Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.150
      1 /*	$NetBSD: ip_output.c,v 1.150 2005/04/07 12:22:47 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.150 2005/04/07 12:22:47 yamt Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #ifdef FAST_IPSEC
    116 #include <sys/domain.h>
    117 #endif
    118 #include <sys/systm.h>
    119 #include <sys/proc.h>
    120 
    121 #include <net/if.h>
    122 #include <net/route.h>
    123 #include <net/pfil.h>
    124 
    125 #include <netinet/in.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/in_pcb.h>
    129 #include <netinet/in_var.h>
    130 #include <netinet/ip_var.h>
    131 
    132 #ifdef MROUTING
    133 #include <netinet/ip_mroute.h>
    134 #endif
    135 
    136 #include <machine/stdarg.h>
    137 
    138 #ifdef IPSEC
    139 #include <netinet6/ipsec.h>
    140 #include <netkey/key.h>
    141 #include <netkey/key_debug.h>
    142 #ifdef IPSEC_NAT_T
    143 #include <netinet/udp.h>
    144 #endif
    145 #endif /*IPSEC*/
    146 
    147 #ifdef FAST_IPSEC
    148 #include <netipsec/ipsec.h>
    149 #include <netipsec/key.h>
    150 #include <netipsec/xform.h>
    151 #endif	/* FAST_IPSEC*/
    152 
    153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
    156 
    157 #ifdef PFIL_HOOKS
    158 extern struct pfil_head inet_pfil_hook;			/* XXX */
    159 #endif
    160 
    161 /*
    162  * IP output.  The packet in mbuf chain m contains a skeletal IP
    163  * header (with len, off, ttl, proto, tos, src, dst).
    164  * The mbuf chain containing the packet will be freed.
    165  * The mbuf opt, if present, will not be freed.
    166  */
    167 int
    168 ip_output(struct mbuf *m0, ...)
    169 {
    170 	struct ip *ip;
    171 	struct ifnet *ifp;
    172 	struct mbuf *m = m0;
    173 	int hlen = sizeof (struct ip);
    174 	int len, error = 0;
    175 	struct route iproute;
    176 	struct sockaddr_in *dst;
    177 	struct in_ifaddr *ia;
    178 	struct mbuf *opt;
    179 	struct route *ro;
    180 	int flags, sw_csum;
    181 	int *mtu_p;
    182 	u_long mtu;
    183 	struct ip_moptions *imo;
    184 	struct socket *so;
    185 	va_list ap;
    186 #ifdef IPSEC
    187 	struct secpolicy *sp = NULL;
    188 #ifdef IPSEC_NAT_T
    189 	int natt_frag = 0;
    190 #endif
    191 #endif /*IPSEC*/
    192 #ifdef FAST_IPSEC
    193 	struct inpcb *inp;
    194 	struct m_tag *mtag;
    195 	struct secpolicy *sp = NULL;
    196 	struct tdb_ident *tdbi;
    197 	int s;
    198 #endif
    199 	u_int16_t ip_len;
    200 
    201 	len = 0;
    202 	va_start(ap, m0);
    203 	opt = va_arg(ap, struct mbuf *);
    204 	ro = va_arg(ap, struct route *);
    205 	flags = va_arg(ap, int);
    206 	imo = va_arg(ap, struct ip_moptions *);
    207 	so = va_arg(ap, struct socket *);
    208 	if (flags & IP_RETURNMTU)
    209 		mtu_p = va_arg(ap, int *);
    210 	else
    211 		mtu_p = NULL;
    212 	va_end(ap);
    213 
    214 	MCLAIM(m, &ip_tx_mowner);
    215 #ifdef FAST_IPSEC
    216 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    217 		inp = (struct inpcb *)so->so_pcb;
    218 	else
    219 		inp = NULL;
    220 #endif /* FAST_IPSEC */
    221 
    222 #ifdef	DIAGNOSTIC
    223 	if ((m->m_flags & M_PKTHDR) == 0)
    224 		panic("ip_output no HDR");
    225 #endif
    226 	if (opt) {
    227 		m = ip_insertoptions(m, opt, &len);
    228 		if (len >= sizeof(struct ip))
    229 			hlen = len;
    230 	}
    231 	ip = mtod(m, struct ip *);
    232 	/*
    233 	 * Fill in IP header.
    234 	 */
    235 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    236 		ip->ip_v = IPVERSION;
    237 		ip->ip_off = htons(0);
    238 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    239 			ip->ip_id = ip_newid();
    240 		} else {
    241 
    242 			/*
    243 			 * TSO capable interfaces (typically?) increment
    244 			 * ip_id for each segment.
    245 			 * "allocate" enough ids here to increase the chance
    246 			 * for them to be unique.
    247 			 *
    248 			 * note that the following calculation is not
    249 			 * needed to be precise.  wasting some ip_id is fine.
    250 			 */
    251 
    252 			unsigned int segsz = m->m_pkthdr.segsz;
    253 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    254 			unsigned int num = howmany(datasz, segsz);
    255 
    256 			ip->ip_id = ip_newid_range(num);
    257 		}
    258 		ip->ip_hl = hlen >> 2;
    259 		ipstat.ips_localout++;
    260 	} else {
    261 		hlen = ip->ip_hl << 2;
    262 	}
    263 	/*
    264 	 * Route packet.
    265 	 */
    266 	if (ro == 0) {
    267 		ro = &iproute;
    268 		bzero((caddr_t)ro, sizeof (*ro));
    269 	}
    270 	dst = satosin(&ro->ro_dst);
    271 	/*
    272 	 * If there is a cached route,
    273 	 * check that it is to the same destination
    274 	 * and is still up.  If not, free it and try again.
    275 	 * The address family should also be checked in case of sharing the
    276 	 * cache with IPv6.
    277 	 */
    278 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    279 	    dst->sin_family != AF_INET ||
    280 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    281 		RTFREE(ro->ro_rt);
    282 		ro->ro_rt = (struct rtentry *)0;
    283 	}
    284 	if (ro->ro_rt == 0) {
    285 		bzero(dst, sizeof(*dst));
    286 		dst->sin_family = AF_INET;
    287 		dst->sin_len = sizeof(*dst);
    288 		dst->sin_addr = ip->ip_dst;
    289 	}
    290 	/*
    291 	 * If routing to interface only,
    292 	 * short circuit routing lookup.
    293 	 */
    294 	if (flags & IP_ROUTETOIF) {
    295 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    296 			ipstat.ips_noroute++;
    297 			error = ENETUNREACH;
    298 			goto bad;
    299 		}
    300 		ifp = ia->ia_ifp;
    301 		mtu = ifp->if_mtu;
    302 		ip->ip_ttl = 1;
    303 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    304 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    305 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    306 		ifp = imo->imo_multicast_ifp;
    307 		mtu = ifp->if_mtu;
    308 		IFP_TO_IA(ifp, ia);
    309 	} else {
    310 		if (ro->ro_rt == 0)
    311 			rtalloc(ro);
    312 		if (ro->ro_rt == 0) {
    313 			ipstat.ips_noroute++;
    314 			error = EHOSTUNREACH;
    315 			goto bad;
    316 		}
    317 		ia = ifatoia(ro->ro_rt->rt_ifa);
    318 		ifp = ro->ro_rt->rt_ifp;
    319 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    320 			mtu = ifp->if_mtu;
    321 		ro->ro_rt->rt_use++;
    322 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    323 			dst = satosin(ro->ro_rt->rt_gateway);
    324 	}
    325 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    326 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    327 		struct in_multi *inm;
    328 
    329 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    330 			M_BCAST : M_MCAST;
    331 		/*
    332 		 * IP destination address is multicast.  Make sure "dst"
    333 		 * still points to the address in "ro".  (It may have been
    334 		 * changed to point to a gateway address, above.)
    335 		 */
    336 		dst = satosin(&ro->ro_dst);
    337 		/*
    338 		 * See if the caller provided any multicast options
    339 		 */
    340 		if (imo != NULL)
    341 			ip->ip_ttl = imo->imo_multicast_ttl;
    342 		else
    343 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    344 
    345 		/*
    346 		 * if we don't know the outgoing ifp yet, we can't generate
    347 		 * output
    348 		 */
    349 		if (!ifp) {
    350 			ipstat.ips_noroute++;
    351 			error = ENETUNREACH;
    352 			goto bad;
    353 		}
    354 
    355 		/*
    356 		 * If the packet is multicast or broadcast, confirm that
    357 		 * the outgoing interface can transmit it.
    358 		 */
    359 		if (((m->m_flags & M_MCAST) &&
    360 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    361 		    ((m->m_flags & M_BCAST) &&
    362 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    363 			ipstat.ips_noroute++;
    364 			error = ENETUNREACH;
    365 			goto bad;
    366 		}
    367 		/*
    368 		 * If source address not specified yet, use an address
    369 		 * of outgoing interface.
    370 		 */
    371 		if (in_nullhost(ip->ip_src)) {
    372 			struct in_ifaddr *ia;
    373 
    374 			IFP_TO_IA(ifp, ia);
    375 			if (!ia) {
    376 				error = EADDRNOTAVAIL;
    377 				goto bad;
    378 			}
    379 			ip->ip_src = ia->ia_addr.sin_addr;
    380 		}
    381 
    382 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    383 		if (inm != NULL &&
    384 		   (imo == NULL || imo->imo_multicast_loop)) {
    385 			/*
    386 			 * If we belong to the destination multicast group
    387 			 * on the outgoing interface, and the caller did not
    388 			 * forbid loopback, loop back a copy.
    389 			 */
    390 			ip_mloopback(ifp, m, dst);
    391 		}
    392 #ifdef MROUTING
    393 		else {
    394 			/*
    395 			 * If we are acting as a multicast router, perform
    396 			 * multicast forwarding as if the packet had just
    397 			 * arrived on the interface to which we are about
    398 			 * to send.  The multicast forwarding function
    399 			 * recursively calls this function, using the
    400 			 * IP_FORWARDING flag to prevent infinite recursion.
    401 			 *
    402 			 * Multicasts that are looped back by ip_mloopback(),
    403 			 * above, will be forwarded by the ip_input() routine,
    404 			 * if necessary.
    405 			 */
    406 			extern struct socket *ip_mrouter;
    407 
    408 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    409 				if (ip_mforward(m, ifp) != 0) {
    410 					m_freem(m);
    411 					goto done;
    412 				}
    413 			}
    414 		}
    415 #endif
    416 		/*
    417 		 * Multicasts with a time-to-live of zero may be looped-
    418 		 * back, above, but must not be transmitted on a network.
    419 		 * Also, multicasts addressed to the loopback interface
    420 		 * are not sent -- the above call to ip_mloopback() will
    421 		 * loop back a copy if this host actually belongs to the
    422 		 * destination group on the loopback interface.
    423 		 */
    424 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    425 			m_freem(m);
    426 			goto done;
    427 		}
    428 
    429 		goto sendit;
    430 	}
    431 #ifndef notdef
    432 	/*
    433 	 * If source address not specified yet, use address
    434 	 * of outgoing interface.
    435 	 */
    436 	if (in_nullhost(ip->ip_src))
    437 		ip->ip_src = ia->ia_addr.sin_addr;
    438 #endif
    439 
    440 	/*
    441 	 * packets with Class-D address as source are not valid per
    442 	 * RFC 1112
    443 	 */
    444 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    445 		ipstat.ips_odropped++;
    446 		error = EADDRNOTAVAIL;
    447 		goto bad;
    448 	}
    449 
    450 	/*
    451 	 * Look for broadcast address and
    452 	 * and verify user is allowed to send
    453 	 * such a packet.
    454 	 */
    455 	if (in_broadcast(dst->sin_addr, ifp)) {
    456 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    457 			error = EADDRNOTAVAIL;
    458 			goto bad;
    459 		}
    460 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    461 			error = EACCES;
    462 			goto bad;
    463 		}
    464 		/* don't allow broadcast messages to be fragmented */
    465 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    466 			error = EMSGSIZE;
    467 			goto bad;
    468 		}
    469 		m->m_flags |= M_BCAST;
    470 	} else
    471 		m->m_flags &= ~M_BCAST;
    472 
    473 sendit:
    474 	/*
    475 	 * If we're doing Path MTU Discovery, we need to set DF unless
    476 	 * the route's MTU is locked.
    477 	 */
    478 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    479 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    480 		ip->ip_off |= htons(IP_DF);
    481 
    482 	/* Remember the current ip_len */
    483 	ip_len = ntohs(ip->ip_len);
    484 
    485 #ifdef IPSEC
    486 	/* get SP for this packet */
    487 	if (so == NULL)
    488 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    489 		    flags, &error);
    490 	else {
    491 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    492 					 IPSEC_DIR_OUTBOUND))
    493 			goto skip_ipsec;
    494 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    495 	}
    496 
    497 	if (sp == NULL) {
    498 		ipsecstat.out_inval++;
    499 		goto bad;
    500 	}
    501 
    502 	error = 0;
    503 
    504 	/* check policy */
    505 	switch (sp->policy) {
    506 	case IPSEC_POLICY_DISCARD:
    507 		/*
    508 		 * This packet is just discarded.
    509 		 */
    510 		ipsecstat.out_polvio++;
    511 		goto bad;
    512 
    513 	case IPSEC_POLICY_BYPASS:
    514 	case IPSEC_POLICY_NONE:
    515 		/* no need to do IPsec. */
    516 		goto skip_ipsec;
    517 
    518 	case IPSEC_POLICY_IPSEC:
    519 		if (sp->req == NULL) {
    520 			/* XXX should be panic ? */
    521 			printf("ip_output: No IPsec request specified.\n");
    522 			error = EINVAL;
    523 			goto bad;
    524 		}
    525 		break;
    526 
    527 	case IPSEC_POLICY_ENTRUST:
    528 	default:
    529 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    530 	}
    531 
    532 #ifdef IPSEC_NAT_T
    533 	/*
    534 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    535 	 * we'll do it on each fragmented packet.
    536 	 */
    537 	if (sp->req->sav &&
    538 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    539 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    540 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    541 			natt_frag = 1;
    542 			mtu = sp->req->sav->esp_frag;
    543 			goto skip_ipsec;
    544 		}
    545 	}
    546 #endif /* IPSEC_NAT_T */
    547 
    548 	/*
    549 	 * ipsec4_output() expects ip_len and ip_off in network
    550 	 * order.  They have been set to network order above.
    551 	 */
    552 
    553     {
    554 	struct ipsec_output_state state;
    555 	bzero(&state, sizeof(state));
    556 	state.m = m;
    557 	if (flags & IP_ROUTETOIF) {
    558 		state.ro = &iproute;
    559 		bzero(&iproute, sizeof(iproute));
    560 	} else
    561 		state.ro = ro;
    562 	state.dst = (struct sockaddr *)dst;
    563 
    564 	/*
    565 	 * We can't defer the checksum of payload data if
    566 	 * we're about to encrypt/authenticate it.
    567 	 *
    568 	 * XXX When we support crypto offloading functions of
    569 	 * XXX network interfaces, we need to reconsider this,
    570 	 * XXX since it's likely that they'll support checksumming,
    571 	 * XXX as well.
    572 	 */
    573 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    574 		in_delayed_cksum(m);
    575 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    576 	}
    577 
    578 	error = ipsec4_output(&state, sp, flags);
    579 
    580 	m = state.m;
    581 	if (flags & IP_ROUTETOIF) {
    582 		/*
    583 		 * if we have tunnel mode SA, we may need to ignore
    584 		 * IP_ROUTETOIF.
    585 		 */
    586 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    587 			flags &= ~IP_ROUTETOIF;
    588 			ro = state.ro;
    589 		}
    590 	} else
    591 		ro = state.ro;
    592 	dst = (struct sockaddr_in *)state.dst;
    593 	if (error) {
    594 		/* mbuf is already reclaimed in ipsec4_output. */
    595 		m0 = NULL;
    596 		switch (error) {
    597 		case EHOSTUNREACH:
    598 		case ENETUNREACH:
    599 		case EMSGSIZE:
    600 		case ENOBUFS:
    601 		case ENOMEM:
    602 			break;
    603 		default:
    604 			printf("ip4_output (ipsec): error code %d\n", error);
    605 			/*fall through*/
    606 		case ENOENT:
    607 			/* don't show these error codes to the user */
    608 			error = 0;
    609 			break;
    610 		}
    611 		goto bad;
    612 	}
    613 
    614 	/* be sure to update variables that are affected by ipsec4_output() */
    615 	ip = mtod(m, struct ip *);
    616 	hlen = ip->ip_hl << 2;
    617 	ip_len = ntohs(ip->ip_len);
    618 
    619 	if (ro->ro_rt == NULL) {
    620 		if ((flags & IP_ROUTETOIF) == 0) {
    621 			printf("ip_output: "
    622 				"can't update route after IPsec processing\n");
    623 			error = EHOSTUNREACH;	/*XXX*/
    624 			goto bad;
    625 		}
    626 	} else {
    627 		/* nobody uses ia beyond here */
    628 		if (state.encap) {
    629 			ifp = ro->ro_rt->rt_ifp;
    630 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    631 				mtu = ifp->if_mtu;
    632 		}
    633 	}
    634     }
    635 skip_ipsec:
    636 #endif /*IPSEC*/
    637 #ifdef FAST_IPSEC
    638 	/*
    639 	 * Check the security policy (SP) for the packet and, if
    640 	 * required, do IPsec-related processing.  There are two
    641 	 * cases here; the first time a packet is sent through
    642 	 * it will be untagged and handled by ipsec4_checkpolicy.
    643 	 * If the packet is resubmitted to ip_output (e.g. after
    644 	 * AH, ESP, etc. processing), there will be a tag to bypass
    645 	 * the lookup and related policy checking.
    646 	 */
    647 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    648 	s = splsoftnet();
    649 	if (mtag != NULL) {
    650 		tdbi = (struct tdb_ident *)(mtag + 1);
    651 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    652 		if (sp == NULL)
    653 			error = -EINVAL;	/* force silent drop */
    654 		m_tag_delete(m, mtag);
    655 	} else {
    656 		if (inp != NULL &&
    657 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    658 			goto spd_done;
    659 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    660 					&error, inp);
    661 	}
    662 	/*
    663 	 * There are four return cases:
    664 	 *    sp != NULL	 	    apply IPsec policy
    665 	 *    sp == NULL, error == 0	    no IPsec handling needed
    666 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    667 	 *    sp == NULL, error != 0	    discard packet, report error
    668 	 */
    669 	if (sp != NULL) {
    670 		/* Loop detection, check if ipsec processing already done */
    671 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    672 		for (mtag = m_tag_first(m); mtag != NULL;
    673 		     mtag = m_tag_next(m, mtag)) {
    674 #ifdef MTAG_ABI_COMPAT
    675 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    676 				continue;
    677 #endif
    678 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    679 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    680 				continue;
    681 			/*
    682 			 * Check if policy has an SA associated with it.
    683 			 * This can happen when an SP has yet to acquire
    684 			 * an SA; e.g. on first reference.  If it occurs,
    685 			 * then we let ipsec4_process_packet do its thing.
    686 			 */
    687 			if (sp->req->sav == NULL)
    688 				break;
    689 			tdbi = (struct tdb_ident *)(mtag + 1);
    690 			if (tdbi->spi == sp->req->sav->spi &&
    691 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    692 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    693 				 sizeof (union sockaddr_union)) == 0) {
    694 				/*
    695 				 * No IPsec processing is needed, free
    696 				 * reference to SP.
    697 				 *
    698 				 * NB: null pointer to avoid free at
    699 				 *     done: below.
    700 				 */
    701 				KEY_FREESP(&sp), sp = NULL;
    702 				splx(s);
    703 				goto spd_done;
    704 			}
    705 		}
    706 
    707 		/*
    708 		 * Do delayed checksums now because we send before
    709 		 * this is done in the normal processing path.
    710 		 */
    711 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    712 			in_delayed_cksum(m);
    713 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    714 		}
    715 
    716 #ifdef __FreeBSD__
    717 		ip->ip_len = htons(ip->ip_len);
    718 		ip->ip_off = htons(ip->ip_off);
    719 #endif
    720 
    721 		/* NB: callee frees mbuf */
    722 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    723 		/*
    724 		 * Preserve KAME behaviour: ENOENT can be returned
    725 		 * when an SA acquire is in progress.  Don't propagate
    726 		 * this to user-level; it confuses applications.
    727 		 *
    728 		 * XXX this will go away when the SADB is redone.
    729 		 */
    730 		if (error == ENOENT)
    731 			error = 0;
    732 		splx(s);
    733 		goto done;
    734 	} else {
    735 		splx(s);
    736 
    737 		if (error != 0) {
    738 			/*
    739 			 * Hack: -EINVAL is used to signal that a packet
    740 			 * should be silently discarded.  This is typically
    741 			 * because we asked key management for an SA and
    742 			 * it was delayed (e.g. kicked up to IKE).
    743 			 */
    744 			if (error == -EINVAL)
    745 				error = 0;
    746 			goto bad;
    747 		} else {
    748 			/* No IPsec processing for this packet. */
    749 		}
    750 #ifdef notyet
    751 		/*
    752 		 * If deferred crypto processing is needed, check that
    753 		 * the interface supports it.
    754 		 */
    755 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    756 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    757 			/* notify IPsec to do its own crypto */
    758 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    759 			error = EHOSTUNREACH;
    760 			goto bad;
    761 		}
    762 #endif
    763 	}
    764 spd_done:
    765 #endif /* FAST_IPSEC */
    766 
    767 #ifdef PFIL_HOOKS
    768 	/*
    769 	 * Run through list of hooks for output packets.
    770 	 */
    771 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    772 		goto done;
    773 	if (m == NULL)
    774 		goto done;
    775 
    776 	ip = mtod(m, struct ip *);
    777 	hlen = ip->ip_hl << 2;
    778 #endif /* PFIL_HOOKS */
    779 
    780 	m->m_pkthdr.csum_data |= hlen << 16;
    781 
    782 #if IFA_STATS
    783 	/*
    784 	 * search for the source address structure to
    785 	 * maintain output statistics.
    786 	 */
    787 	INADDR_TO_IA(ip->ip_src, ia);
    788 #endif
    789 
    790 	/* Maybe skip checksums on loopback interfaces. */
    791 	if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
    792 			   ip_do_loopback_cksum))
    793 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    794 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    795 	/*
    796 	 * If small enough for mtu of path, or if using TCP segmentation
    797 	 * offload, can just send directly.
    798 	 */
    799 	if (ip_len <= mtu ||
    800 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    801 #if IFA_STATS
    802 		if (ia)
    803 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    804 #endif
    805 		/*
    806 		 * Always initialize the sum to 0!  Some HW assisted
    807 		 * checksumming requires this.
    808 		 */
    809 		ip->ip_sum = 0;
    810 
    811 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    812 			/*
    813 			 * Perform any checksums that the hardware can't do
    814 			 * for us.
    815 			 *
    816 			 * XXX Does any hardware require the {th,uh}_sum
    817 			 * XXX fields to be 0?
    818 			 */
    819 			if (sw_csum & M_CSUM_IPv4) {
    820 				ip->ip_sum = in_cksum(m, hlen);
    821 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    822 			}
    823 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    824 				in_delayed_cksum(m);
    825 				m->m_pkthdr.csum_flags &=
    826 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    827 			}
    828 		}
    829 
    830 #ifdef IPSEC
    831 		/* clean ipsec history once it goes out of the node */
    832 		ipsec_delaux(m);
    833 #endif
    834 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    835 		goto done;
    836 	}
    837 
    838 	/*
    839 	 * We can't use HW checksumming if we're about to
    840 	 * to fragment the packet.
    841 	 *
    842 	 * XXX Some hardware can do this.
    843 	 */
    844 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    845 		in_delayed_cksum(m);
    846 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    847 	}
    848 
    849 	/*
    850 	 * Too large for interface; fragment if possible.
    851 	 * Must be able to put at least 8 bytes per fragment.
    852 	 */
    853 	if (ntohs(ip->ip_off) & IP_DF) {
    854 		if (flags & IP_RETURNMTU)
    855 			*mtu_p = mtu;
    856 		error = EMSGSIZE;
    857 		ipstat.ips_cantfrag++;
    858 		goto bad;
    859 	}
    860 
    861 	error = ip_fragment(m, ifp, mtu);
    862 	if (error) {
    863 		m = NULL;
    864 		goto bad;
    865 	}
    866 
    867 	for (; m; m = m0) {
    868 		m0 = m->m_nextpkt;
    869 		m->m_nextpkt = 0;
    870 		if (error == 0) {
    871 #if IFA_STATS
    872 			if (ia)
    873 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    874 				    ntohs(ip->ip_len);
    875 #endif
    876 #ifdef IPSEC
    877 			/* clean ipsec history once it goes out of the node */
    878 			ipsec_delaux(m);
    879 
    880 #ifdef IPSEC_NAT_T
    881 			/*
    882 			 * If we get there, the packet has not been handeld by
    883 			 * IPSec whereas it should have. Now that it has been
    884 			 * fragmented, re-inject it in ip_output so that IPsec
    885 			 * processing can occur.
    886 			 */
    887 			if (natt_frag) {
    888 				error = ip_output(m, opt,
    889 				    ro, flags, imo, so, mtu_p);
    890 			} else
    891 #endif /* IPSEC_NAT_T */
    892 #endif /* IPSEC */
    893 			{
    894 				KASSERT((m->m_pkthdr.csum_flags &
    895 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    896 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
    897 				    ro->ro_rt);
    898 			}
    899 		} else
    900 			m_freem(m);
    901 	}
    902 
    903 	if (error == 0)
    904 		ipstat.ips_fragmented++;
    905 done:
    906 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
    907 		RTFREE(ro->ro_rt);
    908 		ro->ro_rt = 0;
    909 	}
    910 
    911 #ifdef IPSEC
    912 	if (sp != NULL) {
    913 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    914 			printf("DP ip_output call free SP:%p\n", sp));
    915 		key_freesp(sp);
    916 	}
    917 #endif /* IPSEC */
    918 #ifdef FAST_IPSEC
    919 	if (sp != NULL)
    920 		KEY_FREESP(&sp);
    921 #endif /* FAST_IPSEC */
    922 
    923 	return (error);
    924 bad:
    925 	m_freem(m);
    926 	goto done;
    927 }
    928 
    929 int
    930 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    931 {
    932 	struct ip *ip, *mhip;
    933 	struct mbuf *m0;
    934 	int len, hlen, off;
    935 	int mhlen, firstlen;
    936 	struct mbuf **mnext;
    937 	int sw_csum = m->m_pkthdr.csum_flags;
    938 	int fragments = 0;
    939 	int s;
    940 	int error = 0;
    941 
    942 	ip = mtod(m, struct ip *);
    943 	hlen = ip->ip_hl << 2;
    944 	if (ifp != NULL)
    945 		sw_csum &= ~ifp->if_csum_flags_tx;
    946 
    947 	len = (mtu - hlen) &~ 7;
    948 	if (len < 8) {
    949 		m_freem(m);
    950 		return (EMSGSIZE);
    951 	}
    952 
    953 	firstlen = len;
    954 	mnext = &m->m_nextpkt;
    955 
    956 	/*
    957 	 * Loop through length of segment after first fragment,
    958 	 * make new header and copy data of each part and link onto chain.
    959 	 */
    960 	m0 = m;
    961 	mhlen = sizeof (struct ip);
    962 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    963 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    964 		if (m == 0) {
    965 			error = ENOBUFS;
    966 			ipstat.ips_odropped++;
    967 			goto sendorfree;
    968 		}
    969 		MCLAIM(m, m0->m_owner);
    970 		*mnext = m;
    971 		mnext = &m->m_nextpkt;
    972 		m->m_data += max_linkhdr;
    973 		mhip = mtod(m, struct ip *);
    974 		*mhip = *ip;
    975 		/* we must inherit MCAST and BCAST flags */
    976 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    977 		if (hlen > sizeof (struct ip)) {
    978 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    979 			mhip->ip_hl = mhlen >> 2;
    980 		}
    981 		m->m_len = mhlen;
    982 		mhip->ip_off = ((off - hlen) >> 3) +
    983 		    (ntohs(ip->ip_off) & ~IP_MF);
    984 		if (ip->ip_off & htons(IP_MF))
    985 			mhip->ip_off |= IP_MF;
    986 		if (off + len >= ntohs(ip->ip_len))
    987 			len = ntohs(ip->ip_len) - off;
    988 		else
    989 			mhip->ip_off |= IP_MF;
    990 		HTONS(mhip->ip_off);
    991 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
    992 		m->m_next = m_copy(m0, off, len);
    993 		if (m->m_next == 0) {
    994 			error = ENOBUFS;	/* ??? */
    995 			ipstat.ips_odropped++;
    996 			goto sendorfree;
    997 		}
    998 		m->m_pkthdr.len = mhlen + len;
    999 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1000 		mhip->ip_sum = 0;
   1001 		if (sw_csum & M_CSUM_IPv4) {
   1002 			mhip->ip_sum = in_cksum(m, mhlen);
   1003 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1004 		} else {
   1005 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1006 			m->m_pkthdr.csum_data |= mhlen << 16;
   1007 		}
   1008 		ipstat.ips_ofragments++;
   1009 		fragments++;
   1010 	}
   1011 	/*
   1012 	 * Update first fragment by trimming what's been copied out
   1013 	 * and updating header, then send each fragment (in order).
   1014 	 */
   1015 	m = m0;
   1016 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1017 	m->m_pkthdr.len = hlen + firstlen;
   1018 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1019 	ip->ip_off |= htons(IP_MF);
   1020 	ip->ip_sum = 0;
   1021 	if (sw_csum & M_CSUM_IPv4) {
   1022 		ip->ip_sum = in_cksum(m, hlen);
   1023 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1024 	} else {
   1025 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1026 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1027 			sizeof(struct ip));
   1028 	}
   1029 sendorfree:
   1030 	/*
   1031 	 * If there is no room for all the fragments, don't queue
   1032 	 * any of them.
   1033 	 */
   1034 	if (ifp != NULL) {
   1035 		s = splnet();
   1036 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1037 		    error == 0) {
   1038 			error = ENOBUFS;
   1039 			ipstat.ips_odropped++;
   1040 			IFQ_INC_DROPS(&ifp->if_snd);
   1041 		}
   1042 		splx(s);
   1043 	}
   1044 	if (error) {
   1045 		for (m = m0; m; m = m0) {
   1046 			m0 = m->m_nextpkt;
   1047 			m->m_nextpkt = NULL;
   1048 			m_freem(m);
   1049 		}
   1050 	}
   1051 	return (error);
   1052 }
   1053 
   1054 /*
   1055  * Process a delayed payload checksum calculation.
   1056  */
   1057 void
   1058 in_delayed_cksum(struct mbuf *m)
   1059 {
   1060 	struct ip *ip;
   1061 	u_int16_t csum, offset;
   1062 
   1063 	ip = mtod(m, struct ip *);
   1064 	offset = ip->ip_hl << 2;
   1065 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1066 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1067 		csum = 0xffff;
   1068 
   1069 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1070 
   1071 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1072 		/* This happen when ip options were inserted
   1073 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1074 		    m->m_len, offset, ip->ip_p);
   1075 		 */
   1076 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1077 	} else
   1078 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1079 }
   1080 
   1081 /*
   1082  * Determine the maximum length of the options to be inserted;
   1083  * we would far rather allocate too much space rather than too little.
   1084  */
   1085 
   1086 u_int
   1087 ip_optlen(struct inpcb *inp)
   1088 {
   1089 	struct mbuf *m = inp->inp_options;
   1090 
   1091 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1092 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1093 	else
   1094 		return 0;
   1095 }
   1096 
   1097 
   1098 /*
   1099  * Insert IP options into preformed packet.
   1100  * Adjust IP destination as required for IP source routing,
   1101  * as indicated by a non-zero in_addr at the start of the options.
   1102  */
   1103 static struct mbuf *
   1104 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1105 {
   1106 	struct ipoption *p = mtod(opt, struct ipoption *);
   1107 	struct mbuf *n;
   1108 	struct ip *ip = mtod(m, struct ip *);
   1109 	unsigned optlen;
   1110 
   1111 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1112 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1113 		return (m);		/* XXX should fail */
   1114 	if (!in_nullhost(p->ipopt_dst))
   1115 		ip->ip_dst = p->ipopt_dst;
   1116 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1117 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1118 		if (n == 0)
   1119 			return (m);
   1120 		MCLAIM(n, m->m_owner);
   1121 		M_COPY_PKTHDR(n, m);
   1122 		m_tag_delete_chain(m, NULL);
   1123 		m->m_flags &= ~M_PKTHDR;
   1124 		m->m_len -= sizeof(struct ip);
   1125 		m->m_data += sizeof(struct ip);
   1126 		n->m_next = m;
   1127 		m = n;
   1128 		m->m_len = optlen + sizeof(struct ip);
   1129 		m->m_data += max_linkhdr;
   1130 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1131 	} else {
   1132 		m->m_data -= optlen;
   1133 		m->m_len += optlen;
   1134 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1135 	}
   1136 	m->m_pkthdr.len += optlen;
   1137 	ip = mtod(m, struct ip *);
   1138 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1139 	*phlen = sizeof(struct ip) + optlen;
   1140 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1141 	return (m);
   1142 }
   1143 
   1144 /*
   1145  * Copy options from ip to jp,
   1146  * omitting those not copied during fragmentation.
   1147  */
   1148 int
   1149 ip_optcopy(struct ip *ip, struct ip *jp)
   1150 {
   1151 	u_char *cp, *dp;
   1152 	int opt, optlen, cnt;
   1153 
   1154 	cp = (u_char *)(ip + 1);
   1155 	dp = (u_char *)(jp + 1);
   1156 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1157 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1158 		opt = cp[0];
   1159 		if (opt == IPOPT_EOL)
   1160 			break;
   1161 		if (opt == IPOPT_NOP) {
   1162 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1163 			*dp++ = IPOPT_NOP;
   1164 			optlen = 1;
   1165 			continue;
   1166 		}
   1167 #ifdef DIAGNOSTIC
   1168 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1169 			panic("malformed IPv4 option passed to ip_optcopy");
   1170 #endif
   1171 		optlen = cp[IPOPT_OLEN];
   1172 #ifdef DIAGNOSTIC
   1173 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1174 			panic("malformed IPv4 option passed to ip_optcopy");
   1175 #endif
   1176 		/* bogus lengths should have been caught by ip_dooptions */
   1177 		if (optlen > cnt)
   1178 			optlen = cnt;
   1179 		if (IPOPT_COPIED(opt)) {
   1180 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1181 			dp += optlen;
   1182 		}
   1183 	}
   1184 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1185 		*dp++ = IPOPT_EOL;
   1186 	return (optlen);
   1187 }
   1188 
   1189 /*
   1190  * IP socket option processing.
   1191  */
   1192 int
   1193 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1194     struct mbuf **mp)
   1195 {
   1196 	struct inpcb *inp = sotoinpcb(so);
   1197 	struct mbuf *m = *mp;
   1198 	int optval = 0;
   1199 	int error = 0;
   1200 #if defined(IPSEC) || defined(FAST_IPSEC)
   1201 	struct proc *p = curproc;	/*XXX*/
   1202 #endif
   1203 
   1204 	if (level != IPPROTO_IP) {
   1205 		error = EINVAL;
   1206 		if (op == PRCO_SETOPT && *mp)
   1207 			(void) m_free(*mp);
   1208 	} else switch (op) {
   1209 
   1210 	case PRCO_SETOPT:
   1211 		switch (optname) {
   1212 		case IP_OPTIONS:
   1213 #ifdef notyet
   1214 		case IP_RETOPTS:
   1215 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1216 #else
   1217 			return (ip_pcbopts(&inp->inp_options, m));
   1218 #endif
   1219 
   1220 		case IP_TOS:
   1221 		case IP_TTL:
   1222 		case IP_RECVOPTS:
   1223 		case IP_RECVRETOPTS:
   1224 		case IP_RECVDSTADDR:
   1225 		case IP_RECVIF:
   1226 			if (m == NULL || m->m_len != sizeof(int))
   1227 				error = EINVAL;
   1228 			else {
   1229 				optval = *mtod(m, int *);
   1230 				switch (optname) {
   1231 
   1232 				case IP_TOS:
   1233 					inp->inp_ip.ip_tos = optval;
   1234 					break;
   1235 
   1236 				case IP_TTL:
   1237 					inp->inp_ip.ip_ttl = optval;
   1238 					break;
   1239 #define	OPTSET(bit) \
   1240 	if (optval) \
   1241 		inp->inp_flags |= bit; \
   1242 	else \
   1243 		inp->inp_flags &= ~bit;
   1244 
   1245 				case IP_RECVOPTS:
   1246 					OPTSET(INP_RECVOPTS);
   1247 					break;
   1248 
   1249 				case IP_RECVRETOPTS:
   1250 					OPTSET(INP_RECVRETOPTS);
   1251 					break;
   1252 
   1253 				case IP_RECVDSTADDR:
   1254 					OPTSET(INP_RECVDSTADDR);
   1255 					break;
   1256 
   1257 				case IP_RECVIF:
   1258 					OPTSET(INP_RECVIF);
   1259 					break;
   1260 				}
   1261 			}
   1262 			break;
   1263 #undef OPTSET
   1264 
   1265 		case IP_MULTICAST_IF:
   1266 		case IP_MULTICAST_TTL:
   1267 		case IP_MULTICAST_LOOP:
   1268 		case IP_ADD_MEMBERSHIP:
   1269 		case IP_DROP_MEMBERSHIP:
   1270 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1271 			break;
   1272 
   1273 		case IP_PORTRANGE:
   1274 			if (m == 0 || m->m_len != sizeof(int))
   1275 				error = EINVAL;
   1276 			else {
   1277 				optval = *mtod(m, int *);
   1278 
   1279 				switch (optval) {
   1280 
   1281 				case IP_PORTRANGE_DEFAULT:
   1282 				case IP_PORTRANGE_HIGH:
   1283 					inp->inp_flags &= ~(INP_LOWPORT);
   1284 					break;
   1285 
   1286 				case IP_PORTRANGE_LOW:
   1287 					inp->inp_flags |= INP_LOWPORT;
   1288 					break;
   1289 
   1290 				default:
   1291 					error = EINVAL;
   1292 					break;
   1293 				}
   1294 			}
   1295 			break;
   1296 
   1297 #if defined(IPSEC) || defined(FAST_IPSEC)
   1298 		case IP_IPSEC_POLICY:
   1299 		{
   1300 			caddr_t req = NULL;
   1301 			size_t len = 0;
   1302 			int priv = 0;
   1303 
   1304 #ifdef __NetBSD__
   1305 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1306 				priv = 0;
   1307 			else
   1308 				priv = 1;
   1309 #else
   1310 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1311 #endif
   1312 			if (m) {
   1313 				req = mtod(m, caddr_t);
   1314 				len = m->m_len;
   1315 			}
   1316 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1317 			break;
   1318 		    }
   1319 #endif /*IPSEC*/
   1320 
   1321 		default:
   1322 			error = ENOPROTOOPT;
   1323 			break;
   1324 		}
   1325 		if (m)
   1326 			(void)m_free(m);
   1327 		break;
   1328 
   1329 	case PRCO_GETOPT:
   1330 		switch (optname) {
   1331 		case IP_OPTIONS:
   1332 		case IP_RETOPTS:
   1333 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1334 			MCLAIM(m, so->so_mowner);
   1335 			if (inp->inp_options) {
   1336 				m->m_len = inp->inp_options->m_len;
   1337 				bcopy(mtod(inp->inp_options, caddr_t),
   1338 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1339 			} else
   1340 				m->m_len = 0;
   1341 			break;
   1342 
   1343 		case IP_TOS:
   1344 		case IP_TTL:
   1345 		case IP_RECVOPTS:
   1346 		case IP_RECVRETOPTS:
   1347 		case IP_RECVDSTADDR:
   1348 		case IP_RECVIF:
   1349 		case IP_ERRORMTU:
   1350 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1351 			MCLAIM(m, so->so_mowner);
   1352 			m->m_len = sizeof(int);
   1353 			switch (optname) {
   1354 
   1355 			case IP_TOS:
   1356 				optval = inp->inp_ip.ip_tos;
   1357 				break;
   1358 
   1359 			case IP_TTL:
   1360 				optval = inp->inp_ip.ip_ttl;
   1361 				break;
   1362 
   1363 			case IP_ERRORMTU:
   1364 				optval = inp->inp_errormtu;
   1365 				break;
   1366 
   1367 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1368 
   1369 			case IP_RECVOPTS:
   1370 				optval = OPTBIT(INP_RECVOPTS);
   1371 				break;
   1372 
   1373 			case IP_RECVRETOPTS:
   1374 				optval = OPTBIT(INP_RECVRETOPTS);
   1375 				break;
   1376 
   1377 			case IP_RECVDSTADDR:
   1378 				optval = OPTBIT(INP_RECVDSTADDR);
   1379 				break;
   1380 
   1381 			case IP_RECVIF:
   1382 				optval = OPTBIT(INP_RECVIF);
   1383 				break;
   1384 			}
   1385 			*mtod(m, int *) = optval;
   1386 			break;
   1387 
   1388 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1389 		/* XXX: code broken */
   1390 		case IP_IPSEC_POLICY:
   1391 		{
   1392 			caddr_t req = NULL;
   1393 			size_t len = 0;
   1394 
   1395 			if (m) {
   1396 				req = mtod(m, caddr_t);
   1397 				len = m->m_len;
   1398 			}
   1399 			error = ipsec4_get_policy(inp, req, len, mp);
   1400 			break;
   1401 		}
   1402 #endif /*IPSEC*/
   1403 
   1404 		case IP_MULTICAST_IF:
   1405 		case IP_MULTICAST_TTL:
   1406 		case IP_MULTICAST_LOOP:
   1407 		case IP_ADD_MEMBERSHIP:
   1408 		case IP_DROP_MEMBERSHIP:
   1409 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1410 			if (*mp)
   1411 				MCLAIM(*mp, so->so_mowner);
   1412 			break;
   1413 
   1414 		case IP_PORTRANGE:
   1415 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1416 			MCLAIM(m, so->so_mowner);
   1417 			m->m_len = sizeof(int);
   1418 
   1419 			if (inp->inp_flags & INP_LOWPORT)
   1420 				optval = IP_PORTRANGE_LOW;
   1421 			else
   1422 				optval = IP_PORTRANGE_DEFAULT;
   1423 
   1424 			*mtod(m, int *) = optval;
   1425 			break;
   1426 
   1427 		default:
   1428 			error = ENOPROTOOPT;
   1429 			break;
   1430 		}
   1431 		break;
   1432 	}
   1433 	return (error);
   1434 }
   1435 
   1436 /*
   1437  * Set up IP options in pcb for insertion in output packets.
   1438  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1439  * with destination address if source routed.
   1440  */
   1441 int
   1442 #ifdef notyet
   1443 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1444 #else
   1445 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1446 #endif
   1447 {
   1448 	int cnt, optlen;
   1449 	u_char *cp;
   1450 	u_char opt;
   1451 
   1452 	/* turn off any old options */
   1453 	if (*pcbopt)
   1454 		(void)m_free(*pcbopt);
   1455 	*pcbopt = 0;
   1456 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1457 		/*
   1458 		 * Only turning off any previous options.
   1459 		 */
   1460 		if (m)
   1461 			(void)m_free(m);
   1462 		return (0);
   1463 	}
   1464 
   1465 #ifndef	__vax__
   1466 	if (m->m_len % sizeof(int32_t))
   1467 		goto bad;
   1468 #endif
   1469 	/*
   1470 	 * IP first-hop destination address will be stored before
   1471 	 * actual options; move other options back
   1472 	 * and clear it when none present.
   1473 	 */
   1474 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1475 		goto bad;
   1476 	cnt = m->m_len;
   1477 	m->m_len += sizeof(struct in_addr);
   1478 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1479 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1480 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1481 
   1482 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1483 		opt = cp[IPOPT_OPTVAL];
   1484 		if (opt == IPOPT_EOL)
   1485 			break;
   1486 		if (opt == IPOPT_NOP)
   1487 			optlen = 1;
   1488 		else {
   1489 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1490 				goto bad;
   1491 			optlen = cp[IPOPT_OLEN];
   1492 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1493 				goto bad;
   1494 		}
   1495 		switch (opt) {
   1496 
   1497 		default:
   1498 			break;
   1499 
   1500 		case IPOPT_LSRR:
   1501 		case IPOPT_SSRR:
   1502 			/*
   1503 			 * user process specifies route as:
   1504 			 *	->A->B->C->D
   1505 			 * D must be our final destination (but we can't
   1506 			 * check that since we may not have connected yet).
   1507 			 * A is first hop destination, which doesn't appear in
   1508 			 * actual IP option, but is stored before the options.
   1509 			 */
   1510 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1511 				goto bad;
   1512 			m->m_len -= sizeof(struct in_addr);
   1513 			cnt -= sizeof(struct in_addr);
   1514 			optlen -= sizeof(struct in_addr);
   1515 			cp[IPOPT_OLEN] = optlen;
   1516 			/*
   1517 			 * Move first hop before start of options.
   1518 			 */
   1519 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1520 			    sizeof(struct in_addr));
   1521 			/*
   1522 			 * Then copy rest of options back
   1523 			 * to close up the deleted entry.
   1524 			 */
   1525 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1526 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1527 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1528 			break;
   1529 		}
   1530 	}
   1531 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1532 		goto bad;
   1533 	*pcbopt = m;
   1534 	return (0);
   1535 
   1536 bad:
   1537 	(void)m_free(m);
   1538 	return (EINVAL);
   1539 }
   1540 
   1541 /*
   1542  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1543  */
   1544 static struct ifnet *
   1545 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1546 {
   1547 	int ifindex;
   1548 	struct ifnet *ifp = NULL;
   1549 	struct in_ifaddr *ia;
   1550 
   1551 	if (ifindexp)
   1552 		*ifindexp = 0;
   1553 	if (ntohl(a->s_addr) >> 24 == 0) {
   1554 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1555 		if (ifindex < 0 || if_indexlim <= ifindex)
   1556 			return NULL;
   1557 		ifp = ifindex2ifnet[ifindex];
   1558 		if (!ifp)
   1559 			return NULL;
   1560 		if (ifindexp)
   1561 			*ifindexp = ifindex;
   1562 	} else {
   1563 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1564 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1565 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1566 				ifp = ia->ia_ifp;
   1567 				break;
   1568 			}
   1569 		}
   1570 	}
   1571 	return ifp;
   1572 }
   1573 
   1574 /*
   1575  * Set the IP multicast options in response to user setsockopt().
   1576  */
   1577 int
   1578 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1579 {
   1580 	int error = 0;
   1581 	u_char loop;
   1582 	int i;
   1583 	struct in_addr addr;
   1584 	struct ip_mreq *mreq;
   1585 	struct ifnet *ifp;
   1586 	struct ip_moptions *imo = *imop;
   1587 	struct route ro;
   1588 	struct sockaddr_in *dst;
   1589 	int ifindex;
   1590 
   1591 	if (imo == NULL) {
   1592 		/*
   1593 		 * No multicast option buffer attached to the pcb;
   1594 		 * allocate one and initialize to default values.
   1595 		 */
   1596 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1597 		    M_WAITOK);
   1598 
   1599 		if (imo == NULL)
   1600 			return (ENOBUFS);
   1601 		*imop = imo;
   1602 		imo->imo_multicast_ifp = NULL;
   1603 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1604 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1605 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1606 		imo->imo_num_memberships = 0;
   1607 	}
   1608 
   1609 	switch (optname) {
   1610 
   1611 	case IP_MULTICAST_IF:
   1612 		/*
   1613 		 * Select the interface for outgoing multicast packets.
   1614 		 */
   1615 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1616 			error = EINVAL;
   1617 			break;
   1618 		}
   1619 		addr = *(mtod(m, struct in_addr *));
   1620 		/*
   1621 		 * INADDR_ANY is used to remove a previous selection.
   1622 		 * When no interface is selected, a default one is
   1623 		 * chosen every time a multicast packet is sent.
   1624 		 */
   1625 		if (in_nullhost(addr)) {
   1626 			imo->imo_multicast_ifp = NULL;
   1627 			break;
   1628 		}
   1629 		/*
   1630 		 * The selected interface is identified by its local
   1631 		 * IP address.  Find the interface and confirm that
   1632 		 * it supports multicasting.
   1633 		 */
   1634 		ifp = ip_multicast_if(&addr, &ifindex);
   1635 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1636 			error = EADDRNOTAVAIL;
   1637 			break;
   1638 		}
   1639 		imo->imo_multicast_ifp = ifp;
   1640 		if (ifindex)
   1641 			imo->imo_multicast_addr = addr;
   1642 		else
   1643 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1644 		break;
   1645 
   1646 	case IP_MULTICAST_TTL:
   1647 		/*
   1648 		 * Set the IP time-to-live for outgoing multicast packets.
   1649 		 */
   1650 		if (m == NULL || m->m_len != 1) {
   1651 			error = EINVAL;
   1652 			break;
   1653 		}
   1654 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
   1655 		break;
   1656 
   1657 	case IP_MULTICAST_LOOP:
   1658 		/*
   1659 		 * Set the loopback flag for outgoing multicast packets.
   1660 		 * Must be zero or one.
   1661 		 */
   1662 		if (m == NULL || m->m_len != 1 ||
   1663 		   (loop = *(mtod(m, u_char *))) > 1) {
   1664 			error = EINVAL;
   1665 			break;
   1666 		}
   1667 		imo->imo_multicast_loop = loop;
   1668 		break;
   1669 
   1670 	case IP_ADD_MEMBERSHIP:
   1671 		/*
   1672 		 * Add a multicast group membership.
   1673 		 * Group must be a valid IP multicast address.
   1674 		 */
   1675 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1676 			error = EINVAL;
   1677 			break;
   1678 		}
   1679 		mreq = mtod(m, struct ip_mreq *);
   1680 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1681 			error = EINVAL;
   1682 			break;
   1683 		}
   1684 		/*
   1685 		 * If no interface address was provided, use the interface of
   1686 		 * the route to the given multicast address.
   1687 		 */
   1688 		if (in_nullhost(mreq->imr_interface)) {
   1689 			bzero((caddr_t)&ro, sizeof(ro));
   1690 			ro.ro_rt = NULL;
   1691 			dst = satosin(&ro.ro_dst);
   1692 			dst->sin_len = sizeof(*dst);
   1693 			dst->sin_family = AF_INET;
   1694 			dst->sin_addr = mreq->imr_multiaddr;
   1695 			rtalloc(&ro);
   1696 			if (ro.ro_rt == NULL) {
   1697 				error = EADDRNOTAVAIL;
   1698 				break;
   1699 			}
   1700 			ifp = ro.ro_rt->rt_ifp;
   1701 			rtfree(ro.ro_rt);
   1702 		} else {
   1703 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1704 		}
   1705 		/*
   1706 		 * See if we found an interface, and confirm that it
   1707 		 * supports multicast.
   1708 		 */
   1709 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1710 			error = EADDRNOTAVAIL;
   1711 			break;
   1712 		}
   1713 		/*
   1714 		 * See if the membership already exists or if all the
   1715 		 * membership slots are full.
   1716 		 */
   1717 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1718 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1719 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1720 				      mreq->imr_multiaddr))
   1721 				break;
   1722 		}
   1723 		if (i < imo->imo_num_memberships) {
   1724 			error = EADDRINUSE;
   1725 			break;
   1726 		}
   1727 		if (i == IP_MAX_MEMBERSHIPS) {
   1728 			error = ETOOMANYREFS;
   1729 			break;
   1730 		}
   1731 		/*
   1732 		 * Everything looks good; add a new record to the multicast
   1733 		 * address list for the given interface.
   1734 		 */
   1735 		if ((imo->imo_membership[i] =
   1736 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1737 			error = ENOBUFS;
   1738 			break;
   1739 		}
   1740 		++imo->imo_num_memberships;
   1741 		break;
   1742 
   1743 	case IP_DROP_MEMBERSHIP:
   1744 		/*
   1745 		 * Drop a multicast group membership.
   1746 		 * Group must be a valid IP multicast address.
   1747 		 */
   1748 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1749 			error = EINVAL;
   1750 			break;
   1751 		}
   1752 		mreq = mtod(m, struct ip_mreq *);
   1753 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1754 			error = EINVAL;
   1755 			break;
   1756 		}
   1757 		/*
   1758 		 * If an interface address was specified, get a pointer
   1759 		 * to its ifnet structure.
   1760 		 */
   1761 		if (in_nullhost(mreq->imr_interface))
   1762 			ifp = NULL;
   1763 		else {
   1764 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1765 			if (ifp == NULL) {
   1766 				error = EADDRNOTAVAIL;
   1767 				break;
   1768 			}
   1769 		}
   1770 		/*
   1771 		 * Find the membership in the membership array.
   1772 		 */
   1773 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1774 			if ((ifp == NULL ||
   1775 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1776 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1777 				       mreq->imr_multiaddr))
   1778 				break;
   1779 		}
   1780 		if (i == imo->imo_num_memberships) {
   1781 			error = EADDRNOTAVAIL;
   1782 			break;
   1783 		}
   1784 		/*
   1785 		 * Give up the multicast address record to which the
   1786 		 * membership points.
   1787 		 */
   1788 		in_delmulti(imo->imo_membership[i]);
   1789 		/*
   1790 		 * Remove the gap in the membership array.
   1791 		 */
   1792 		for (++i; i < imo->imo_num_memberships; ++i)
   1793 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1794 		--imo->imo_num_memberships;
   1795 		break;
   1796 
   1797 	default:
   1798 		error = EOPNOTSUPP;
   1799 		break;
   1800 	}
   1801 
   1802 	/*
   1803 	 * If all options have default values, no need to keep the mbuf.
   1804 	 */
   1805 	if (imo->imo_multicast_ifp == NULL &&
   1806 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1807 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1808 	    imo->imo_num_memberships == 0) {
   1809 		free(*imop, M_IPMOPTS);
   1810 		*imop = NULL;
   1811 	}
   1812 
   1813 	return (error);
   1814 }
   1815 
   1816 /*
   1817  * Return the IP multicast options in response to user getsockopt().
   1818  */
   1819 int
   1820 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1821 {
   1822 	u_char *ttl;
   1823 	u_char *loop;
   1824 	struct in_addr *addr;
   1825 	struct in_ifaddr *ia;
   1826 
   1827 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1828 
   1829 	switch (optname) {
   1830 
   1831 	case IP_MULTICAST_IF:
   1832 		addr = mtod(*mp, struct in_addr *);
   1833 		(*mp)->m_len = sizeof(struct in_addr);
   1834 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1835 			*addr = zeroin_addr;
   1836 		else if (imo->imo_multicast_addr.s_addr) {
   1837 			/* return the value user has set */
   1838 			*addr = imo->imo_multicast_addr;
   1839 		} else {
   1840 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1841 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1842 		}
   1843 		return (0);
   1844 
   1845 	case IP_MULTICAST_TTL:
   1846 		ttl = mtod(*mp, u_char *);
   1847 		(*mp)->m_len = 1;
   1848 		*ttl = imo ? imo->imo_multicast_ttl
   1849 			   : IP_DEFAULT_MULTICAST_TTL;
   1850 		return (0);
   1851 
   1852 	case IP_MULTICAST_LOOP:
   1853 		loop = mtod(*mp, u_char *);
   1854 		(*mp)->m_len = 1;
   1855 		*loop = imo ? imo->imo_multicast_loop
   1856 			    : IP_DEFAULT_MULTICAST_LOOP;
   1857 		return (0);
   1858 
   1859 	default:
   1860 		return (EOPNOTSUPP);
   1861 	}
   1862 }
   1863 
   1864 /*
   1865  * Discard the IP multicast options.
   1866  */
   1867 void
   1868 ip_freemoptions(struct ip_moptions *imo)
   1869 {
   1870 	int i;
   1871 
   1872 	if (imo != NULL) {
   1873 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1874 			in_delmulti(imo->imo_membership[i]);
   1875 		free(imo, M_IPMOPTS);
   1876 	}
   1877 }
   1878 
   1879 /*
   1880  * Routine called from ip_output() to loop back a copy of an IP multicast
   1881  * packet to the input queue of a specified interface.  Note that this
   1882  * calls the output routine of the loopback "driver", but with an interface
   1883  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1884  */
   1885 static void
   1886 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
   1887 {
   1888 	struct ip *ip;
   1889 	struct mbuf *copym;
   1890 
   1891 	copym = m_copy(m, 0, M_COPYALL);
   1892 	if (copym != NULL
   1893 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1894 		copym = m_pullup(copym, sizeof(struct ip));
   1895 	if (copym != NULL) {
   1896 		/*
   1897 		 * We don't bother to fragment if the IP length is greater
   1898 		 * than the interface's MTU.  Can this possibly matter?
   1899 		 */
   1900 		ip = mtod(copym, struct ip *);
   1901 
   1902 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1903 			in_delayed_cksum(copym);
   1904 			copym->m_pkthdr.csum_flags &=
   1905 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1906 		}
   1907 
   1908 		ip->ip_sum = 0;
   1909 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1910 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1911 	}
   1912 }
   1913