ip_output.c revision 1.133 1 /* $NetBSD: ip_output.c,v 1.133 2004/06/01 05:06:56 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.133 2004/06/01 05:06:56 itojun Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #endif /*IPSEC*/
143
144 #ifdef FAST_IPSEC
145 #include <netipsec/ipsec.h>
146 #include <netipsec/key.h>
147 #include <netipsec/xform.h>
148 #endif /* FAST_IPSEC*/
149
150 static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
151 static struct ifnet *ip_multicast_if __P((struct in_addr *, int *));
152 static void ip_mloopback
153 __P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
154
155 #ifdef PFIL_HOOKS
156 extern struct pfil_head inet_pfil_hook; /* XXX */
157 #endif
158
159 /*
160 * IP output. The packet in mbuf chain m contains a skeletal IP
161 * header (with len, off, ttl, proto, tos, src, dst).
162 * The mbuf chain containing the packet will be freed.
163 * The mbuf opt, if present, will not be freed.
164 */
165 int
166 ip_output(struct mbuf *m0, ...)
167 {
168 struct ip *ip;
169 struct ifnet *ifp;
170 struct mbuf *m = m0;
171 int hlen = sizeof (struct ip);
172 int len, error = 0;
173 struct route iproute;
174 struct sockaddr_in *dst;
175 struct in_ifaddr *ia;
176 struct mbuf *opt;
177 struct route *ro;
178 int flags, sw_csum;
179 int *mtu_p;
180 u_long mtu;
181 struct ip_moptions *imo;
182 struct socket *so;
183 va_list ap;
184 #ifdef IPSEC
185 struct secpolicy *sp = NULL;
186 #endif /*IPSEC*/
187 #ifdef FAST_IPSEC
188 struct inpcb *inp;
189 struct m_tag *mtag;
190 struct secpolicy *sp = NULL;
191 struct tdb_ident *tdbi;
192 int s;
193 #endif
194 u_int16_t ip_len;
195
196 len = 0;
197 va_start(ap, m0);
198 opt = va_arg(ap, struct mbuf *);
199 ro = va_arg(ap, struct route *);
200 flags = va_arg(ap, int);
201 imo = va_arg(ap, struct ip_moptions *);
202 so = va_arg(ap, struct socket *);
203 if (flags & IP_RETURNMTU)
204 mtu_p = va_arg(ap, int *);
205 else
206 mtu_p = NULL;
207 va_end(ap);
208
209 MCLAIM(m, &ip_tx_mowner);
210 #ifdef FAST_IPSEC
211 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
212 inp = (struct inpcb *)so->so_pcb;
213 else
214 inp = NULL;
215 #endif /* FAST_IPSEC */
216
217 #ifdef DIAGNOSTIC
218 if ((m->m_flags & M_PKTHDR) == 0)
219 panic("ip_output no HDR");
220 #endif
221 if (opt) {
222 m = ip_insertoptions(m, opt, &len);
223 if (len >= sizeof(struct ip))
224 hlen = len;
225 }
226 ip = mtod(m, struct ip *);
227 /*
228 * Fill in IP header.
229 */
230 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
231 ip->ip_v = IPVERSION;
232 ip->ip_off = htons(0);
233 ip->ip_id = ip_newid();
234 ip->ip_hl = hlen >> 2;
235 ipstat.ips_localout++;
236 } else {
237 hlen = ip->ip_hl << 2;
238 }
239 /*
240 * Route packet.
241 */
242 if (ro == 0) {
243 ro = &iproute;
244 bzero((caddr_t)ro, sizeof (*ro));
245 }
246 dst = satosin(&ro->ro_dst);
247 /*
248 * If there is a cached route,
249 * check that it is to the same destination
250 * and is still up. If not, free it and try again.
251 * The address family should also be checked in case of sharing the
252 * cache with IPv6.
253 */
254 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
255 dst->sin_family != AF_INET ||
256 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
257 RTFREE(ro->ro_rt);
258 ro->ro_rt = (struct rtentry *)0;
259 }
260 if (ro->ro_rt == 0) {
261 bzero(dst, sizeof(*dst));
262 dst->sin_family = AF_INET;
263 dst->sin_len = sizeof(*dst);
264 dst->sin_addr = ip->ip_dst;
265 }
266 /*
267 * If routing to interface only,
268 * short circuit routing lookup.
269 */
270 if (flags & IP_ROUTETOIF) {
271 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
272 ipstat.ips_noroute++;
273 error = ENETUNREACH;
274 goto bad;
275 }
276 ifp = ia->ia_ifp;
277 mtu = ifp->if_mtu;
278 ip->ip_ttl = 1;
279 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
280 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
281 imo != NULL && imo->imo_multicast_ifp != NULL) {
282 ifp = imo->imo_multicast_ifp;
283 mtu = ifp->if_mtu;
284 IFP_TO_IA(ifp, ia);
285 } else {
286 if (ro->ro_rt == 0)
287 rtalloc(ro);
288 if (ro->ro_rt == 0) {
289 ipstat.ips_noroute++;
290 error = EHOSTUNREACH;
291 goto bad;
292 }
293 ia = ifatoia(ro->ro_rt->rt_ifa);
294 ifp = ro->ro_rt->rt_ifp;
295 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
296 mtu = ifp->if_mtu;
297 ro->ro_rt->rt_use++;
298 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
299 dst = satosin(ro->ro_rt->rt_gateway);
300 }
301 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
302 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
303 struct in_multi *inm;
304
305 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
306 M_BCAST : M_MCAST;
307 /*
308 * IP destination address is multicast. Make sure "dst"
309 * still points to the address in "ro". (It may have been
310 * changed to point to a gateway address, above.)
311 */
312 dst = satosin(&ro->ro_dst);
313 /*
314 * See if the caller provided any multicast options
315 */
316 if (imo != NULL)
317 ip->ip_ttl = imo->imo_multicast_ttl;
318 else
319 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
320
321 /*
322 * if we don't know the outgoing ifp yet, we can't generate
323 * output
324 */
325 if (!ifp) {
326 ipstat.ips_noroute++;
327 error = ENETUNREACH;
328 goto bad;
329 }
330
331 /*
332 * If the packet is multicast or broadcast, confirm that
333 * the outgoing interface can transmit it.
334 */
335 if (((m->m_flags & M_MCAST) &&
336 (ifp->if_flags & IFF_MULTICAST) == 0) ||
337 ((m->m_flags & M_BCAST) &&
338 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
339 ipstat.ips_noroute++;
340 error = ENETUNREACH;
341 goto bad;
342 }
343 /*
344 * If source address not specified yet, use an address
345 * of outgoing interface.
346 */
347 if (in_nullhost(ip->ip_src)) {
348 struct in_ifaddr *ia;
349
350 IFP_TO_IA(ifp, ia);
351 if (!ia) {
352 error = EADDRNOTAVAIL;
353 goto bad;
354 }
355 ip->ip_src = ia->ia_addr.sin_addr;
356 }
357
358 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
359 if (inm != NULL &&
360 (imo == NULL || imo->imo_multicast_loop)) {
361 /*
362 * If we belong to the destination multicast group
363 * on the outgoing interface, and the caller did not
364 * forbid loopback, loop back a copy.
365 */
366 ip_mloopback(ifp, m, dst);
367 }
368 #ifdef MROUTING
369 else {
370 /*
371 * If we are acting as a multicast router, perform
372 * multicast forwarding as if the packet had just
373 * arrived on the interface to which we are about
374 * to send. The multicast forwarding function
375 * recursively calls this function, using the
376 * IP_FORWARDING flag to prevent infinite recursion.
377 *
378 * Multicasts that are looped back by ip_mloopback(),
379 * above, will be forwarded by the ip_input() routine,
380 * if necessary.
381 */
382 extern struct socket *ip_mrouter;
383
384 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
385 if (ip_mforward(m, ifp) != 0) {
386 m_freem(m);
387 goto done;
388 }
389 }
390 }
391 #endif
392 /*
393 * Multicasts with a time-to-live of zero may be looped-
394 * back, above, but must not be transmitted on a network.
395 * Also, multicasts addressed to the loopback interface
396 * are not sent -- the above call to ip_mloopback() will
397 * loop back a copy if this host actually belongs to the
398 * destination group on the loopback interface.
399 */
400 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
401 m_freem(m);
402 goto done;
403 }
404
405 goto sendit;
406 }
407 #ifndef notdef
408 /*
409 * If source address not specified yet, use address
410 * of outgoing interface.
411 */
412 if (in_nullhost(ip->ip_src))
413 ip->ip_src = ia->ia_addr.sin_addr;
414 #endif
415
416 /*
417 * packets with Class-D address as source are not valid per
418 * RFC 1112
419 */
420 if (IN_MULTICAST(ip->ip_src.s_addr)) {
421 ipstat.ips_odropped++;
422 error = EADDRNOTAVAIL;
423 goto bad;
424 }
425
426 /*
427 * Look for broadcast address and
428 * and verify user is allowed to send
429 * such a packet.
430 */
431 if (in_broadcast(dst->sin_addr, ifp)) {
432 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
433 error = EADDRNOTAVAIL;
434 goto bad;
435 }
436 if ((flags & IP_ALLOWBROADCAST) == 0) {
437 error = EACCES;
438 goto bad;
439 }
440 /* don't allow broadcast messages to be fragmented */
441 if (ntohs(ip->ip_len) > ifp->if_mtu) {
442 error = EMSGSIZE;
443 goto bad;
444 }
445 m->m_flags |= M_BCAST;
446 } else
447 m->m_flags &= ~M_BCAST;
448
449 sendit:
450 /*
451 * If we're doing Path MTU Discovery, we need to set DF unless
452 * the route's MTU is locked.
453 */
454 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
455 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
456 ip->ip_off |= htons(IP_DF);
457
458 /* Remember the current ip_len */
459 ip_len = ntohs(ip->ip_len);
460
461 #ifdef IPSEC
462 /* get SP for this packet */
463 if (so == NULL)
464 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
465 flags, &error);
466 else {
467 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
468 IPSEC_DIR_OUTBOUND))
469 goto skip_ipsec;
470 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
471 }
472
473 if (sp == NULL) {
474 ipsecstat.out_inval++;
475 goto bad;
476 }
477
478 error = 0;
479
480 /* check policy */
481 switch (sp->policy) {
482 case IPSEC_POLICY_DISCARD:
483 /*
484 * This packet is just discarded.
485 */
486 ipsecstat.out_polvio++;
487 goto bad;
488
489 case IPSEC_POLICY_BYPASS:
490 case IPSEC_POLICY_NONE:
491 /* no need to do IPsec. */
492 goto skip_ipsec;
493
494 case IPSEC_POLICY_IPSEC:
495 if (sp->req == NULL) {
496 /* XXX should be panic ? */
497 printf("ip_output: No IPsec request specified.\n");
498 error = EINVAL;
499 goto bad;
500 }
501 break;
502
503 case IPSEC_POLICY_ENTRUST:
504 default:
505 printf("ip_output: Invalid policy found. %d\n", sp->policy);
506 }
507
508 /*
509 * ipsec4_output() expects ip_len and ip_off in network
510 * order. They have been set to network order above.
511 */
512
513 {
514 struct ipsec_output_state state;
515 bzero(&state, sizeof(state));
516 state.m = m;
517 if (flags & IP_ROUTETOIF) {
518 state.ro = &iproute;
519 bzero(&iproute, sizeof(iproute));
520 } else
521 state.ro = ro;
522 state.dst = (struct sockaddr *)dst;
523
524 /*
525 * We can't defer the checksum of payload data if
526 * we're about to encrypt/authenticate it.
527 *
528 * XXX When we support crypto offloading functions of
529 * XXX network interfaces, we need to reconsider this,
530 * XXX since it's likely that they'll support checksumming,
531 * XXX as well.
532 */
533 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
534 in_delayed_cksum(m);
535 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
536 }
537
538 error = ipsec4_output(&state, sp, flags);
539
540 m = state.m;
541 if (flags & IP_ROUTETOIF) {
542 /*
543 * if we have tunnel mode SA, we may need to ignore
544 * IP_ROUTETOIF.
545 */
546 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
547 flags &= ~IP_ROUTETOIF;
548 ro = state.ro;
549 }
550 } else
551 ro = state.ro;
552 dst = (struct sockaddr_in *)state.dst;
553 if (error) {
554 /* mbuf is already reclaimed in ipsec4_output. */
555 m0 = NULL;
556 switch (error) {
557 case EHOSTUNREACH:
558 case ENETUNREACH:
559 case EMSGSIZE:
560 case ENOBUFS:
561 case ENOMEM:
562 break;
563 default:
564 printf("ip4_output (ipsec): error code %d\n", error);
565 /*fall through*/
566 case ENOENT:
567 /* don't show these error codes to the user */
568 error = 0;
569 break;
570 }
571 goto bad;
572 }
573
574 /* be sure to update variables that are affected by ipsec4_output() */
575 ip = mtod(m, struct ip *);
576 hlen = ip->ip_hl << 2;
577 ip_len = ntohs(ip->ip_len);
578
579 if (ro->ro_rt == NULL) {
580 if ((flags & IP_ROUTETOIF) == 0) {
581 printf("ip_output: "
582 "can't update route after IPsec processing\n");
583 error = EHOSTUNREACH; /*XXX*/
584 goto bad;
585 }
586 } else {
587 /* nobody uses ia beyond here */
588 if (state.encap) {
589 ifp = ro->ro_rt->rt_ifp;
590 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
591 mtu = ifp->if_mtu;
592 }
593 }
594 }
595 skip_ipsec:
596 #endif /*IPSEC*/
597 #ifdef FAST_IPSEC
598 /*
599 * Check the security policy (SP) for the packet and, if
600 * required, do IPsec-related processing. There are two
601 * cases here; the first time a packet is sent through
602 * it will be untagged and handled by ipsec4_checkpolicy.
603 * If the packet is resubmitted to ip_output (e.g. after
604 * AH, ESP, etc. processing), there will be a tag to bypass
605 * the lookup and related policy checking.
606 */
607 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
608 s = splsoftnet();
609 if (mtag != NULL) {
610 tdbi = (struct tdb_ident *)(mtag + 1);
611 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
612 if (sp == NULL)
613 error = -EINVAL; /* force silent drop */
614 m_tag_delete(m, mtag);
615 } else {
616 if (inp != NULL &&
617 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
618 goto spd_done;
619 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
620 &error, inp);
621 }
622 /*
623 * There are four return cases:
624 * sp != NULL apply IPsec policy
625 * sp == NULL, error == 0 no IPsec handling needed
626 * sp == NULL, error == -EINVAL discard packet w/o error
627 * sp == NULL, error != 0 discard packet, report error
628 */
629 if (sp != NULL) {
630 /* Loop detection, check if ipsec processing already done */
631 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
632 for (mtag = m_tag_first(m); mtag != NULL;
633 mtag = m_tag_next(m, mtag)) {
634 #ifdef MTAG_ABI_COMPAT
635 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
636 continue;
637 #endif
638 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
639 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
640 continue;
641 /*
642 * Check if policy has an SA associated with it.
643 * This can happen when an SP has yet to acquire
644 * an SA; e.g. on first reference. If it occurs,
645 * then we let ipsec4_process_packet do its thing.
646 */
647 if (sp->req->sav == NULL)
648 break;
649 tdbi = (struct tdb_ident *)(mtag + 1);
650 if (tdbi->spi == sp->req->sav->spi &&
651 tdbi->proto == sp->req->sav->sah->saidx.proto &&
652 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
653 sizeof (union sockaddr_union)) == 0) {
654 /*
655 * No IPsec processing is needed, free
656 * reference to SP.
657 *
658 * NB: null pointer to avoid free at
659 * done: below.
660 */
661 KEY_FREESP(&sp), sp = NULL;
662 splx(s);
663 goto spd_done;
664 }
665 }
666
667 /*
668 * Do delayed checksums now because we send before
669 * this is done in the normal processing path.
670 */
671 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
672 in_delayed_cksum(m);
673 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
674 }
675
676 #ifdef __FreeBSD__
677 ip->ip_len = htons(ip->ip_len);
678 ip->ip_off = htons(ip->ip_off);
679 #endif
680
681 /* NB: callee frees mbuf */
682 error = ipsec4_process_packet(m, sp->req, flags, 0);
683 /*
684 * Preserve KAME behaviour: ENOENT can be returned
685 * when an SA acquire is in progress. Don't propagate
686 * this to user-level; it confuses applications.
687 *
688 * XXX this will go away when the SADB is redone.
689 */
690 if (error == ENOENT)
691 error = 0;
692 splx(s);
693 goto done;
694 } else {
695 splx(s);
696
697 if (error != 0) {
698 /*
699 * Hack: -EINVAL is used to signal that a packet
700 * should be silently discarded. This is typically
701 * because we asked key management for an SA and
702 * it was delayed (e.g. kicked up to IKE).
703 */
704 if (error == -EINVAL)
705 error = 0;
706 goto bad;
707 } else {
708 /* No IPsec processing for this packet. */
709 }
710 #ifdef notyet
711 /*
712 * If deferred crypto processing is needed, check that
713 * the interface supports it.
714 */
715 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
716 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
717 /* notify IPsec to do its own crypto */
718 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
719 error = EHOSTUNREACH;
720 goto bad;
721 }
722 #endif
723 }
724 spd_done:
725 #endif /* FAST_IPSEC */
726
727 #ifdef PFIL_HOOKS
728 /*
729 * Run through list of hooks for output packets.
730 */
731 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
732 goto done;
733 if (m == NULL)
734 goto done;
735
736 ip = mtod(m, struct ip *);
737 hlen = ip->ip_hl << 2;
738 #endif /* PFIL_HOOKS */
739
740 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
741 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
742 /*
743 * If small enough for mtu of path, can just send directly.
744 */
745 if (ip_len <= mtu) {
746 #if IFA_STATS
747 /*
748 * search for the source address structure to
749 * maintain output statistics.
750 */
751 INADDR_TO_IA(ip->ip_src, ia);
752 if (ia)
753 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
754 #endif
755 /*
756 * Always initialize the sum to 0! Some HW assisted
757 * checksumming requires this.
758 */
759 ip->ip_sum = 0;
760
761 /*
762 * Perform any checksums that the hardware can't do
763 * for us.
764 *
765 * XXX Does any hardware require the {th,uh}_sum
766 * XXX fields to be 0?
767 */
768 if (sw_csum & M_CSUM_IPv4) {
769 ip->ip_sum = in_cksum(m, hlen);
770 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
771 }
772 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
773 in_delayed_cksum(m);
774 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
775 }
776
777 #ifdef IPSEC
778 /* clean ipsec history once it goes out of the node */
779 ipsec_delaux(m);
780 #endif
781 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
782 goto done;
783 }
784
785 /*
786 * We can't use HW checksumming if we're about to
787 * to fragment the packet.
788 *
789 * XXX Some hardware can do this.
790 */
791 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
792 in_delayed_cksum(m);
793 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
794 }
795
796 /*
797 * Too large for interface; fragment if possible.
798 * Must be able to put at least 8 bytes per fragment.
799 */
800 if (ntohs(ip->ip_off) & IP_DF) {
801 if (flags & IP_RETURNMTU)
802 *mtu_p = mtu;
803 error = EMSGSIZE;
804 ipstat.ips_cantfrag++;
805 goto bad;
806 }
807
808 error = ip_fragment(m, ifp, mtu);
809 if (error) {
810 m = NULL;
811 goto bad;
812 }
813
814 for (; m; m = m0) {
815 m0 = m->m_nextpkt;
816 m->m_nextpkt = 0;
817 if (error == 0) {
818 #if IFA_STATS
819 /*
820 * search for the source address structure to
821 * maintain output statistics.
822 */
823 INADDR_TO_IA(ip->ip_src, ia);
824 if (ia) {
825 ia->ia_ifa.ifa_data.ifad_outbytes +=
826 ntohs(ip->ip_len);
827 }
828 #endif
829 #ifdef IPSEC
830 /* clean ipsec history once it goes out of the node */
831 ipsec_delaux(m);
832 #endif
833 KASSERT((m->m_pkthdr.csum_flags &
834 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
835 error = (*ifp->if_output)(ifp, m, sintosa(dst),
836 ro->ro_rt);
837 } else
838 m_freem(m);
839 }
840
841 if (error == 0)
842 ipstat.ips_fragmented++;
843 done:
844 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
845 RTFREE(ro->ro_rt);
846 ro->ro_rt = 0;
847 }
848
849 #ifdef IPSEC
850 if (sp != NULL) {
851 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
852 printf("DP ip_output call free SP:%p\n", sp));
853 key_freesp(sp);
854 }
855 #endif /* IPSEC */
856 #ifdef FAST_IPSEC
857 if (sp != NULL)
858 KEY_FREESP(&sp);
859 #endif /* FAST_IPSEC */
860
861 return (error);
862 bad:
863 m_freem(m);
864 goto done;
865 }
866
867 int
868 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
869 {
870 struct ip *ip, *mhip;
871 struct mbuf *m0;
872 int len, hlen, off;
873 int mhlen, firstlen;
874 struct mbuf **mnext;
875 int sw_csum;
876 int fragments = 0;
877 int s;
878 int error = 0;
879
880 ip = mtod(m, struct ip *);
881 hlen = ip->ip_hl << 2;
882 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
883
884 len = (mtu - hlen) &~ 7;
885 if (len < 8) {
886 m_freem(m);
887 return (EMSGSIZE);
888 }
889
890 firstlen = len;
891 mnext = &m->m_nextpkt;
892
893 /*
894 * Loop through length of segment after first fragment,
895 * make new header and copy data of each part and link onto chain.
896 */
897 m0 = m;
898 mhlen = sizeof (struct ip);
899 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
900 MGETHDR(m, M_DONTWAIT, MT_HEADER);
901 if (m == 0) {
902 error = ENOBUFS;
903 ipstat.ips_odropped++;
904 goto sendorfree;
905 }
906 MCLAIM(m, m0->m_owner);
907 *mnext = m;
908 mnext = &m->m_nextpkt;
909 m->m_data += max_linkhdr;
910 mhip = mtod(m, struct ip *);
911 *mhip = *ip;
912 /* we must inherit MCAST and BCAST flags */
913 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
914 if (hlen > sizeof (struct ip)) {
915 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
916 mhip->ip_hl = mhlen >> 2;
917 }
918 m->m_len = mhlen;
919 mhip->ip_off = ((off - hlen) >> 3) +
920 (ntohs(ip->ip_off) & ~IP_MF);
921 if (ip->ip_off & htons(IP_MF))
922 mhip->ip_off |= IP_MF;
923 if (off + len >= ntohs(ip->ip_len))
924 len = ntohs(ip->ip_len) - off;
925 else
926 mhip->ip_off |= IP_MF;
927 HTONS(mhip->ip_off);
928 mhip->ip_len = htons((u_int16_t)(len + mhlen));
929 m->m_next = m_copy(m0, off, len);
930 if (m->m_next == 0) {
931 error = ENOBUFS; /* ??? */
932 ipstat.ips_odropped++;
933 goto sendorfree;
934 }
935 m->m_pkthdr.len = mhlen + len;
936 m->m_pkthdr.rcvif = (struct ifnet *)0;
937 mhip->ip_sum = 0;
938 if (sw_csum & M_CSUM_IPv4) {
939 mhip->ip_sum = in_cksum(m, mhlen);
940 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
941 } else {
942 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
943 }
944 ipstat.ips_ofragments++;
945 fragments++;
946 }
947 /*
948 * Update first fragment by trimming what's been copied out
949 * and updating header, then send each fragment (in order).
950 */
951 m = m0;
952 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
953 m->m_pkthdr.len = hlen + firstlen;
954 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
955 ip->ip_off |= htons(IP_MF);
956 ip->ip_sum = 0;
957 if (sw_csum & M_CSUM_IPv4) {
958 ip->ip_sum = in_cksum(m, hlen);
959 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
960 } else {
961 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
962 }
963 sendorfree:
964 /*
965 * If there is no room for all the fragments, don't queue
966 * any of them.
967 */
968 s = splnet();
969 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
970 error == 0) {
971 error = ENOBUFS;
972 ipstat.ips_odropped++;
973 IFQ_INC_DROPS(&ifp->if_snd);
974 }
975 splx(s);
976 if (error) {
977 for (m = m0; m; m = m0) {
978 m0 = m->m_nextpkt;
979 m->m_nextpkt = NULL;
980 m_freem(m);
981 }
982 }
983 return (error);
984 }
985
986 /*
987 * Process a delayed payload checksum calculation.
988 */
989 void
990 in_delayed_cksum(struct mbuf *m)
991 {
992 struct ip *ip;
993 u_int16_t csum, offset;
994
995 ip = mtod(m, struct ip *);
996 offset = ip->ip_hl << 2;
997 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
998 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
999 csum = 0xffff;
1000
1001 offset += m->m_pkthdr.csum_data; /* checksum offset */
1002
1003 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1004 /* This happen when ip options were inserted
1005 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1006 m->m_len, offset, ip->ip_p);
1007 */
1008 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1009 } else
1010 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1011 }
1012
1013 /*
1014 * Determine the maximum length of the options to be inserted;
1015 * we would far rather allocate too much space rather than too little.
1016 */
1017
1018 u_int
1019 ip_optlen(inp)
1020 struct inpcb *inp;
1021 {
1022 struct mbuf *m = inp->inp_options;
1023
1024 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1025 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1026 else
1027 return 0;
1028 }
1029
1030
1031 /*
1032 * Insert IP options into preformed packet.
1033 * Adjust IP destination as required for IP source routing,
1034 * as indicated by a non-zero in_addr at the start of the options.
1035 */
1036 static struct mbuf *
1037 ip_insertoptions(m, opt, phlen)
1038 struct mbuf *m;
1039 struct mbuf *opt;
1040 int *phlen;
1041 {
1042 struct ipoption *p = mtod(opt, struct ipoption *);
1043 struct mbuf *n;
1044 struct ip *ip = mtod(m, struct ip *);
1045 unsigned optlen;
1046
1047 optlen = opt->m_len - sizeof(p->ipopt_dst);
1048 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1049 return (m); /* XXX should fail */
1050 if (!in_nullhost(p->ipopt_dst))
1051 ip->ip_dst = p->ipopt_dst;
1052 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1053 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1054 if (n == 0)
1055 return (m);
1056 MCLAIM(n, m->m_owner);
1057 M_COPY_PKTHDR(n, m);
1058 m_tag_delete_chain(m, NULL);
1059 m->m_flags &= ~M_PKTHDR;
1060 m->m_len -= sizeof(struct ip);
1061 m->m_data += sizeof(struct ip);
1062 n->m_next = m;
1063 m = n;
1064 m->m_len = optlen + sizeof(struct ip);
1065 m->m_data += max_linkhdr;
1066 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1067 } else {
1068 m->m_data -= optlen;
1069 m->m_len += optlen;
1070 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1071 }
1072 m->m_pkthdr.len += optlen;
1073 ip = mtod(m, struct ip *);
1074 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1075 *phlen = sizeof(struct ip) + optlen;
1076 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1077 return (m);
1078 }
1079
1080 /*
1081 * Copy options from ip to jp,
1082 * omitting those not copied during fragmentation.
1083 */
1084 int
1085 ip_optcopy(ip, jp)
1086 struct ip *ip, *jp;
1087 {
1088 u_char *cp, *dp;
1089 int opt, optlen, cnt;
1090
1091 cp = (u_char *)(ip + 1);
1092 dp = (u_char *)(jp + 1);
1093 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1094 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1095 opt = cp[0];
1096 if (opt == IPOPT_EOL)
1097 break;
1098 if (opt == IPOPT_NOP) {
1099 /* Preserve for IP mcast tunnel's LSRR alignment. */
1100 *dp++ = IPOPT_NOP;
1101 optlen = 1;
1102 continue;
1103 }
1104 #ifdef DIAGNOSTIC
1105 if (cnt < IPOPT_OLEN + sizeof(*cp))
1106 panic("malformed IPv4 option passed to ip_optcopy");
1107 #endif
1108 optlen = cp[IPOPT_OLEN];
1109 #ifdef DIAGNOSTIC
1110 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1111 panic("malformed IPv4 option passed to ip_optcopy");
1112 #endif
1113 /* bogus lengths should have been caught by ip_dooptions */
1114 if (optlen > cnt)
1115 optlen = cnt;
1116 if (IPOPT_COPIED(opt)) {
1117 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1118 dp += optlen;
1119 }
1120 }
1121 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1122 *dp++ = IPOPT_EOL;
1123 return (optlen);
1124 }
1125
1126 /*
1127 * IP socket option processing.
1128 */
1129 int
1130 ip_ctloutput(op, so, level, optname, mp)
1131 int op;
1132 struct socket *so;
1133 int level, optname;
1134 struct mbuf **mp;
1135 {
1136 struct inpcb *inp = sotoinpcb(so);
1137 struct mbuf *m = *mp;
1138 int optval = 0;
1139 int error = 0;
1140 #if defined(IPSEC) || defined(FAST_IPSEC)
1141 struct proc *p = curproc; /*XXX*/
1142 #endif
1143
1144 if (level != IPPROTO_IP) {
1145 error = EINVAL;
1146 if (op == PRCO_SETOPT && *mp)
1147 (void) m_free(*mp);
1148 } else switch (op) {
1149
1150 case PRCO_SETOPT:
1151 switch (optname) {
1152 case IP_OPTIONS:
1153 #ifdef notyet
1154 case IP_RETOPTS:
1155 return (ip_pcbopts(optname, &inp->inp_options, m));
1156 #else
1157 return (ip_pcbopts(&inp->inp_options, m));
1158 #endif
1159
1160 case IP_TOS:
1161 case IP_TTL:
1162 case IP_RECVOPTS:
1163 case IP_RECVRETOPTS:
1164 case IP_RECVDSTADDR:
1165 case IP_RECVIF:
1166 if (m == NULL || m->m_len != sizeof(int))
1167 error = EINVAL;
1168 else {
1169 optval = *mtod(m, int *);
1170 switch (optname) {
1171
1172 case IP_TOS:
1173 inp->inp_ip.ip_tos = optval;
1174 break;
1175
1176 case IP_TTL:
1177 inp->inp_ip.ip_ttl = optval;
1178 break;
1179 #define OPTSET(bit) \
1180 if (optval) \
1181 inp->inp_flags |= bit; \
1182 else \
1183 inp->inp_flags &= ~bit;
1184
1185 case IP_RECVOPTS:
1186 OPTSET(INP_RECVOPTS);
1187 break;
1188
1189 case IP_RECVRETOPTS:
1190 OPTSET(INP_RECVRETOPTS);
1191 break;
1192
1193 case IP_RECVDSTADDR:
1194 OPTSET(INP_RECVDSTADDR);
1195 break;
1196
1197 case IP_RECVIF:
1198 OPTSET(INP_RECVIF);
1199 break;
1200 }
1201 }
1202 break;
1203 #undef OPTSET
1204
1205 case IP_MULTICAST_IF:
1206 case IP_MULTICAST_TTL:
1207 case IP_MULTICAST_LOOP:
1208 case IP_ADD_MEMBERSHIP:
1209 case IP_DROP_MEMBERSHIP:
1210 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1211 break;
1212
1213 case IP_PORTRANGE:
1214 if (m == 0 || m->m_len != sizeof(int))
1215 error = EINVAL;
1216 else {
1217 optval = *mtod(m, int *);
1218
1219 switch (optval) {
1220
1221 case IP_PORTRANGE_DEFAULT:
1222 case IP_PORTRANGE_HIGH:
1223 inp->inp_flags &= ~(INP_LOWPORT);
1224 break;
1225
1226 case IP_PORTRANGE_LOW:
1227 inp->inp_flags |= INP_LOWPORT;
1228 break;
1229
1230 default:
1231 error = EINVAL;
1232 break;
1233 }
1234 }
1235 break;
1236
1237 #if defined(IPSEC) || defined(FAST_IPSEC)
1238 case IP_IPSEC_POLICY:
1239 {
1240 caddr_t req = NULL;
1241 size_t len = 0;
1242 int priv = 0;
1243
1244 #ifdef __NetBSD__
1245 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1246 priv = 0;
1247 else
1248 priv = 1;
1249 #else
1250 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1251 #endif
1252 if (m) {
1253 req = mtod(m, caddr_t);
1254 len = m->m_len;
1255 }
1256 error = ipsec4_set_policy(inp, optname, req, len, priv);
1257 break;
1258 }
1259 #endif /*IPSEC*/
1260
1261 default:
1262 error = ENOPROTOOPT;
1263 break;
1264 }
1265 if (m)
1266 (void)m_free(m);
1267 break;
1268
1269 case PRCO_GETOPT:
1270 switch (optname) {
1271 case IP_OPTIONS:
1272 case IP_RETOPTS:
1273 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1274 MCLAIM(m, so->so_mowner);
1275 if (inp->inp_options) {
1276 m->m_len = inp->inp_options->m_len;
1277 bcopy(mtod(inp->inp_options, caddr_t),
1278 mtod(m, caddr_t), (unsigned)m->m_len);
1279 } else
1280 m->m_len = 0;
1281 break;
1282
1283 case IP_TOS:
1284 case IP_TTL:
1285 case IP_RECVOPTS:
1286 case IP_RECVRETOPTS:
1287 case IP_RECVDSTADDR:
1288 case IP_RECVIF:
1289 case IP_ERRORMTU:
1290 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1291 MCLAIM(m, so->so_mowner);
1292 m->m_len = sizeof(int);
1293 switch (optname) {
1294
1295 case IP_TOS:
1296 optval = inp->inp_ip.ip_tos;
1297 break;
1298
1299 case IP_TTL:
1300 optval = inp->inp_ip.ip_ttl;
1301 break;
1302
1303 case IP_ERRORMTU:
1304 optval = inp->inp_errormtu;
1305 break;
1306
1307 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1308
1309 case IP_RECVOPTS:
1310 optval = OPTBIT(INP_RECVOPTS);
1311 break;
1312
1313 case IP_RECVRETOPTS:
1314 optval = OPTBIT(INP_RECVRETOPTS);
1315 break;
1316
1317 case IP_RECVDSTADDR:
1318 optval = OPTBIT(INP_RECVDSTADDR);
1319 break;
1320
1321 case IP_RECVIF:
1322 optval = OPTBIT(INP_RECVIF);
1323 break;
1324 }
1325 *mtod(m, int *) = optval;
1326 break;
1327
1328 #if defined(IPSEC) || defined(FAST_IPSEC)
1329 case IP_IPSEC_POLICY:
1330 {
1331 caddr_t req = NULL;
1332 size_t len = 0;
1333
1334 if (m) {
1335 req = mtod(m, caddr_t);
1336 len = m->m_len;
1337 }
1338 error = ipsec4_get_policy(inp, req, len, mp);
1339 break;
1340 }
1341 #endif /*IPSEC*/
1342
1343 case IP_MULTICAST_IF:
1344 case IP_MULTICAST_TTL:
1345 case IP_MULTICAST_LOOP:
1346 case IP_ADD_MEMBERSHIP:
1347 case IP_DROP_MEMBERSHIP:
1348 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1349 if (*mp)
1350 MCLAIM(*mp, so->so_mowner);
1351 break;
1352
1353 case IP_PORTRANGE:
1354 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1355 MCLAIM(m, so->so_mowner);
1356 m->m_len = sizeof(int);
1357
1358 if (inp->inp_flags & INP_LOWPORT)
1359 optval = IP_PORTRANGE_LOW;
1360 else
1361 optval = IP_PORTRANGE_DEFAULT;
1362
1363 *mtod(m, int *) = optval;
1364 break;
1365
1366 default:
1367 error = ENOPROTOOPT;
1368 break;
1369 }
1370 break;
1371 }
1372 return (error);
1373 }
1374
1375 /*
1376 * Set up IP options in pcb for insertion in output packets.
1377 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1378 * with destination address if source routed.
1379 */
1380 int
1381 #ifdef notyet
1382 ip_pcbopts(optname, pcbopt, m)
1383 int optname;
1384 #else
1385 ip_pcbopts(pcbopt, m)
1386 #endif
1387 struct mbuf **pcbopt;
1388 struct mbuf *m;
1389 {
1390 int cnt, optlen;
1391 u_char *cp;
1392 u_char opt;
1393
1394 /* turn off any old options */
1395 if (*pcbopt)
1396 (void)m_free(*pcbopt);
1397 *pcbopt = 0;
1398 if (m == (struct mbuf *)0 || m->m_len == 0) {
1399 /*
1400 * Only turning off any previous options.
1401 */
1402 if (m)
1403 (void)m_free(m);
1404 return (0);
1405 }
1406
1407 #ifndef __vax__
1408 if (m->m_len % sizeof(int32_t))
1409 goto bad;
1410 #endif
1411 /*
1412 * IP first-hop destination address will be stored before
1413 * actual options; move other options back
1414 * and clear it when none present.
1415 */
1416 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1417 goto bad;
1418 cnt = m->m_len;
1419 m->m_len += sizeof(struct in_addr);
1420 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1421 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1422 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1423
1424 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1425 opt = cp[IPOPT_OPTVAL];
1426 if (opt == IPOPT_EOL)
1427 break;
1428 if (opt == IPOPT_NOP)
1429 optlen = 1;
1430 else {
1431 if (cnt < IPOPT_OLEN + sizeof(*cp))
1432 goto bad;
1433 optlen = cp[IPOPT_OLEN];
1434 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1435 goto bad;
1436 }
1437 switch (opt) {
1438
1439 default:
1440 break;
1441
1442 case IPOPT_LSRR:
1443 case IPOPT_SSRR:
1444 /*
1445 * user process specifies route as:
1446 * ->A->B->C->D
1447 * D must be our final destination (but we can't
1448 * check that since we may not have connected yet).
1449 * A is first hop destination, which doesn't appear in
1450 * actual IP option, but is stored before the options.
1451 */
1452 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1453 goto bad;
1454 m->m_len -= sizeof(struct in_addr);
1455 cnt -= sizeof(struct in_addr);
1456 optlen -= sizeof(struct in_addr);
1457 cp[IPOPT_OLEN] = optlen;
1458 /*
1459 * Move first hop before start of options.
1460 */
1461 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1462 sizeof(struct in_addr));
1463 /*
1464 * Then copy rest of options back
1465 * to close up the deleted entry.
1466 */
1467 (void)memmove(&cp[IPOPT_OFFSET+1],
1468 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1469 (unsigned)cnt - (IPOPT_MINOFF - 1));
1470 break;
1471 }
1472 }
1473 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1474 goto bad;
1475 *pcbopt = m;
1476 return (0);
1477
1478 bad:
1479 (void)m_free(m);
1480 return (EINVAL);
1481 }
1482
1483 /*
1484 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1485 */
1486 static struct ifnet *
1487 ip_multicast_if(a, ifindexp)
1488 struct in_addr *a;
1489 int *ifindexp;
1490 {
1491 int ifindex;
1492 struct ifnet *ifp = NULL;
1493 struct in_ifaddr *ia;
1494
1495 if (ifindexp)
1496 *ifindexp = 0;
1497 if (ntohl(a->s_addr) >> 24 == 0) {
1498 ifindex = ntohl(a->s_addr) & 0xffffff;
1499 if (ifindex < 0 || if_indexlim <= ifindex)
1500 return NULL;
1501 ifp = ifindex2ifnet[ifindex];
1502 if (!ifp)
1503 return NULL;
1504 if (ifindexp)
1505 *ifindexp = ifindex;
1506 } else {
1507 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1508 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1509 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1510 ifp = ia->ia_ifp;
1511 break;
1512 }
1513 }
1514 }
1515 return ifp;
1516 }
1517
1518 /*
1519 * Set the IP multicast options in response to user setsockopt().
1520 */
1521 int
1522 ip_setmoptions(optname, imop, m)
1523 int optname;
1524 struct ip_moptions **imop;
1525 struct mbuf *m;
1526 {
1527 int error = 0;
1528 u_char loop;
1529 int i;
1530 struct in_addr addr;
1531 struct ip_mreq *mreq;
1532 struct ifnet *ifp;
1533 struct ip_moptions *imo = *imop;
1534 struct route ro;
1535 struct sockaddr_in *dst;
1536 int ifindex;
1537
1538 if (imo == NULL) {
1539 /*
1540 * No multicast option buffer attached to the pcb;
1541 * allocate one and initialize to default values.
1542 */
1543 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1544 M_WAITOK);
1545
1546 if (imo == NULL)
1547 return (ENOBUFS);
1548 *imop = imo;
1549 imo->imo_multicast_ifp = NULL;
1550 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1551 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1552 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1553 imo->imo_num_memberships = 0;
1554 }
1555
1556 switch (optname) {
1557
1558 case IP_MULTICAST_IF:
1559 /*
1560 * Select the interface for outgoing multicast packets.
1561 */
1562 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1563 error = EINVAL;
1564 break;
1565 }
1566 addr = *(mtod(m, struct in_addr *));
1567 /*
1568 * INADDR_ANY is used to remove a previous selection.
1569 * When no interface is selected, a default one is
1570 * chosen every time a multicast packet is sent.
1571 */
1572 if (in_nullhost(addr)) {
1573 imo->imo_multicast_ifp = NULL;
1574 break;
1575 }
1576 /*
1577 * The selected interface is identified by its local
1578 * IP address. Find the interface and confirm that
1579 * it supports multicasting.
1580 */
1581 ifp = ip_multicast_if(&addr, &ifindex);
1582 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1583 error = EADDRNOTAVAIL;
1584 break;
1585 }
1586 imo->imo_multicast_ifp = ifp;
1587 if (ifindex)
1588 imo->imo_multicast_addr = addr;
1589 else
1590 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1591 break;
1592
1593 case IP_MULTICAST_TTL:
1594 /*
1595 * Set the IP time-to-live for outgoing multicast packets.
1596 */
1597 if (m == NULL || m->m_len != 1) {
1598 error = EINVAL;
1599 break;
1600 }
1601 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1602 break;
1603
1604 case IP_MULTICAST_LOOP:
1605 /*
1606 * Set the loopback flag for outgoing multicast packets.
1607 * Must be zero or one.
1608 */
1609 if (m == NULL || m->m_len != 1 ||
1610 (loop = *(mtod(m, u_char *))) > 1) {
1611 error = EINVAL;
1612 break;
1613 }
1614 imo->imo_multicast_loop = loop;
1615 break;
1616
1617 case IP_ADD_MEMBERSHIP:
1618 /*
1619 * Add a multicast group membership.
1620 * Group must be a valid IP multicast address.
1621 */
1622 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1623 error = EINVAL;
1624 break;
1625 }
1626 mreq = mtod(m, struct ip_mreq *);
1627 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1628 error = EINVAL;
1629 break;
1630 }
1631 /*
1632 * If no interface address was provided, use the interface of
1633 * the route to the given multicast address.
1634 */
1635 if (in_nullhost(mreq->imr_interface)) {
1636 bzero((caddr_t)&ro, sizeof(ro));
1637 ro.ro_rt = NULL;
1638 dst = satosin(&ro.ro_dst);
1639 dst->sin_len = sizeof(*dst);
1640 dst->sin_family = AF_INET;
1641 dst->sin_addr = mreq->imr_multiaddr;
1642 rtalloc(&ro);
1643 if (ro.ro_rt == NULL) {
1644 error = EADDRNOTAVAIL;
1645 break;
1646 }
1647 ifp = ro.ro_rt->rt_ifp;
1648 rtfree(ro.ro_rt);
1649 } else {
1650 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1651 }
1652 /*
1653 * See if we found an interface, and confirm that it
1654 * supports multicast.
1655 */
1656 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1657 error = EADDRNOTAVAIL;
1658 break;
1659 }
1660 /*
1661 * See if the membership already exists or if all the
1662 * membership slots are full.
1663 */
1664 for (i = 0; i < imo->imo_num_memberships; ++i) {
1665 if (imo->imo_membership[i]->inm_ifp == ifp &&
1666 in_hosteq(imo->imo_membership[i]->inm_addr,
1667 mreq->imr_multiaddr))
1668 break;
1669 }
1670 if (i < imo->imo_num_memberships) {
1671 error = EADDRINUSE;
1672 break;
1673 }
1674 if (i == IP_MAX_MEMBERSHIPS) {
1675 error = ETOOMANYREFS;
1676 break;
1677 }
1678 /*
1679 * Everything looks good; add a new record to the multicast
1680 * address list for the given interface.
1681 */
1682 if ((imo->imo_membership[i] =
1683 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1684 error = ENOBUFS;
1685 break;
1686 }
1687 ++imo->imo_num_memberships;
1688 break;
1689
1690 case IP_DROP_MEMBERSHIP:
1691 /*
1692 * Drop a multicast group membership.
1693 * Group must be a valid IP multicast address.
1694 */
1695 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1696 error = EINVAL;
1697 break;
1698 }
1699 mreq = mtod(m, struct ip_mreq *);
1700 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1701 error = EINVAL;
1702 break;
1703 }
1704 /*
1705 * If an interface address was specified, get a pointer
1706 * to its ifnet structure.
1707 */
1708 if (in_nullhost(mreq->imr_interface))
1709 ifp = NULL;
1710 else {
1711 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1712 if (ifp == NULL) {
1713 error = EADDRNOTAVAIL;
1714 break;
1715 }
1716 }
1717 /*
1718 * Find the membership in the membership array.
1719 */
1720 for (i = 0; i < imo->imo_num_memberships; ++i) {
1721 if ((ifp == NULL ||
1722 imo->imo_membership[i]->inm_ifp == ifp) &&
1723 in_hosteq(imo->imo_membership[i]->inm_addr,
1724 mreq->imr_multiaddr))
1725 break;
1726 }
1727 if (i == imo->imo_num_memberships) {
1728 error = EADDRNOTAVAIL;
1729 break;
1730 }
1731 /*
1732 * Give up the multicast address record to which the
1733 * membership points.
1734 */
1735 in_delmulti(imo->imo_membership[i]);
1736 /*
1737 * Remove the gap in the membership array.
1738 */
1739 for (++i; i < imo->imo_num_memberships; ++i)
1740 imo->imo_membership[i-1] = imo->imo_membership[i];
1741 --imo->imo_num_memberships;
1742 break;
1743
1744 default:
1745 error = EOPNOTSUPP;
1746 break;
1747 }
1748
1749 /*
1750 * If all options have default values, no need to keep the mbuf.
1751 */
1752 if (imo->imo_multicast_ifp == NULL &&
1753 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1754 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1755 imo->imo_num_memberships == 0) {
1756 free(*imop, M_IPMOPTS);
1757 *imop = NULL;
1758 }
1759
1760 return (error);
1761 }
1762
1763 /*
1764 * Return the IP multicast options in response to user getsockopt().
1765 */
1766 int
1767 ip_getmoptions(optname, imo, mp)
1768 int optname;
1769 struct ip_moptions *imo;
1770 struct mbuf **mp;
1771 {
1772 u_char *ttl;
1773 u_char *loop;
1774 struct in_addr *addr;
1775 struct in_ifaddr *ia;
1776
1777 *mp = m_get(M_WAIT, MT_SOOPTS);
1778
1779 switch (optname) {
1780
1781 case IP_MULTICAST_IF:
1782 addr = mtod(*mp, struct in_addr *);
1783 (*mp)->m_len = sizeof(struct in_addr);
1784 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1785 *addr = zeroin_addr;
1786 else if (imo->imo_multicast_addr.s_addr) {
1787 /* return the value user has set */
1788 *addr = imo->imo_multicast_addr;
1789 } else {
1790 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1791 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1792 }
1793 return (0);
1794
1795 case IP_MULTICAST_TTL:
1796 ttl = mtod(*mp, u_char *);
1797 (*mp)->m_len = 1;
1798 *ttl = imo ? imo->imo_multicast_ttl
1799 : IP_DEFAULT_MULTICAST_TTL;
1800 return (0);
1801
1802 case IP_MULTICAST_LOOP:
1803 loop = mtod(*mp, u_char *);
1804 (*mp)->m_len = 1;
1805 *loop = imo ? imo->imo_multicast_loop
1806 : IP_DEFAULT_MULTICAST_LOOP;
1807 return (0);
1808
1809 default:
1810 return (EOPNOTSUPP);
1811 }
1812 }
1813
1814 /*
1815 * Discard the IP multicast options.
1816 */
1817 void
1818 ip_freemoptions(imo)
1819 struct ip_moptions *imo;
1820 {
1821 int i;
1822
1823 if (imo != NULL) {
1824 for (i = 0; i < imo->imo_num_memberships; ++i)
1825 in_delmulti(imo->imo_membership[i]);
1826 free(imo, M_IPMOPTS);
1827 }
1828 }
1829
1830 /*
1831 * Routine called from ip_output() to loop back a copy of an IP multicast
1832 * packet to the input queue of a specified interface. Note that this
1833 * calls the output routine of the loopback "driver", but with an interface
1834 * pointer that might NOT be &loif -- easier than replicating that code here.
1835 */
1836 static void
1837 ip_mloopback(ifp, m, dst)
1838 struct ifnet *ifp;
1839 struct mbuf *m;
1840 struct sockaddr_in *dst;
1841 {
1842 struct ip *ip;
1843 struct mbuf *copym;
1844
1845 copym = m_copy(m, 0, M_COPYALL);
1846 if (copym != NULL
1847 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1848 copym = m_pullup(copym, sizeof(struct ip));
1849 if (copym != NULL) {
1850 /*
1851 * We don't bother to fragment if the IP length is greater
1852 * than the interface's MTU. Can this possibly matter?
1853 */
1854 ip = mtod(copym, struct ip *);
1855
1856 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1857 in_delayed_cksum(copym);
1858 copym->m_pkthdr.csum_flags &=
1859 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1860 }
1861
1862 ip->ip_sum = 0;
1863 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1864 (void) looutput(ifp, copym, sintosa(dst), NULL);
1865 }
1866 }
1867