1746 	/*
   1747 	 * If all options have default values, no need to keep the mbuf.
   1748 	 */
   1749 	if (imo->imo_multicast_ifp == NULL &&
   1750 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1751 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1752 	    imo->imo_num_memberships == 0) {
   1753 		free(*imop, M_IPMOPTS);
   1754 		*imop = NULL;
   1755 	}
   1756 
   1757 	return (error);
   1758 }
   1759 
   1760 /*
   1761  * Return the IP multicast options in response to user getsockopt().
   1762  */
   1763 int
   1764 ip_getmoptions(optname, imo, mp)
   1765 	int optname;
   1766 	struct ip_moptions *imo;
   1767 	struct mbuf **mp;
   1768 {
   1769 	u_char *ttl;
   1770 	u_char *loop;
   1771 	struct in_addr *addr;
   1772 	struct in_ifaddr *ia;
   1773 
   1774 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1775 
   1776 	switch (optname) {
   1777 
   1778 	case IP_MULTICAST_IF:
   1779 		addr = mtod(*mp, struct in_addr *);
   1780 		(*mp)->m_len = sizeof(struct in_addr);
   1781 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1782 			*addr = zeroin_addr;
   1783 		else if (imo->imo_multicast_addr.s_addr) {
   1784 			/* return the value user has set */
   1785 			*addr = imo->imo_multicast_addr;
   1786 		} else {
   1787 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1788 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1789 		}
   1790 		return (0);
   1791 
   1792 	case IP_MULTICAST_TTL:
   1793 		ttl = mtod(*mp, u_char *);
   1794 		(*mp)->m_len = 1;
   1795 		*ttl = imo ? imo->imo_multicast_ttl
   1796 			   : IP_DEFAULT_MULTICAST_TTL;
   1797 		return (0);
   1798 
   1799 	case IP_MULTICAST_LOOP:
   1800 		loop = mtod(*mp, u_char *);
   1801 		(*mp)->m_len = 1;
   1802 		*loop = imo ? imo->imo_multicast_loop
   1803 			    : IP_DEFAULT_MULTICAST_LOOP;
   1804 		return (0);
   1805 
   1806 	default:
   1807 		return (EOPNOTSUPP);
   1808 	}
   1809 }
   1810 
   1811 /*
   1812  * Discard the IP multicast options.
   1813  */
   1814 void
   1815 ip_freemoptions(imo)
   1816 	struct ip_moptions *imo;
   1817 {
   1818 	int i;
   1819 
   1820 	if (imo != NULL) {
   1821 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1822 			in_delmulti(imo->imo_membership[i]);
   1823 		free(imo, M_IPMOPTS);
   1824 	}
   1825 }
   1826 
   1827 /*
   1828  * Routine called from ip_output() to loop back a copy of an IP multicast
   1829  * packet to the input queue of a specified interface.  Note that this
   1830  * calls the output routine of the loopback "driver", but with an interface
   1831  * pointer that might NOT be &loif -- easier than replicating that code here.
   1832  */
   1833 static void
   1834 ip_mloopback(ifp, m, dst)
   1835 	struct ifnet *ifp;
   1836 	struct mbuf *m;
   1837 	struct sockaddr_in *dst;
   1838 {
   1839 	struct ip *ip;
   1840 	struct mbuf *copym;
   1841 
   1842 	copym = m_copy(m, 0, M_COPYALL);
   1843 	if (copym != NULL
   1844 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1845 		copym = m_pullup(copym, sizeof(struct ip));
   1846 	if (copym != NULL) {
   1847 		/*
   1848 		 * We don't bother to fragment if the IP length is greater
   1849 		 * than the interface's MTU.  Can this possibly matter?
   1850 		 */
   1851 		ip = mtod(copym, struct ip *);
   1852 
   1853 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1854 			in_delayed_cksum(copym);
   1855 			copym->m_pkthdr.csum_flags &=
   1856 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1857 		}
   1858 
   1859 		ip->ip_sum = 0;
   1860 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1861 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1862 	}
   1863 }
   1864