ip_output.c revision 1.143 1 /* $NetBSD: ip_output.c,v 1.143 2005/02/18 00:52:56 heas Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.143 2005/02/18 00:52:56 heas Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = ip_newid();
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else {
472 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
473 IPSEC_DIR_OUTBOUND))
474 goto skip_ipsec;
475 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 }
477
478 if (sp == NULL) {
479 ipsecstat.out_inval++;
480 goto bad;
481 }
482
483 error = 0;
484
485 /* check policy */
486 switch (sp->policy) {
487 case IPSEC_POLICY_DISCARD:
488 /*
489 * This packet is just discarded.
490 */
491 ipsecstat.out_polvio++;
492 goto bad;
493
494 case IPSEC_POLICY_BYPASS:
495 case IPSEC_POLICY_NONE:
496 /* no need to do IPsec. */
497 goto skip_ipsec;
498
499 case IPSEC_POLICY_IPSEC:
500 if (sp->req == NULL) {
501 /* XXX should be panic ? */
502 printf("ip_output: No IPsec request specified.\n");
503 error = EINVAL;
504 goto bad;
505 }
506 break;
507
508 case IPSEC_POLICY_ENTRUST:
509 default:
510 printf("ip_output: Invalid policy found. %d\n", sp->policy);
511 }
512
513 #ifdef IPSEC_NAT_T
514 /*
515 * NAT-T ESP fragmentation: don't do IPSec processing now,
516 * we'll do it on each fragmented packet.
517 */
518 if (sp->req->sav &&
519 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
520 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
521 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
522 natt_frag = 1;
523 mtu = sp->req->sav->esp_frag;
524 goto skip_ipsec;
525 }
526 }
527 #endif /* IPSEC_NAT_T */
528
529 /*
530 * ipsec4_output() expects ip_len and ip_off in network
531 * order. They have been set to network order above.
532 */
533
534 {
535 struct ipsec_output_state state;
536 bzero(&state, sizeof(state));
537 state.m = m;
538 if (flags & IP_ROUTETOIF) {
539 state.ro = &iproute;
540 bzero(&iproute, sizeof(iproute));
541 } else
542 state.ro = ro;
543 state.dst = (struct sockaddr *)dst;
544
545 /*
546 * We can't defer the checksum of payload data if
547 * we're about to encrypt/authenticate it.
548 *
549 * XXX When we support crypto offloading functions of
550 * XXX network interfaces, we need to reconsider this,
551 * XXX since it's likely that they'll support checksumming,
552 * XXX as well.
553 */
554 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
555 in_delayed_cksum(m);
556 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
557 }
558
559 error = ipsec4_output(&state, sp, flags);
560
561 m = state.m;
562 if (flags & IP_ROUTETOIF) {
563 /*
564 * if we have tunnel mode SA, we may need to ignore
565 * IP_ROUTETOIF.
566 */
567 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
568 flags &= ~IP_ROUTETOIF;
569 ro = state.ro;
570 }
571 } else
572 ro = state.ro;
573 dst = (struct sockaddr_in *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec4_output. */
576 m0 = NULL;
577 switch (error) {
578 case EHOSTUNREACH:
579 case ENETUNREACH:
580 case EMSGSIZE:
581 case ENOBUFS:
582 case ENOMEM:
583 break;
584 default:
585 printf("ip4_output (ipsec): error code %d\n", error);
586 /*fall through*/
587 case ENOENT:
588 /* don't show these error codes to the user */
589 error = 0;
590 break;
591 }
592 goto bad;
593 }
594
595 /* be sure to update variables that are affected by ipsec4_output() */
596 ip = mtod(m, struct ip *);
597 hlen = ip->ip_hl << 2;
598 ip_len = ntohs(ip->ip_len);
599
600 if (ro->ro_rt == NULL) {
601 if ((flags & IP_ROUTETOIF) == 0) {
602 printf("ip_output: "
603 "can't update route after IPsec processing\n");
604 error = EHOSTUNREACH; /*XXX*/
605 goto bad;
606 }
607 } else {
608 /* nobody uses ia beyond here */
609 if (state.encap) {
610 ifp = ro->ro_rt->rt_ifp;
611 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
612 mtu = ifp->if_mtu;
613 }
614 }
615 }
616 skip_ipsec:
617 #endif /*IPSEC*/
618 #ifdef FAST_IPSEC
619 /*
620 * Check the security policy (SP) for the packet and, if
621 * required, do IPsec-related processing. There are two
622 * cases here; the first time a packet is sent through
623 * it will be untagged and handled by ipsec4_checkpolicy.
624 * If the packet is resubmitted to ip_output (e.g. after
625 * AH, ESP, etc. processing), there will be a tag to bypass
626 * the lookup and related policy checking.
627 */
628 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629 s = splsoftnet();
630 if (mtag != NULL) {
631 tdbi = (struct tdb_ident *)(mtag + 1);
632 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633 if (sp == NULL)
634 error = -EINVAL; /* force silent drop */
635 m_tag_delete(m, mtag);
636 } else {
637 if (inp != NULL &&
638 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
639 goto spd_done;
640 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
641 &error, inp);
642 }
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp != NULL) {
651 /* Loop detection, check if ipsec processing already done */
652 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
653 for (mtag = m_tag_first(m); mtag != NULL;
654 mtag = m_tag_next(m, mtag)) {
655 #ifdef MTAG_ABI_COMPAT
656 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
657 continue;
658 #endif
659 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
660 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
661 continue;
662 /*
663 * Check if policy has an SA associated with it.
664 * This can happen when an SP has yet to acquire
665 * an SA; e.g. on first reference. If it occurs,
666 * then we let ipsec4_process_packet do its thing.
667 */
668 if (sp->req->sav == NULL)
669 break;
670 tdbi = (struct tdb_ident *)(mtag + 1);
671 if (tdbi->spi == sp->req->sav->spi &&
672 tdbi->proto == sp->req->sav->sah->saidx.proto &&
673 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
674 sizeof (union sockaddr_union)) == 0) {
675 /*
676 * No IPsec processing is needed, free
677 * reference to SP.
678 *
679 * NB: null pointer to avoid free at
680 * done: below.
681 */
682 KEY_FREESP(&sp), sp = NULL;
683 splx(s);
684 goto spd_done;
685 }
686 }
687
688 /*
689 * Do delayed checksums now because we send before
690 * this is done in the normal processing path.
691 */
692 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
693 in_delayed_cksum(m);
694 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
695 }
696
697 #ifdef __FreeBSD__
698 ip->ip_len = htons(ip->ip_len);
699 ip->ip_off = htons(ip->ip_off);
700 #endif
701
702 /* NB: callee frees mbuf */
703 error = ipsec4_process_packet(m, sp->req, flags, 0);
704 /*
705 * Preserve KAME behaviour: ENOENT can be returned
706 * when an SA acquire is in progress. Don't propagate
707 * this to user-level; it confuses applications.
708 *
709 * XXX this will go away when the SADB is redone.
710 */
711 if (error == ENOENT)
712 error = 0;
713 splx(s);
714 goto done;
715 } else {
716 splx(s);
717
718 if (error != 0) {
719 /*
720 * Hack: -EINVAL is used to signal that a packet
721 * should be silently discarded. This is typically
722 * because we asked key management for an SA and
723 * it was delayed (e.g. kicked up to IKE).
724 */
725 if (error == -EINVAL)
726 error = 0;
727 goto bad;
728 } else {
729 /* No IPsec processing for this packet. */
730 }
731 #ifdef notyet
732 /*
733 * If deferred crypto processing is needed, check that
734 * the interface supports it.
735 */
736 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
737 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
738 /* notify IPsec to do its own crypto */
739 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
740 error = EHOSTUNREACH;
741 goto bad;
742 }
743 #endif
744 }
745 spd_done:
746 #endif /* FAST_IPSEC */
747
748 #ifdef PFIL_HOOKS
749 /*
750 * Run through list of hooks for output packets.
751 */
752 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
753 goto done;
754 if (m == NULL)
755 goto done;
756
757 ip = mtod(m, struct ip *);
758 hlen = ip->ip_hl << 2;
759 #endif /* PFIL_HOOKS */
760
761 #if IFA_STATS
762 /*
763 * search for the source address structure to
764 * maintain output statistics.
765 */
766 INADDR_TO_IA(ip->ip_src, ia);
767 #endif
768
769 /* Maybe skip checksums on loopback interfaces. */
770 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
771 ip_do_loopback_cksum))
772 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
773 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
774 /*
775 * If small enough for mtu of path, can just send directly.
776 */
777 if (ip_len <= mtu) {
778 #if IFA_STATS
779 if (ia)
780 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
781 #endif
782 /*
783 * Always initialize the sum to 0! Some HW assisted
784 * checksumming requires this.
785 */
786 ip->ip_sum = 0;
787
788 /*
789 * Perform any checksums that the hardware can't do
790 * for us.
791 *
792 * XXX Does any hardware require the {th,uh}_sum
793 * XXX fields to be 0?
794 */
795 if (sw_csum & M_CSUM_IPv4) {
796 ip->ip_sum = in_cksum(m, hlen);
797 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
798 }
799 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
800 in_delayed_cksum(m);
801 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
802 } else
803 m->m_pkthdr.csum_data |= hlen << 16;
804
805 #ifdef IPSEC
806 /* clean ipsec history once it goes out of the node */
807 ipsec_delaux(m);
808 #endif
809 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
810 goto done;
811 }
812
813 /*
814 * We can't use HW checksumming if we're about to
815 * to fragment the packet.
816 *
817 * XXX Some hardware can do this.
818 */
819 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
820 in_delayed_cksum(m);
821 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
822 }
823
824 /*
825 * Too large for interface; fragment if possible.
826 * Must be able to put at least 8 bytes per fragment.
827 */
828 if (ntohs(ip->ip_off) & IP_DF) {
829 if (flags & IP_RETURNMTU)
830 *mtu_p = mtu;
831 error = EMSGSIZE;
832 ipstat.ips_cantfrag++;
833 goto bad;
834 }
835
836 error = ip_fragment(m, ifp, mtu);
837 if (error) {
838 m = NULL;
839 goto bad;
840 }
841
842 for (; m; m = m0) {
843 m0 = m->m_nextpkt;
844 m->m_nextpkt = 0;
845 if (error == 0) {
846 #if IFA_STATS
847 if (ia)
848 ia->ia_ifa.ifa_data.ifad_outbytes +=
849 ntohs(ip->ip_len);
850 #endif
851 #ifdef IPSEC
852 /* clean ipsec history once it goes out of the node */
853 ipsec_delaux(m);
854
855 #ifdef IPSEC_NAT_T
856 /*
857 * If we get there, the packet has not been handeld by
858 * IPSec whereas it should have. Now that it has been
859 * fragmented, re-inject it in ip_output so that IPsec
860 * processing can occur.
861 */
862 if (natt_frag) {
863 error = ip_output(m, opt,
864 ro, flags, imo, so, mtu_p);
865 } else
866 #endif /* IPSEC_NAT_T */
867 #endif /* IPSEC */
868 {
869 KASSERT((m->m_pkthdr.csum_flags &
870 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
871 error = (*ifp->if_output)(ifp, m, sintosa(dst),
872 ro->ro_rt);
873 }
874 } else
875 m_freem(m);
876 }
877
878 if (error == 0)
879 ipstat.ips_fragmented++;
880 done:
881 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
882 RTFREE(ro->ro_rt);
883 ro->ro_rt = 0;
884 }
885
886 #ifdef IPSEC
887 if (sp != NULL) {
888 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
889 printf("DP ip_output call free SP:%p\n", sp));
890 key_freesp(sp);
891 }
892 #endif /* IPSEC */
893 #ifdef FAST_IPSEC
894 if (sp != NULL)
895 KEY_FREESP(&sp);
896 #endif /* FAST_IPSEC */
897
898 return (error);
899 bad:
900 m_freem(m);
901 goto done;
902 }
903
904 int
905 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
906 {
907 struct ip *ip, *mhip;
908 struct mbuf *m0;
909 int len, hlen, off;
910 int mhlen, firstlen;
911 struct mbuf **mnext;
912 int sw_csum = m->m_pkthdr.csum_flags;
913 int fragments = 0;
914 int s;
915 int error = 0;
916
917 ip = mtod(m, struct ip *);
918 hlen = ip->ip_hl << 2;
919 if (ifp != NULL)
920 sw_csum &= ~ifp->if_csum_flags_tx;
921
922 len = (mtu - hlen) &~ 7;
923 if (len < 8) {
924 m_freem(m);
925 return (EMSGSIZE);
926 }
927
928 firstlen = len;
929 mnext = &m->m_nextpkt;
930
931 /*
932 * Loop through length of segment after first fragment,
933 * make new header and copy data of each part and link onto chain.
934 */
935 m0 = m;
936 mhlen = sizeof (struct ip);
937 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
938 MGETHDR(m, M_DONTWAIT, MT_HEADER);
939 if (m == 0) {
940 error = ENOBUFS;
941 ipstat.ips_odropped++;
942 goto sendorfree;
943 }
944 MCLAIM(m, m0->m_owner);
945 *mnext = m;
946 mnext = &m->m_nextpkt;
947 m->m_data += max_linkhdr;
948 mhip = mtod(m, struct ip *);
949 *mhip = *ip;
950 /* we must inherit MCAST and BCAST flags */
951 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
952 if (hlen > sizeof (struct ip)) {
953 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
954 mhip->ip_hl = mhlen >> 2;
955 }
956 m->m_len = mhlen;
957 mhip->ip_off = ((off - hlen) >> 3) +
958 (ntohs(ip->ip_off) & ~IP_MF);
959 if (ip->ip_off & htons(IP_MF))
960 mhip->ip_off |= IP_MF;
961 if (off + len >= ntohs(ip->ip_len))
962 len = ntohs(ip->ip_len) - off;
963 else
964 mhip->ip_off |= IP_MF;
965 HTONS(mhip->ip_off);
966 mhip->ip_len = htons((u_int16_t)(len + mhlen));
967 m->m_next = m_copy(m0, off, len);
968 if (m->m_next == 0) {
969 error = ENOBUFS; /* ??? */
970 ipstat.ips_odropped++;
971 goto sendorfree;
972 }
973 m->m_pkthdr.len = mhlen + len;
974 m->m_pkthdr.rcvif = (struct ifnet *)0;
975 mhip->ip_sum = 0;
976 if (sw_csum & M_CSUM_IPv4) {
977 mhip->ip_sum = in_cksum(m, mhlen);
978 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
979 } else {
980 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
981 }
982 ipstat.ips_ofragments++;
983 fragments++;
984 }
985 /*
986 * Update first fragment by trimming what's been copied out
987 * and updating header, then send each fragment (in order).
988 */
989 m = m0;
990 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
991 m->m_pkthdr.len = hlen + firstlen;
992 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
993 ip->ip_off |= htons(IP_MF);
994 ip->ip_sum = 0;
995 if (sw_csum & M_CSUM_IPv4) {
996 ip->ip_sum = in_cksum(m, hlen);
997 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
998 } else {
999 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1000 }
1001 sendorfree:
1002 /*
1003 * If there is no room for all the fragments, don't queue
1004 * any of them.
1005 */
1006 if (ifp != NULL) {
1007 s = splnet();
1008 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1009 error == 0) {
1010 error = ENOBUFS;
1011 ipstat.ips_odropped++;
1012 IFQ_INC_DROPS(&ifp->if_snd);
1013 }
1014 splx(s);
1015 }
1016 if (error) {
1017 for (m = m0; m; m = m0) {
1018 m0 = m->m_nextpkt;
1019 m->m_nextpkt = NULL;
1020 m_freem(m);
1021 }
1022 }
1023 return (error);
1024 }
1025
1026 /*
1027 * Process a delayed payload checksum calculation.
1028 */
1029 void
1030 in_delayed_cksum(struct mbuf *m)
1031 {
1032 struct ip *ip;
1033 u_int16_t csum, offset;
1034
1035 ip = mtod(m, struct ip *);
1036 offset = ip->ip_hl << 2;
1037 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1038 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1039 csum = 0xffff;
1040
1041 offset += m->m_pkthdr.csum_data; /* checksum offset */
1042
1043 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1044 /* This happen when ip options were inserted
1045 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1046 m->m_len, offset, ip->ip_p);
1047 */
1048 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1049 } else
1050 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1051 }
1052
1053 /*
1054 * Determine the maximum length of the options to be inserted;
1055 * we would far rather allocate too much space rather than too little.
1056 */
1057
1058 u_int
1059 ip_optlen(struct inpcb *inp)
1060 {
1061 struct mbuf *m = inp->inp_options;
1062
1063 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1064 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1065 else
1066 return 0;
1067 }
1068
1069
1070 /*
1071 * Insert IP options into preformed packet.
1072 * Adjust IP destination as required for IP source routing,
1073 * as indicated by a non-zero in_addr at the start of the options.
1074 */
1075 static struct mbuf *
1076 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1077 {
1078 struct ipoption *p = mtod(opt, struct ipoption *);
1079 struct mbuf *n;
1080 struct ip *ip = mtod(m, struct ip *);
1081 unsigned optlen;
1082
1083 optlen = opt->m_len - sizeof(p->ipopt_dst);
1084 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1085 return (m); /* XXX should fail */
1086 if (!in_nullhost(p->ipopt_dst))
1087 ip->ip_dst = p->ipopt_dst;
1088 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1089 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1090 if (n == 0)
1091 return (m);
1092 MCLAIM(n, m->m_owner);
1093 M_COPY_PKTHDR(n, m);
1094 m_tag_delete_chain(m, NULL);
1095 m->m_flags &= ~M_PKTHDR;
1096 m->m_len -= sizeof(struct ip);
1097 m->m_data += sizeof(struct ip);
1098 n->m_next = m;
1099 m = n;
1100 m->m_len = optlen + sizeof(struct ip);
1101 m->m_data += max_linkhdr;
1102 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1103 } else {
1104 m->m_data -= optlen;
1105 m->m_len += optlen;
1106 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1107 }
1108 m->m_pkthdr.len += optlen;
1109 ip = mtod(m, struct ip *);
1110 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1111 *phlen = sizeof(struct ip) + optlen;
1112 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1113 return (m);
1114 }
1115
1116 /*
1117 * Copy options from ip to jp,
1118 * omitting those not copied during fragmentation.
1119 */
1120 int
1121 ip_optcopy(struct ip *ip, struct ip *jp)
1122 {
1123 u_char *cp, *dp;
1124 int opt, optlen, cnt;
1125
1126 cp = (u_char *)(ip + 1);
1127 dp = (u_char *)(jp + 1);
1128 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1129 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1130 opt = cp[0];
1131 if (opt == IPOPT_EOL)
1132 break;
1133 if (opt == IPOPT_NOP) {
1134 /* Preserve for IP mcast tunnel's LSRR alignment. */
1135 *dp++ = IPOPT_NOP;
1136 optlen = 1;
1137 continue;
1138 }
1139 #ifdef DIAGNOSTIC
1140 if (cnt < IPOPT_OLEN + sizeof(*cp))
1141 panic("malformed IPv4 option passed to ip_optcopy");
1142 #endif
1143 optlen = cp[IPOPT_OLEN];
1144 #ifdef DIAGNOSTIC
1145 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1146 panic("malformed IPv4 option passed to ip_optcopy");
1147 #endif
1148 /* bogus lengths should have been caught by ip_dooptions */
1149 if (optlen > cnt)
1150 optlen = cnt;
1151 if (IPOPT_COPIED(opt)) {
1152 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1153 dp += optlen;
1154 }
1155 }
1156 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1157 *dp++ = IPOPT_EOL;
1158 return (optlen);
1159 }
1160
1161 /*
1162 * IP socket option processing.
1163 */
1164 int
1165 ip_ctloutput(int op, struct socket *so, int level, int optname,
1166 struct mbuf **mp)
1167 {
1168 struct inpcb *inp = sotoinpcb(so);
1169 struct mbuf *m = *mp;
1170 int optval = 0;
1171 int error = 0;
1172 #if defined(IPSEC) || defined(FAST_IPSEC)
1173 struct proc *p = curproc; /*XXX*/
1174 #endif
1175
1176 if (level != IPPROTO_IP) {
1177 error = EINVAL;
1178 if (op == PRCO_SETOPT && *mp)
1179 (void) m_free(*mp);
1180 } else switch (op) {
1181
1182 case PRCO_SETOPT:
1183 switch (optname) {
1184 case IP_OPTIONS:
1185 #ifdef notyet
1186 case IP_RETOPTS:
1187 return (ip_pcbopts(optname, &inp->inp_options, m));
1188 #else
1189 return (ip_pcbopts(&inp->inp_options, m));
1190 #endif
1191
1192 case IP_TOS:
1193 case IP_TTL:
1194 case IP_RECVOPTS:
1195 case IP_RECVRETOPTS:
1196 case IP_RECVDSTADDR:
1197 case IP_RECVIF:
1198 if (m == NULL || m->m_len != sizeof(int))
1199 error = EINVAL;
1200 else {
1201 optval = *mtod(m, int *);
1202 switch (optname) {
1203
1204 case IP_TOS:
1205 inp->inp_ip.ip_tos = optval;
1206 break;
1207
1208 case IP_TTL:
1209 inp->inp_ip.ip_ttl = optval;
1210 break;
1211 #define OPTSET(bit) \
1212 if (optval) \
1213 inp->inp_flags |= bit; \
1214 else \
1215 inp->inp_flags &= ~bit;
1216
1217 case IP_RECVOPTS:
1218 OPTSET(INP_RECVOPTS);
1219 break;
1220
1221 case IP_RECVRETOPTS:
1222 OPTSET(INP_RECVRETOPTS);
1223 break;
1224
1225 case IP_RECVDSTADDR:
1226 OPTSET(INP_RECVDSTADDR);
1227 break;
1228
1229 case IP_RECVIF:
1230 OPTSET(INP_RECVIF);
1231 break;
1232 }
1233 }
1234 break;
1235 #undef OPTSET
1236
1237 case IP_MULTICAST_IF:
1238 case IP_MULTICAST_TTL:
1239 case IP_MULTICAST_LOOP:
1240 case IP_ADD_MEMBERSHIP:
1241 case IP_DROP_MEMBERSHIP:
1242 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1243 break;
1244
1245 case IP_PORTRANGE:
1246 if (m == 0 || m->m_len != sizeof(int))
1247 error = EINVAL;
1248 else {
1249 optval = *mtod(m, int *);
1250
1251 switch (optval) {
1252
1253 case IP_PORTRANGE_DEFAULT:
1254 case IP_PORTRANGE_HIGH:
1255 inp->inp_flags &= ~(INP_LOWPORT);
1256 break;
1257
1258 case IP_PORTRANGE_LOW:
1259 inp->inp_flags |= INP_LOWPORT;
1260 break;
1261
1262 default:
1263 error = EINVAL;
1264 break;
1265 }
1266 }
1267 break;
1268
1269 #if defined(IPSEC) || defined(FAST_IPSEC)
1270 case IP_IPSEC_POLICY:
1271 {
1272 caddr_t req = NULL;
1273 size_t len = 0;
1274 int priv = 0;
1275
1276 #ifdef __NetBSD__
1277 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1278 priv = 0;
1279 else
1280 priv = 1;
1281 #else
1282 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1283 #endif
1284 if (m) {
1285 req = mtod(m, caddr_t);
1286 len = m->m_len;
1287 }
1288 error = ipsec4_set_policy(inp, optname, req, len, priv);
1289 break;
1290 }
1291 #endif /*IPSEC*/
1292
1293 default:
1294 error = ENOPROTOOPT;
1295 break;
1296 }
1297 if (m)
1298 (void)m_free(m);
1299 break;
1300
1301 case PRCO_GETOPT:
1302 switch (optname) {
1303 case IP_OPTIONS:
1304 case IP_RETOPTS:
1305 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1306 MCLAIM(m, so->so_mowner);
1307 if (inp->inp_options) {
1308 m->m_len = inp->inp_options->m_len;
1309 bcopy(mtod(inp->inp_options, caddr_t),
1310 mtod(m, caddr_t), (unsigned)m->m_len);
1311 } else
1312 m->m_len = 0;
1313 break;
1314
1315 case IP_TOS:
1316 case IP_TTL:
1317 case IP_RECVOPTS:
1318 case IP_RECVRETOPTS:
1319 case IP_RECVDSTADDR:
1320 case IP_RECVIF:
1321 case IP_ERRORMTU:
1322 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1323 MCLAIM(m, so->so_mowner);
1324 m->m_len = sizeof(int);
1325 switch (optname) {
1326
1327 case IP_TOS:
1328 optval = inp->inp_ip.ip_tos;
1329 break;
1330
1331 case IP_TTL:
1332 optval = inp->inp_ip.ip_ttl;
1333 break;
1334
1335 case IP_ERRORMTU:
1336 optval = inp->inp_errormtu;
1337 break;
1338
1339 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1340
1341 case IP_RECVOPTS:
1342 optval = OPTBIT(INP_RECVOPTS);
1343 break;
1344
1345 case IP_RECVRETOPTS:
1346 optval = OPTBIT(INP_RECVRETOPTS);
1347 break;
1348
1349 case IP_RECVDSTADDR:
1350 optval = OPTBIT(INP_RECVDSTADDR);
1351 break;
1352
1353 case IP_RECVIF:
1354 optval = OPTBIT(INP_RECVIF);
1355 break;
1356 }
1357 *mtod(m, int *) = optval;
1358 break;
1359
1360 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1361 /* XXX: code broken */
1362 case IP_IPSEC_POLICY:
1363 {
1364 caddr_t req = NULL;
1365 size_t len = 0;
1366
1367 if (m) {
1368 req = mtod(m, caddr_t);
1369 len = m->m_len;
1370 }
1371 error = ipsec4_get_policy(inp, req, len, mp);
1372 break;
1373 }
1374 #endif /*IPSEC*/
1375
1376 case IP_MULTICAST_IF:
1377 case IP_MULTICAST_TTL:
1378 case IP_MULTICAST_LOOP:
1379 case IP_ADD_MEMBERSHIP:
1380 case IP_DROP_MEMBERSHIP:
1381 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1382 if (*mp)
1383 MCLAIM(*mp, so->so_mowner);
1384 break;
1385
1386 case IP_PORTRANGE:
1387 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1388 MCLAIM(m, so->so_mowner);
1389 m->m_len = sizeof(int);
1390
1391 if (inp->inp_flags & INP_LOWPORT)
1392 optval = IP_PORTRANGE_LOW;
1393 else
1394 optval = IP_PORTRANGE_DEFAULT;
1395
1396 *mtod(m, int *) = optval;
1397 break;
1398
1399 default:
1400 error = ENOPROTOOPT;
1401 break;
1402 }
1403 break;
1404 }
1405 return (error);
1406 }
1407
1408 /*
1409 * Set up IP options in pcb for insertion in output packets.
1410 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1411 * with destination address if source routed.
1412 */
1413 int
1414 #ifdef notyet
1415 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1416 #else
1417 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1418 #endif
1419 {
1420 int cnt, optlen;
1421 u_char *cp;
1422 u_char opt;
1423
1424 /* turn off any old options */
1425 if (*pcbopt)
1426 (void)m_free(*pcbopt);
1427 *pcbopt = 0;
1428 if (m == (struct mbuf *)0 || m->m_len == 0) {
1429 /*
1430 * Only turning off any previous options.
1431 */
1432 if (m)
1433 (void)m_free(m);
1434 return (0);
1435 }
1436
1437 #ifndef __vax__
1438 if (m->m_len % sizeof(int32_t))
1439 goto bad;
1440 #endif
1441 /*
1442 * IP first-hop destination address will be stored before
1443 * actual options; move other options back
1444 * and clear it when none present.
1445 */
1446 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1447 goto bad;
1448 cnt = m->m_len;
1449 m->m_len += sizeof(struct in_addr);
1450 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1451 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1452 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1453
1454 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1455 opt = cp[IPOPT_OPTVAL];
1456 if (opt == IPOPT_EOL)
1457 break;
1458 if (opt == IPOPT_NOP)
1459 optlen = 1;
1460 else {
1461 if (cnt < IPOPT_OLEN + sizeof(*cp))
1462 goto bad;
1463 optlen = cp[IPOPT_OLEN];
1464 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1465 goto bad;
1466 }
1467 switch (opt) {
1468
1469 default:
1470 break;
1471
1472 case IPOPT_LSRR:
1473 case IPOPT_SSRR:
1474 /*
1475 * user process specifies route as:
1476 * ->A->B->C->D
1477 * D must be our final destination (but we can't
1478 * check that since we may not have connected yet).
1479 * A is first hop destination, which doesn't appear in
1480 * actual IP option, but is stored before the options.
1481 */
1482 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1483 goto bad;
1484 m->m_len -= sizeof(struct in_addr);
1485 cnt -= sizeof(struct in_addr);
1486 optlen -= sizeof(struct in_addr);
1487 cp[IPOPT_OLEN] = optlen;
1488 /*
1489 * Move first hop before start of options.
1490 */
1491 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1492 sizeof(struct in_addr));
1493 /*
1494 * Then copy rest of options back
1495 * to close up the deleted entry.
1496 */
1497 (void)memmove(&cp[IPOPT_OFFSET+1],
1498 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1499 (unsigned)cnt - (IPOPT_MINOFF - 1));
1500 break;
1501 }
1502 }
1503 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1504 goto bad;
1505 *pcbopt = m;
1506 return (0);
1507
1508 bad:
1509 (void)m_free(m);
1510 return (EINVAL);
1511 }
1512
1513 /*
1514 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1515 */
1516 static struct ifnet *
1517 ip_multicast_if(struct in_addr *a, int *ifindexp)
1518 {
1519 int ifindex;
1520 struct ifnet *ifp = NULL;
1521 struct in_ifaddr *ia;
1522
1523 if (ifindexp)
1524 *ifindexp = 0;
1525 if (ntohl(a->s_addr) >> 24 == 0) {
1526 ifindex = ntohl(a->s_addr) & 0xffffff;
1527 if (ifindex < 0 || if_indexlim <= ifindex)
1528 return NULL;
1529 ifp = ifindex2ifnet[ifindex];
1530 if (!ifp)
1531 return NULL;
1532 if (ifindexp)
1533 *ifindexp = ifindex;
1534 } else {
1535 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1536 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1537 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1538 ifp = ia->ia_ifp;
1539 break;
1540 }
1541 }
1542 }
1543 return ifp;
1544 }
1545
1546 /*
1547 * Set the IP multicast options in response to user setsockopt().
1548 */
1549 int
1550 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1551 {
1552 int error = 0;
1553 u_char loop;
1554 int i;
1555 struct in_addr addr;
1556 struct ip_mreq *mreq;
1557 struct ifnet *ifp;
1558 struct ip_moptions *imo = *imop;
1559 struct route ro;
1560 struct sockaddr_in *dst;
1561 int ifindex;
1562
1563 if (imo == NULL) {
1564 /*
1565 * No multicast option buffer attached to the pcb;
1566 * allocate one and initialize to default values.
1567 */
1568 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1569 M_WAITOK);
1570
1571 if (imo == NULL)
1572 return (ENOBUFS);
1573 *imop = imo;
1574 imo->imo_multicast_ifp = NULL;
1575 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1576 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1577 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1578 imo->imo_num_memberships = 0;
1579 }
1580
1581 switch (optname) {
1582
1583 case IP_MULTICAST_IF:
1584 /*
1585 * Select the interface for outgoing multicast packets.
1586 */
1587 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1588 error = EINVAL;
1589 break;
1590 }
1591 addr = *(mtod(m, struct in_addr *));
1592 /*
1593 * INADDR_ANY is used to remove a previous selection.
1594 * When no interface is selected, a default one is
1595 * chosen every time a multicast packet is sent.
1596 */
1597 if (in_nullhost(addr)) {
1598 imo->imo_multicast_ifp = NULL;
1599 break;
1600 }
1601 /*
1602 * The selected interface is identified by its local
1603 * IP address. Find the interface and confirm that
1604 * it supports multicasting.
1605 */
1606 ifp = ip_multicast_if(&addr, &ifindex);
1607 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1608 error = EADDRNOTAVAIL;
1609 break;
1610 }
1611 imo->imo_multicast_ifp = ifp;
1612 if (ifindex)
1613 imo->imo_multicast_addr = addr;
1614 else
1615 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1616 break;
1617
1618 case IP_MULTICAST_TTL:
1619 /*
1620 * Set the IP time-to-live for outgoing multicast packets.
1621 */
1622 if (m == NULL || m->m_len != 1) {
1623 error = EINVAL;
1624 break;
1625 }
1626 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1627 break;
1628
1629 case IP_MULTICAST_LOOP:
1630 /*
1631 * Set the loopback flag for outgoing multicast packets.
1632 * Must be zero or one.
1633 */
1634 if (m == NULL || m->m_len != 1 ||
1635 (loop = *(mtod(m, u_char *))) > 1) {
1636 error = EINVAL;
1637 break;
1638 }
1639 imo->imo_multicast_loop = loop;
1640 break;
1641
1642 case IP_ADD_MEMBERSHIP:
1643 /*
1644 * Add a multicast group membership.
1645 * Group must be a valid IP multicast address.
1646 */
1647 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1648 error = EINVAL;
1649 break;
1650 }
1651 mreq = mtod(m, struct ip_mreq *);
1652 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1653 error = EINVAL;
1654 break;
1655 }
1656 /*
1657 * If no interface address was provided, use the interface of
1658 * the route to the given multicast address.
1659 */
1660 if (in_nullhost(mreq->imr_interface)) {
1661 bzero((caddr_t)&ro, sizeof(ro));
1662 ro.ro_rt = NULL;
1663 dst = satosin(&ro.ro_dst);
1664 dst->sin_len = sizeof(*dst);
1665 dst->sin_family = AF_INET;
1666 dst->sin_addr = mreq->imr_multiaddr;
1667 rtalloc(&ro);
1668 if (ro.ro_rt == NULL) {
1669 error = EADDRNOTAVAIL;
1670 break;
1671 }
1672 ifp = ro.ro_rt->rt_ifp;
1673 rtfree(ro.ro_rt);
1674 } else {
1675 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1676 }
1677 /*
1678 * See if we found an interface, and confirm that it
1679 * supports multicast.
1680 */
1681 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1682 error = EADDRNOTAVAIL;
1683 break;
1684 }
1685 /*
1686 * See if the membership already exists or if all the
1687 * membership slots are full.
1688 */
1689 for (i = 0; i < imo->imo_num_memberships; ++i) {
1690 if (imo->imo_membership[i]->inm_ifp == ifp &&
1691 in_hosteq(imo->imo_membership[i]->inm_addr,
1692 mreq->imr_multiaddr))
1693 break;
1694 }
1695 if (i < imo->imo_num_memberships) {
1696 error = EADDRINUSE;
1697 break;
1698 }
1699 if (i == IP_MAX_MEMBERSHIPS) {
1700 error = ETOOMANYREFS;
1701 break;
1702 }
1703 /*
1704 * Everything looks good; add a new record to the multicast
1705 * address list for the given interface.
1706 */
1707 if ((imo->imo_membership[i] =
1708 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1709 error = ENOBUFS;
1710 break;
1711 }
1712 ++imo->imo_num_memberships;
1713 break;
1714
1715 case IP_DROP_MEMBERSHIP:
1716 /*
1717 * Drop a multicast group membership.
1718 * Group must be a valid IP multicast address.
1719 */
1720 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1721 error = EINVAL;
1722 break;
1723 }
1724 mreq = mtod(m, struct ip_mreq *);
1725 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1726 error = EINVAL;
1727 break;
1728 }
1729 /*
1730 * If an interface address was specified, get a pointer
1731 * to its ifnet structure.
1732 */
1733 if (in_nullhost(mreq->imr_interface))
1734 ifp = NULL;
1735 else {
1736 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1737 if (ifp == NULL) {
1738 error = EADDRNOTAVAIL;
1739 break;
1740 }
1741 }
1742 /*
1743 * Find the membership in the membership array.
1744 */
1745 for (i = 0; i < imo->imo_num_memberships; ++i) {
1746 if ((ifp == NULL ||
1747 imo->imo_membership[i]->inm_ifp == ifp) &&
1748 in_hosteq(imo->imo_membership[i]->inm_addr,
1749 mreq->imr_multiaddr))
1750 break;
1751 }
1752 if (i == imo->imo_num_memberships) {
1753 error = EADDRNOTAVAIL;
1754 break;
1755 }
1756 /*
1757 * Give up the multicast address record to which the
1758 * membership points.
1759 */
1760 in_delmulti(imo->imo_membership[i]);
1761 /*
1762 * Remove the gap in the membership array.
1763 */
1764 for (++i; i < imo->imo_num_memberships; ++i)
1765 imo->imo_membership[i-1] = imo->imo_membership[i];
1766 --imo->imo_num_memberships;
1767 break;
1768
1769 default:
1770 error = EOPNOTSUPP;
1771 break;
1772 }
1773
1774 /*
1775 * If all options have default values, no need to keep the mbuf.
1776 */
1777 if (imo->imo_multicast_ifp == NULL &&
1778 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1779 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1780 imo->imo_num_memberships == 0) {
1781 free(*imop, M_IPMOPTS);
1782 *imop = NULL;
1783 }
1784
1785 return (error);
1786 }
1787
1788 /*
1789 * Return the IP multicast options in response to user getsockopt().
1790 */
1791 int
1792 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1793 {
1794 u_char *ttl;
1795 u_char *loop;
1796 struct in_addr *addr;
1797 struct in_ifaddr *ia;
1798
1799 *mp = m_get(M_WAIT, MT_SOOPTS);
1800
1801 switch (optname) {
1802
1803 case IP_MULTICAST_IF:
1804 addr = mtod(*mp, struct in_addr *);
1805 (*mp)->m_len = sizeof(struct in_addr);
1806 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1807 *addr = zeroin_addr;
1808 else if (imo->imo_multicast_addr.s_addr) {
1809 /* return the value user has set */
1810 *addr = imo->imo_multicast_addr;
1811 } else {
1812 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1813 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1814 }
1815 return (0);
1816
1817 case IP_MULTICAST_TTL:
1818 ttl = mtod(*mp, u_char *);
1819 (*mp)->m_len = 1;
1820 *ttl = imo ? imo->imo_multicast_ttl
1821 : IP_DEFAULT_MULTICAST_TTL;
1822 return (0);
1823
1824 case IP_MULTICAST_LOOP:
1825 loop = mtod(*mp, u_char *);
1826 (*mp)->m_len = 1;
1827 *loop = imo ? imo->imo_multicast_loop
1828 : IP_DEFAULT_MULTICAST_LOOP;
1829 return (0);
1830
1831 default:
1832 return (EOPNOTSUPP);
1833 }
1834 }
1835
1836 /*
1837 * Discard the IP multicast options.
1838 */
1839 void
1840 ip_freemoptions(struct ip_moptions *imo)
1841 {
1842 int i;
1843
1844 if (imo != NULL) {
1845 for (i = 0; i < imo->imo_num_memberships; ++i)
1846 in_delmulti(imo->imo_membership[i]);
1847 free(imo, M_IPMOPTS);
1848 }
1849 }
1850
1851 /*
1852 * Routine called from ip_output() to loop back a copy of an IP multicast
1853 * packet to the input queue of a specified interface. Note that this
1854 * calls the output routine of the loopback "driver", but with an interface
1855 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1856 */
1857 static void
1858 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1859 {
1860 struct ip *ip;
1861 struct mbuf *copym;
1862
1863 copym = m_copy(m, 0, M_COPYALL);
1864 if (copym != NULL
1865 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1866 copym = m_pullup(copym, sizeof(struct ip));
1867 if (copym != NULL) {
1868 /*
1869 * We don't bother to fragment if the IP length is greater
1870 * than the interface's MTU. Can this possibly matter?
1871 */
1872 ip = mtod(copym, struct ip *);
1873
1874 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1875 in_delayed_cksum(copym);
1876 copym->m_pkthdr.csum_flags &=
1877 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1878 }
1879
1880 ip->ip_sum = 0;
1881 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1882 (void) looutput(ifp, copym, sintosa(dst), NULL);
1883 }
1884 }
1885