ip_output.c revision 1.147 1 /* $NetBSD: ip_output.c,v 1.147 2005/03/09 03:39:27 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.147 2005/03/09 03:39:27 matt Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = ip_newid();
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else {
472 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
473 IPSEC_DIR_OUTBOUND))
474 goto skip_ipsec;
475 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 }
477
478 if (sp == NULL) {
479 ipsecstat.out_inval++;
480 goto bad;
481 }
482
483 error = 0;
484
485 /* check policy */
486 switch (sp->policy) {
487 case IPSEC_POLICY_DISCARD:
488 /*
489 * This packet is just discarded.
490 */
491 ipsecstat.out_polvio++;
492 goto bad;
493
494 case IPSEC_POLICY_BYPASS:
495 case IPSEC_POLICY_NONE:
496 /* no need to do IPsec. */
497 goto skip_ipsec;
498
499 case IPSEC_POLICY_IPSEC:
500 if (sp->req == NULL) {
501 /* XXX should be panic ? */
502 printf("ip_output: No IPsec request specified.\n");
503 error = EINVAL;
504 goto bad;
505 }
506 break;
507
508 case IPSEC_POLICY_ENTRUST:
509 default:
510 printf("ip_output: Invalid policy found. %d\n", sp->policy);
511 }
512
513 #ifdef IPSEC_NAT_T
514 /*
515 * NAT-T ESP fragmentation: don't do IPSec processing now,
516 * we'll do it on each fragmented packet.
517 */
518 if (sp->req->sav &&
519 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
520 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
521 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
522 natt_frag = 1;
523 mtu = sp->req->sav->esp_frag;
524 goto skip_ipsec;
525 }
526 }
527 #endif /* IPSEC_NAT_T */
528
529 /*
530 * ipsec4_output() expects ip_len and ip_off in network
531 * order. They have been set to network order above.
532 */
533
534 {
535 struct ipsec_output_state state;
536 bzero(&state, sizeof(state));
537 state.m = m;
538 if (flags & IP_ROUTETOIF) {
539 state.ro = &iproute;
540 bzero(&iproute, sizeof(iproute));
541 } else
542 state.ro = ro;
543 state.dst = (struct sockaddr *)dst;
544
545 /*
546 * We can't defer the checksum of payload data if
547 * we're about to encrypt/authenticate it.
548 *
549 * XXX When we support crypto offloading functions of
550 * XXX network interfaces, we need to reconsider this,
551 * XXX since it's likely that they'll support checksumming,
552 * XXX as well.
553 */
554 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
555 in_delayed_cksum(m);
556 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
557 }
558
559 error = ipsec4_output(&state, sp, flags);
560
561 m = state.m;
562 if (flags & IP_ROUTETOIF) {
563 /*
564 * if we have tunnel mode SA, we may need to ignore
565 * IP_ROUTETOIF.
566 */
567 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
568 flags &= ~IP_ROUTETOIF;
569 ro = state.ro;
570 }
571 } else
572 ro = state.ro;
573 dst = (struct sockaddr_in *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec4_output. */
576 m0 = NULL;
577 switch (error) {
578 case EHOSTUNREACH:
579 case ENETUNREACH:
580 case EMSGSIZE:
581 case ENOBUFS:
582 case ENOMEM:
583 break;
584 default:
585 printf("ip4_output (ipsec): error code %d\n", error);
586 /*fall through*/
587 case ENOENT:
588 /* don't show these error codes to the user */
589 error = 0;
590 break;
591 }
592 goto bad;
593 }
594
595 /* be sure to update variables that are affected by ipsec4_output() */
596 ip = mtod(m, struct ip *);
597 hlen = ip->ip_hl << 2;
598 ip_len = ntohs(ip->ip_len);
599
600 if (ro->ro_rt == NULL) {
601 if ((flags & IP_ROUTETOIF) == 0) {
602 printf("ip_output: "
603 "can't update route after IPsec processing\n");
604 error = EHOSTUNREACH; /*XXX*/
605 goto bad;
606 }
607 } else {
608 /* nobody uses ia beyond here */
609 if (state.encap) {
610 ifp = ro->ro_rt->rt_ifp;
611 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
612 mtu = ifp->if_mtu;
613 }
614 }
615 }
616 skip_ipsec:
617 #endif /*IPSEC*/
618 #ifdef FAST_IPSEC
619 /*
620 * Check the security policy (SP) for the packet and, if
621 * required, do IPsec-related processing. There are two
622 * cases here; the first time a packet is sent through
623 * it will be untagged and handled by ipsec4_checkpolicy.
624 * If the packet is resubmitted to ip_output (e.g. after
625 * AH, ESP, etc. processing), there will be a tag to bypass
626 * the lookup and related policy checking.
627 */
628 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629 s = splsoftnet();
630 if (mtag != NULL) {
631 tdbi = (struct tdb_ident *)(mtag + 1);
632 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633 if (sp == NULL)
634 error = -EINVAL; /* force silent drop */
635 m_tag_delete(m, mtag);
636 } else {
637 if (inp != NULL &&
638 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
639 goto spd_done;
640 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
641 &error, inp);
642 }
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp != NULL) {
651 /* Loop detection, check if ipsec processing already done */
652 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
653 for (mtag = m_tag_first(m); mtag != NULL;
654 mtag = m_tag_next(m, mtag)) {
655 #ifdef MTAG_ABI_COMPAT
656 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
657 continue;
658 #endif
659 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
660 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
661 continue;
662 /*
663 * Check if policy has an SA associated with it.
664 * This can happen when an SP has yet to acquire
665 * an SA; e.g. on first reference. If it occurs,
666 * then we let ipsec4_process_packet do its thing.
667 */
668 if (sp->req->sav == NULL)
669 break;
670 tdbi = (struct tdb_ident *)(mtag + 1);
671 if (tdbi->spi == sp->req->sav->spi &&
672 tdbi->proto == sp->req->sav->sah->saidx.proto &&
673 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
674 sizeof (union sockaddr_union)) == 0) {
675 /*
676 * No IPsec processing is needed, free
677 * reference to SP.
678 *
679 * NB: null pointer to avoid free at
680 * done: below.
681 */
682 KEY_FREESP(&sp), sp = NULL;
683 splx(s);
684 goto spd_done;
685 }
686 }
687
688 /*
689 * Do delayed checksums now because we send before
690 * this is done in the normal processing path.
691 */
692 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
693 in_delayed_cksum(m);
694 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
695 }
696
697 #ifdef __FreeBSD__
698 ip->ip_len = htons(ip->ip_len);
699 ip->ip_off = htons(ip->ip_off);
700 #endif
701
702 /* NB: callee frees mbuf */
703 error = ipsec4_process_packet(m, sp->req, flags, 0);
704 /*
705 * Preserve KAME behaviour: ENOENT can be returned
706 * when an SA acquire is in progress. Don't propagate
707 * this to user-level; it confuses applications.
708 *
709 * XXX this will go away when the SADB is redone.
710 */
711 if (error == ENOENT)
712 error = 0;
713 splx(s);
714 goto done;
715 } else {
716 splx(s);
717
718 if (error != 0) {
719 /*
720 * Hack: -EINVAL is used to signal that a packet
721 * should be silently discarded. This is typically
722 * because we asked key management for an SA and
723 * it was delayed (e.g. kicked up to IKE).
724 */
725 if (error == -EINVAL)
726 error = 0;
727 goto bad;
728 } else {
729 /* No IPsec processing for this packet. */
730 }
731 #ifdef notyet
732 /*
733 * If deferred crypto processing is needed, check that
734 * the interface supports it.
735 */
736 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
737 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
738 /* notify IPsec to do its own crypto */
739 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
740 error = EHOSTUNREACH;
741 goto bad;
742 }
743 #endif
744 }
745 spd_done:
746 #endif /* FAST_IPSEC */
747
748 #ifdef PFIL_HOOKS
749 /*
750 * Run through list of hooks for output packets.
751 */
752 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
753 goto done;
754 if (m == NULL)
755 goto done;
756
757 ip = mtod(m, struct ip *);
758 hlen = ip->ip_hl << 2;
759 #endif /* PFIL_HOOKS */
760
761 m->m_pkthdr.csum_data |= hlen << 16;
762
763 #if IFA_STATS
764 /*
765 * search for the source address structure to
766 * maintain output statistics.
767 */
768 INADDR_TO_IA(ip->ip_src, ia);
769 #endif
770
771 /* Maybe skip checksums on loopback interfaces. */
772 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
773 ip_do_loopback_cksum))
774 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
775 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
776 /*
777 * If small enough for mtu of path, or if using TCP segmentation
778 * offload, can just send directly.
779 */
780 if (ip_len <= mtu ||
781 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
782 #if IFA_STATS
783 if (ia)
784 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
785 #endif
786 /*
787 * Always initialize the sum to 0! Some HW assisted
788 * checksumming requires this.
789 */
790 ip->ip_sum = 0;
791
792 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
793 /*
794 * The len field is meaningless at this point.
795 * Clear it now, since some HW requires this.
796 */
797 ip->ip_len = 0;
798 } else {
799 /*
800 * Perform any checksums that the hardware can't do
801 * for us.
802 *
803 * XXX Does any hardware require the {th,uh}_sum
804 * XXX fields to be 0?
805 */
806 if (sw_csum & M_CSUM_IPv4) {
807 ip->ip_sum = in_cksum(m, hlen);
808 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
809 }
810 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
811 in_delayed_cksum(m);
812 m->m_pkthdr.csum_flags &=
813 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
814 }
815 }
816
817 #ifdef IPSEC
818 /* clean ipsec history once it goes out of the node */
819 ipsec_delaux(m);
820 #endif
821 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
822 goto done;
823 }
824
825 /*
826 * We can't use HW checksumming if we're about to
827 * to fragment the packet.
828 *
829 * XXX Some hardware can do this.
830 */
831 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
832 in_delayed_cksum(m);
833 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
834 }
835
836 /*
837 * Too large for interface; fragment if possible.
838 * Must be able to put at least 8 bytes per fragment.
839 */
840 if (ntohs(ip->ip_off) & IP_DF) {
841 if (flags & IP_RETURNMTU)
842 *mtu_p = mtu;
843 error = EMSGSIZE;
844 ipstat.ips_cantfrag++;
845 goto bad;
846 }
847
848 error = ip_fragment(m, ifp, mtu);
849 if (error) {
850 m = NULL;
851 goto bad;
852 }
853
854 for (; m; m = m0) {
855 m0 = m->m_nextpkt;
856 m->m_nextpkt = 0;
857 if (error == 0) {
858 #if IFA_STATS
859 if (ia)
860 ia->ia_ifa.ifa_data.ifad_outbytes +=
861 ntohs(ip->ip_len);
862 #endif
863 #ifdef IPSEC
864 /* clean ipsec history once it goes out of the node */
865 ipsec_delaux(m);
866
867 #ifdef IPSEC_NAT_T
868 /*
869 * If we get there, the packet has not been handeld by
870 * IPSec whereas it should have. Now that it has been
871 * fragmented, re-inject it in ip_output so that IPsec
872 * processing can occur.
873 */
874 if (natt_frag) {
875 error = ip_output(m, opt,
876 ro, flags, imo, so, mtu_p);
877 } else
878 #endif /* IPSEC_NAT_T */
879 #endif /* IPSEC */
880 {
881 KASSERT((m->m_pkthdr.csum_flags &
882 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
883 error = (*ifp->if_output)(ifp, m, sintosa(dst),
884 ro->ro_rt);
885 }
886 } else
887 m_freem(m);
888 }
889
890 if (error == 0)
891 ipstat.ips_fragmented++;
892 done:
893 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
894 RTFREE(ro->ro_rt);
895 ro->ro_rt = 0;
896 }
897
898 #ifdef IPSEC
899 if (sp != NULL) {
900 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
901 printf("DP ip_output call free SP:%p\n", sp));
902 key_freesp(sp);
903 }
904 #endif /* IPSEC */
905 #ifdef FAST_IPSEC
906 if (sp != NULL)
907 KEY_FREESP(&sp);
908 #endif /* FAST_IPSEC */
909
910 return (error);
911 bad:
912 m_freem(m);
913 goto done;
914 }
915
916 int
917 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
918 {
919 struct ip *ip, *mhip;
920 struct mbuf *m0;
921 int len, hlen, off;
922 int mhlen, firstlen;
923 struct mbuf **mnext;
924 int sw_csum = m->m_pkthdr.csum_flags;
925 int fragments = 0;
926 int s;
927 int error = 0;
928
929 ip = mtod(m, struct ip *);
930 hlen = ip->ip_hl << 2;
931 if (ifp != NULL)
932 sw_csum &= ~ifp->if_csum_flags_tx;
933
934 len = (mtu - hlen) &~ 7;
935 if (len < 8) {
936 m_freem(m);
937 return (EMSGSIZE);
938 }
939
940 firstlen = len;
941 mnext = &m->m_nextpkt;
942
943 /*
944 * Loop through length of segment after first fragment,
945 * make new header and copy data of each part and link onto chain.
946 */
947 m0 = m;
948 mhlen = sizeof (struct ip);
949 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
950 MGETHDR(m, M_DONTWAIT, MT_HEADER);
951 if (m == 0) {
952 error = ENOBUFS;
953 ipstat.ips_odropped++;
954 goto sendorfree;
955 }
956 MCLAIM(m, m0->m_owner);
957 *mnext = m;
958 mnext = &m->m_nextpkt;
959 m->m_data += max_linkhdr;
960 mhip = mtod(m, struct ip *);
961 *mhip = *ip;
962 /* we must inherit MCAST and BCAST flags */
963 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
964 if (hlen > sizeof (struct ip)) {
965 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
966 mhip->ip_hl = mhlen >> 2;
967 }
968 m->m_len = mhlen;
969 mhip->ip_off = ((off - hlen) >> 3) +
970 (ntohs(ip->ip_off) & ~IP_MF);
971 if (ip->ip_off & htons(IP_MF))
972 mhip->ip_off |= IP_MF;
973 if (off + len >= ntohs(ip->ip_len))
974 len = ntohs(ip->ip_len) - off;
975 else
976 mhip->ip_off |= IP_MF;
977 HTONS(mhip->ip_off);
978 mhip->ip_len = htons((u_int16_t)(len + mhlen));
979 m->m_next = m_copy(m0, off, len);
980 if (m->m_next == 0) {
981 error = ENOBUFS; /* ??? */
982 ipstat.ips_odropped++;
983 goto sendorfree;
984 }
985 m->m_pkthdr.len = mhlen + len;
986 m->m_pkthdr.rcvif = (struct ifnet *)0;
987 mhip->ip_sum = 0;
988 if (sw_csum & M_CSUM_IPv4) {
989 mhip->ip_sum = in_cksum(m, mhlen);
990 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
991 } else {
992 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
993 m->m_pkthdr.csum_data |= hlen << 16;
994 }
995 ipstat.ips_ofragments++;
996 fragments++;
997 }
998 /*
999 * Update first fragment by trimming what's been copied out
1000 * and updating header, then send each fragment (in order).
1001 */
1002 m = m0;
1003 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1004 m->m_pkthdr.len = hlen + firstlen;
1005 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1006 ip->ip_off |= htons(IP_MF);
1007 ip->ip_sum = 0;
1008 if (sw_csum & M_CSUM_IPv4) {
1009 ip->ip_sum = in_cksum(m, hlen);
1010 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1011 } else {
1012 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1013 m->m_pkthdr.csum_data |= hlen << 16;
1014 }
1015 sendorfree:
1016 /*
1017 * If there is no room for all the fragments, don't queue
1018 * any of them.
1019 */
1020 if (ifp != NULL) {
1021 s = splnet();
1022 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1023 error == 0) {
1024 error = ENOBUFS;
1025 ipstat.ips_odropped++;
1026 IFQ_INC_DROPS(&ifp->if_snd);
1027 }
1028 splx(s);
1029 }
1030 if (error) {
1031 for (m = m0; m; m = m0) {
1032 m0 = m->m_nextpkt;
1033 m->m_nextpkt = NULL;
1034 m_freem(m);
1035 }
1036 }
1037 return (error);
1038 }
1039
1040 /*
1041 * Process a delayed payload checksum calculation.
1042 */
1043 void
1044 in_delayed_cksum(struct mbuf *m)
1045 {
1046 struct ip *ip;
1047 u_int16_t csum, offset;
1048
1049 ip = mtod(m, struct ip *);
1050 offset = ip->ip_hl << 2;
1051 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1052 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1053 csum = 0xffff;
1054
1055 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1056
1057 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1058 /* This happen when ip options were inserted
1059 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1060 m->m_len, offset, ip->ip_p);
1061 */
1062 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1063 } else
1064 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1065 }
1066
1067 /*
1068 * Determine the maximum length of the options to be inserted;
1069 * we would far rather allocate too much space rather than too little.
1070 */
1071
1072 u_int
1073 ip_optlen(struct inpcb *inp)
1074 {
1075 struct mbuf *m = inp->inp_options;
1076
1077 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1078 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1079 else
1080 return 0;
1081 }
1082
1083
1084 /*
1085 * Insert IP options into preformed packet.
1086 * Adjust IP destination as required for IP source routing,
1087 * as indicated by a non-zero in_addr at the start of the options.
1088 */
1089 static struct mbuf *
1090 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1091 {
1092 struct ipoption *p = mtod(opt, struct ipoption *);
1093 struct mbuf *n;
1094 struct ip *ip = mtod(m, struct ip *);
1095 unsigned optlen;
1096
1097 optlen = opt->m_len - sizeof(p->ipopt_dst);
1098 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1099 return (m); /* XXX should fail */
1100 if (!in_nullhost(p->ipopt_dst))
1101 ip->ip_dst = p->ipopt_dst;
1102 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1103 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1104 if (n == 0)
1105 return (m);
1106 MCLAIM(n, m->m_owner);
1107 M_COPY_PKTHDR(n, m);
1108 m_tag_delete_chain(m, NULL);
1109 m->m_flags &= ~M_PKTHDR;
1110 m->m_len -= sizeof(struct ip);
1111 m->m_data += sizeof(struct ip);
1112 n->m_next = m;
1113 m = n;
1114 m->m_len = optlen + sizeof(struct ip);
1115 m->m_data += max_linkhdr;
1116 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1117 } else {
1118 m->m_data -= optlen;
1119 m->m_len += optlen;
1120 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1121 }
1122 m->m_pkthdr.len += optlen;
1123 ip = mtod(m, struct ip *);
1124 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1125 *phlen = sizeof(struct ip) + optlen;
1126 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1127 return (m);
1128 }
1129
1130 /*
1131 * Copy options from ip to jp,
1132 * omitting those not copied during fragmentation.
1133 */
1134 int
1135 ip_optcopy(struct ip *ip, struct ip *jp)
1136 {
1137 u_char *cp, *dp;
1138 int opt, optlen, cnt;
1139
1140 cp = (u_char *)(ip + 1);
1141 dp = (u_char *)(jp + 1);
1142 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1143 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1144 opt = cp[0];
1145 if (opt == IPOPT_EOL)
1146 break;
1147 if (opt == IPOPT_NOP) {
1148 /* Preserve for IP mcast tunnel's LSRR alignment. */
1149 *dp++ = IPOPT_NOP;
1150 optlen = 1;
1151 continue;
1152 }
1153 #ifdef DIAGNOSTIC
1154 if (cnt < IPOPT_OLEN + sizeof(*cp))
1155 panic("malformed IPv4 option passed to ip_optcopy");
1156 #endif
1157 optlen = cp[IPOPT_OLEN];
1158 #ifdef DIAGNOSTIC
1159 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1160 panic("malformed IPv4 option passed to ip_optcopy");
1161 #endif
1162 /* bogus lengths should have been caught by ip_dooptions */
1163 if (optlen > cnt)
1164 optlen = cnt;
1165 if (IPOPT_COPIED(opt)) {
1166 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1167 dp += optlen;
1168 }
1169 }
1170 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1171 *dp++ = IPOPT_EOL;
1172 return (optlen);
1173 }
1174
1175 /*
1176 * IP socket option processing.
1177 */
1178 int
1179 ip_ctloutput(int op, struct socket *so, int level, int optname,
1180 struct mbuf **mp)
1181 {
1182 struct inpcb *inp = sotoinpcb(so);
1183 struct mbuf *m = *mp;
1184 int optval = 0;
1185 int error = 0;
1186 #if defined(IPSEC) || defined(FAST_IPSEC)
1187 struct proc *p = curproc; /*XXX*/
1188 #endif
1189
1190 if (level != IPPROTO_IP) {
1191 error = EINVAL;
1192 if (op == PRCO_SETOPT && *mp)
1193 (void) m_free(*mp);
1194 } else switch (op) {
1195
1196 case PRCO_SETOPT:
1197 switch (optname) {
1198 case IP_OPTIONS:
1199 #ifdef notyet
1200 case IP_RETOPTS:
1201 return (ip_pcbopts(optname, &inp->inp_options, m));
1202 #else
1203 return (ip_pcbopts(&inp->inp_options, m));
1204 #endif
1205
1206 case IP_TOS:
1207 case IP_TTL:
1208 case IP_RECVOPTS:
1209 case IP_RECVRETOPTS:
1210 case IP_RECVDSTADDR:
1211 case IP_RECVIF:
1212 if (m == NULL || m->m_len != sizeof(int))
1213 error = EINVAL;
1214 else {
1215 optval = *mtod(m, int *);
1216 switch (optname) {
1217
1218 case IP_TOS:
1219 inp->inp_ip.ip_tos = optval;
1220 break;
1221
1222 case IP_TTL:
1223 inp->inp_ip.ip_ttl = optval;
1224 break;
1225 #define OPTSET(bit) \
1226 if (optval) \
1227 inp->inp_flags |= bit; \
1228 else \
1229 inp->inp_flags &= ~bit;
1230
1231 case IP_RECVOPTS:
1232 OPTSET(INP_RECVOPTS);
1233 break;
1234
1235 case IP_RECVRETOPTS:
1236 OPTSET(INP_RECVRETOPTS);
1237 break;
1238
1239 case IP_RECVDSTADDR:
1240 OPTSET(INP_RECVDSTADDR);
1241 break;
1242
1243 case IP_RECVIF:
1244 OPTSET(INP_RECVIF);
1245 break;
1246 }
1247 }
1248 break;
1249 #undef OPTSET
1250
1251 case IP_MULTICAST_IF:
1252 case IP_MULTICAST_TTL:
1253 case IP_MULTICAST_LOOP:
1254 case IP_ADD_MEMBERSHIP:
1255 case IP_DROP_MEMBERSHIP:
1256 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1257 break;
1258
1259 case IP_PORTRANGE:
1260 if (m == 0 || m->m_len != sizeof(int))
1261 error = EINVAL;
1262 else {
1263 optval = *mtod(m, int *);
1264
1265 switch (optval) {
1266
1267 case IP_PORTRANGE_DEFAULT:
1268 case IP_PORTRANGE_HIGH:
1269 inp->inp_flags &= ~(INP_LOWPORT);
1270 break;
1271
1272 case IP_PORTRANGE_LOW:
1273 inp->inp_flags |= INP_LOWPORT;
1274 break;
1275
1276 default:
1277 error = EINVAL;
1278 break;
1279 }
1280 }
1281 break;
1282
1283 #if defined(IPSEC) || defined(FAST_IPSEC)
1284 case IP_IPSEC_POLICY:
1285 {
1286 caddr_t req = NULL;
1287 size_t len = 0;
1288 int priv = 0;
1289
1290 #ifdef __NetBSD__
1291 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1292 priv = 0;
1293 else
1294 priv = 1;
1295 #else
1296 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1297 #endif
1298 if (m) {
1299 req = mtod(m, caddr_t);
1300 len = m->m_len;
1301 }
1302 error = ipsec4_set_policy(inp, optname, req, len, priv);
1303 break;
1304 }
1305 #endif /*IPSEC*/
1306
1307 default:
1308 error = ENOPROTOOPT;
1309 break;
1310 }
1311 if (m)
1312 (void)m_free(m);
1313 break;
1314
1315 case PRCO_GETOPT:
1316 switch (optname) {
1317 case IP_OPTIONS:
1318 case IP_RETOPTS:
1319 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1320 MCLAIM(m, so->so_mowner);
1321 if (inp->inp_options) {
1322 m->m_len = inp->inp_options->m_len;
1323 bcopy(mtod(inp->inp_options, caddr_t),
1324 mtod(m, caddr_t), (unsigned)m->m_len);
1325 } else
1326 m->m_len = 0;
1327 break;
1328
1329 case IP_TOS:
1330 case IP_TTL:
1331 case IP_RECVOPTS:
1332 case IP_RECVRETOPTS:
1333 case IP_RECVDSTADDR:
1334 case IP_RECVIF:
1335 case IP_ERRORMTU:
1336 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1337 MCLAIM(m, so->so_mowner);
1338 m->m_len = sizeof(int);
1339 switch (optname) {
1340
1341 case IP_TOS:
1342 optval = inp->inp_ip.ip_tos;
1343 break;
1344
1345 case IP_TTL:
1346 optval = inp->inp_ip.ip_ttl;
1347 break;
1348
1349 case IP_ERRORMTU:
1350 optval = inp->inp_errormtu;
1351 break;
1352
1353 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1354
1355 case IP_RECVOPTS:
1356 optval = OPTBIT(INP_RECVOPTS);
1357 break;
1358
1359 case IP_RECVRETOPTS:
1360 optval = OPTBIT(INP_RECVRETOPTS);
1361 break;
1362
1363 case IP_RECVDSTADDR:
1364 optval = OPTBIT(INP_RECVDSTADDR);
1365 break;
1366
1367 case IP_RECVIF:
1368 optval = OPTBIT(INP_RECVIF);
1369 break;
1370 }
1371 *mtod(m, int *) = optval;
1372 break;
1373
1374 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1375 /* XXX: code broken */
1376 case IP_IPSEC_POLICY:
1377 {
1378 caddr_t req = NULL;
1379 size_t len = 0;
1380
1381 if (m) {
1382 req = mtod(m, caddr_t);
1383 len = m->m_len;
1384 }
1385 error = ipsec4_get_policy(inp, req, len, mp);
1386 break;
1387 }
1388 #endif /*IPSEC*/
1389
1390 case IP_MULTICAST_IF:
1391 case IP_MULTICAST_TTL:
1392 case IP_MULTICAST_LOOP:
1393 case IP_ADD_MEMBERSHIP:
1394 case IP_DROP_MEMBERSHIP:
1395 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1396 if (*mp)
1397 MCLAIM(*mp, so->so_mowner);
1398 break;
1399
1400 case IP_PORTRANGE:
1401 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1402 MCLAIM(m, so->so_mowner);
1403 m->m_len = sizeof(int);
1404
1405 if (inp->inp_flags & INP_LOWPORT)
1406 optval = IP_PORTRANGE_LOW;
1407 else
1408 optval = IP_PORTRANGE_DEFAULT;
1409
1410 *mtod(m, int *) = optval;
1411 break;
1412
1413 default:
1414 error = ENOPROTOOPT;
1415 break;
1416 }
1417 break;
1418 }
1419 return (error);
1420 }
1421
1422 /*
1423 * Set up IP options in pcb for insertion in output packets.
1424 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1425 * with destination address if source routed.
1426 */
1427 int
1428 #ifdef notyet
1429 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1430 #else
1431 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1432 #endif
1433 {
1434 int cnt, optlen;
1435 u_char *cp;
1436 u_char opt;
1437
1438 /* turn off any old options */
1439 if (*pcbopt)
1440 (void)m_free(*pcbopt);
1441 *pcbopt = 0;
1442 if (m == (struct mbuf *)0 || m->m_len == 0) {
1443 /*
1444 * Only turning off any previous options.
1445 */
1446 if (m)
1447 (void)m_free(m);
1448 return (0);
1449 }
1450
1451 #ifndef __vax__
1452 if (m->m_len % sizeof(int32_t))
1453 goto bad;
1454 #endif
1455 /*
1456 * IP first-hop destination address will be stored before
1457 * actual options; move other options back
1458 * and clear it when none present.
1459 */
1460 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1461 goto bad;
1462 cnt = m->m_len;
1463 m->m_len += sizeof(struct in_addr);
1464 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1465 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1466 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1467
1468 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1469 opt = cp[IPOPT_OPTVAL];
1470 if (opt == IPOPT_EOL)
1471 break;
1472 if (opt == IPOPT_NOP)
1473 optlen = 1;
1474 else {
1475 if (cnt < IPOPT_OLEN + sizeof(*cp))
1476 goto bad;
1477 optlen = cp[IPOPT_OLEN];
1478 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1479 goto bad;
1480 }
1481 switch (opt) {
1482
1483 default:
1484 break;
1485
1486 case IPOPT_LSRR:
1487 case IPOPT_SSRR:
1488 /*
1489 * user process specifies route as:
1490 * ->A->B->C->D
1491 * D must be our final destination (but we can't
1492 * check that since we may not have connected yet).
1493 * A is first hop destination, which doesn't appear in
1494 * actual IP option, but is stored before the options.
1495 */
1496 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1497 goto bad;
1498 m->m_len -= sizeof(struct in_addr);
1499 cnt -= sizeof(struct in_addr);
1500 optlen -= sizeof(struct in_addr);
1501 cp[IPOPT_OLEN] = optlen;
1502 /*
1503 * Move first hop before start of options.
1504 */
1505 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1506 sizeof(struct in_addr));
1507 /*
1508 * Then copy rest of options back
1509 * to close up the deleted entry.
1510 */
1511 (void)memmove(&cp[IPOPT_OFFSET+1],
1512 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1513 (unsigned)cnt - (IPOPT_MINOFF - 1));
1514 break;
1515 }
1516 }
1517 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1518 goto bad;
1519 *pcbopt = m;
1520 return (0);
1521
1522 bad:
1523 (void)m_free(m);
1524 return (EINVAL);
1525 }
1526
1527 /*
1528 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1529 */
1530 static struct ifnet *
1531 ip_multicast_if(struct in_addr *a, int *ifindexp)
1532 {
1533 int ifindex;
1534 struct ifnet *ifp = NULL;
1535 struct in_ifaddr *ia;
1536
1537 if (ifindexp)
1538 *ifindexp = 0;
1539 if (ntohl(a->s_addr) >> 24 == 0) {
1540 ifindex = ntohl(a->s_addr) & 0xffffff;
1541 if (ifindex < 0 || if_indexlim <= ifindex)
1542 return NULL;
1543 ifp = ifindex2ifnet[ifindex];
1544 if (!ifp)
1545 return NULL;
1546 if (ifindexp)
1547 *ifindexp = ifindex;
1548 } else {
1549 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1550 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1551 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1552 ifp = ia->ia_ifp;
1553 break;
1554 }
1555 }
1556 }
1557 return ifp;
1558 }
1559
1560 /*
1561 * Set the IP multicast options in response to user setsockopt().
1562 */
1563 int
1564 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1565 {
1566 int error = 0;
1567 u_char loop;
1568 int i;
1569 struct in_addr addr;
1570 struct ip_mreq *mreq;
1571 struct ifnet *ifp;
1572 struct ip_moptions *imo = *imop;
1573 struct route ro;
1574 struct sockaddr_in *dst;
1575 int ifindex;
1576
1577 if (imo == NULL) {
1578 /*
1579 * No multicast option buffer attached to the pcb;
1580 * allocate one and initialize to default values.
1581 */
1582 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1583 M_WAITOK);
1584
1585 if (imo == NULL)
1586 return (ENOBUFS);
1587 *imop = imo;
1588 imo->imo_multicast_ifp = NULL;
1589 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1590 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1591 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1592 imo->imo_num_memberships = 0;
1593 }
1594
1595 switch (optname) {
1596
1597 case IP_MULTICAST_IF:
1598 /*
1599 * Select the interface for outgoing multicast packets.
1600 */
1601 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1602 error = EINVAL;
1603 break;
1604 }
1605 addr = *(mtod(m, struct in_addr *));
1606 /*
1607 * INADDR_ANY is used to remove a previous selection.
1608 * When no interface is selected, a default one is
1609 * chosen every time a multicast packet is sent.
1610 */
1611 if (in_nullhost(addr)) {
1612 imo->imo_multicast_ifp = NULL;
1613 break;
1614 }
1615 /*
1616 * The selected interface is identified by its local
1617 * IP address. Find the interface and confirm that
1618 * it supports multicasting.
1619 */
1620 ifp = ip_multicast_if(&addr, &ifindex);
1621 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1622 error = EADDRNOTAVAIL;
1623 break;
1624 }
1625 imo->imo_multicast_ifp = ifp;
1626 if (ifindex)
1627 imo->imo_multicast_addr = addr;
1628 else
1629 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1630 break;
1631
1632 case IP_MULTICAST_TTL:
1633 /*
1634 * Set the IP time-to-live for outgoing multicast packets.
1635 */
1636 if (m == NULL || m->m_len != 1) {
1637 error = EINVAL;
1638 break;
1639 }
1640 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1641 break;
1642
1643 case IP_MULTICAST_LOOP:
1644 /*
1645 * Set the loopback flag for outgoing multicast packets.
1646 * Must be zero or one.
1647 */
1648 if (m == NULL || m->m_len != 1 ||
1649 (loop = *(mtod(m, u_char *))) > 1) {
1650 error = EINVAL;
1651 break;
1652 }
1653 imo->imo_multicast_loop = loop;
1654 break;
1655
1656 case IP_ADD_MEMBERSHIP:
1657 /*
1658 * Add a multicast group membership.
1659 * Group must be a valid IP multicast address.
1660 */
1661 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1662 error = EINVAL;
1663 break;
1664 }
1665 mreq = mtod(m, struct ip_mreq *);
1666 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1667 error = EINVAL;
1668 break;
1669 }
1670 /*
1671 * If no interface address was provided, use the interface of
1672 * the route to the given multicast address.
1673 */
1674 if (in_nullhost(mreq->imr_interface)) {
1675 bzero((caddr_t)&ro, sizeof(ro));
1676 ro.ro_rt = NULL;
1677 dst = satosin(&ro.ro_dst);
1678 dst->sin_len = sizeof(*dst);
1679 dst->sin_family = AF_INET;
1680 dst->sin_addr = mreq->imr_multiaddr;
1681 rtalloc(&ro);
1682 if (ro.ro_rt == NULL) {
1683 error = EADDRNOTAVAIL;
1684 break;
1685 }
1686 ifp = ro.ro_rt->rt_ifp;
1687 rtfree(ro.ro_rt);
1688 } else {
1689 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1690 }
1691 /*
1692 * See if we found an interface, and confirm that it
1693 * supports multicast.
1694 */
1695 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1696 error = EADDRNOTAVAIL;
1697 break;
1698 }
1699 /*
1700 * See if the membership already exists or if all the
1701 * membership slots are full.
1702 */
1703 for (i = 0; i < imo->imo_num_memberships; ++i) {
1704 if (imo->imo_membership[i]->inm_ifp == ifp &&
1705 in_hosteq(imo->imo_membership[i]->inm_addr,
1706 mreq->imr_multiaddr))
1707 break;
1708 }
1709 if (i < imo->imo_num_memberships) {
1710 error = EADDRINUSE;
1711 break;
1712 }
1713 if (i == IP_MAX_MEMBERSHIPS) {
1714 error = ETOOMANYREFS;
1715 break;
1716 }
1717 /*
1718 * Everything looks good; add a new record to the multicast
1719 * address list for the given interface.
1720 */
1721 if ((imo->imo_membership[i] =
1722 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1723 error = ENOBUFS;
1724 break;
1725 }
1726 ++imo->imo_num_memberships;
1727 break;
1728
1729 case IP_DROP_MEMBERSHIP:
1730 /*
1731 * Drop a multicast group membership.
1732 * Group must be a valid IP multicast address.
1733 */
1734 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1735 error = EINVAL;
1736 break;
1737 }
1738 mreq = mtod(m, struct ip_mreq *);
1739 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1740 error = EINVAL;
1741 break;
1742 }
1743 /*
1744 * If an interface address was specified, get a pointer
1745 * to its ifnet structure.
1746 */
1747 if (in_nullhost(mreq->imr_interface))
1748 ifp = NULL;
1749 else {
1750 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1751 if (ifp == NULL) {
1752 error = EADDRNOTAVAIL;
1753 break;
1754 }
1755 }
1756 /*
1757 * Find the membership in the membership array.
1758 */
1759 for (i = 0; i < imo->imo_num_memberships; ++i) {
1760 if ((ifp == NULL ||
1761 imo->imo_membership[i]->inm_ifp == ifp) &&
1762 in_hosteq(imo->imo_membership[i]->inm_addr,
1763 mreq->imr_multiaddr))
1764 break;
1765 }
1766 if (i == imo->imo_num_memberships) {
1767 error = EADDRNOTAVAIL;
1768 break;
1769 }
1770 /*
1771 * Give up the multicast address record to which the
1772 * membership points.
1773 */
1774 in_delmulti(imo->imo_membership[i]);
1775 /*
1776 * Remove the gap in the membership array.
1777 */
1778 for (++i; i < imo->imo_num_memberships; ++i)
1779 imo->imo_membership[i-1] = imo->imo_membership[i];
1780 --imo->imo_num_memberships;
1781 break;
1782
1783 default:
1784 error = EOPNOTSUPP;
1785 break;
1786 }
1787
1788 /*
1789 * If all options have default values, no need to keep the mbuf.
1790 */
1791 if (imo->imo_multicast_ifp == NULL &&
1792 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1793 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1794 imo->imo_num_memberships == 0) {
1795 free(*imop, M_IPMOPTS);
1796 *imop = NULL;
1797 }
1798
1799 return (error);
1800 }
1801
1802 /*
1803 * Return the IP multicast options in response to user getsockopt().
1804 */
1805 int
1806 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1807 {
1808 u_char *ttl;
1809 u_char *loop;
1810 struct in_addr *addr;
1811 struct in_ifaddr *ia;
1812
1813 *mp = m_get(M_WAIT, MT_SOOPTS);
1814
1815 switch (optname) {
1816
1817 case IP_MULTICAST_IF:
1818 addr = mtod(*mp, struct in_addr *);
1819 (*mp)->m_len = sizeof(struct in_addr);
1820 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1821 *addr = zeroin_addr;
1822 else if (imo->imo_multicast_addr.s_addr) {
1823 /* return the value user has set */
1824 *addr = imo->imo_multicast_addr;
1825 } else {
1826 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1827 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1828 }
1829 return (0);
1830
1831 case IP_MULTICAST_TTL:
1832 ttl = mtod(*mp, u_char *);
1833 (*mp)->m_len = 1;
1834 *ttl = imo ? imo->imo_multicast_ttl
1835 : IP_DEFAULT_MULTICAST_TTL;
1836 return (0);
1837
1838 case IP_MULTICAST_LOOP:
1839 loop = mtod(*mp, u_char *);
1840 (*mp)->m_len = 1;
1841 *loop = imo ? imo->imo_multicast_loop
1842 : IP_DEFAULT_MULTICAST_LOOP;
1843 return (0);
1844
1845 default:
1846 return (EOPNOTSUPP);
1847 }
1848 }
1849
1850 /*
1851 * Discard the IP multicast options.
1852 */
1853 void
1854 ip_freemoptions(struct ip_moptions *imo)
1855 {
1856 int i;
1857
1858 if (imo != NULL) {
1859 for (i = 0; i < imo->imo_num_memberships; ++i)
1860 in_delmulti(imo->imo_membership[i]);
1861 free(imo, M_IPMOPTS);
1862 }
1863 }
1864
1865 /*
1866 * Routine called from ip_output() to loop back a copy of an IP multicast
1867 * packet to the input queue of a specified interface. Note that this
1868 * calls the output routine of the loopback "driver", but with an interface
1869 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1870 */
1871 static void
1872 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1873 {
1874 struct ip *ip;
1875 struct mbuf *copym;
1876
1877 copym = m_copy(m, 0, M_COPYALL);
1878 if (copym != NULL
1879 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1880 copym = m_pullup(copym, sizeof(struct ip));
1881 if (copym != NULL) {
1882 /*
1883 * We don't bother to fragment if the IP length is greater
1884 * than the interface's MTU. Can this possibly matter?
1885 */
1886 ip = mtod(copym, struct ip *);
1887
1888 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1889 in_delayed_cksum(copym);
1890 copym->m_pkthdr.csum_flags &=
1891 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1892 }
1893
1894 ip->ip_sum = 0;
1895 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1896 (void) looutput(ifp, copym, sintosa(dst), NULL);
1897 }
1898 }
1899