ip_output.c revision 1.149.2.3.4.1 1 /* $NetBSD: ip_output.c,v 1.149.2.3.4.1 2007/01/28 19:38:42 tron Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.149.2.3.4.1 2007/01/28 19:38:42 tron Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
157
158 #ifdef PFIL_HOOKS
159 extern struct pfil_head inet_pfil_hook; /* XXX */
160 #endif
161
162 int udp_do_loopback_cksum = 0;
163 int tcp_do_loopback_cksum = 0;
164 int ip_do_loopback_cksum = 0;
165
166 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
167 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
168 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
169 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
171
172 /*
173 * IP output. The packet in mbuf chain m contains a skeletal IP
174 * header (with len, off, ttl, proto, tos, src, dst).
175 * The mbuf chain containing the packet will be freed.
176 * The mbuf opt, if present, will not be freed.
177 */
178 int
179 ip_output(struct mbuf *m0, ...)
180 {
181 struct ip *ip;
182 struct ifnet *ifp;
183 struct mbuf *m = m0;
184 int hlen = sizeof (struct ip);
185 int len, error = 0;
186 struct route iproute;
187 struct sockaddr_in *dst;
188 struct in_ifaddr *ia;
189 struct mbuf *opt;
190 struct route *ro;
191 int flags, sw_csum;
192 int *mtu_p;
193 u_long mtu;
194 struct ip_moptions *imo;
195 struct socket *so;
196 va_list ap;
197 #ifdef IPSEC
198 struct secpolicy *sp = NULL;
199 #ifdef IPSEC_NAT_T
200 int natt_frag = 0;
201 #endif
202 #endif /*IPSEC*/
203 #ifdef FAST_IPSEC
204 struct inpcb *inp;
205 struct m_tag *mtag;
206 struct secpolicy *sp = NULL;
207 struct tdb_ident *tdbi;
208 int s;
209 #endif
210 u_int16_t ip_len;
211
212 len = 0;
213 va_start(ap, m0);
214 opt = va_arg(ap, struct mbuf *);
215 ro = va_arg(ap, struct route *);
216 flags = va_arg(ap, int);
217 imo = va_arg(ap, struct ip_moptions *);
218 so = va_arg(ap, struct socket *);
219 if (flags & IP_RETURNMTU)
220 mtu_p = va_arg(ap, int *);
221 else
222 mtu_p = NULL;
223 va_end(ap);
224
225 MCLAIM(m, &ip_tx_mowner);
226 #ifdef FAST_IPSEC
227 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
228 inp = (struct inpcb *)so->so_pcb;
229 else
230 inp = NULL;
231 #endif /* FAST_IPSEC */
232
233 #ifdef DIAGNOSTIC
234 if ((m->m_flags & M_PKTHDR) == 0)
235 panic("ip_output no HDR");
236 #endif
237 if (opt) {
238 m = ip_insertoptions(m, opt, &len);
239 if (len >= sizeof(struct ip))
240 hlen = len;
241 }
242 ip = mtod(m, struct ip *);
243 /*
244 * Fill in IP header.
245 */
246 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
247 ip->ip_v = IPVERSION;
248 ip->ip_off = htons(0);
249 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
250 ip->ip_id = ip_newid();
251 } else {
252
253 /*
254 * TSO capable interfaces (typically?) increment
255 * ip_id for each segment.
256 * "allocate" enough ids here to increase the chance
257 * for them to be unique.
258 *
259 * note that the following calculation is not
260 * needed to be precise. wasting some ip_id is fine.
261 */
262
263 unsigned int segsz = m->m_pkthdr.segsz;
264 unsigned int datasz = ntohs(ip->ip_len) - hlen;
265 unsigned int num = howmany(datasz, segsz);
266
267 ip->ip_id = ip_newid_range(num);
268 }
269 ip->ip_hl = hlen >> 2;
270 ipstat.ips_localout++;
271 } else {
272 hlen = ip->ip_hl << 2;
273 }
274 /*
275 * Route packet.
276 */
277 if (ro == 0) {
278 ro = &iproute;
279 bzero((caddr_t)ro, sizeof (*ro));
280 }
281 dst = satosin(&ro->ro_dst);
282 /*
283 * If there is a cached route,
284 * check that it is to the same destination
285 * and is still up. If not, free it and try again.
286 * The address family should also be checked in case of sharing the
287 * cache with IPv6.
288 */
289 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
290 dst->sin_family != AF_INET ||
291 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
292 RTFREE(ro->ro_rt);
293 ro->ro_rt = (struct rtentry *)0;
294 }
295 if (ro->ro_rt == 0) {
296 bzero(dst, sizeof(*dst));
297 dst->sin_family = AF_INET;
298 dst->sin_len = sizeof(*dst);
299 dst->sin_addr = ip->ip_dst;
300 }
301 /*
302 * If routing to interface only,
303 * short circuit routing lookup.
304 */
305 if (flags & IP_ROUTETOIF) {
306 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
307 ipstat.ips_noroute++;
308 error = ENETUNREACH;
309 goto bad;
310 }
311 ifp = ia->ia_ifp;
312 mtu = ifp->if_mtu;
313 ip->ip_ttl = 1;
314 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
315 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
316 imo != NULL && imo->imo_multicast_ifp != NULL) {
317 ifp = imo->imo_multicast_ifp;
318 mtu = ifp->if_mtu;
319 IFP_TO_IA(ifp, ia);
320 } else {
321 if (ro->ro_rt == 0)
322 rtalloc(ro);
323 if (ro->ro_rt == 0) {
324 ipstat.ips_noroute++;
325 error = EHOSTUNREACH;
326 goto bad;
327 }
328 ia = ifatoia(ro->ro_rt->rt_ifa);
329 ifp = ro->ro_rt->rt_ifp;
330 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
331 mtu = ifp->if_mtu;
332 ro->ro_rt->rt_use++;
333 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
334 dst = satosin(ro->ro_rt->rt_gateway);
335 }
336 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
337 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
338 struct in_multi *inm;
339
340 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
341 M_BCAST : M_MCAST;
342 /*
343 * IP destination address is multicast. Make sure "dst"
344 * still points to the address in "ro". (It may have been
345 * changed to point to a gateway address, above.)
346 */
347 dst = satosin(&ro->ro_dst);
348 /*
349 * See if the caller provided any multicast options
350 */
351 if (imo != NULL)
352 ip->ip_ttl = imo->imo_multicast_ttl;
353 else
354 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
355
356 /*
357 * if we don't know the outgoing ifp yet, we can't generate
358 * output
359 */
360 if (!ifp) {
361 ipstat.ips_noroute++;
362 error = ENETUNREACH;
363 goto bad;
364 }
365
366 /*
367 * If the packet is multicast or broadcast, confirm that
368 * the outgoing interface can transmit it.
369 */
370 if (((m->m_flags & M_MCAST) &&
371 (ifp->if_flags & IFF_MULTICAST) == 0) ||
372 ((m->m_flags & M_BCAST) &&
373 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
374 ipstat.ips_noroute++;
375 error = ENETUNREACH;
376 goto bad;
377 }
378 /*
379 * If source address not specified yet, use an address
380 * of outgoing interface.
381 */
382 if (in_nullhost(ip->ip_src)) {
383 struct in_ifaddr *ia;
384
385 IFP_TO_IA(ifp, ia);
386 if (!ia) {
387 error = EADDRNOTAVAIL;
388 goto bad;
389 }
390 ip->ip_src = ia->ia_addr.sin_addr;
391 }
392
393 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
394 if (inm != NULL &&
395 (imo == NULL || imo->imo_multicast_loop)) {
396 /*
397 * If we belong to the destination multicast group
398 * on the outgoing interface, and the caller did not
399 * forbid loopback, loop back a copy.
400 */
401 ip_mloopback(ifp, m, dst);
402 }
403 #ifdef MROUTING
404 else {
405 /*
406 * If we are acting as a multicast router, perform
407 * multicast forwarding as if the packet had just
408 * arrived on the interface to which we are about
409 * to send. The multicast forwarding function
410 * recursively calls this function, using the
411 * IP_FORWARDING flag to prevent infinite recursion.
412 *
413 * Multicasts that are looped back by ip_mloopback(),
414 * above, will be forwarded by the ip_input() routine,
415 * if necessary.
416 */
417 extern struct socket *ip_mrouter;
418
419 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
420 if (ip_mforward(m, ifp) != 0) {
421 m_freem(m);
422 goto done;
423 }
424 }
425 }
426 #endif
427 /*
428 * Multicasts with a time-to-live of zero may be looped-
429 * back, above, but must not be transmitted on a network.
430 * Also, multicasts addressed to the loopback interface
431 * are not sent -- the above call to ip_mloopback() will
432 * loop back a copy if this host actually belongs to the
433 * destination group on the loopback interface.
434 */
435 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
436 m_freem(m);
437 goto done;
438 }
439
440 goto sendit;
441 }
442 #ifndef notdef
443 /*
444 * If source address not specified yet, use address
445 * of outgoing interface.
446 */
447 if (in_nullhost(ip->ip_src))
448 ip->ip_src = ia->ia_addr.sin_addr;
449 #endif
450
451 /*
452 * packets with Class-D address as source are not valid per
453 * RFC 1112
454 */
455 if (IN_MULTICAST(ip->ip_src.s_addr)) {
456 ipstat.ips_odropped++;
457 error = EADDRNOTAVAIL;
458 goto bad;
459 }
460
461 /*
462 * Look for broadcast address and
463 * and verify user is allowed to send
464 * such a packet.
465 */
466 if (in_broadcast(dst->sin_addr, ifp)) {
467 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
468 error = EADDRNOTAVAIL;
469 goto bad;
470 }
471 if ((flags & IP_ALLOWBROADCAST) == 0) {
472 error = EACCES;
473 goto bad;
474 }
475 /* don't allow broadcast messages to be fragmented */
476 if (ntohs(ip->ip_len) > ifp->if_mtu) {
477 error = EMSGSIZE;
478 goto bad;
479 }
480 m->m_flags |= M_BCAST;
481 } else
482 m->m_flags &= ~M_BCAST;
483
484 sendit:
485 /*
486 * If we're doing Path MTU Discovery, we need to set DF unless
487 * the route's MTU is locked.
488 */
489 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
490 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
491 ip->ip_off |= htons(IP_DF);
492
493 /* Remember the current ip_len */
494 ip_len = ntohs(ip->ip_len);
495
496 #ifdef IPSEC
497 /* get SP for this packet */
498 if (so == NULL)
499 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
500 flags, &error);
501 else {
502 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
503 IPSEC_DIR_OUTBOUND))
504 goto skip_ipsec;
505 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
506 }
507
508 if (sp == NULL) {
509 ipsecstat.out_inval++;
510 goto bad;
511 }
512
513 error = 0;
514
515 /* check policy */
516 switch (sp->policy) {
517 case IPSEC_POLICY_DISCARD:
518 /*
519 * This packet is just discarded.
520 */
521 ipsecstat.out_polvio++;
522 goto bad;
523
524 case IPSEC_POLICY_BYPASS:
525 case IPSEC_POLICY_NONE:
526 /* no need to do IPsec. */
527 goto skip_ipsec;
528
529 case IPSEC_POLICY_IPSEC:
530 if (sp->req == NULL) {
531 /* XXX should be panic ? */
532 printf("ip_output: No IPsec request specified.\n");
533 error = EINVAL;
534 goto bad;
535 }
536 break;
537
538 case IPSEC_POLICY_ENTRUST:
539 default:
540 printf("ip_output: Invalid policy found. %d\n", sp->policy);
541 }
542
543 #ifdef IPSEC_NAT_T
544 /*
545 * NAT-T ESP fragmentation: don't do IPSec processing now,
546 * we'll do it on each fragmented packet.
547 */
548 if (sp->req->sav &&
549 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
550 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
551 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
552 natt_frag = 1;
553 mtu = sp->req->sav->esp_frag;
554 goto skip_ipsec;
555 }
556 }
557 #endif /* IPSEC_NAT_T */
558
559 /*
560 * ipsec4_output() expects ip_len and ip_off in network
561 * order. They have been set to network order above.
562 */
563
564 {
565 struct ipsec_output_state state;
566 bzero(&state, sizeof(state));
567 state.m = m;
568 if (flags & IP_ROUTETOIF) {
569 state.ro = &iproute;
570 bzero(&iproute, sizeof(iproute));
571 } else
572 state.ro = ro;
573 state.dst = (struct sockaddr *)dst;
574
575 /*
576 * We can't defer the checksum of payload data if
577 * we're about to encrypt/authenticate it.
578 *
579 * XXX When we support crypto offloading functions of
580 * XXX network interfaces, we need to reconsider this,
581 * XXX since it's likely that they'll support checksumming,
582 * XXX as well.
583 */
584 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
585 in_delayed_cksum(m);
586 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
587 }
588
589 error = ipsec4_output(&state, sp, flags);
590
591 m = state.m;
592 if (flags & IP_ROUTETOIF) {
593 /*
594 * if we have tunnel mode SA, we may need to ignore
595 * IP_ROUTETOIF.
596 */
597 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
598 flags &= ~IP_ROUTETOIF;
599 ro = state.ro;
600 }
601 } else
602 ro = state.ro;
603 dst = (struct sockaddr_in *)state.dst;
604 if (error) {
605 /* mbuf is already reclaimed in ipsec4_output. */
606 m0 = NULL;
607 switch (error) {
608 case EHOSTUNREACH:
609 case ENETUNREACH:
610 case EMSGSIZE:
611 case ENOBUFS:
612 case ENOMEM:
613 break;
614 default:
615 printf("ip4_output (ipsec): error code %d\n", error);
616 /*fall through*/
617 case ENOENT:
618 /* don't show these error codes to the user */
619 error = 0;
620 break;
621 }
622 goto bad;
623 }
624
625 /* be sure to update variables that are affected by ipsec4_output() */
626 ip = mtod(m, struct ip *);
627 hlen = ip->ip_hl << 2;
628 ip_len = ntohs(ip->ip_len);
629
630 if (ro->ro_rt == NULL) {
631 if ((flags & IP_ROUTETOIF) == 0) {
632 printf("ip_output: "
633 "can't update route after IPsec processing\n");
634 error = EHOSTUNREACH; /*XXX*/
635 goto bad;
636 }
637 } else {
638 /* nobody uses ia beyond here */
639 if (state.encap) {
640 ifp = ro->ro_rt->rt_ifp;
641 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
642 mtu = ifp->if_mtu;
643 }
644 }
645 }
646 skip_ipsec:
647 #endif /*IPSEC*/
648 #ifdef FAST_IPSEC
649 /*
650 * Check the security policy (SP) for the packet and, if
651 * required, do IPsec-related processing. There are two
652 * cases here; the first time a packet is sent through
653 * it will be untagged and handled by ipsec4_checkpolicy.
654 * If the packet is resubmitted to ip_output (e.g. after
655 * AH, ESP, etc. processing), there will be a tag to bypass
656 * the lookup and related policy checking.
657 */
658 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
659 s = splsoftnet();
660 if (mtag != NULL) {
661 tdbi = (struct tdb_ident *)(mtag + 1);
662 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
663 if (sp == NULL)
664 error = -EINVAL; /* force silent drop */
665 m_tag_delete(m, mtag);
666 } else {
667 if (inp != NULL &&
668 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
669 goto spd_done;
670 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
671 &error, inp);
672 }
673 /*
674 * There are four return cases:
675 * sp != NULL apply IPsec policy
676 * sp == NULL, error == 0 no IPsec handling needed
677 * sp == NULL, error == -EINVAL discard packet w/o error
678 * sp == NULL, error != 0 discard packet, report error
679 */
680 if (sp != NULL) {
681 /* Loop detection, check if ipsec processing already done */
682 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
683 for (mtag = m_tag_first(m); mtag != NULL;
684 mtag = m_tag_next(m, mtag)) {
685 #ifdef MTAG_ABI_COMPAT
686 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
687 continue;
688 #endif
689 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
690 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
691 continue;
692 /*
693 * Check if policy has an SA associated with it.
694 * This can happen when an SP has yet to acquire
695 * an SA; e.g. on first reference. If it occurs,
696 * then we let ipsec4_process_packet do its thing.
697 */
698 if (sp->req->sav == NULL)
699 break;
700 tdbi = (struct tdb_ident *)(mtag + 1);
701 if (tdbi->spi == sp->req->sav->spi &&
702 tdbi->proto == sp->req->sav->sah->saidx.proto &&
703 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
704 sizeof (union sockaddr_union)) == 0) {
705 /*
706 * No IPsec processing is needed, free
707 * reference to SP.
708 *
709 * NB: null pointer to avoid free at
710 * done: below.
711 */
712 KEY_FREESP(&sp), sp = NULL;
713 splx(s);
714 goto spd_done;
715 }
716 }
717
718 /*
719 * Do delayed checksums now because we send before
720 * this is done in the normal processing path.
721 */
722 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
723 in_delayed_cksum(m);
724 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
725 }
726
727 #ifdef __FreeBSD__
728 ip->ip_len = htons(ip->ip_len);
729 ip->ip_off = htons(ip->ip_off);
730 #endif
731
732 /* NB: callee frees mbuf */
733 error = ipsec4_process_packet(m, sp->req, flags, 0);
734 /*
735 * Preserve KAME behaviour: ENOENT can be returned
736 * when an SA acquire is in progress. Don't propagate
737 * this to user-level; it confuses applications.
738 *
739 * XXX this will go away when the SADB is redone.
740 */
741 if (error == ENOENT)
742 error = 0;
743 splx(s);
744 goto done;
745 } else {
746 splx(s);
747
748 if (error != 0) {
749 /*
750 * Hack: -EINVAL is used to signal that a packet
751 * should be silently discarded. This is typically
752 * because we asked key management for an SA and
753 * it was delayed (e.g. kicked up to IKE).
754 */
755 if (error == -EINVAL)
756 error = 0;
757 goto bad;
758 } else {
759 /* No IPsec processing for this packet. */
760 }
761 #ifdef notyet
762 /*
763 * If deferred crypto processing is needed, check that
764 * the interface supports it.
765 */
766 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
767 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
768 /* notify IPsec to do its own crypto */
769 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
770 error = EHOSTUNREACH;
771 goto bad;
772 }
773 #endif
774 }
775 spd_done:
776 #endif /* FAST_IPSEC */
777
778 #ifdef PFIL_HOOKS
779 /*
780 * Run through list of hooks for output packets.
781 */
782 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
783 goto done;
784 if (m == NULL)
785 goto done;
786
787 ip = mtod(m, struct ip *);
788 hlen = ip->ip_hl << 2;
789 ip_len = ntohs(ip->ip_len);
790 #endif /* PFIL_HOOKS */
791
792 m->m_pkthdr.csum_data |= hlen << 16;
793
794 #if IFA_STATS
795 /*
796 * search for the source address structure to
797 * maintain output statistics.
798 */
799 INADDR_TO_IA(ip->ip_src, ia);
800 #endif
801
802 /* Maybe skip checksums on loopback interfaces. */
803 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
804 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
805 }
806 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
807 /*
808 * If small enough for mtu of path, or if using TCP segmentation
809 * offload, can just send directly.
810 */
811 if (ip_len <= mtu ||
812 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
813 #if IFA_STATS
814 if (ia)
815 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
816 #endif
817 /*
818 * Always initialize the sum to 0! Some HW assisted
819 * checksumming requires this.
820 */
821 ip->ip_sum = 0;
822
823 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
824 /*
825 * Perform any checksums that the hardware can't do
826 * for us.
827 *
828 * XXX Does any hardware require the {th,uh}_sum
829 * XXX fields to be 0?
830 */
831 if (sw_csum & M_CSUM_IPv4) {
832 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
833 ip->ip_sum = in_cksum(m, hlen);
834 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
835 }
836 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
837 if (IN_NEED_CHECKSUM(ifp,
838 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
839 in_delayed_cksum(m);
840 }
841 m->m_pkthdr.csum_flags &=
842 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
843 }
844 }
845
846 #ifdef IPSEC
847 /* clean ipsec history once it goes out of the node */
848 ipsec_delaux(m);
849 #endif
850 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
851 goto done;
852 }
853
854 /*
855 * We can't use HW checksumming if we're about to
856 * to fragment the packet.
857 *
858 * XXX Some hardware can do this.
859 */
860 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
861 if (IN_NEED_CHECKSUM(ifp,
862 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
863 in_delayed_cksum(m);
864 }
865 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
866 }
867
868 /*
869 * Too large for interface; fragment if possible.
870 * Must be able to put at least 8 bytes per fragment.
871 */
872 if (ntohs(ip->ip_off) & IP_DF) {
873 if (flags & IP_RETURNMTU)
874 *mtu_p = mtu;
875 error = EMSGSIZE;
876 ipstat.ips_cantfrag++;
877 goto bad;
878 }
879
880 error = ip_fragment(m, ifp, mtu);
881 if (error) {
882 m = NULL;
883 goto bad;
884 }
885
886 for (; m; m = m0) {
887 m0 = m->m_nextpkt;
888 m->m_nextpkt = 0;
889 if (error == 0) {
890 #if IFA_STATS
891 if (ia)
892 ia->ia_ifa.ifa_data.ifad_outbytes +=
893 ntohs(ip->ip_len);
894 #endif
895 #ifdef IPSEC
896 /* clean ipsec history once it goes out of the node */
897 ipsec_delaux(m);
898
899 #ifdef IPSEC_NAT_T
900 /*
901 * If we get there, the packet has not been handeld by
902 * IPSec whereas it should have. Now that it has been
903 * fragmented, re-inject it in ip_output so that IPsec
904 * processing can occur.
905 */
906 if (natt_frag) {
907 error = ip_output(m, opt,
908 ro, flags, imo, so, mtu_p);
909 } else
910 #endif /* IPSEC_NAT_T */
911 #endif /* IPSEC */
912 {
913 KASSERT((m->m_pkthdr.csum_flags &
914 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
915 error = (*ifp->if_output)(ifp, m, sintosa(dst),
916 ro->ro_rt);
917 }
918 } else
919 m_freem(m);
920 }
921
922 if (error == 0)
923 ipstat.ips_fragmented++;
924 done:
925 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
926 RTFREE(ro->ro_rt);
927 ro->ro_rt = 0;
928 }
929
930 #ifdef IPSEC
931 if (sp != NULL) {
932 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
933 printf("DP ip_output call free SP:%p\n", sp));
934 key_freesp(sp);
935 }
936 #endif /* IPSEC */
937 #ifdef FAST_IPSEC
938 if (sp != NULL)
939 KEY_FREESP(&sp);
940 #endif /* FAST_IPSEC */
941
942 return (error);
943 bad:
944 m_freem(m);
945 goto done;
946 }
947
948 int
949 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
950 {
951 struct ip *ip, *mhip;
952 struct mbuf *m0;
953 int len, hlen, off;
954 int mhlen, firstlen;
955 struct mbuf **mnext;
956 int sw_csum = m->m_pkthdr.csum_flags;
957 int fragments = 0;
958 int s;
959 int error = 0;
960
961 ip = mtod(m, struct ip *);
962 hlen = ip->ip_hl << 2;
963 if (ifp != NULL)
964 sw_csum &= ~ifp->if_csum_flags_tx;
965
966 len = (mtu - hlen) &~ 7;
967 if (len < 8) {
968 m_freem(m);
969 return (EMSGSIZE);
970 }
971
972 firstlen = len;
973 mnext = &m->m_nextpkt;
974
975 /*
976 * Loop through length of segment after first fragment,
977 * make new header and copy data of each part and link onto chain.
978 */
979 m0 = m;
980 mhlen = sizeof (struct ip);
981 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
982 MGETHDR(m, M_DONTWAIT, MT_HEADER);
983 if (m == 0) {
984 error = ENOBUFS;
985 ipstat.ips_odropped++;
986 goto sendorfree;
987 }
988 MCLAIM(m, m0->m_owner);
989 *mnext = m;
990 mnext = &m->m_nextpkt;
991 m->m_data += max_linkhdr;
992 mhip = mtod(m, struct ip *);
993 *mhip = *ip;
994 /* we must inherit MCAST and BCAST flags */
995 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
996 if (hlen > sizeof (struct ip)) {
997 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
998 mhip->ip_hl = mhlen >> 2;
999 }
1000 m->m_len = mhlen;
1001 mhip->ip_off = ((off - hlen) >> 3) +
1002 (ntohs(ip->ip_off) & ~IP_MF);
1003 if (ip->ip_off & htons(IP_MF))
1004 mhip->ip_off |= IP_MF;
1005 if (off + len >= ntohs(ip->ip_len))
1006 len = ntohs(ip->ip_len) - off;
1007 else
1008 mhip->ip_off |= IP_MF;
1009 HTONS(mhip->ip_off);
1010 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1011 m->m_next = m_copy(m0, off, len);
1012 if (m->m_next == 0) {
1013 error = ENOBUFS; /* ??? */
1014 ipstat.ips_odropped++;
1015 goto sendorfree;
1016 }
1017 m->m_pkthdr.len = mhlen + len;
1018 m->m_pkthdr.rcvif = (struct ifnet *)0;
1019 mhip->ip_sum = 0;
1020 if (sw_csum & M_CSUM_IPv4) {
1021 mhip->ip_sum = in_cksum(m, mhlen);
1022 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1023 } else {
1024 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1025 m->m_pkthdr.csum_data |= mhlen << 16;
1026 }
1027 ipstat.ips_ofragments++;
1028 fragments++;
1029 }
1030 /*
1031 * Update first fragment by trimming what's been copied out
1032 * and updating header, then send each fragment (in order).
1033 */
1034 m = m0;
1035 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1036 m->m_pkthdr.len = hlen + firstlen;
1037 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1038 ip->ip_off |= htons(IP_MF);
1039 ip->ip_sum = 0;
1040 if (sw_csum & M_CSUM_IPv4) {
1041 ip->ip_sum = in_cksum(m, hlen);
1042 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1043 } else {
1044 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1045 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1046 sizeof(struct ip));
1047 }
1048 sendorfree:
1049 /*
1050 * If there is no room for all the fragments, don't queue
1051 * any of them.
1052 */
1053 if (ifp != NULL) {
1054 s = splnet();
1055 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1056 error == 0) {
1057 error = ENOBUFS;
1058 ipstat.ips_odropped++;
1059 IFQ_INC_DROPS(&ifp->if_snd);
1060 }
1061 splx(s);
1062 }
1063 if (error) {
1064 for (m = m0; m; m = m0) {
1065 m0 = m->m_nextpkt;
1066 m->m_nextpkt = NULL;
1067 m_freem(m);
1068 }
1069 }
1070 return (error);
1071 }
1072
1073 /*
1074 * Process a delayed payload checksum calculation.
1075 */
1076 void
1077 in_delayed_cksum(struct mbuf *m)
1078 {
1079 struct ip *ip;
1080 u_int16_t csum, offset;
1081
1082 ip = mtod(m, struct ip *);
1083 offset = ip->ip_hl << 2;
1084 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1085 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1086 csum = 0xffff;
1087
1088 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1089
1090 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1091 /* This happen when ip options were inserted
1092 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1093 m->m_len, offset, ip->ip_p);
1094 */
1095 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1096 } else
1097 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1098 }
1099
1100 /*
1101 * Determine the maximum length of the options to be inserted;
1102 * we would far rather allocate too much space rather than too little.
1103 */
1104
1105 u_int
1106 ip_optlen(struct inpcb *inp)
1107 {
1108 struct mbuf *m = inp->inp_options;
1109
1110 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1111 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1112 else
1113 return 0;
1114 }
1115
1116
1117 /*
1118 * Insert IP options into preformed packet.
1119 * Adjust IP destination as required for IP source routing,
1120 * as indicated by a non-zero in_addr at the start of the options.
1121 */
1122 static struct mbuf *
1123 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1124 {
1125 struct ipoption *p = mtod(opt, struct ipoption *);
1126 struct mbuf *n;
1127 struct ip *ip = mtod(m, struct ip *);
1128 unsigned optlen;
1129
1130 optlen = opt->m_len - sizeof(p->ipopt_dst);
1131 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1132 return (m); /* XXX should fail */
1133 if (!in_nullhost(p->ipopt_dst))
1134 ip->ip_dst = p->ipopt_dst;
1135 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1136 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1137 if (n == 0)
1138 return (m);
1139 MCLAIM(n, m->m_owner);
1140 M_COPY_PKTHDR(n, m);
1141 m_tag_delete_chain(m, NULL);
1142 m->m_flags &= ~M_PKTHDR;
1143 m->m_len -= sizeof(struct ip);
1144 m->m_data += sizeof(struct ip);
1145 n->m_next = m;
1146 m = n;
1147 m->m_len = optlen + sizeof(struct ip);
1148 m->m_data += max_linkhdr;
1149 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1150 } else {
1151 m->m_data -= optlen;
1152 m->m_len += optlen;
1153 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1154 }
1155 m->m_pkthdr.len += optlen;
1156 ip = mtod(m, struct ip *);
1157 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1158 *phlen = sizeof(struct ip) + optlen;
1159 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1160 return (m);
1161 }
1162
1163 /*
1164 * Copy options from ip to jp,
1165 * omitting those not copied during fragmentation.
1166 */
1167 int
1168 ip_optcopy(struct ip *ip, struct ip *jp)
1169 {
1170 u_char *cp, *dp;
1171 int opt, optlen, cnt;
1172
1173 cp = (u_char *)(ip + 1);
1174 dp = (u_char *)(jp + 1);
1175 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1176 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1177 opt = cp[0];
1178 if (opt == IPOPT_EOL)
1179 break;
1180 if (opt == IPOPT_NOP) {
1181 /* Preserve for IP mcast tunnel's LSRR alignment. */
1182 *dp++ = IPOPT_NOP;
1183 optlen = 1;
1184 continue;
1185 }
1186 #ifdef DIAGNOSTIC
1187 if (cnt < IPOPT_OLEN + sizeof(*cp))
1188 panic("malformed IPv4 option passed to ip_optcopy");
1189 #endif
1190 optlen = cp[IPOPT_OLEN];
1191 #ifdef DIAGNOSTIC
1192 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1193 panic("malformed IPv4 option passed to ip_optcopy");
1194 #endif
1195 /* bogus lengths should have been caught by ip_dooptions */
1196 if (optlen > cnt)
1197 optlen = cnt;
1198 if (IPOPT_COPIED(opt)) {
1199 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1200 dp += optlen;
1201 }
1202 }
1203 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1204 *dp++ = IPOPT_EOL;
1205 return (optlen);
1206 }
1207
1208 /*
1209 * IP socket option processing.
1210 */
1211 int
1212 ip_ctloutput(int op, struct socket *so, int level, int optname,
1213 struct mbuf **mp)
1214 {
1215 struct inpcb *inp = sotoinpcb(so);
1216 struct mbuf *m = *mp;
1217 int optval = 0;
1218 int error = 0;
1219 #if defined(IPSEC) || defined(FAST_IPSEC)
1220 struct proc *p = curproc; /*XXX*/
1221 #endif
1222
1223 if (level != IPPROTO_IP) {
1224 error = EINVAL;
1225 if (op == PRCO_SETOPT && *mp)
1226 (void) m_free(*mp);
1227 } else switch (op) {
1228
1229 case PRCO_SETOPT:
1230 switch (optname) {
1231 case IP_OPTIONS:
1232 #ifdef notyet
1233 case IP_RETOPTS:
1234 return (ip_pcbopts(optname, &inp->inp_options, m));
1235 #else
1236 return (ip_pcbopts(&inp->inp_options, m));
1237 #endif
1238
1239 case IP_TOS:
1240 case IP_TTL:
1241 case IP_RECVOPTS:
1242 case IP_RECVRETOPTS:
1243 case IP_RECVDSTADDR:
1244 case IP_RECVIF:
1245 if (m == NULL || m->m_len != sizeof(int))
1246 error = EINVAL;
1247 else {
1248 optval = *mtod(m, int *);
1249 switch (optname) {
1250
1251 case IP_TOS:
1252 inp->inp_ip.ip_tos = optval;
1253 break;
1254
1255 case IP_TTL:
1256 inp->inp_ip.ip_ttl = optval;
1257 break;
1258 #define OPTSET(bit) \
1259 if (optval) \
1260 inp->inp_flags |= bit; \
1261 else \
1262 inp->inp_flags &= ~bit;
1263
1264 case IP_RECVOPTS:
1265 OPTSET(INP_RECVOPTS);
1266 break;
1267
1268 case IP_RECVRETOPTS:
1269 OPTSET(INP_RECVRETOPTS);
1270 break;
1271
1272 case IP_RECVDSTADDR:
1273 OPTSET(INP_RECVDSTADDR);
1274 break;
1275
1276 case IP_RECVIF:
1277 OPTSET(INP_RECVIF);
1278 break;
1279 }
1280 }
1281 break;
1282 #undef OPTSET
1283
1284 case IP_MULTICAST_IF:
1285 case IP_MULTICAST_TTL:
1286 case IP_MULTICAST_LOOP:
1287 case IP_ADD_MEMBERSHIP:
1288 case IP_DROP_MEMBERSHIP:
1289 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1290 break;
1291
1292 case IP_PORTRANGE:
1293 if (m == 0 || m->m_len != sizeof(int))
1294 error = EINVAL;
1295 else {
1296 optval = *mtod(m, int *);
1297
1298 switch (optval) {
1299
1300 case IP_PORTRANGE_DEFAULT:
1301 case IP_PORTRANGE_HIGH:
1302 inp->inp_flags &= ~(INP_LOWPORT);
1303 break;
1304
1305 case IP_PORTRANGE_LOW:
1306 inp->inp_flags |= INP_LOWPORT;
1307 break;
1308
1309 default:
1310 error = EINVAL;
1311 break;
1312 }
1313 }
1314 break;
1315
1316 #if defined(IPSEC) || defined(FAST_IPSEC)
1317 case IP_IPSEC_POLICY:
1318 {
1319 caddr_t req = NULL;
1320 size_t len = 0;
1321 int priv = 0;
1322
1323 #ifdef __NetBSD__
1324 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1325 priv = 0;
1326 else
1327 priv = 1;
1328 #else
1329 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1330 #endif
1331 if (m) {
1332 req = mtod(m, caddr_t);
1333 len = m->m_len;
1334 }
1335 error = ipsec4_set_policy(inp, optname, req, len, priv);
1336 break;
1337 }
1338 #endif /*IPSEC*/
1339
1340 default:
1341 error = ENOPROTOOPT;
1342 break;
1343 }
1344 if (m)
1345 (void)m_free(m);
1346 break;
1347
1348 case PRCO_GETOPT:
1349 switch (optname) {
1350 case IP_OPTIONS:
1351 case IP_RETOPTS:
1352 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1353 MCLAIM(m, so->so_mowner);
1354 if (inp->inp_options) {
1355 m->m_len = inp->inp_options->m_len;
1356 bcopy(mtod(inp->inp_options, caddr_t),
1357 mtod(m, caddr_t), (unsigned)m->m_len);
1358 } else
1359 m->m_len = 0;
1360 break;
1361
1362 case IP_TOS:
1363 case IP_TTL:
1364 case IP_RECVOPTS:
1365 case IP_RECVRETOPTS:
1366 case IP_RECVDSTADDR:
1367 case IP_RECVIF:
1368 case IP_ERRORMTU:
1369 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1370 MCLAIM(m, so->so_mowner);
1371 m->m_len = sizeof(int);
1372 switch (optname) {
1373
1374 case IP_TOS:
1375 optval = inp->inp_ip.ip_tos;
1376 break;
1377
1378 case IP_TTL:
1379 optval = inp->inp_ip.ip_ttl;
1380 break;
1381
1382 case IP_ERRORMTU:
1383 optval = inp->inp_errormtu;
1384 break;
1385
1386 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1387
1388 case IP_RECVOPTS:
1389 optval = OPTBIT(INP_RECVOPTS);
1390 break;
1391
1392 case IP_RECVRETOPTS:
1393 optval = OPTBIT(INP_RECVRETOPTS);
1394 break;
1395
1396 case IP_RECVDSTADDR:
1397 optval = OPTBIT(INP_RECVDSTADDR);
1398 break;
1399
1400 case IP_RECVIF:
1401 optval = OPTBIT(INP_RECVIF);
1402 break;
1403 }
1404 *mtod(m, int *) = optval;
1405 break;
1406
1407 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1408 /* XXX: code broken */
1409 case IP_IPSEC_POLICY:
1410 {
1411 caddr_t req = NULL;
1412 size_t len = 0;
1413
1414 if (m) {
1415 req = mtod(m, caddr_t);
1416 len = m->m_len;
1417 }
1418 error = ipsec4_get_policy(inp, req, len, mp);
1419 break;
1420 }
1421 #endif /*IPSEC*/
1422
1423 case IP_MULTICAST_IF:
1424 case IP_MULTICAST_TTL:
1425 case IP_MULTICAST_LOOP:
1426 case IP_ADD_MEMBERSHIP:
1427 case IP_DROP_MEMBERSHIP:
1428 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1429 if (*mp)
1430 MCLAIM(*mp, so->so_mowner);
1431 break;
1432
1433 case IP_PORTRANGE:
1434 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1435 MCLAIM(m, so->so_mowner);
1436 m->m_len = sizeof(int);
1437
1438 if (inp->inp_flags & INP_LOWPORT)
1439 optval = IP_PORTRANGE_LOW;
1440 else
1441 optval = IP_PORTRANGE_DEFAULT;
1442
1443 *mtod(m, int *) = optval;
1444 break;
1445
1446 default:
1447 error = ENOPROTOOPT;
1448 break;
1449 }
1450 break;
1451 }
1452 return (error);
1453 }
1454
1455 /*
1456 * Set up IP options in pcb for insertion in output packets.
1457 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1458 * with destination address if source routed.
1459 */
1460 int
1461 #ifdef notyet
1462 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1463 #else
1464 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1465 #endif
1466 {
1467 int cnt, optlen;
1468 u_char *cp;
1469 u_char opt;
1470
1471 /* turn off any old options */
1472 if (*pcbopt)
1473 (void)m_free(*pcbopt);
1474 *pcbopt = 0;
1475 if (m == (struct mbuf *)0 || m->m_len == 0) {
1476 /*
1477 * Only turning off any previous options.
1478 */
1479 if (m)
1480 (void)m_free(m);
1481 return (0);
1482 }
1483
1484 #ifndef __vax__
1485 if (m->m_len % sizeof(int32_t))
1486 goto bad;
1487 #endif
1488 /*
1489 * IP first-hop destination address will be stored before
1490 * actual options; move other options back
1491 * and clear it when none present.
1492 */
1493 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1494 goto bad;
1495 cnt = m->m_len;
1496 m->m_len += sizeof(struct in_addr);
1497 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1498 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1499 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1500
1501 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1502 opt = cp[IPOPT_OPTVAL];
1503 if (opt == IPOPT_EOL)
1504 break;
1505 if (opt == IPOPT_NOP)
1506 optlen = 1;
1507 else {
1508 if (cnt < IPOPT_OLEN + sizeof(*cp))
1509 goto bad;
1510 optlen = cp[IPOPT_OLEN];
1511 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1512 goto bad;
1513 }
1514 switch (opt) {
1515
1516 default:
1517 break;
1518
1519 case IPOPT_LSRR:
1520 case IPOPT_SSRR:
1521 /*
1522 * user process specifies route as:
1523 * ->A->B->C->D
1524 * D must be our final destination (but we can't
1525 * check that since we may not have connected yet).
1526 * A is first hop destination, which doesn't appear in
1527 * actual IP option, but is stored before the options.
1528 */
1529 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1530 goto bad;
1531 m->m_len -= sizeof(struct in_addr);
1532 cnt -= sizeof(struct in_addr);
1533 optlen -= sizeof(struct in_addr);
1534 cp[IPOPT_OLEN] = optlen;
1535 /*
1536 * Move first hop before start of options.
1537 */
1538 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1539 sizeof(struct in_addr));
1540 /*
1541 * Then copy rest of options back
1542 * to close up the deleted entry.
1543 */
1544 (void)memmove(&cp[IPOPT_OFFSET+1],
1545 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1546 (unsigned)cnt - (IPOPT_MINOFF - 1));
1547 break;
1548 }
1549 }
1550 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1551 goto bad;
1552 *pcbopt = m;
1553 return (0);
1554
1555 bad:
1556 (void)m_free(m);
1557 return (EINVAL);
1558 }
1559
1560 /*
1561 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1562 */
1563 static struct ifnet *
1564 ip_multicast_if(struct in_addr *a, int *ifindexp)
1565 {
1566 int ifindex;
1567 struct ifnet *ifp = NULL;
1568 struct in_ifaddr *ia;
1569
1570 if (ifindexp)
1571 *ifindexp = 0;
1572 if (ntohl(a->s_addr) >> 24 == 0) {
1573 ifindex = ntohl(a->s_addr) & 0xffffff;
1574 if (ifindex < 0 || if_indexlim <= ifindex)
1575 return NULL;
1576 ifp = ifindex2ifnet[ifindex];
1577 if (!ifp)
1578 return NULL;
1579 if (ifindexp)
1580 *ifindexp = ifindex;
1581 } else {
1582 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1583 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1584 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1585 ifp = ia->ia_ifp;
1586 break;
1587 }
1588 }
1589 }
1590 return ifp;
1591 }
1592
1593 static int
1594 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1595 {
1596 u_int tval;
1597
1598 if (m == NULL)
1599 return EINVAL;
1600
1601 switch (m->m_len) {
1602 case sizeof(u_char):
1603 tval = *(mtod(m, u_char *));
1604 break;
1605 case sizeof(u_int):
1606 tval = *(mtod(m, u_int *));
1607 break;
1608 default:
1609 return EINVAL;
1610 }
1611
1612 if (tval > maxval)
1613 return EINVAL;
1614
1615 *val = tval;
1616 return 0;
1617 }
1618
1619 /*
1620 * Set the IP multicast options in response to user setsockopt().
1621 */
1622 int
1623 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1624 {
1625 int error = 0;
1626 int i;
1627 struct in_addr addr;
1628 struct ip_mreq *mreq;
1629 struct ifnet *ifp;
1630 struct ip_moptions *imo = *imop;
1631 struct route ro;
1632 struct sockaddr_in *dst;
1633 int ifindex;
1634
1635 if (imo == NULL) {
1636 /*
1637 * No multicast option buffer attached to the pcb;
1638 * allocate one and initialize to default values.
1639 */
1640 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1641 M_WAITOK);
1642
1643 if (imo == NULL)
1644 return (ENOBUFS);
1645 *imop = imo;
1646 imo->imo_multicast_ifp = NULL;
1647 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1648 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1649 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1650 imo->imo_num_memberships = 0;
1651 }
1652
1653 switch (optname) {
1654
1655 case IP_MULTICAST_IF:
1656 /*
1657 * Select the interface for outgoing multicast packets.
1658 */
1659 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1660 error = EINVAL;
1661 break;
1662 }
1663 addr = *(mtod(m, struct in_addr *));
1664 /*
1665 * INADDR_ANY is used to remove a previous selection.
1666 * When no interface is selected, a default one is
1667 * chosen every time a multicast packet is sent.
1668 */
1669 if (in_nullhost(addr)) {
1670 imo->imo_multicast_ifp = NULL;
1671 break;
1672 }
1673 /*
1674 * The selected interface is identified by its local
1675 * IP address. Find the interface and confirm that
1676 * it supports multicasting.
1677 */
1678 ifp = ip_multicast_if(&addr, &ifindex);
1679 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1680 error = EADDRNOTAVAIL;
1681 break;
1682 }
1683 imo->imo_multicast_ifp = ifp;
1684 if (ifindex)
1685 imo->imo_multicast_addr = addr;
1686 else
1687 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1688 break;
1689
1690 case IP_MULTICAST_TTL:
1691 /*
1692 * Set the IP time-to-live for outgoing multicast packets.
1693 */
1694 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1695 break;
1696
1697 case IP_MULTICAST_LOOP:
1698 /*
1699 * Set the loopback flag for outgoing multicast packets.
1700 * Must be zero or one.
1701 */
1702 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1703 break;
1704
1705 case IP_ADD_MEMBERSHIP:
1706 /*
1707 * Add a multicast group membership.
1708 * Group must be a valid IP multicast address.
1709 */
1710 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1711 error = EINVAL;
1712 break;
1713 }
1714 mreq = mtod(m, struct ip_mreq *);
1715 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1716 error = EINVAL;
1717 break;
1718 }
1719 /*
1720 * If no interface address was provided, use the interface of
1721 * the route to the given multicast address.
1722 */
1723 if (in_nullhost(mreq->imr_interface)) {
1724 bzero((caddr_t)&ro, sizeof(ro));
1725 ro.ro_rt = NULL;
1726 dst = satosin(&ro.ro_dst);
1727 dst->sin_len = sizeof(*dst);
1728 dst->sin_family = AF_INET;
1729 dst->sin_addr = mreq->imr_multiaddr;
1730 rtalloc(&ro);
1731 if (ro.ro_rt == NULL) {
1732 error = EADDRNOTAVAIL;
1733 break;
1734 }
1735 ifp = ro.ro_rt->rt_ifp;
1736 rtfree(ro.ro_rt);
1737 } else {
1738 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1739 }
1740 /*
1741 * See if we found an interface, and confirm that it
1742 * supports multicast.
1743 */
1744 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1745 error = EADDRNOTAVAIL;
1746 break;
1747 }
1748 /*
1749 * See if the membership already exists or if all the
1750 * membership slots are full.
1751 */
1752 for (i = 0; i < imo->imo_num_memberships; ++i) {
1753 if (imo->imo_membership[i]->inm_ifp == ifp &&
1754 in_hosteq(imo->imo_membership[i]->inm_addr,
1755 mreq->imr_multiaddr))
1756 break;
1757 }
1758 if (i < imo->imo_num_memberships) {
1759 error = EADDRINUSE;
1760 break;
1761 }
1762 if (i == IP_MAX_MEMBERSHIPS) {
1763 error = ETOOMANYREFS;
1764 break;
1765 }
1766 /*
1767 * Everything looks good; add a new record to the multicast
1768 * address list for the given interface.
1769 */
1770 if ((imo->imo_membership[i] =
1771 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1772 error = ENOBUFS;
1773 break;
1774 }
1775 ++imo->imo_num_memberships;
1776 break;
1777
1778 case IP_DROP_MEMBERSHIP:
1779 /*
1780 * Drop a multicast group membership.
1781 * Group must be a valid IP multicast address.
1782 */
1783 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1784 error = EINVAL;
1785 break;
1786 }
1787 mreq = mtod(m, struct ip_mreq *);
1788 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1789 error = EINVAL;
1790 break;
1791 }
1792 /*
1793 * If an interface address was specified, get a pointer
1794 * to its ifnet structure.
1795 */
1796 if (in_nullhost(mreq->imr_interface))
1797 ifp = NULL;
1798 else {
1799 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1800 if (ifp == NULL) {
1801 error = EADDRNOTAVAIL;
1802 break;
1803 }
1804 }
1805 /*
1806 * Find the membership in the membership array.
1807 */
1808 for (i = 0; i < imo->imo_num_memberships; ++i) {
1809 if ((ifp == NULL ||
1810 imo->imo_membership[i]->inm_ifp == ifp) &&
1811 in_hosteq(imo->imo_membership[i]->inm_addr,
1812 mreq->imr_multiaddr))
1813 break;
1814 }
1815 if (i == imo->imo_num_memberships) {
1816 error = EADDRNOTAVAIL;
1817 break;
1818 }
1819 /*
1820 * Give up the multicast address record to which the
1821 * membership points.
1822 */
1823 in_delmulti(imo->imo_membership[i]);
1824 /*
1825 * Remove the gap in the membership array.
1826 */
1827 for (++i; i < imo->imo_num_memberships; ++i)
1828 imo->imo_membership[i-1] = imo->imo_membership[i];
1829 --imo->imo_num_memberships;
1830 break;
1831
1832 default:
1833 error = EOPNOTSUPP;
1834 break;
1835 }
1836
1837 /*
1838 * If all options have default values, no need to keep the mbuf.
1839 */
1840 if (imo->imo_multicast_ifp == NULL &&
1841 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1842 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1843 imo->imo_num_memberships == 0) {
1844 free(*imop, M_IPMOPTS);
1845 *imop = NULL;
1846 }
1847
1848 return (error);
1849 }
1850
1851 /*
1852 * Return the IP multicast options in response to user getsockopt().
1853 */
1854 int
1855 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1856 {
1857 u_char *ttl;
1858 u_char *loop;
1859 struct in_addr *addr;
1860 struct in_ifaddr *ia;
1861
1862 *mp = m_get(M_WAIT, MT_SOOPTS);
1863
1864 switch (optname) {
1865
1866 case IP_MULTICAST_IF:
1867 addr = mtod(*mp, struct in_addr *);
1868 (*mp)->m_len = sizeof(struct in_addr);
1869 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1870 *addr = zeroin_addr;
1871 else if (imo->imo_multicast_addr.s_addr) {
1872 /* return the value user has set */
1873 *addr = imo->imo_multicast_addr;
1874 } else {
1875 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1876 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1877 }
1878 return (0);
1879
1880 case IP_MULTICAST_TTL:
1881 ttl = mtod(*mp, u_char *);
1882 (*mp)->m_len = 1;
1883 *ttl = imo ? imo->imo_multicast_ttl
1884 : IP_DEFAULT_MULTICAST_TTL;
1885 return (0);
1886
1887 case IP_MULTICAST_LOOP:
1888 loop = mtod(*mp, u_char *);
1889 (*mp)->m_len = 1;
1890 *loop = imo ? imo->imo_multicast_loop
1891 : IP_DEFAULT_MULTICAST_LOOP;
1892 return (0);
1893
1894 default:
1895 return (EOPNOTSUPP);
1896 }
1897 }
1898
1899 /*
1900 * Discard the IP multicast options.
1901 */
1902 void
1903 ip_freemoptions(struct ip_moptions *imo)
1904 {
1905 int i;
1906
1907 if (imo != NULL) {
1908 for (i = 0; i < imo->imo_num_memberships; ++i)
1909 in_delmulti(imo->imo_membership[i]);
1910 free(imo, M_IPMOPTS);
1911 }
1912 }
1913
1914 /*
1915 * Routine called from ip_output() to loop back a copy of an IP multicast
1916 * packet to the input queue of a specified interface. Note that this
1917 * calls the output routine of the loopback "driver", but with an interface
1918 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1919 */
1920 static void
1921 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1922 {
1923 struct ip *ip;
1924 struct mbuf *copym;
1925
1926 copym = m_copy(m, 0, M_COPYALL);
1927 if (copym != NULL
1928 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1929 copym = m_pullup(copym, sizeof(struct ip));
1930 if (copym != NULL) {
1931 /*
1932 * We don't bother to fragment if the IP length is greater
1933 * than the interface's MTU. Can this possibly matter?
1934 */
1935 ip = mtod(copym, struct ip *);
1936
1937 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1938 in_delayed_cksum(copym);
1939 copym->m_pkthdr.csum_flags &=
1940 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1941 }
1942
1943 ip->ip_sum = 0;
1944 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1945 (void) looutput(ifp, copym, sintosa(dst), NULL);
1946 }
1947 }
1948