ip_output.c revision 1.149 1 /* $NetBSD: ip_output.c,v 1.149 2005/03/11 17:07:51 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.149 2005/03/11 17:07:51 matt Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 ip->ip_id = ip_newid();
239 ip->ip_hl = hlen >> 2;
240 ipstat.ips_localout++;
241 } else {
242 hlen = ip->ip_hl << 2;
243 }
244 /*
245 * Route packet.
246 */
247 if (ro == 0) {
248 ro = &iproute;
249 bzero((caddr_t)ro, sizeof (*ro));
250 }
251 dst = satosin(&ro->ro_dst);
252 /*
253 * If there is a cached route,
254 * check that it is to the same destination
255 * and is still up. If not, free it and try again.
256 * The address family should also be checked in case of sharing the
257 * cache with IPv6.
258 */
259 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
260 dst->sin_family != AF_INET ||
261 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
262 RTFREE(ro->ro_rt);
263 ro->ro_rt = (struct rtentry *)0;
264 }
265 if (ro->ro_rt == 0) {
266 bzero(dst, sizeof(*dst));
267 dst->sin_family = AF_INET;
268 dst->sin_len = sizeof(*dst);
269 dst->sin_addr = ip->ip_dst;
270 }
271 /*
272 * If routing to interface only,
273 * short circuit routing lookup.
274 */
275 if (flags & IP_ROUTETOIF) {
276 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
277 ipstat.ips_noroute++;
278 error = ENETUNREACH;
279 goto bad;
280 }
281 ifp = ia->ia_ifp;
282 mtu = ifp->if_mtu;
283 ip->ip_ttl = 1;
284 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
285 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
286 imo != NULL && imo->imo_multicast_ifp != NULL) {
287 ifp = imo->imo_multicast_ifp;
288 mtu = ifp->if_mtu;
289 IFP_TO_IA(ifp, ia);
290 } else {
291 if (ro->ro_rt == 0)
292 rtalloc(ro);
293 if (ro->ro_rt == 0) {
294 ipstat.ips_noroute++;
295 error = EHOSTUNREACH;
296 goto bad;
297 }
298 ia = ifatoia(ro->ro_rt->rt_ifa);
299 ifp = ro->ro_rt->rt_ifp;
300 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
301 mtu = ifp->if_mtu;
302 ro->ro_rt->rt_use++;
303 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
304 dst = satosin(ro->ro_rt->rt_gateway);
305 }
306 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
307 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
308 struct in_multi *inm;
309
310 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
311 M_BCAST : M_MCAST;
312 /*
313 * IP destination address is multicast. Make sure "dst"
314 * still points to the address in "ro". (It may have been
315 * changed to point to a gateway address, above.)
316 */
317 dst = satosin(&ro->ro_dst);
318 /*
319 * See if the caller provided any multicast options
320 */
321 if (imo != NULL)
322 ip->ip_ttl = imo->imo_multicast_ttl;
323 else
324 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
325
326 /*
327 * if we don't know the outgoing ifp yet, we can't generate
328 * output
329 */
330 if (!ifp) {
331 ipstat.ips_noroute++;
332 error = ENETUNREACH;
333 goto bad;
334 }
335
336 /*
337 * If the packet is multicast or broadcast, confirm that
338 * the outgoing interface can transmit it.
339 */
340 if (((m->m_flags & M_MCAST) &&
341 (ifp->if_flags & IFF_MULTICAST) == 0) ||
342 ((m->m_flags & M_BCAST) &&
343 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
344 ipstat.ips_noroute++;
345 error = ENETUNREACH;
346 goto bad;
347 }
348 /*
349 * If source address not specified yet, use an address
350 * of outgoing interface.
351 */
352 if (in_nullhost(ip->ip_src)) {
353 struct in_ifaddr *ia;
354
355 IFP_TO_IA(ifp, ia);
356 if (!ia) {
357 error = EADDRNOTAVAIL;
358 goto bad;
359 }
360 ip->ip_src = ia->ia_addr.sin_addr;
361 }
362
363 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
364 if (inm != NULL &&
365 (imo == NULL || imo->imo_multicast_loop)) {
366 /*
367 * If we belong to the destination multicast group
368 * on the outgoing interface, and the caller did not
369 * forbid loopback, loop back a copy.
370 */
371 ip_mloopback(ifp, m, dst);
372 }
373 #ifdef MROUTING
374 else {
375 /*
376 * If we are acting as a multicast router, perform
377 * multicast forwarding as if the packet had just
378 * arrived on the interface to which we are about
379 * to send. The multicast forwarding function
380 * recursively calls this function, using the
381 * IP_FORWARDING flag to prevent infinite recursion.
382 *
383 * Multicasts that are looped back by ip_mloopback(),
384 * above, will be forwarded by the ip_input() routine,
385 * if necessary.
386 */
387 extern struct socket *ip_mrouter;
388
389 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
390 if (ip_mforward(m, ifp) != 0) {
391 m_freem(m);
392 goto done;
393 }
394 }
395 }
396 #endif
397 /*
398 * Multicasts with a time-to-live of zero may be looped-
399 * back, above, but must not be transmitted on a network.
400 * Also, multicasts addressed to the loopback interface
401 * are not sent -- the above call to ip_mloopback() will
402 * loop back a copy if this host actually belongs to the
403 * destination group on the loopback interface.
404 */
405 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
406 m_freem(m);
407 goto done;
408 }
409
410 goto sendit;
411 }
412 #ifndef notdef
413 /*
414 * If source address not specified yet, use address
415 * of outgoing interface.
416 */
417 if (in_nullhost(ip->ip_src))
418 ip->ip_src = ia->ia_addr.sin_addr;
419 #endif
420
421 /*
422 * packets with Class-D address as source are not valid per
423 * RFC 1112
424 */
425 if (IN_MULTICAST(ip->ip_src.s_addr)) {
426 ipstat.ips_odropped++;
427 error = EADDRNOTAVAIL;
428 goto bad;
429 }
430
431 /*
432 * Look for broadcast address and
433 * and verify user is allowed to send
434 * such a packet.
435 */
436 if (in_broadcast(dst->sin_addr, ifp)) {
437 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
438 error = EADDRNOTAVAIL;
439 goto bad;
440 }
441 if ((flags & IP_ALLOWBROADCAST) == 0) {
442 error = EACCES;
443 goto bad;
444 }
445 /* don't allow broadcast messages to be fragmented */
446 if (ntohs(ip->ip_len) > ifp->if_mtu) {
447 error = EMSGSIZE;
448 goto bad;
449 }
450 m->m_flags |= M_BCAST;
451 } else
452 m->m_flags &= ~M_BCAST;
453
454 sendit:
455 /*
456 * If we're doing Path MTU Discovery, we need to set DF unless
457 * the route's MTU is locked.
458 */
459 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
460 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
461 ip->ip_off |= htons(IP_DF);
462
463 /* Remember the current ip_len */
464 ip_len = ntohs(ip->ip_len);
465
466 #ifdef IPSEC
467 /* get SP for this packet */
468 if (so == NULL)
469 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
470 flags, &error);
471 else {
472 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
473 IPSEC_DIR_OUTBOUND))
474 goto skip_ipsec;
475 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
476 }
477
478 if (sp == NULL) {
479 ipsecstat.out_inval++;
480 goto bad;
481 }
482
483 error = 0;
484
485 /* check policy */
486 switch (sp->policy) {
487 case IPSEC_POLICY_DISCARD:
488 /*
489 * This packet is just discarded.
490 */
491 ipsecstat.out_polvio++;
492 goto bad;
493
494 case IPSEC_POLICY_BYPASS:
495 case IPSEC_POLICY_NONE:
496 /* no need to do IPsec. */
497 goto skip_ipsec;
498
499 case IPSEC_POLICY_IPSEC:
500 if (sp->req == NULL) {
501 /* XXX should be panic ? */
502 printf("ip_output: No IPsec request specified.\n");
503 error = EINVAL;
504 goto bad;
505 }
506 break;
507
508 case IPSEC_POLICY_ENTRUST:
509 default:
510 printf("ip_output: Invalid policy found. %d\n", sp->policy);
511 }
512
513 #ifdef IPSEC_NAT_T
514 /*
515 * NAT-T ESP fragmentation: don't do IPSec processing now,
516 * we'll do it on each fragmented packet.
517 */
518 if (sp->req->sav &&
519 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
520 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
521 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
522 natt_frag = 1;
523 mtu = sp->req->sav->esp_frag;
524 goto skip_ipsec;
525 }
526 }
527 #endif /* IPSEC_NAT_T */
528
529 /*
530 * ipsec4_output() expects ip_len and ip_off in network
531 * order. They have been set to network order above.
532 */
533
534 {
535 struct ipsec_output_state state;
536 bzero(&state, sizeof(state));
537 state.m = m;
538 if (flags & IP_ROUTETOIF) {
539 state.ro = &iproute;
540 bzero(&iproute, sizeof(iproute));
541 } else
542 state.ro = ro;
543 state.dst = (struct sockaddr *)dst;
544
545 /*
546 * We can't defer the checksum of payload data if
547 * we're about to encrypt/authenticate it.
548 *
549 * XXX When we support crypto offloading functions of
550 * XXX network interfaces, we need to reconsider this,
551 * XXX since it's likely that they'll support checksumming,
552 * XXX as well.
553 */
554 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
555 in_delayed_cksum(m);
556 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
557 }
558
559 error = ipsec4_output(&state, sp, flags);
560
561 m = state.m;
562 if (flags & IP_ROUTETOIF) {
563 /*
564 * if we have tunnel mode SA, we may need to ignore
565 * IP_ROUTETOIF.
566 */
567 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
568 flags &= ~IP_ROUTETOIF;
569 ro = state.ro;
570 }
571 } else
572 ro = state.ro;
573 dst = (struct sockaddr_in *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec4_output. */
576 m0 = NULL;
577 switch (error) {
578 case EHOSTUNREACH:
579 case ENETUNREACH:
580 case EMSGSIZE:
581 case ENOBUFS:
582 case ENOMEM:
583 break;
584 default:
585 printf("ip4_output (ipsec): error code %d\n", error);
586 /*fall through*/
587 case ENOENT:
588 /* don't show these error codes to the user */
589 error = 0;
590 break;
591 }
592 goto bad;
593 }
594
595 /* be sure to update variables that are affected by ipsec4_output() */
596 ip = mtod(m, struct ip *);
597 hlen = ip->ip_hl << 2;
598 ip_len = ntohs(ip->ip_len);
599
600 if (ro->ro_rt == NULL) {
601 if ((flags & IP_ROUTETOIF) == 0) {
602 printf("ip_output: "
603 "can't update route after IPsec processing\n");
604 error = EHOSTUNREACH; /*XXX*/
605 goto bad;
606 }
607 } else {
608 /* nobody uses ia beyond here */
609 if (state.encap) {
610 ifp = ro->ro_rt->rt_ifp;
611 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
612 mtu = ifp->if_mtu;
613 }
614 }
615 }
616 skip_ipsec:
617 #endif /*IPSEC*/
618 #ifdef FAST_IPSEC
619 /*
620 * Check the security policy (SP) for the packet and, if
621 * required, do IPsec-related processing. There are two
622 * cases here; the first time a packet is sent through
623 * it will be untagged and handled by ipsec4_checkpolicy.
624 * If the packet is resubmitted to ip_output (e.g. after
625 * AH, ESP, etc. processing), there will be a tag to bypass
626 * the lookup and related policy checking.
627 */
628 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
629 s = splsoftnet();
630 if (mtag != NULL) {
631 tdbi = (struct tdb_ident *)(mtag + 1);
632 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
633 if (sp == NULL)
634 error = -EINVAL; /* force silent drop */
635 m_tag_delete(m, mtag);
636 } else {
637 if (inp != NULL &&
638 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
639 goto spd_done;
640 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
641 &error, inp);
642 }
643 /*
644 * There are four return cases:
645 * sp != NULL apply IPsec policy
646 * sp == NULL, error == 0 no IPsec handling needed
647 * sp == NULL, error == -EINVAL discard packet w/o error
648 * sp == NULL, error != 0 discard packet, report error
649 */
650 if (sp != NULL) {
651 /* Loop detection, check if ipsec processing already done */
652 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
653 for (mtag = m_tag_first(m); mtag != NULL;
654 mtag = m_tag_next(m, mtag)) {
655 #ifdef MTAG_ABI_COMPAT
656 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
657 continue;
658 #endif
659 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
660 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
661 continue;
662 /*
663 * Check if policy has an SA associated with it.
664 * This can happen when an SP has yet to acquire
665 * an SA; e.g. on first reference. If it occurs,
666 * then we let ipsec4_process_packet do its thing.
667 */
668 if (sp->req->sav == NULL)
669 break;
670 tdbi = (struct tdb_ident *)(mtag + 1);
671 if (tdbi->spi == sp->req->sav->spi &&
672 tdbi->proto == sp->req->sav->sah->saidx.proto &&
673 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
674 sizeof (union sockaddr_union)) == 0) {
675 /*
676 * No IPsec processing is needed, free
677 * reference to SP.
678 *
679 * NB: null pointer to avoid free at
680 * done: below.
681 */
682 KEY_FREESP(&sp), sp = NULL;
683 splx(s);
684 goto spd_done;
685 }
686 }
687
688 /*
689 * Do delayed checksums now because we send before
690 * this is done in the normal processing path.
691 */
692 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
693 in_delayed_cksum(m);
694 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
695 }
696
697 #ifdef __FreeBSD__
698 ip->ip_len = htons(ip->ip_len);
699 ip->ip_off = htons(ip->ip_off);
700 #endif
701
702 /* NB: callee frees mbuf */
703 error = ipsec4_process_packet(m, sp->req, flags, 0);
704 /*
705 * Preserve KAME behaviour: ENOENT can be returned
706 * when an SA acquire is in progress. Don't propagate
707 * this to user-level; it confuses applications.
708 *
709 * XXX this will go away when the SADB is redone.
710 */
711 if (error == ENOENT)
712 error = 0;
713 splx(s);
714 goto done;
715 } else {
716 splx(s);
717
718 if (error != 0) {
719 /*
720 * Hack: -EINVAL is used to signal that a packet
721 * should be silently discarded. This is typically
722 * because we asked key management for an SA and
723 * it was delayed (e.g. kicked up to IKE).
724 */
725 if (error == -EINVAL)
726 error = 0;
727 goto bad;
728 } else {
729 /* No IPsec processing for this packet. */
730 }
731 #ifdef notyet
732 /*
733 * If deferred crypto processing is needed, check that
734 * the interface supports it.
735 */
736 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
737 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
738 /* notify IPsec to do its own crypto */
739 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
740 error = EHOSTUNREACH;
741 goto bad;
742 }
743 #endif
744 }
745 spd_done:
746 #endif /* FAST_IPSEC */
747
748 #ifdef PFIL_HOOKS
749 /*
750 * Run through list of hooks for output packets.
751 */
752 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
753 goto done;
754 if (m == NULL)
755 goto done;
756
757 ip = mtod(m, struct ip *);
758 hlen = ip->ip_hl << 2;
759 #endif /* PFIL_HOOKS */
760
761 m->m_pkthdr.csum_data |= hlen << 16;
762
763 #if IFA_STATS
764 /*
765 * search for the source address structure to
766 * maintain output statistics.
767 */
768 INADDR_TO_IA(ip->ip_src, ia);
769 #endif
770
771 /* Maybe skip checksums on loopback interfaces. */
772 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
773 ip_do_loopback_cksum))
774 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
775 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
776 /*
777 * If small enough for mtu of path, or if using TCP segmentation
778 * offload, can just send directly.
779 */
780 if (ip_len <= mtu ||
781 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
782 #if IFA_STATS
783 if (ia)
784 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
785 #endif
786 /*
787 * Always initialize the sum to 0! Some HW assisted
788 * checksumming requires this.
789 */
790 ip->ip_sum = 0;
791
792 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
793 /*
794 * Perform any checksums that the hardware can't do
795 * for us.
796 *
797 * XXX Does any hardware require the {th,uh}_sum
798 * XXX fields to be 0?
799 */
800 if (sw_csum & M_CSUM_IPv4) {
801 ip->ip_sum = in_cksum(m, hlen);
802 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
803 }
804 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
805 in_delayed_cksum(m);
806 m->m_pkthdr.csum_flags &=
807 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
808 }
809 }
810
811 #ifdef IPSEC
812 /* clean ipsec history once it goes out of the node */
813 ipsec_delaux(m);
814 #endif
815 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
816 goto done;
817 }
818
819 /*
820 * We can't use HW checksumming if we're about to
821 * to fragment the packet.
822 *
823 * XXX Some hardware can do this.
824 */
825 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
826 in_delayed_cksum(m);
827 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
828 }
829
830 /*
831 * Too large for interface; fragment if possible.
832 * Must be able to put at least 8 bytes per fragment.
833 */
834 if (ntohs(ip->ip_off) & IP_DF) {
835 if (flags & IP_RETURNMTU)
836 *mtu_p = mtu;
837 error = EMSGSIZE;
838 ipstat.ips_cantfrag++;
839 goto bad;
840 }
841
842 error = ip_fragment(m, ifp, mtu);
843 if (error) {
844 m = NULL;
845 goto bad;
846 }
847
848 for (; m; m = m0) {
849 m0 = m->m_nextpkt;
850 m->m_nextpkt = 0;
851 if (error == 0) {
852 #if IFA_STATS
853 if (ia)
854 ia->ia_ifa.ifa_data.ifad_outbytes +=
855 ntohs(ip->ip_len);
856 #endif
857 #ifdef IPSEC
858 /* clean ipsec history once it goes out of the node */
859 ipsec_delaux(m);
860
861 #ifdef IPSEC_NAT_T
862 /*
863 * If we get there, the packet has not been handeld by
864 * IPSec whereas it should have. Now that it has been
865 * fragmented, re-inject it in ip_output so that IPsec
866 * processing can occur.
867 */
868 if (natt_frag) {
869 error = ip_output(m, opt,
870 ro, flags, imo, so, mtu_p);
871 } else
872 #endif /* IPSEC_NAT_T */
873 #endif /* IPSEC */
874 {
875 KASSERT((m->m_pkthdr.csum_flags &
876 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
877 error = (*ifp->if_output)(ifp, m, sintosa(dst),
878 ro->ro_rt);
879 }
880 } else
881 m_freem(m);
882 }
883
884 if (error == 0)
885 ipstat.ips_fragmented++;
886 done:
887 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
888 RTFREE(ro->ro_rt);
889 ro->ro_rt = 0;
890 }
891
892 #ifdef IPSEC
893 if (sp != NULL) {
894 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
895 printf("DP ip_output call free SP:%p\n", sp));
896 key_freesp(sp);
897 }
898 #endif /* IPSEC */
899 #ifdef FAST_IPSEC
900 if (sp != NULL)
901 KEY_FREESP(&sp);
902 #endif /* FAST_IPSEC */
903
904 return (error);
905 bad:
906 m_freem(m);
907 goto done;
908 }
909
910 int
911 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
912 {
913 struct ip *ip, *mhip;
914 struct mbuf *m0;
915 int len, hlen, off;
916 int mhlen, firstlen;
917 struct mbuf **mnext;
918 int sw_csum = m->m_pkthdr.csum_flags;
919 int fragments = 0;
920 int s;
921 int error = 0;
922
923 ip = mtod(m, struct ip *);
924 hlen = ip->ip_hl << 2;
925 if (ifp != NULL)
926 sw_csum &= ~ifp->if_csum_flags_tx;
927
928 len = (mtu - hlen) &~ 7;
929 if (len < 8) {
930 m_freem(m);
931 return (EMSGSIZE);
932 }
933
934 firstlen = len;
935 mnext = &m->m_nextpkt;
936
937 /*
938 * Loop through length of segment after first fragment,
939 * make new header and copy data of each part and link onto chain.
940 */
941 m0 = m;
942 mhlen = sizeof (struct ip);
943 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
944 MGETHDR(m, M_DONTWAIT, MT_HEADER);
945 if (m == 0) {
946 error = ENOBUFS;
947 ipstat.ips_odropped++;
948 goto sendorfree;
949 }
950 MCLAIM(m, m0->m_owner);
951 *mnext = m;
952 mnext = &m->m_nextpkt;
953 m->m_data += max_linkhdr;
954 mhip = mtod(m, struct ip *);
955 *mhip = *ip;
956 /* we must inherit MCAST and BCAST flags */
957 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
958 if (hlen > sizeof (struct ip)) {
959 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
960 mhip->ip_hl = mhlen >> 2;
961 }
962 m->m_len = mhlen;
963 mhip->ip_off = ((off - hlen) >> 3) +
964 (ntohs(ip->ip_off) & ~IP_MF);
965 if (ip->ip_off & htons(IP_MF))
966 mhip->ip_off |= IP_MF;
967 if (off + len >= ntohs(ip->ip_len))
968 len = ntohs(ip->ip_len) - off;
969 else
970 mhip->ip_off |= IP_MF;
971 HTONS(mhip->ip_off);
972 mhip->ip_len = htons((u_int16_t)(len + mhlen));
973 m->m_next = m_copy(m0, off, len);
974 if (m->m_next == 0) {
975 error = ENOBUFS; /* ??? */
976 ipstat.ips_odropped++;
977 goto sendorfree;
978 }
979 m->m_pkthdr.len = mhlen + len;
980 m->m_pkthdr.rcvif = (struct ifnet *)0;
981 mhip->ip_sum = 0;
982 if (sw_csum & M_CSUM_IPv4) {
983 mhip->ip_sum = in_cksum(m, mhlen);
984 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
985 } else {
986 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
987 m->m_pkthdr.csum_data |= mhlen << 16;
988 }
989 ipstat.ips_ofragments++;
990 fragments++;
991 }
992 /*
993 * Update first fragment by trimming what's been copied out
994 * and updating header, then send each fragment (in order).
995 */
996 m = m0;
997 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
998 m->m_pkthdr.len = hlen + firstlen;
999 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1000 ip->ip_off |= htons(IP_MF);
1001 ip->ip_sum = 0;
1002 if (sw_csum & M_CSUM_IPv4) {
1003 ip->ip_sum = in_cksum(m, hlen);
1004 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1005 } else {
1006 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1007 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1008 sizeof(struct ip));
1009 }
1010 sendorfree:
1011 /*
1012 * If there is no room for all the fragments, don't queue
1013 * any of them.
1014 */
1015 if (ifp != NULL) {
1016 s = splnet();
1017 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1018 error == 0) {
1019 error = ENOBUFS;
1020 ipstat.ips_odropped++;
1021 IFQ_INC_DROPS(&ifp->if_snd);
1022 }
1023 splx(s);
1024 }
1025 if (error) {
1026 for (m = m0; m; m = m0) {
1027 m0 = m->m_nextpkt;
1028 m->m_nextpkt = NULL;
1029 m_freem(m);
1030 }
1031 }
1032 return (error);
1033 }
1034
1035 /*
1036 * Process a delayed payload checksum calculation.
1037 */
1038 void
1039 in_delayed_cksum(struct mbuf *m)
1040 {
1041 struct ip *ip;
1042 u_int16_t csum, offset;
1043
1044 ip = mtod(m, struct ip *);
1045 offset = ip->ip_hl << 2;
1046 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1047 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1048 csum = 0xffff;
1049
1050 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1051
1052 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1053 /* This happen when ip options were inserted
1054 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1055 m->m_len, offset, ip->ip_p);
1056 */
1057 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1058 } else
1059 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1060 }
1061
1062 /*
1063 * Determine the maximum length of the options to be inserted;
1064 * we would far rather allocate too much space rather than too little.
1065 */
1066
1067 u_int
1068 ip_optlen(struct inpcb *inp)
1069 {
1070 struct mbuf *m = inp->inp_options;
1071
1072 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1073 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1074 else
1075 return 0;
1076 }
1077
1078
1079 /*
1080 * Insert IP options into preformed packet.
1081 * Adjust IP destination as required for IP source routing,
1082 * as indicated by a non-zero in_addr at the start of the options.
1083 */
1084 static struct mbuf *
1085 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1086 {
1087 struct ipoption *p = mtod(opt, struct ipoption *);
1088 struct mbuf *n;
1089 struct ip *ip = mtod(m, struct ip *);
1090 unsigned optlen;
1091
1092 optlen = opt->m_len - sizeof(p->ipopt_dst);
1093 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1094 return (m); /* XXX should fail */
1095 if (!in_nullhost(p->ipopt_dst))
1096 ip->ip_dst = p->ipopt_dst;
1097 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1098 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1099 if (n == 0)
1100 return (m);
1101 MCLAIM(n, m->m_owner);
1102 M_COPY_PKTHDR(n, m);
1103 m_tag_delete_chain(m, NULL);
1104 m->m_flags &= ~M_PKTHDR;
1105 m->m_len -= sizeof(struct ip);
1106 m->m_data += sizeof(struct ip);
1107 n->m_next = m;
1108 m = n;
1109 m->m_len = optlen + sizeof(struct ip);
1110 m->m_data += max_linkhdr;
1111 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1112 } else {
1113 m->m_data -= optlen;
1114 m->m_len += optlen;
1115 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1116 }
1117 m->m_pkthdr.len += optlen;
1118 ip = mtod(m, struct ip *);
1119 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1120 *phlen = sizeof(struct ip) + optlen;
1121 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1122 return (m);
1123 }
1124
1125 /*
1126 * Copy options from ip to jp,
1127 * omitting those not copied during fragmentation.
1128 */
1129 int
1130 ip_optcopy(struct ip *ip, struct ip *jp)
1131 {
1132 u_char *cp, *dp;
1133 int opt, optlen, cnt;
1134
1135 cp = (u_char *)(ip + 1);
1136 dp = (u_char *)(jp + 1);
1137 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1138 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1139 opt = cp[0];
1140 if (opt == IPOPT_EOL)
1141 break;
1142 if (opt == IPOPT_NOP) {
1143 /* Preserve for IP mcast tunnel's LSRR alignment. */
1144 *dp++ = IPOPT_NOP;
1145 optlen = 1;
1146 continue;
1147 }
1148 #ifdef DIAGNOSTIC
1149 if (cnt < IPOPT_OLEN + sizeof(*cp))
1150 panic("malformed IPv4 option passed to ip_optcopy");
1151 #endif
1152 optlen = cp[IPOPT_OLEN];
1153 #ifdef DIAGNOSTIC
1154 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1155 panic("malformed IPv4 option passed to ip_optcopy");
1156 #endif
1157 /* bogus lengths should have been caught by ip_dooptions */
1158 if (optlen > cnt)
1159 optlen = cnt;
1160 if (IPOPT_COPIED(opt)) {
1161 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1162 dp += optlen;
1163 }
1164 }
1165 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1166 *dp++ = IPOPT_EOL;
1167 return (optlen);
1168 }
1169
1170 /*
1171 * IP socket option processing.
1172 */
1173 int
1174 ip_ctloutput(int op, struct socket *so, int level, int optname,
1175 struct mbuf **mp)
1176 {
1177 struct inpcb *inp = sotoinpcb(so);
1178 struct mbuf *m = *mp;
1179 int optval = 0;
1180 int error = 0;
1181 #if defined(IPSEC) || defined(FAST_IPSEC)
1182 struct proc *p = curproc; /*XXX*/
1183 #endif
1184
1185 if (level != IPPROTO_IP) {
1186 error = EINVAL;
1187 if (op == PRCO_SETOPT && *mp)
1188 (void) m_free(*mp);
1189 } else switch (op) {
1190
1191 case PRCO_SETOPT:
1192 switch (optname) {
1193 case IP_OPTIONS:
1194 #ifdef notyet
1195 case IP_RETOPTS:
1196 return (ip_pcbopts(optname, &inp->inp_options, m));
1197 #else
1198 return (ip_pcbopts(&inp->inp_options, m));
1199 #endif
1200
1201 case IP_TOS:
1202 case IP_TTL:
1203 case IP_RECVOPTS:
1204 case IP_RECVRETOPTS:
1205 case IP_RECVDSTADDR:
1206 case IP_RECVIF:
1207 if (m == NULL || m->m_len != sizeof(int))
1208 error = EINVAL;
1209 else {
1210 optval = *mtod(m, int *);
1211 switch (optname) {
1212
1213 case IP_TOS:
1214 inp->inp_ip.ip_tos = optval;
1215 break;
1216
1217 case IP_TTL:
1218 inp->inp_ip.ip_ttl = optval;
1219 break;
1220 #define OPTSET(bit) \
1221 if (optval) \
1222 inp->inp_flags |= bit; \
1223 else \
1224 inp->inp_flags &= ~bit;
1225
1226 case IP_RECVOPTS:
1227 OPTSET(INP_RECVOPTS);
1228 break;
1229
1230 case IP_RECVRETOPTS:
1231 OPTSET(INP_RECVRETOPTS);
1232 break;
1233
1234 case IP_RECVDSTADDR:
1235 OPTSET(INP_RECVDSTADDR);
1236 break;
1237
1238 case IP_RECVIF:
1239 OPTSET(INP_RECVIF);
1240 break;
1241 }
1242 }
1243 break;
1244 #undef OPTSET
1245
1246 case IP_MULTICAST_IF:
1247 case IP_MULTICAST_TTL:
1248 case IP_MULTICAST_LOOP:
1249 case IP_ADD_MEMBERSHIP:
1250 case IP_DROP_MEMBERSHIP:
1251 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1252 break;
1253
1254 case IP_PORTRANGE:
1255 if (m == 0 || m->m_len != sizeof(int))
1256 error = EINVAL;
1257 else {
1258 optval = *mtod(m, int *);
1259
1260 switch (optval) {
1261
1262 case IP_PORTRANGE_DEFAULT:
1263 case IP_PORTRANGE_HIGH:
1264 inp->inp_flags &= ~(INP_LOWPORT);
1265 break;
1266
1267 case IP_PORTRANGE_LOW:
1268 inp->inp_flags |= INP_LOWPORT;
1269 break;
1270
1271 default:
1272 error = EINVAL;
1273 break;
1274 }
1275 }
1276 break;
1277
1278 #if defined(IPSEC) || defined(FAST_IPSEC)
1279 case IP_IPSEC_POLICY:
1280 {
1281 caddr_t req = NULL;
1282 size_t len = 0;
1283 int priv = 0;
1284
1285 #ifdef __NetBSD__
1286 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1287 priv = 0;
1288 else
1289 priv = 1;
1290 #else
1291 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1292 #endif
1293 if (m) {
1294 req = mtod(m, caddr_t);
1295 len = m->m_len;
1296 }
1297 error = ipsec4_set_policy(inp, optname, req, len, priv);
1298 break;
1299 }
1300 #endif /*IPSEC*/
1301
1302 default:
1303 error = ENOPROTOOPT;
1304 break;
1305 }
1306 if (m)
1307 (void)m_free(m);
1308 break;
1309
1310 case PRCO_GETOPT:
1311 switch (optname) {
1312 case IP_OPTIONS:
1313 case IP_RETOPTS:
1314 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1315 MCLAIM(m, so->so_mowner);
1316 if (inp->inp_options) {
1317 m->m_len = inp->inp_options->m_len;
1318 bcopy(mtod(inp->inp_options, caddr_t),
1319 mtod(m, caddr_t), (unsigned)m->m_len);
1320 } else
1321 m->m_len = 0;
1322 break;
1323
1324 case IP_TOS:
1325 case IP_TTL:
1326 case IP_RECVOPTS:
1327 case IP_RECVRETOPTS:
1328 case IP_RECVDSTADDR:
1329 case IP_RECVIF:
1330 case IP_ERRORMTU:
1331 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1332 MCLAIM(m, so->so_mowner);
1333 m->m_len = sizeof(int);
1334 switch (optname) {
1335
1336 case IP_TOS:
1337 optval = inp->inp_ip.ip_tos;
1338 break;
1339
1340 case IP_TTL:
1341 optval = inp->inp_ip.ip_ttl;
1342 break;
1343
1344 case IP_ERRORMTU:
1345 optval = inp->inp_errormtu;
1346 break;
1347
1348 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1349
1350 case IP_RECVOPTS:
1351 optval = OPTBIT(INP_RECVOPTS);
1352 break;
1353
1354 case IP_RECVRETOPTS:
1355 optval = OPTBIT(INP_RECVRETOPTS);
1356 break;
1357
1358 case IP_RECVDSTADDR:
1359 optval = OPTBIT(INP_RECVDSTADDR);
1360 break;
1361
1362 case IP_RECVIF:
1363 optval = OPTBIT(INP_RECVIF);
1364 break;
1365 }
1366 *mtod(m, int *) = optval;
1367 break;
1368
1369 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1370 /* XXX: code broken */
1371 case IP_IPSEC_POLICY:
1372 {
1373 caddr_t req = NULL;
1374 size_t len = 0;
1375
1376 if (m) {
1377 req = mtod(m, caddr_t);
1378 len = m->m_len;
1379 }
1380 error = ipsec4_get_policy(inp, req, len, mp);
1381 break;
1382 }
1383 #endif /*IPSEC*/
1384
1385 case IP_MULTICAST_IF:
1386 case IP_MULTICAST_TTL:
1387 case IP_MULTICAST_LOOP:
1388 case IP_ADD_MEMBERSHIP:
1389 case IP_DROP_MEMBERSHIP:
1390 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1391 if (*mp)
1392 MCLAIM(*mp, so->so_mowner);
1393 break;
1394
1395 case IP_PORTRANGE:
1396 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1397 MCLAIM(m, so->so_mowner);
1398 m->m_len = sizeof(int);
1399
1400 if (inp->inp_flags & INP_LOWPORT)
1401 optval = IP_PORTRANGE_LOW;
1402 else
1403 optval = IP_PORTRANGE_DEFAULT;
1404
1405 *mtod(m, int *) = optval;
1406 break;
1407
1408 default:
1409 error = ENOPROTOOPT;
1410 break;
1411 }
1412 break;
1413 }
1414 return (error);
1415 }
1416
1417 /*
1418 * Set up IP options in pcb for insertion in output packets.
1419 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1420 * with destination address if source routed.
1421 */
1422 int
1423 #ifdef notyet
1424 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1425 #else
1426 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1427 #endif
1428 {
1429 int cnt, optlen;
1430 u_char *cp;
1431 u_char opt;
1432
1433 /* turn off any old options */
1434 if (*pcbopt)
1435 (void)m_free(*pcbopt);
1436 *pcbopt = 0;
1437 if (m == (struct mbuf *)0 || m->m_len == 0) {
1438 /*
1439 * Only turning off any previous options.
1440 */
1441 if (m)
1442 (void)m_free(m);
1443 return (0);
1444 }
1445
1446 #ifndef __vax__
1447 if (m->m_len % sizeof(int32_t))
1448 goto bad;
1449 #endif
1450 /*
1451 * IP first-hop destination address will be stored before
1452 * actual options; move other options back
1453 * and clear it when none present.
1454 */
1455 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1456 goto bad;
1457 cnt = m->m_len;
1458 m->m_len += sizeof(struct in_addr);
1459 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1460 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1461 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1462
1463 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1464 opt = cp[IPOPT_OPTVAL];
1465 if (opt == IPOPT_EOL)
1466 break;
1467 if (opt == IPOPT_NOP)
1468 optlen = 1;
1469 else {
1470 if (cnt < IPOPT_OLEN + sizeof(*cp))
1471 goto bad;
1472 optlen = cp[IPOPT_OLEN];
1473 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1474 goto bad;
1475 }
1476 switch (opt) {
1477
1478 default:
1479 break;
1480
1481 case IPOPT_LSRR:
1482 case IPOPT_SSRR:
1483 /*
1484 * user process specifies route as:
1485 * ->A->B->C->D
1486 * D must be our final destination (but we can't
1487 * check that since we may not have connected yet).
1488 * A is first hop destination, which doesn't appear in
1489 * actual IP option, but is stored before the options.
1490 */
1491 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1492 goto bad;
1493 m->m_len -= sizeof(struct in_addr);
1494 cnt -= sizeof(struct in_addr);
1495 optlen -= sizeof(struct in_addr);
1496 cp[IPOPT_OLEN] = optlen;
1497 /*
1498 * Move first hop before start of options.
1499 */
1500 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1501 sizeof(struct in_addr));
1502 /*
1503 * Then copy rest of options back
1504 * to close up the deleted entry.
1505 */
1506 (void)memmove(&cp[IPOPT_OFFSET+1],
1507 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1508 (unsigned)cnt - (IPOPT_MINOFF - 1));
1509 break;
1510 }
1511 }
1512 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1513 goto bad;
1514 *pcbopt = m;
1515 return (0);
1516
1517 bad:
1518 (void)m_free(m);
1519 return (EINVAL);
1520 }
1521
1522 /*
1523 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1524 */
1525 static struct ifnet *
1526 ip_multicast_if(struct in_addr *a, int *ifindexp)
1527 {
1528 int ifindex;
1529 struct ifnet *ifp = NULL;
1530 struct in_ifaddr *ia;
1531
1532 if (ifindexp)
1533 *ifindexp = 0;
1534 if (ntohl(a->s_addr) >> 24 == 0) {
1535 ifindex = ntohl(a->s_addr) & 0xffffff;
1536 if (ifindex < 0 || if_indexlim <= ifindex)
1537 return NULL;
1538 ifp = ifindex2ifnet[ifindex];
1539 if (!ifp)
1540 return NULL;
1541 if (ifindexp)
1542 *ifindexp = ifindex;
1543 } else {
1544 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1545 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1546 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1547 ifp = ia->ia_ifp;
1548 break;
1549 }
1550 }
1551 }
1552 return ifp;
1553 }
1554
1555 /*
1556 * Set the IP multicast options in response to user setsockopt().
1557 */
1558 int
1559 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1560 {
1561 int error = 0;
1562 u_char loop;
1563 int i;
1564 struct in_addr addr;
1565 struct ip_mreq *mreq;
1566 struct ifnet *ifp;
1567 struct ip_moptions *imo = *imop;
1568 struct route ro;
1569 struct sockaddr_in *dst;
1570 int ifindex;
1571
1572 if (imo == NULL) {
1573 /*
1574 * No multicast option buffer attached to the pcb;
1575 * allocate one and initialize to default values.
1576 */
1577 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1578 M_WAITOK);
1579
1580 if (imo == NULL)
1581 return (ENOBUFS);
1582 *imop = imo;
1583 imo->imo_multicast_ifp = NULL;
1584 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1585 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1586 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1587 imo->imo_num_memberships = 0;
1588 }
1589
1590 switch (optname) {
1591
1592 case IP_MULTICAST_IF:
1593 /*
1594 * Select the interface for outgoing multicast packets.
1595 */
1596 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1597 error = EINVAL;
1598 break;
1599 }
1600 addr = *(mtod(m, struct in_addr *));
1601 /*
1602 * INADDR_ANY is used to remove a previous selection.
1603 * When no interface is selected, a default one is
1604 * chosen every time a multicast packet is sent.
1605 */
1606 if (in_nullhost(addr)) {
1607 imo->imo_multicast_ifp = NULL;
1608 break;
1609 }
1610 /*
1611 * The selected interface is identified by its local
1612 * IP address. Find the interface and confirm that
1613 * it supports multicasting.
1614 */
1615 ifp = ip_multicast_if(&addr, &ifindex);
1616 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1617 error = EADDRNOTAVAIL;
1618 break;
1619 }
1620 imo->imo_multicast_ifp = ifp;
1621 if (ifindex)
1622 imo->imo_multicast_addr = addr;
1623 else
1624 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1625 break;
1626
1627 case IP_MULTICAST_TTL:
1628 /*
1629 * Set the IP time-to-live for outgoing multicast packets.
1630 */
1631 if (m == NULL || m->m_len != 1) {
1632 error = EINVAL;
1633 break;
1634 }
1635 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1636 break;
1637
1638 case IP_MULTICAST_LOOP:
1639 /*
1640 * Set the loopback flag for outgoing multicast packets.
1641 * Must be zero or one.
1642 */
1643 if (m == NULL || m->m_len != 1 ||
1644 (loop = *(mtod(m, u_char *))) > 1) {
1645 error = EINVAL;
1646 break;
1647 }
1648 imo->imo_multicast_loop = loop;
1649 break;
1650
1651 case IP_ADD_MEMBERSHIP:
1652 /*
1653 * Add a multicast group membership.
1654 * Group must be a valid IP multicast address.
1655 */
1656 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1657 error = EINVAL;
1658 break;
1659 }
1660 mreq = mtod(m, struct ip_mreq *);
1661 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1662 error = EINVAL;
1663 break;
1664 }
1665 /*
1666 * If no interface address was provided, use the interface of
1667 * the route to the given multicast address.
1668 */
1669 if (in_nullhost(mreq->imr_interface)) {
1670 bzero((caddr_t)&ro, sizeof(ro));
1671 ro.ro_rt = NULL;
1672 dst = satosin(&ro.ro_dst);
1673 dst->sin_len = sizeof(*dst);
1674 dst->sin_family = AF_INET;
1675 dst->sin_addr = mreq->imr_multiaddr;
1676 rtalloc(&ro);
1677 if (ro.ro_rt == NULL) {
1678 error = EADDRNOTAVAIL;
1679 break;
1680 }
1681 ifp = ro.ro_rt->rt_ifp;
1682 rtfree(ro.ro_rt);
1683 } else {
1684 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1685 }
1686 /*
1687 * See if we found an interface, and confirm that it
1688 * supports multicast.
1689 */
1690 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1691 error = EADDRNOTAVAIL;
1692 break;
1693 }
1694 /*
1695 * See if the membership already exists or if all the
1696 * membership slots are full.
1697 */
1698 for (i = 0; i < imo->imo_num_memberships; ++i) {
1699 if (imo->imo_membership[i]->inm_ifp == ifp &&
1700 in_hosteq(imo->imo_membership[i]->inm_addr,
1701 mreq->imr_multiaddr))
1702 break;
1703 }
1704 if (i < imo->imo_num_memberships) {
1705 error = EADDRINUSE;
1706 break;
1707 }
1708 if (i == IP_MAX_MEMBERSHIPS) {
1709 error = ETOOMANYREFS;
1710 break;
1711 }
1712 /*
1713 * Everything looks good; add a new record to the multicast
1714 * address list for the given interface.
1715 */
1716 if ((imo->imo_membership[i] =
1717 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1718 error = ENOBUFS;
1719 break;
1720 }
1721 ++imo->imo_num_memberships;
1722 break;
1723
1724 case IP_DROP_MEMBERSHIP:
1725 /*
1726 * Drop a multicast group membership.
1727 * Group must be a valid IP multicast address.
1728 */
1729 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1730 error = EINVAL;
1731 break;
1732 }
1733 mreq = mtod(m, struct ip_mreq *);
1734 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1735 error = EINVAL;
1736 break;
1737 }
1738 /*
1739 * If an interface address was specified, get a pointer
1740 * to its ifnet structure.
1741 */
1742 if (in_nullhost(mreq->imr_interface))
1743 ifp = NULL;
1744 else {
1745 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1746 if (ifp == NULL) {
1747 error = EADDRNOTAVAIL;
1748 break;
1749 }
1750 }
1751 /*
1752 * Find the membership in the membership array.
1753 */
1754 for (i = 0; i < imo->imo_num_memberships; ++i) {
1755 if ((ifp == NULL ||
1756 imo->imo_membership[i]->inm_ifp == ifp) &&
1757 in_hosteq(imo->imo_membership[i]->inm_addr,
1758 mreq->imr_multiaddr))
1759 break;
1760 }
1761 if (i == imo->imo_num_memberships) {
1762 error = EADDRNOTAVAIL;
1763 break;
1764 }
1765 /*
1766 * Give up the multicast address record to which the
1767 * membership points.
1768 */
1769 in_delmulti(imo->imo_membership[i]);
1770 /*
1771 * Remove the gap in the membership array.
1772 */
1773 for (++i; i < imo->imo_num_memberships; ++i)
1774 imo->imo_membership[i-1] = imo->imo_membership[i];
1775 --imo->imo_num_memberships;
1776 break;
1777
1778 default:
1779 error = EOPNOTSUPP;
1780 break;
1781 }
1782
1783 /*
1784 * If all options have default values, no need to keep the mbuf.
1785 */
1786 if (imo->imo_multicast_ifp == NULL &&
1787 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1788 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1789 imo->imo_num_memberships == 0) {
1790 free(*imop, M_IPMOPTS);
1791 *imop = NULL;
1792 }
1793
1794 return (error);
1795 }
1796
1797 /*
1798 * Return the IP multicast options in response to user getsockopt().
1799 */
1800 int
1801 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1802 {
1803 u_char *ttl;
1804 u_char *loop;
1805 struct in_addr *addr;
1806 struct in_ifaddr *ia;
1807
1808 *mp = m_get(M_WAIT, MT_SOOPTS);
1809
1810 switch (optname) {
1811
1812 case IP_MULTICAST_IF:
1813 addr = mtod(*mp, struct in_addr *);
1814 (*mp)->m_len = sizeof(struct in_addr);
1815 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1816 *addr = zeroin_addr;
1817 else if (imo->imo_multicast_addr.s_addr) {
1818 /* return the value user has set */
1819 *addr = imo->imo_multicast_addr;
1820 } else {
1821 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1822 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1823 }
1824 return (0);
1825
1826 case IP_MULTICAST_TTL:
1827 ttl = mtod(*mp, u_char *);
1828 (*mp)->m_len = 1;
1829 *ttl = imo ? imo->imo_multicast_ttl
1830 : IP_DEFAULT_MULTICAST_TTL;
1831 return (0);
1832
1833 case IP_MULTICAST_LOOP:
1834 loop = mtod(*mp, u_char *);
1835 (*mp)->m_len = 1;
1836 *loop = imo ? imo->imo_multicast_loop
1837 : IP_DEFAULT_MULTICAST_LOOP;
1838 return (0);
1839
1840 default:
1841 return (EOPNOTSUPP);
1842 }
1843 }
1844
1845 /*
1846 * Discard the IP multicast options.
1847 */
1848 void
1849 ip_freemoptions(struct ip_moptions *imo)
1850 {
1851 int i;
1852
1853 if (imo != NULL) {
1854 for (i = 0; i < imo->imo_num_memberships; ++i)
1855 in_delmulti(imo->imo_membership[i]);
1856 free(imo, M_IPMOPTS);
1857 }
1858 }
1859
1860 /*
1861 * Routine called from ip_output() to loop back a copy of an IP multicast
1862 * packet to the input queue of a specified interface. Note that this
1863 * calls the output routine of the loopback "driver", but with an interface
1864 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1865 */
1866 static void
1867 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1868 {
1869 struct ip *ip;
1870 struct mbuf *copym;
1871
1872 copym = m_copy(m, 0, M_COPYALL);
1873 if (copym != NULL
1874 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1875 copym = m_pullup(copym, sizeof(struct ip));
1876 if (copym != NULL) {
1877 /*
1878 * We don't bother to fragment if the IP length is greater
1879 * than the interface's MTU. Can this possibly matter?
1880 */
1881 ip = mtod(copym, struct ip *);
1882
1883 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1884 in_delayed_cksum(copym);
1885 copym->m_pkthdr.csum_flags &=
1886 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1887 }
1888
1889 ip->ip_sum = 0;
1890 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1891 (void) looutput(ifp, copym, sintosa(dst), NULL);
1892 }
1893 }
1894