ip_output.c revision 1.141 1 /* $NetBSD: ip_output.c,v 1.141 2005/02/12 12:31:07 manu Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.141 2005/02/12 12:31:07 manu Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = ip_newid();
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else {
472 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
473 IPSEC_DIR_OUTBOUND))
474 goto skip_ipsec;
475 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 }
477
478 if (sp == NULL) {
479 ipsecstat.out_inval++;
480 goto bad;
481 }
482
483 error = 0;
484
485 /* check policy */
486 switch (sp->policy) {
487 case IPSEC_POLICY_DISCARD:
488 /*
489 * This packet is just discarded.
490 */
491 ipsecstat.out_polvio++;
492 goto bad;
493
494 case IPSEC_POLICY_BYPASS:
495 case IPSEC_POLICY_NONE:
496 /* no need to do IPsec. */
497 goto skip_ipsec;
498
499 case IPSEC_POLICY_IPSEC:
500 if (sp->req == NULL) {
501 /* XXX should be panic ? */
502 printf("ip_output: No IPsec request specified.\n");
503 error = EINVAL;
504 goto bad;
505 }
506 break;
507
508 case IPSEC_POLICY_ENTRUST:
509 default:
510 printf("ip_output: Invalid policy found. %d\n", sp->policy);
511 }
512
513 #ifdef IPSEC_NAT_T
514 /*
515 * NAT-T ESP fragmentation: don't do IPSec processing now,
516 * we'll do it on each fragmented packet.
517 */
518 if (sp->req->sav &&
519 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
520 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
521 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
522 natt_frag = 1;
523 mtu = sp->req->sav->esp_frag;
524 goto skip_ipsec;
525 }
526 }
527 #endif /* IPSEC_NAT_T */
528
529 /*
530 * ipsec4_output() expects ip_len and ip_off in network
531 * order. They have been set to network order above.
532 */
533
534 {
535 struct ipsec_output_state state;
536 bzero(&state, sizeof(state));
537 state.m = m;
538 if (flags & IP_ROUTETOIF) {
539 state.ro = &iproute;
540 bzero(&iproute, sizeof(iproute));
541 } else
542 state.ro = ro;
543 state.dst = (struct sockaddr *)dst;
544
545 /*
546 * We can't defer the checksum of payload data if
547 * we're about to encrypt/authenticate it.
548 *
549 * XXX When we support crypto offloading functions of
550 * XXX network interfaces, we need to reconsider this,
551 * XXX since it's likely that they'll support checksumming,
552 * XXX as well.
553 */
554 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
555 in_delayed_cksum(m);
556 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
557 }
558
559 error = ipsec4_output(&state, sp, flags);
560
561 m = state.m;
562 if (flags & IP_ROUTETOIF) {
563 /*
564 * if we have tunnel mode SA, we may need to ignore
565 * IP_ROUTETOIF.
566 */
567 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
568 flags &= ~IP_ROUTETOIF;
569 ro = state.ro;
570 }
571 } else
572 ro = state.ro;
573 dst = (struct sockaddr_in *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec4_output. */
576 m0 = NULL;
577 switch (error) {
578 case EHOSTUNREACH:
579 case ENETUNREACH:
580 case EMSGSIZE:
581 case ENOBUFS:
582 case ENOMEM:
583 break;
584 default:
585 printf("ip4_output (ipsec): error code %d\n", error);
586 /*fall through*/
587 case ENOENT:
588 /* don't show these error codes to the user */
589 error = 0;
590 break;
591 }
592 goto bad;
593 }
594
595 /* be sure to update variables that are affected by ipsec4_output() */
596 ip = mtod(m, struct ip *);
597 hlen = ip->ip_hl << 2;
598 ip_len = ntohs(ip->ip_len);
599
600 if (ro->ro_rt == NULL) {
601 if ((flags & IP_ROUTETOIF) == 0) {
602 printf("ip_output: "
603 "can't update route after IPsec processing\n");
604 error = EHOSTUNREACH; /*XXX*/
605 goto bad;
606 }
607 } else {
608 /* nobody uses ia beyond here */
609 if (state.encap) {
610 ifp = ro->ro_rt->rt_ifp;
611 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
612 mtu = ifp->if_mtu;
613 }
614 }
615 }
616 skip_ipsec:
617 #endif /*IPSEC*/
618 #ifdef FAST_IPSEC
619 /*
620 * Check the security policy (SP) for the packet and, if
621 * required, do IPsec-related processing. There are two
622 * cases here; the first time a packet is sent through
623 * it will be untagged and handled by ipsec4_checkpolicy.
624 * If the packet is resubmitted to ip_output (e.g. after
625 * AH, ESP, etc. processing), there will be a tag to bypass
626 * the lookup and related policy checking.
627 */
628 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629 s = splsoftnet();
630 if (mtag != NULL) {
631 tdbi = (struct tdb_ident *)(mtag + 1);
632 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633 if (sp == NULL)
634 error = -EINVAL; /* force silent drop */
635 m_tag_delete(m, mtag);
636 } else {
637 if (inp != NULL &&
638 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
639 goto spd_done;
640 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
641 &error, inp);
642 }
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp != NULL) {
651 /* Loop detection, check if ipsec processing already done */
652 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
653 for (mtag = m_tag_first(m); mtag != NULL;
654 mtag = m_tag_next(m, mtag)) {
655 #ifdef MTAG_ABI_COMPAT
656 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
657 continue;
658 #endif
659 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
660 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
661 continue;
662 /*
663 * Check if policy has an SA associated with it.
664 * This can happen when an SP has yet to acquire
665 * an SA; e.g. on first reference. If it occurs,
666 * then we let ipsec4_process_packet do its thing.
667 */
668 if (sp->req->sav == NULL)
669 break;
670 tdbi = (struct tdb_ident *)(mtag + 1);
671 if (tdbi->spi == sp->req->sav->spi &&
672 tdbi->proto == sp->req->sav->sah->saidx.proto &&
673 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
674 sizeof (union sockaddr_union)) == 0) {
675 /*
676 * No IPsec processing is needed, free
677 * reference to SP.
678 *
679 * NB: null pointer to avoid free at
680 * done: below.
681 */
682 KEY_FREESP(&sp), sp = NULL;
683 splx(s);
684 goto spd_done;
685 }
686 }
687
688 /*
689 * Do delayed checksums now because we send before
690 * this is done in the normal processing path.
691 */
692 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
693 in_delayed_cksum(m);
694 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
695 }
696
697 #ifdef __FreeBSD__
698 ip->ip_len = htons(ip->ip_len);
699 ip->ip_off = htons(ip->ip_off);
700 #endif
701
702 /* NB: callee frees mbuf */
703 error = ipsec4_process_packet(m, sp->req, flags, 0);
704 /*
705 * Preserve KAME behaviour: ENOENT can be returned
706 * when an SA acquire is in progress. Don't propagate
707 * this to user-level; it confuses applications.
708 *
709 * XXX this will go away when the SADB is redone.
710 */
711 if (error == ENOENT)
712 error = 0;
713 splx(s);
714 goto done;
715 } else {
716 splx(s);
717
718 if (error != 0) {
719 /*
720 * Hack: -EINVAL is used to signal that a packet
721 * should be silently discarded. This is typically
722 * because we asked key management for an SA and
723 * it was delayed (e.g. kicked up to IKE).
724 */
725 if (error == -EINVAL)
726 error = 0;
727 goto bad;
728 } else {
729 /* No IPsec processing for this packet. */
730 }
731 #ifdef notyet
732 /*
733 * If deferred crypto processing is needed, check that
734 * the interface supports it.
735 */
736 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
737 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
738 /* notify IPsec to do its own crypto */
739 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
740 error = EHOSTUNREACH;
741 goto bad;
742 }
743 #endif
744 }
745 spd_done:
746 #endif /* FAST_IPSEC */
747
748 #ifdef PFIL_HOOKS
749 /*
750 * Run through list of hooks for output packets.
751 */
752 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
753 goto done;
754 if (m == NULL)
755 goto done;
756
757 ip = mtod(m, struct ip *);
758 hlen = ip->ip_hl << 2;
759 #endif /* PFIL_HOOKS */
760
761 #if IFA_STATS
762 /*
763 * search for the source address structure to
764 * maintain output statistics.
765 */
766 INADDR_TO_IA(ip->ip_src, ia);
767 #endif
768
769 /* Maybe skip checksums on loopback interfaces. */
770 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
771 ip_do_loopback_cksum))
772 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
773 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
774 /*
775 * If small enough for mtu of path, can just send directly.
776 */
777 if (ip_len <= mtu) {
778 #if IFA_STATS
779 if (ia)
780 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
781 #endif
782 /*
783 * Always initialize the sum to 0! Some HW assisted
784 * checksumming requires this.
785 */
786 ip->ip_sum = 0;
787
788 /*
789 * Perform any checksums that the hardware can't do
790 * for us.
791 *
792 * XXX Does any hardware require the {th,uh}_sum
793 * XXX fields to be 0?
794 */
795 if (sw_csum & M_CSUM_IPv4) {
796 ip->ip_sum = in_cksum(m, hlen);
797 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
798 }
799 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
800 in_delayed_cksum(m);
801 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
802 }
803
804 #ifdef IPSEC
805 /* clean ipsec history once it goes out of the node */
806 ipsec_delaux(m);
807 #endif
808 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
809 goto done;
810 }
811
812 /*
813 * We can't use HW checksumming if we're about to
814 * to fragment the packet.
815 *
816 * XXX Some hardware can do this.
817 */
818 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
819 in_delayed_cksum(m);
820 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
821 }
822
823 /*
824 * Too large for interface; fragment if possible.
825 * Must be able to put at least 8 bytes per fragment.
826 */
827 if (ntohs(ip->ip_off) & IP_DF) {
828 if (flags & IP_RETURNMTU)
829 *mtu_p = mtu;
830 error = EMSGSIZE;
831 ipstat.ips_cantfrag++;
832 goto bad;
833 }
834
835 error = ip_fragment(m, ifp, mtu);
836 if (error) {
837 m = NULL;
838 goto bad;
839 }
840
841 for (; m; m = m0) {
842 m0 = m->m_nextpkt;
843 m->m_nextpkt = 0;
844 if (error == 0) {
845 #if IFA_STATS
846 if (ia)
847 ia->ia_ifa.ifa_data.ifad_outbytes +=
848 ntohs(ip->ip_len);
849 #endif
850 #ifdef IPSEC
851 /* clean ipsec history once it goes out of the node */
852 ipsec_delaux(m);
853
854 #ifdef IPSEC_NAT_T
855 /*
856 * If we get there, the packet has not been handeld by
857 * IPSec whereas it should have. Now that it has been
858 * fragmented, re-inject it in ip_output so that IPsec
859 * processing can occur.
860 */
861 if (natt_frag) {
862 error = ip_output(m, opt,
863 ro, flags, imo, so, mtu_p);
864 } else
865 #endif /* IPSEC_NAT_T */
866 #endif /* IPSEC */
867 {
868 KASSERT((m->m_pkthdr.csum_flags &
869 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
870 error = (*ifp->if_output)(ifp, m, sintosa(dst),
871 ro->ro_rt);
872 }
873 } else
874 m_freem(m);
875 }
876
877 if (error == 0)
878 ipstat.ips_fragmented++;
879 done:
880 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
881 RTFREE(ro->ro_rt);
882 ro->ro_rt = 0;
883 }
884
885 #ifdef IPSEC
886 if (sp != NULL) {
887 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
888 printf("DP ip_output call free SP:%p\n", sp));
889 key_freesp(sp);
890 }
891 #endif /* IPSEC */
892 #ifdef FAST_IPSEC
893 if (sp != NULL)
894 KEY_FREESP(&sp);
895 #endif /* FAST_IPSEC */
896
897 return (error);
898 bad:
899 m_freem(m);
900 goto done;
901 }
902
903 int
904 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
905 {
906 struct ip *ip, *mhip;
907 struct mbuf *m0;
908 int len, hlen, off;
909 int mhlen, firstlen;
910 struct mbuf **mnext;
911 int sw_csum = m->m_pkthdr.csum_flags;
912 int fragments = 0;
913 int s;
914 int error = 0;
915
916 ip = mtod(m, struct ip *);
917 hlen = ip->ip_hl << 2;
918 if (ifp != NULL)
919 sw_csum &= ~ifp->if_csum_flags_tx;
920
921 len = (mtu - hlen) &~ 7;
922 if (len < 8) {
923 m_freem(m);
924 return (EMSGSIZE);
925 }
926
927 firstlen = len;
928 mnext = &m->m_nextpkt;
929
930 /*
931 * Loop through length of segment after first fragment,
932 * make new header and copy data of each part and link onto chain.
933 */
934 m0 = m;
935 mhlen = sizeof (struct ip);
936 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
937 MGETHDR(m, M_DONTWAIT, MT_HEADER);
938 if (m == 0) {
939 error = ENOBUFS;
940 ipstat.ips_odropped++;
941 goto sendorfree;
942 }
943 MCLAIM(m, m0->m_owner);
944 *mnext = m;
945 mnext = &m->m_nextpkt;
946 m->m_data += max_linkhdr;
947 mhip = mtod(m, struct ip *);
948 *mhip = *ip;
949 /* we must inherit MCAST and BCAST flags */
950 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
951 if (hlen > sizeof (struct ip)) {
952 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
953 mhip->ip_hl = mhlen >> 2;
954 }
955 m->m_len = mhlen;
956 mhip->ip_off = ((off - hlen) >> 3) +
957 (ntohs(ip->ip_off) & ~IP_MF);
958 if (ip->ip_off & htons(IP_MF))
959 mhip->ip_off |= IP_MF;
960 if (off + len >= ntohs(ip->ip_len))
961 len = ntohs(ip->ip_len) - off;
962 else
963 mhip->ip_off |= IP_MF;
964 HTONS(mhip->ip_off);
965 mhip->ip_len = htons((u_int16_t)(len + mhlen));
966 m->m_next = m_copy(m0, off, len);
967 if (m->m_next == 0) {
968 error = ENOBUFS; /* ??? */
969 ipstat.ips_odropped++;
970 goto sendorfree;
971 }
972 m->m_pkthdr.len = mhlen + len;
973 m->m_pkthdr.rcvif = (struct ifnet *)0;
974 mhip->ip_sum = 0;
975 if (sw_csum & M_CSUM_IPv4) {
976 mhip->ip_sum = in_cksum(m, mhlen);
977 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
978 } else {
979 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
980 }
981 ipstat.ips_ofragments++;
982 fragments++;
983 }
984 /*
985 * Update first fragment by trimming what's been copied out
986 * and updating header, then send each fragment (in order).
987 */
988 m = m0;
989 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
990 m->m_pkthdr.len = hlen + firstlen;
991 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
992 ip->ip_off |= htons(IP_MF);
993 ip->ip_sum = 0;
994 if (sw_csum & M_CSUM_IPv4) {
995 ip->ip_sum = in_cksum(m, hlen);
996 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
997 } else {
998 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
999 }
1000 sendorfree:
1001 /*
1002 * If there is no room for all the fragments, don't queue
1003 * any of them.
1004 */
1005 if (ifp != NULL) {
1006 s = splnet();
1007 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1008 error == 0) {
1009 error = ENOBUFS;
1010 ipstat.ips_odropped++;
1011 IFQ_INC_DROPS(&ifp->if_snd);
1012 }
1013 splx(s);
1014 }
1015 if (error) {
1016 for (m = m0; m; m = m0) {
1017 m0 = m->m_nextpkt;
1018 m->m_nextpkt = NULL;
1019 m_freem(m);
1020 }
1021 }
1022 return (error);
1023 }
1024
1025 /*
1026 * Process a delayed payload checksum calculation.
1027 */
1028 void
1029 in_delayed_cksum(struct mbuf *m)
1030 {
1031 struct ip *ip;
1032 u_int16_t csum, offset;
1033
1034 ip = mtod(m, struct ip *);
1035 offset = ip->ip_hl << 2;
1036 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1037 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1038 csum = 0xffff;
1039
1040 offset += m->m_pkthdr.csum_data; /* checksum offset */
1041
1042 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1043 /* This happen when ip options were inserted
1044 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1045 m->m_len, offset, ip->ip_p);
1046 */
1047 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1048 } else
1049 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1050 }
1051
1052 /*
1053 * Determine the maximum length of the options to be inserted;
1054 * we would far rather allocate too much space rather than too little.
1055 */
1056
1057 u_int
1058 ip_optlen(struct inpcb *inp)
1059 {
1060 struct mbuf *m = inp->inp_options;
1061
1062 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1063 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1064 else
1065 return 0;
1066 }
1067
1068
1069 /*
1070 * Insert IP options into preformed packet.
1071 * Adjust IP destination as required for IP source routing,
1072 * as indicated by a non-zero in_addr at the start of the options.
1073 */
1074 static struct mbuf *
1075 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1076 {
1077 struct ipoption *p = mtod(opt, struct ipoption *);
1078 struct mbuf *n;
1079 struct ip *ip = mtod(m, struct ip *);
1080 unsigned optlen;
1081
1082 optlen = opt->m_len - sizeof(p->ipopt_dst);
1083 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1084 return (m); /* XXX should fail */
1085 if (!in_nullhost(p->ipopt_dst))
1086 ip->ip_dst = p->ipopt_dst;
1087 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1088 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1089 if (n == 0)
1090 return (m);
1091 MCLAIM(n, m->m_owner);
1092 M_COPY_PKTHDR(n, m);
1093 m_tag_delete_chain(m, NULL);
1094 m->m_flags &= ~M_PKTHDR;
1095 m->m_len -= sizeof(struct ip);
1096 m->m_data += sizeof(struct ip);
1097 n->m_next = m;
1098 m = n;
1099 m->m_len = optlen + sizeof(struct ip);
1100 m->m_data += max_linkhdr;
1101 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1102 } else {
1103 m->m_data -= optlen;
1104 m->m_len += optlen;
1105 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1106 }
1107 m->m_pkthdr.len += optlen;
1108 ip = mtod(m, struct ip *);
1109 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1110 *phlen = sizeof(struct ip) + optlen;
1111 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1112 return (m);
1113 }
1114
1115 /*
1116 * Copy options from ip to jp,
1117 * omitting those not copied during fragmentation.
1118 */
1119 int
1120 ip_optcopy(struct ip *ip, struct ip *jp)
1121 {
1122 u_char *cp, *dp;
1123 int opt, optlen, cnt;
1124
1125 cp = (u_char *)(ip + 1);
1126 dp = (u_char *)(jp + 1);
1127 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1128 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1129 opt = cp[0];
1130 if (opt == IPOPT_EOL)
1131 break;
1132 if (opt == IPOPT_NOP) {
1133 /* Preserve for IP mcast tunnel's LSRR alignment. */
1134 *dp++ = IPOPT_NOP;
1135 optlen = 1;
1136 continue;
1137 }
1138 #ifdef DIAGNOSTIC
1139 if (cnt < IPOPT_OLEN + sizeof(*cp))
1140 panic("malformed IPv4 option passed to ip_optcopy");
1141 #endif
1142 optlen = cp[IPOPT_OLEN];
1143 #ifdef DIAGNOSTIC
1144 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1145 panic("malformed IPv4 option passed to ip_optcopy");
1146 #endif
1147 /* bogus lengths should have been caught by ip_dooptions */
1148 if (optlen > cnt)
1149 optlen = cnt;
1150 if (IPOPT_COPIED(opt)) {
1151 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1152 dp += optlen;
1153 }
1154 }
1155 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1156 *dp++ = IPOPT_EOL;
1157 return (optlen);
1158 }
1159
1160 /*
1161 * IP socket option processing.
1162 */
1163 int
1164 ip_ctloutput(int op, struct socket *so, int level, int optname,
1165 struct mbuf **mp)
1166 {
1167 struct inpcb *inp = sotoinpcb(so);
1168 struct mbuf *m = *mp;
1169 int optval = 0;
1170 int error = 0;
1171 #if defined(IPSEC) || defined(FAST_IPSEC)
1172 struct proc *p = curproc; /*XXX*/
1173 #endif
1174
1175 if (level != IPPROTO_IP) {
1176 error = EINVAL;
1177 if (op == PRCO_SETOPT && *mp)
1178 (void) m_free(*mp);
1179 } else switch (op) {
1180
1181 case PRCO_SETOPT:
1182 switch (optname) {
1183 case IP_OPTIONS:
1184 #ifdef notyet
1185 case IP_RETOPTS:
1186 return (ip_pcbopts(optname, &inp->inp_options, m));
1187 #else
1188 return (ip_pcbopts(&inp->inp_options, m));
1189 #endif
1190
1191 case IP_TOS:
1192 case IP_TTL:
1193 case IP_RECVOPTS:
1194 case IP_RECVRETOPTS:
1195 case IP_RECVDSTADDR:
1196 case IP_RECVIF:
1197 if (m == NULL || m->m_len != sizeof(int))
1198 error = EINVAL;
1199 else {
1200 optval = *mtod(m, int *);
1201 switch (optname) {
1202
1203 case IP_TOS:
1204 inp->inp_ip.ip_tos = optval;
1205 break;
1206
1207 case IP_TTL:
1208 inp->inp_ip.ip_ttl = optval;
1209 break;
1210 #define OPTSET(bit) \
1211 if (optval) \
1212 inp->inp_flags |= bit; \
1213 else \
1214 inp->inp_flags &= ~bit;
1215
1216 case IP_RECVOPTS:
1217 OPTSET(INP_RECVOPTS);
1218 break;
1219
1220 case IP_RECVRETOPTS:
1221 OPTSET(INP_RECVRETOPTS);
1222 break;
1223
1224 case IP_RECVDSTADDR:
1225 OPTSET(INP_RECVDSTADDR);
1226 break;
1227
1228 case IP_RECVIF:
1229 OPTSET(INP_RECVIF);
1230 break;
1231 }
1232 }
1233 break;
1234 #undef OPTSET
1235
1236 case IP_MULTICAST_IF:
1237 case IP_MULTICAST_TTL:
1238 case IP_MULTICAST_LOOP:
1239 case IP_ADD_MEMBERSHIP:
1240 case IP_DROP_MEMBERSHIP:
1241 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1242 break;
1243
1244 case IP_PORTRANGE:
1245 if (m == 0 || m->m_len != sizeof(int))
1246 error = EINVAL;
1247 else {
1248 optval = *mtod(m, int *);
1249
1250 switch (optval) {
1251
1252 case IP_PORTRANGE_DEFAULT:
1253 case IP_PORTRANGE_HIGH:
1254 inp->inp_flags &= ~(INP_LOWPORT);
1255 break;
1256
1257 case IP_PORTRANGE_LOW:
1258 inp->inp_flags |= INP_LOWPORT;
1259 break;
1260
1261 default:
1262 error = EINVAL;
1263 break;
1264 }
1265 }
1266 break;
1267
1268 #if defined(IPSEC) || defined(FAST_IPSEC)
1269 case IP_IPSEC_POLICY:
1270 {
1271 caddr_t req = NULL;
1272 size_t len = 0;
1273 int priv = 0;
1274
1275 #ifdef __NetBSD__
1276 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1277 priv = 0;
1278 else
1279 priv = 1;
1280 #else
1281 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1282 #endif
1283 if (m) {
1284 req = mtod(m, caddr_t);
1285 len = m->m_len;
1286 }
1287 error = ipsec4_set_policy(inp, optname, req, len, priv);
1288 break;
1289 }
1290 #endif /*IPSEC*/
1291
1292 default:
1293 error = ENOPROTOOPT;
1294 break;
1295 }
1296 if (m)
1297 (void)m_free(m);
1298 break;
1299
1300 case PRCO_GETOPT:
1301 switch (optname) {
1302 case IP_OPTIONS:
1303 case IP_RETOPTS:
1304 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1305 MCLAIM(m, so->so_mowner);
1306 if (inp->inp_options) {
1307 m->m_len = inp->inp_options->m_len;
1308 bcopy(mtod(inp->inp_options, caddr_t),
1309 mtod(m, caddr_t), (unsigned)m->m_len);
1310 } else
1311 m->m_len = 0;
1312 break;
1313
1314 case IP_TOS:
1315 case IP_TTL:
1316 case IP_RECVOPTS:
1317 case IP_RECVRETOPTS:
1318 case IP_RECVDSTADDR:
1319 case IP_RECVIF:
1320 case IP_ERRORMTU:
1321 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1322 MCLAIM(m, so->so_mowner);
1323 m->m_len = sizeof(int);
1324 switch (optname) {
1325
1326 case IP_TOS:
1327 optval = inp->inp_ip.ip_tos;
1328 break;
1329
1330 case IP_TTL:
1331 optval = inp->inp_ip.ip_ttl;
1332 break;
1333
1334 case IP_ERRORMTU:
1335 optval = inp->inp_errormtu;
1336 break;
1337
1338 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1339
1340 case IP_RECVOPTS:
1341 optval = OPTBIT(INP_RECVOPTS);
1342 break;
1343
1344 case IP_RECVRETOPTS:
1345 optval = OPTBIT(INP_RECVRETOPTS);
1346 break;
1347
1348 case IP_RECVDSTADDR:
1349 optval = OPTBIT(INP_RECVDSTADDR);
1350 break;
1351
1352 case IP_RECVIF:
1353 optval = OPTBIT(INP_RECVIF);
1354 break;
1355 }
1356 *mtod(m, int *) = optval;
1357 break;
1358
1359 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1360 /* XXX: code broken */
1361 case IP_IPSEC_POLICY:
1362 {
1363 caddr_t req = NULL;
1364 size_t len = 0;
1365
1366 if (m) {
1367 req = mtod(m, caddr_t);
1368 len = m->m_len;
1369 }
1370 error = ipsec4_get_policy(inp, req, len, mp);
1371 break;
1372 }
1373 #endif /*IPSEC*/
1374
1375 case IP_MULTICAST_IF:
1376 case IP_MULTICAST_TTL:
1377 case IP_MULTICAST_LOOP:
1378 case IP_ADD_MEMBERSHIP:
1379 case IP_DROP_MEMBERSHIP:
1380 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1381 if (*mp)
1382 MCLAIM(*mp, so->so_mowner);
1383 break;
1384
1385 case IP_PORTRANGE:
1386 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1387 MCLAIM(m, so->so_mowner);
1388 m->m_len = sizeof(int);
1389
1390 if (inp->inp_flags & INP_LOWPORT)
1391 optval = IP_PORTRANGE_LOW;
1392 else
1393 optval = IP_PORTRANGE_DEFAULT;
1394
1395 *mtod(m, int *) = optval;
1396 break;
1397
1398 default:
1399 error = ENOPROTOOPT;
1400 break;
1401 }
1402 break;
1403 }
1404 return (error);
1405 }
1406
1407 /*
1408 * Set up IP options in pcb for insertion in output packets.
1409 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1410 * with destination address if source routed.
1411 */
1412 int
1413 #ifdef notyet
1414 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1415 #else
1416 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1417 #endif
1418 {
1419 int cnt, optlen;
1420 u_char *cp;
1421 u_char opt;
1422
1423 /* turn off any old options */
1424 if (*pcbopt)
1425 (void)m_free(*pcbopt);
1426 *pcbopt = 0;
1427 if (m == (struct mbuf *)0 || m->m_len == 0) {
1428 /*
1429 * Only turning off any previous options.
1430 */
1431 if (m)
1432 (void)m_free(m);
1433 return (0);
1434 }
1435
1436 #ifndef __vax__
1437 if (m->m_len % sizeof(int32_t))
1438 goto bad;
1439 #endif
1440 /*
1441 * IP first-hop destination address will be stored before
1442 * actual options; move other options back
1443 * and clear it when none present.
1444 */
1445 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1446 goto bad;
1447 cnt = m->m_len;
1448 m->m_len += sizeof(struct in_addr);
1449 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1450 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1451 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1452
1453 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1454 opt = cp[IPOPT_OPTVAL];
1455 if (opt == IPOPT_EOL)
1456 break;
1457 if (opt == IPOPT_NOP)
1458 optlen = 1;
1459 else {
1460 if (cnt < IPOPT_OLEN + sizeof(*cp))
1461 goto bad;
1462 optlen = cp[IPOPT_OLEN];
1463 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1464 goto bad;
1465 }
1466 switch (opt) {
1467
1468 default:
1469 break;
1470
1471 case IPOPT_LSRR:
1472 case IPOPT_SSRR:
1473 /*
1474 * user process specifies route as:
1475 * ->A->B->C->D
1476 * D must be our final destination (but we can't
1477 * check that since we may not have connected yet).
1478 * A is first hop destination, which doesn't appear in
1479 * actual IP option, but is stored before the options.
1480 */
1481 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1482 goto bad;
1483 m->m_len -= sizeof(struct in_addr);
1484 cnt -= sizeof(struct in_addr);
1485 optlen -= sizeof(struct in_addr);
1486 cp[IPOPT_OLEN] = optlen;
1487 /*
1488 * Move first hop before start of options.
1489 */
1490 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1491 sizeof(struct in_addr));
1492 /*
1493 * Then copy rest of options back
1494 * to close up the deleted entry.
1495 */
1496 (void)memmove(&cp[IPOPT_OFFSET+1],
1497 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1498 (unsigned)cnt - (IPOPT_MINOFF - 1));
1499 break;
1500 }
1501 }
1502 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1503 goto bad;
1504 *pcbopt = m;
1505 return (0);
1506
1507 bad:
1508 (void)m_free(m);
1509 return (EINVAL);
1510 }
1511
1512 /*
1513 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1514 */
1515 static struct ifnet *
1516 ip_multicast_if(struct in_addr *a, int *ifindexp)
1517 {
1518 int ifindex;
1519 struct ifnet *ifp = NULL;
1520 struct in_ifaddr *ia;
1521
1522 if (ifindexp)
1523 *ifindexp = 0;
1524 if (ntohl(a->s_addr) >> 24 == 0) {
1525 ifindex = ntohl(a->s_addr) & 0xffffff;
1526 if (ifindex < 0 || if_indexlim <= ifindex)
1527 return NULL;
1528 ifp = ifindex2ifnet[ifindex];
1529 if (!ifp)
1530 return NULL;
1531 if (ifindexp)
1532 *ifindexp = ifindex;
1533 } else {
1534 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1535 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1536 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1537 ifp = ia->ia_ifp;
1538 break;
1539 }
1540 }
1541 }
1542 return ifp;
1543 }
1544
1545 /*
1546 * Set the IP multicast options in response to user setsockopt().
1547 */
1548 int
1549 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1550 {
1551 int error = 0;
1552 u_char loop;
1553 int i;
1554 struct in_addr addr;
1555 struct ip_mreq *mreq;
1556 struct ifnet *ifp;
1557 struct ip_moptions *imo = *imop;
1558 struct route ro;
1559 struct sockaddr_in *dst;
1560 int ifindex;
1561
1562 if (imo == NULL) {
1563 /*
1564 * No multicast option buffer attached to the pcb;
1565 * allocate one and initialize to default values.
1566 */
1567 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1568 M_WAITOK);
1569
1570 if (imo == NULL)
1571 return (ENOBUFS);
1572 *imop = imo;
1573 imo->imo_multicast_ifp = NULL;
1574 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1575 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1576 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1577 imo->imo_num_memberships = 0;
1578 }
1579
1580 switch (optname) {
1581
1582 case IP_MULTICAST_IF:
1583 /*
1584 * Select the interface for outgoing multicast packets.
1585 */
1586 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1587 error = EINVAL;
1588 break;
1589 }
1590 addr = *(mtod(m, struct in_addr *));
1591 /*
1592 * INADDR_ANY is used to remove a previous selection.
1593 * When no interface is selected, a default one is
1594 * chosen every time a multicast packet is sent.
1595 */
1596 if (in_nullhost(addr)) {
1597 imo->imo_multicast_ifp = NULL;
1598 break;
1599 }
1600 /*
1601 * The selected interface is identified by its local
1602 * IP address. Find the interface and confirm that
1603 * it supports multicasting.
1604 */
1605 ifp = ip_multicast_if(&addr, &ifindex);
1606 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1607 error = EADDRNOTAVAIL;
1608 break;
1609 }
1610 imo->imo_multicast_ifp = ifp;
1611 if (ifindex)
1612 imo->imo_multicast_addr = addr;
1613 else
1614 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1615 break;
1616
1617 case IP_MULTICAST_TTL:
1618 /*
1619 * Set the IP time-to-live for outgoing multicast packets.
1620 */
1621 if (m == NULL || m->m_len != 1) {
1622 error = EINVAL;
1623 break;
1624 }
1625 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1626 break;
1627
1628 case IP_MULTICAST_LOOP:
1629 /*
1630 * Set the loopback flag for outgoing multicast packets.
1631 * Must be zero or one.
1632 */
1633 if (m == NULL || m->m_len != 1 ||
1634 (loop = *(mtod(m, u_char *))) > 1) {
1635 error = EINVAL;
1636 break;
1637 }
1638 imo->imo_multicast_loop = loop;
1639 break;
1640
1641 case IP_ADD_MEMBERSHIP:
1642 /*
1643 * Add a multicast group membership.
1644 * Group must be a valid IP multicast address.
1645 */
1646 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1647 error = EINVAL;
1648 break;
1649 }
1650 mreq = mtod(m, struct ip_mreq *);
1651 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1652 error = EINVAL;
1653 break;
1654 }
1655 /*
1656 * If no interface address was provided, use the interface of
1657 * the route to the given multicast address.
1658 */
1659 if (in_nullhost(mreq->imr_interface)) {
1660 bzero((caddr_t)&ro, sizeof(ro));
1661 ro.ro_rt = NULL;
1662 dst = satosin(&ro.ro_dst);
1663 dst->sin_len = sizeof(*dst);
1664 dst->sin_family = AF_INET;
1665 dst->sin_addr = mreq->imr_multiaddr;
1666 rtalloc(&ro);
1667 if (ro.ro_rt == NULL) {
1668 error = EADDRNOTAVAIL;
1669 break;
1670 }
1671 ifp = ro.ro_rt->rt_ifp;
1672 rtfree(ro.ro_rt);
1673 } else {
1674 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1675 }
1676 /*
1677 * See if we found an interface, and confirm that it
1678 * supports multicast.
1679 */
1680 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1681 error = EADDRNOTAVAIL;
1682 break;
1683 }
1684 /*
1685 * See if the membership already exists or if all the
1686 * membership slots are full.
1687 */
1688 for (i = 0; i < imo->imo_num_memberships; ++i) {
1689 if (imo->imo_membership[i]->inm_ifp == ifp &&
1690 in_hosteq(imo->imo_membership[i]->inm_addr,
1691 mreq->imr_multiaddr))
1692 break;
1693 }
1694 if (i < imo->imo_num_memberships) {
1695 error = EADDRINUSE;
1696 break;
1697 }
1698 if (i == IP_MAX_MEMBERSHIPS) {
1699 error = ETOOMANYREFS;
1700 break;
1701 }
1702 /*
1703 * Everything looks good; add a new record to the multicast
1704 * address list for the given interface.
1705 */
1706 if ((imo->imo_membership[i] =
1707 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1708 error = ENOBUFS;
1709 break;
1710 }
1711 ++imo->imo_num_memberships;
1712 break;
1713
1714 case IP_DROP_MEMBERSHIP:
1715 /*
1716 * Drop a multicast group membership.
1717 * Group must be a valid IP multicast address.
1718 */
1719 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1720 error = EINVAL;
1721 break;
1722 }
1723 mreq = mtod(m, struct ip_mreq *);
1724 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1725 error = EINVAL;
1726 break;
1727 }
1728 /*
1729 * If an interface address was specified, get a pointer
1730 * to its ifnet structure.
1731 */
1732 if (in_nullhost(mreq->imr_interface))
1733 ifp = NULL;
1734 else {
1735 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1736 if (ifp == NULL) {
1737 error = EADDRNOTAVAIL;
1738 break;
1739 }
1740 }
1741 /*
1742 * Find the membership in the membership array.
1743 */
1744 for (i = 0; i < imo->imo_num_memberships; ++i) {
1745 if ((ifp == NULL ||
1746 imo->imo_membership[i]->inm_ifp == ifp) &&
1747 in_hosteq(imo->imo_membership[i]->inm_addr,
1748 mreq->imr_multiaddr))
1749 break;
1750 }
1751 if (i == imo->imo_num_memberships) {
1752 error = EADDRNOTAVAIL;
1753 break;
1754 }
1755 /*
1756 * Give up the multicast address record to which the
1757 * membership points.
1758 */
1759 in_delmulti(imo->imo_membership[i]);
1760 /*
1761 * Remove the gap in the membership array.
1762 */
1763 for (++i; i < imo->imo_num_memberships; ++i)
1764 imo->imo_membership[i-1] = imo->imo_membership[i];
1765 --imo->imo_num_memberships;
1766 break;
1767
1768 default:
1769 error = EOPNOTSUPP;
1770 break;
1771 }
1772
1773 /*
1774 * If all options have default values, no need to keep the mbuf.
1775 */
1776 if (imo->imo_multicast_ifp == NULL &&
1777 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1778 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1779 imo->imo_num_memberships == 0) {
1780 free(*imop, M_IPMOPTS);
1781 *imop = NULL;
1782 }
1783
1784 return (error);
1785 }
1786
1787 /*
1788 * Return the IP multicast options in response to user getsockopt().
1789 */
1790 int
1791 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1792 {
1793 u_char *ttl;
1794 u_char *loop;
1795 struct in_addr *addr;
1796 struct in_ifaddr *ia;
1797
1798 *mp = m_get(M_WAIT, MT_SOOPTS);
1799
1800 switch (optname) {
1801
1802 case IP_MULTICAST_IF:
1803 addr = mtod(*mp, struct in_addr *);
1804 (*mp)->m_len = sizeof(struct in_addr);
1805 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1806 *addr = zeroin_addr;
1807 else if (imo->imo_multicast_addr.s_addr) {
1808 /* return the value user has set */
1809 *addr = imo->imo_multicast_addr;
1810 } else {
1811 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1812 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1813 }
1814 return (0);
1815
1816 case IP_MULTICAST_TTL:
1817 ttl = mtod(*mp, u_char *);
1818 (*mp)->m_len = 1;
1819 *ttl = imo ? imo->imo_multicast_ttl
1820 : IP_DEFAULT_MULTICAST_TTL;
1821 return (0);
1822
1823 case IP_MULTICAST_LOOP:
1824 loop = mtod(*mp, u_char *);
1825 (*mp)->m_len = 1;
1826 *loop = imo ? imo->imo_multicast_loop
1827 : IP_DEFAULT_MULTICAST_LOOP;
1828 return (0);
1829
1830 default:
1831 return (EOPNOTSUPP);
1832 }
1833 }
1834
1835 /*
1836 * Discard the IP multicast options.
1837 */
1838 void
1839 ip_freemoptions(struct ip_moptions *imo)
1840 {
1841 int i;
1842
1843 if (imo != NULL) {
1844 for (i = 0; i < imo->imo_num_memberships; ++i)
1845 in_delmulti(imo->imo_membership[i]);
1846 free(imo, M_IPMOPTS);
1847 }
1848 }
1849
1850 /*
1851 * Routine called from ip_output() to loop back a copy of an IP multicast
1852 * packet to the input queue of a specified interface. Note that this
1853 * calls the output routine of the loopback "driver", but with an interface
1854 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1855 */
1856 static void
1857 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1858 {
1859 struct ip *ip;
1860 struct mbuf *copym;
1861
1862 copym = m_copy(m, 0, M_COPYALL);
1863 if (copym != NULL
1864 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1865 copym = m_pullup(copym, sizeof(struct ip));
1866 if (copym != NULL) {
1867 /*
1868 * We don't bother to fragment if the IP length is greater
1869 * than the interface's MTU. Can this possibly matter?
1870 */
1871 ip = mtod(copym, struct ip *);
1872
1873 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1874 in_delayed_cksum(copym);
1875 copym->m_pkthdr.csum_flags &=
1876 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1877 }
1878
1879 ip->ip_sum = 0;
1880 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1881 (void) looutput(ifp, copym, sintosa(dst), NULL);
1882 }
1883 }
1884