ip_output.c revision 1.150 1 /* $NetBSD: ip_output.c,v 1.150 2005/04/07 12:22:47 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.150 2005/04/07 12:22:47 yamt Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131
132 #ifdef MROUTING
133 #include <netinet/ip_mroute.h>
134 #endif
135
136 #include <machine/stdarg.h>
137
138 #ifdef IPSEC
139 #include <netinet6/ipsec.h>
140 #include <netkey/key.h>
141 #include <netkey/key_debug.h>
142 #ifdef IPSEC_NAT_T
143 #include <netinet/udp.h>
144 #endif
145 #endif /*IPSEC*/
146
147 #ifdef FAST_IPSEC
148 #include <netipsec/ipsec.h>
149 #include <netipsec/key.h>
150 #include <netipsec/xform.h>
151 #endif /* FAST_IPSEC*/
152
153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
156
157 #ifdef PFIL_HOOKS
158 extern struct pfil_head inet_pfil_hook; /* XXX */
159 #endif
160
161 /*
162 * IP output. The packet in mbuf chain m contains a skeletal IP
163 * header (with len, off, ttl, proto, tos, src, dst).
164 * The mbuf chain containing the packet will be freed.
165 * The mbuf opt, if present, will not be freed.
166 */
167 int
168 ip_output(struct mbuf *m0, ...)
169 {
170 struct ip *ip;
171 struct ifnet *ifp;
172 struct mbuf *m = m0;
173 int hlen = sizeof (struct ip);
174 int len, error = 0;
175 struct route iproute;
176 struct sockaddr_in *dst;
177 struct in_ifaddr *ia;
178 struct mbuf *opt;
179 struct route *ro;
180 int flags, sw_csum;
181 int *mtu_p;
182 u_long mtu;
183 struct ip_moptions *imo;
184 struct socket *so;
185 va_list ap;
186 #ifdef IPSEC
187 struct secpolicy *sp = NULL;
188 #ifdef IPSEC_NAT_T
189 int natt_frag = 0;
190 #endif
191 #endif /*IPSEC*/
192 #ifdef FAST_IPSEC
193 struct inpcb *inp;
194 struct m_tag *mtag;
195 struct secpolicy *sp = NULL;
196 struct tdb_ident *tdbi;
197 int s;
198 #endif
199 u_int16_t ip_len;
200
201 len = 0;
202 va_start(ap, m0);
203 opt = va_arg(ap, struct mbuf *);
204 ro = va_arg(ap, struct route *);
205 flags = va_arg(ap, int);
206 imo = va_arg(ap, struct ip_moptions *);
207 so = va_arg(ap, struct socket *);
208 if (flags & IP_RETURNMTU)
209 mtu_p = va_arg(ap, int *);
210 else
211 mtu_p = NULL;
212 va_end(ap);
213
214 MCLAIM(m, &ip_tx_mowner);
215 #ifdef FAST_IPSEC
216 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
217 inp = (struct inpcb *)so->so_pcb;
218 else
219 inp = NULL;
220 #endif /* FAST_IPSEC */
221
222 #ifdef DIAGNOSTIC
223 if ((m->m_flags & M_PKTHDR) == 0)
224 panic("ip_output no HDR");
225 #endif
226 if (opt) {
227 m = ip_insertoptions(m, opt, &len);
228 if (len >= sizeof(struct ip))
229 hlen = len;
230 }
231 ip = mtod(m, struct ip *);
232 /*
233 * Fill in IP header.
234 */
235 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
236 ip->ip_v = IPVERSION;
237 ip->ip_off = htons(0);
238 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
239 ip->ip_id = ip_newid();
240 } else {
241
242 /*
243 * TSO capable interfaces (typically?) increment
244 * ip_id for each segment.
245 * "allocate" enough ids here to increase the chance
246 * for them to be unique.
247 *
248 * note that the following calculation is not
249 * needed to be precise. wasting some ip_id is fine.
250 */
251
252 unsigned int segsz = m->m_pkthdr.segsz;
253 unsigned int datasz = ntohs(ip->ip_len) - hlen;
254 unsigned int num = howmany(datasz, segsz);
255
256 ip->ip_id = ip_newid_range(num);
257 }
258 ip->ip_hl = hlen >> 2;
259 ipstat.ips_localout++;
260 } else {
261 hlen = ip->ip_hl << 2;
262 }
263 /*
264 * Route packet.
265 */
266 if (ro == 0) {
267 ro = &iproute;
268 bzero((caddr_t)ro, sizeof (*ro));
269 }
270 dst = satosin(&ro->ro_dst);
271 /*
272 * If there is a cached route,
273 * check that it is to the same destination
274 * and is still up. If not, free it and try again.
275 * The address family should also be checked in case of sharing the
276 * cache with IPv6.
277 */
278 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
279 dst->sin_family != AF_INET ||
280 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
281 RTFREE(ro->ro_rt);
282 ro->ro_rt = (struct rtentry *)0;
283 }
284 if (ro->ro_rt == 0) {
285 bzero(dst, sizeof(*dst));
286 dst->sin_family = AF_INET;
287 dst->sin_len = sizeof(*dst);
288 dst->sin_addr = ip->ip_dst;
289 }
290 /*
291 * If routing to interface only,
292 * short circuit routing lookup.
293 */
294 if (flags & IP_ROUTETOIF) {
295 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
296 ipstat.ips_noroute++;
297 error = ENETUNREACH;
298 goto bad;
299 }
300 ifp = ia->ia_ifp;
301 mtu = ifp->if_mtu;
302 ip->ip_ttl = 1;
303 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
304 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
305 imo != NULL && imo->imo_multicast_ifp != NULL) {
306 ifp = imo->imo_multicast_ifp;
307 mtu = ifp->if_mtu;
308 IFP_TO_IA(ifp, ia);
309 } else {
310 if (ro->ro_rt == 0)
311 rtalloc(ro);
312 if (ro->ro_rt == 0) {
313 ipstat.ips_noroute++;
314 error = EHOSTUNREACH;
315 goto bad;
316 }
317 ia = ifatoia(ro->ro_rt->rt_ifa);
318 ifp = ro->ro_rt->rt_ifp;
319 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
320 mtu = ifp->if_mtu;
321 ro->ro_rt->rt_use++;
322 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
323 dst = satosin(ro->ro_rt->rt_gateway);
324 }
325 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
326 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
327 struct in_multi *inm;
328
329 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
330 M_BCAST : M_MCAST;
331 /*
332 * IP destination address is multicast. Make sure "dst"
333 * still points to the address in "ro". (It may have been
334 * changed to point to a gateway address, above.)
335 */
336 dst = satosin(&ro->ro_dst);
337 /*
338 * See if the caller provided any multicast options
339 */
340 if (imo != NULL)
341 ip->ip_ttl = imo->imo_multicast_ttl;
342 else
343 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
344
345 /*
346 * if we don't know the outgoing ifp yet, we can't generate
347 * output
348 */
349 if (!ifp) {
350 ipstat.ips_noroute++;
351 error = ENETUNREACH;
352 goto bad;
353 }
354
355 /*
356 * If the packet is multicast or broadcast, confirm that
357 * the outgoing interface can transmit it.
358 */
359 if (((m->m_flags & M_MCAST) &&
360 (ifp->if_flags & IFF_MULTICAST) == 0) ||
361 ((m->m_flags & M_BCAST) &&
362 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
363 ipstat.ips_noroute++;
364 error = ENETUNREACH;
365 goto bad;
366 }
367 /*
368 * If source address not specified yet, use an address
369 * of outgoing interface.
370 */
371 if (in_nullhost(ip->ip_src)) {
372 struct in_ifaddr *ia;
373
374 IFP_TO_IA(ifp, ia);
375 if (!ia) {
376 error = EADDRNOTAVAIL;
377 goto bad;
378 }
379 ip->ip_src = ia->ia_addr.sin_addr;
380 }
381
382 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
383 if (inm != NULL &&
384 (imo == NULL || imo->imo_multicast_loop)) {
385 /*
386 * If we belong to the destination multicast group
387 * on the outgoing interface, and the caller did not
388 * forbid loopback, loop back a copy.
389 */
390 ip_mloopback(ifp, m, dst);
391 }
392 #ifdef MROUTING
393 else {
394 /*
395 * If we are acting as a multicast router, perform
396 * multicast forwarding as if the packet had just
397 * arrived on the interface to which we are about
398 * to send. The multicast forwarding function
399 * recursively calls this function, using the
400 * IP_FORWARDING flag to prevent infinite recursion.
401 *
402 * Multicasts that are looped back by ip_mloopback(),
403 * above, will be forwarded by the ip_input() routine,
404 * if necessary.
405 */
406 extern struct socket *ip_mrouter;
407
408 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
409 if (ip_mforward(m, ifp) != 0) {
410 m_freem(m);
411 goto done;
412 }
413 }
414 }
415 #endif
416 /*
417 * Multicasts with a time-to-live of zero may be looped-
418 * back, above, but must not be transmitted on a network.
419 * Also, multicasts addressed to the loopback interface
420 * are not sent -- the above call to ip_mloopback() will
421 * loop back a copy if this host actually belongs to the
422 * destination group on the loopback interface.
423 */
424 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
425 m_freem(m);
426 goto done;
427 }
428
429 goto sendit;
430 }
431 #ifndef notdef
432 /*
433 * If source address not specified yet, use address
434 * of outgoing interface.
435 */
436 if (in_nullhost(ip->ip_src))
437 ip->ip_src = ia->ia_addr.sin_addr;
438 #endif
439
440 /*
441 * packets with Class-D address as source are not valid per
442 * RFC 1112
443 */
444 if (IN_MULTICAST(ip->ip_src.s_addr)) {
445 ipstat.ips_odropped++;
446 error = EADDRNOTAVAIL;
447 goto bad;
448 }
449
450 /*
451 * Look for broadcast address and
452 * and verify user is allowed to send
453 * such a packet.
454 */
455 if (in_broadcast(dst->sin_addr, ifp)) {
456 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
457 error = EADDRNOTAVAIL;
458 goto bad;
459 }
460 if ((flags & IP_ALLOWBROADCAST) == 0) {
461 error = EACCES;
462 goto bad;
463 }
464 /* don't allow broadcast messages to be fragmented */
465 if (ntohs(ip->ip_len) > ifp->if_mtu) {
466 error = EMSGSIZE;
467 goto bad;
468 }
469 m->m_flags |= M_BCAST;
470 } else
471 m->m_flags &= ~M_BCAST;
472
473 sendit:
474 /*
475 * If we're doing Path MTU Discovery, we need to set DF unless
476 * the route's MTU is locked.
477 */
478 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
479 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
480 ip->ip_off |= htons(IP_DF);
481
482 /* Remember the current ip_len */
483 ip_len = ntohs(ip->ip_len);
484
485 #ifdef IPSEC
486 /* get SP for this packet */
487 if (so == NULL)
488 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
489 flags, &error);
490 else {
491 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
492 IPSEC_DIR_OUTBOUND))
493 goto skip_ipsec;
494 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
495 }
496
497 if (sp == NULL) {
498 ipsecstat.out_inval++;
499 goto bad;
500 }
501
502 error = 0;
503
504 /* check policy */
505 switch (sp->policy) {
506 case IPSEC_POLICY_DISCARD:
507 /*
508 * This packet is just discarded.
509 */
510 ipsecstat.out_polvio++;
511 goto bad;
512
513 case IPSEC_POLICY_BYPASS:
514 case IPSEC_POLICY_NONE:
515 /* no need to do IPsec. */
516 goto skip_ipsec;
517
518 case IPSEC_POLICY_IPSEC:
519 if (sp->req == NULL) {
520 /* XXX should be panic ? */
521 printf("ip_output: No IPsec request specified.\n");
522 error = EINVAL;
523 goto bad;
524 }
525 break;
526
527 case IPSEC_POLICY_ENTRUST:
528 default:
529 printf("ip_output: Invalid policy found. %d\n", sp->policy);
530 }
531
532 #ifdef IPSEC_NAT_T
533 /*
534 * NAT-T ESP fragmentation: don't do IPSec processing now,
535 * we'll do it on each fragmented packet.
536 */
537 if (sp->req->sav &&
538 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
539 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
540 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
541 natt_frag = 1;
542 mtu = sp->req->sav->esp_frag;
543 goto skip_ipsec;
544 }
545 }
546 #endif /* IPSEC_NAT_T */
547
548 /*
549 * ipsec4_output() expects ip_len and ip_off in network
550 * order. They have been set to network order above.
551 */
552
553 {
554 struct ipsec_output_state state;
555 bzero(&state, sizeof(state));
556 state.m = m;
557 if (flags & IP_ROUTETOIF) {
558 state.ro = &iproute;
559 bzero(&iproute, sizeof(iproute));
560 } else
561 state.ro = ro;
562 state.dst = (struct sockaddr *)dst;
563
564 /*
565 * We can't defer the checksum of payload data if
566 * we're about to encrypt/authenticate it.
567 *
568 * XXX When we support crypto offloading functions of
569 * XXX network interfaces, we need to reconsider this,
570 * XXX since it's likely that they'll support checksumming,
571 * XXX as well.
572 */
573 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
574 in_delayed_cksum(m);
575 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
576 }
577
578 error = ipsec4_output(&state, sp, flags);
579
580 m = state.m;
581 if (flags & IP_ROUTETOIF) {
582 /*
583 * if we have tunnel mode SA, we may need to ignore
584 * IP_ROUTETOIF.
585 */
586 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
587 flags &= ~IP_ROUTETOIF;
588 ro = state.ro;
589 }
590 } else
591 ro = state.ro;
592 dst = (struct sockaddr_in *)state.dst;
593 if (error) {
594 /* mbuf is already reclaimed in ipsec4_output. */
595 m0 = NULL;
596 switch (error) {
597 case EHOSTUNREACH:
598 case ENETUNREACH:
599 case EMSGSIZE:
600 case ENOBUFS:
601 case ENOMEM:
602 break;
603 default:
604 printf("ip4_output (ipsec): error code %d\n", error);
605 /*fall through*/
606 case ENOENT:
607 /* don't show these error codes to the user */
608 error = 0;
609 break;
610 }
611 goto bad;
612 }
613
614 /* be sure to update variables that are affected by ipsec4_output() */
615 ip = mtod(m, struct ip *);
616 hlen = ip->ip_hl << 2;
617 ip_len = ntohs(ip->ip_len);
618
619 if (ro->ro_rt == NULL) {
620 if ((flags & IP_ROUTETOIF) == 0) {
621 printf("ip_output: "
622 "can't update route after IPsec processing\n");
623 error = EHOSTUNREACH; /*XXX*/
624 goto bad;
625 }
626 } else {
627 /* nobody uses ia beyond here */
628 if (state.encap) {
629 ifp = ro->ro_rt->rt_ifp;
630 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
631 mtu = ifp->if_mtu;
632 }
633 }
634 }
635 skip_ipsec:
636 #endif /*IPSEC*/
637 #ifdef FAST_IPSEC
638 /*
639 * Check the security policy (SP) for the packet and, if
640 * required, do IPsec-related processing. There are two
641 * cases here; the first time a packet is sent through
642 * it will be untagged and handled by ipsec4_checkpolicy.
643 * If the packet is resubmitted to ip_output (e.g. after
644 * AH, ESP, etc. processing), there will be a tag to bypass
645 * the lookup and related policy checking.
646 */
647 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
648 s = splsoftnet();
649 if (mtag != NULL) {
650 tdbi = (struct tdb_ident *)(mtag + 1);
651 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
652 if (sp == NULL)
653 error = -EINVAL; /* force silent drop */
654 m_tag_delete(m, mtag);
655 } else {
656 if (inp != NULL &&
657 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
658 goto spd_done;
659 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
660 &error, inp);
661 }
662 /*
663 * There are four return cases:
664 * sp != NULL apply IPsec policy
665 * sp == NULL, error == 0 no IPsec handling needed
666 * sp == NULL, error == -EINVAL discard packet w/o error
667 * sp == NULL, error != 0 discard packet, report error
668 */
669 if (sp != NULL) {
670 /* Loop detection, check if ipsec processing already done */
671 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
672 for (mtag = m_tag_first(m); mtag != NULL;
673 mtag = m_tag_next(m, mtag)) {
674 #ifdef MTAG_ABI_COMPAT
675 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
676 continue;
677 #endif
678 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
679 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
680 continue;
681 /*
682 * Check if policy has an SA associated with it.
683 * This can happen when an SP has yet to acquire
684 * an SA; e.g. on first reference. If it occurs,
685 * then we let ipsec4_process_packet do its thing.
686 */
687 if (sp->req->sav == NULL)
688 break;
689 tdbi = (struct tdb_ident *)(mtag + 1);
690 if (tdbi->spi == sp->req->sav->spi &&
691 tdbi->proto == sp->req->sav->sah->saidx.proto &&
692 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
693 sizeof (union sockaddr_union)) == 0) {
694 /*
695 * No IPsec processing is needed, free
696 * reference to SP.
697 *
698 * NB: null pointer to avoid free at
699 * done: below.
700 */
701 KEY_FREESP(&sp), sp = NULL;
702 splx(s);
703 goto spd_done;
704 }
705 }
706
707 /*
708 * Do delayed checksums now because we send before
709 * this is done in the normal processing path.
710 */
711 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
712 in_delayed_cksum(m);
713 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
714 }
715
716 #ifdef __FreeBSD__
717 ip->ip_len = htons(ip->ip_len);
718 ip->ip_off = htons(ip->ip_off);
719 #endif
720
721 /* NB: callee frees mbuf */
722 error = ipsec4_process_packet(m, sp->req, flags, 0);
723 /*
724 * Preserve KAME behaviour: ENOENT can be returned
725 * when an SA acquire is in progress. Don't propagate
726 * this to user-level; it confuses applications.
727 *
728 * XXX this will go away when the SADB is redone.
729 */
730 if (error == ENOENT)
731 error = 0;
732 splx(s);
733 goto done;
734 } else {
735 splx(s);
736
737 if (error != 0) {
738 /*
739 * Hack: -EINVAL is used to signal that a packet
740 * should be silently discarded. This is typically
741 * because we asked key management for an SA and
742 * it was delayed (e.g. kicked up to IKE).
743 */
744 if (error == -EINVAL)
745 error = 0;
746 goto bad;
747 } else {
748 /* No IPsec processing for this packet. */
749 }
750 #ifdef notyet
751 /*
752 * If deferred crypto processing is needed, check that
753 * the interface supports it.
754 */
755 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
756 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
757 /* notify IPsec to do its own crypto */
758 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
759 error = EHOSTUNREACH;
760 goto bad;
761 }
762 #endif
763 }
764 spd_done:
765 #endif /* FAST_IPSEC */
766
767 #ifdef PFIL_HOOKS
768 /*
769 * Run through list of hooks for output packets.
770 */
771 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
772 goto done;
773 if (m == NULL)
774 goto done;
775
776 ip = mtod(m, struct ip *);
777 hlen = ip->ip_hl << 2;
778 #endif /* PFIL_HOOKS */
779
780 m->m_pkthdr.csum_data |= hlen << 16;
781
782 #if IFA_STATS
783 /*
784 * search for the source address structure to
785 * maintain output statistics.
786 */
787 INADDR_TO_IA(ip->ip_src, ia);
788 #endif
789
790 /* Maybe skip checksums on loopback interfaces. */
791 if (__predict_true(!(ifp->if_flags & IFF_LOOPBACK) ||
792 ip_do_loopback_cksum))
793 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
794 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
795 /*
796 * If small enough for mtu of path, or if using TCP segmentation
797 * offload, can just send directly.
798 */
799 if (ip_len <= mtu ||
800 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
801 #if IFA_STATS
802 if (ia)
803 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
804 #endif
805 /*
806 * Always initialize the sum to 0! Some HW assisted
807 * checksumming requires this.
808 */
809 ip->ip_sum = 0;
810
811 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
812 /*
813 * Perform any checksums that the hardware can't do
814 * for us.
815 *
816 * XXX Does any hardware require the {th,uh}_sum
817 * XXX fields to be 0?
818 */
819 if (sw_csum & M_CSUM_IPv4) {
820 ip->ip_sum = in_cksum(m, hlen);
821 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
822 }
823 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
824 in_delayed_cksum(m);
825 m->m_pkthdr.csum_flags &=
826 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
827 }
828 }
829
830 #ifdef IPSEC
831 /* clean ipsec history once it goes out of the node */
832 ipsec_delaux(m);
833 #endif
834 error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
835 goto done;
836 }
837
838 /*
839 * We can't use HW checksumming if we're about to
840 * to fragment the packet.
841 *
842 * XXX Some hardware can do this.
843 */
844 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
845 in_delayed_cksum(m);
846 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
847 }
848
849 /*
850 * Too large for interface; fragment if possible.
851 * Must be able to put at least 8 bytes per fragment.
852 */
853 if (ntohs(ip->ip_off) & IP_DF) {
854 if (flags & IP_RETURNMTU)
855 *mtu_p = mtu;
856 error = EMSGSIZE;
857 ipstat.ips_cantfrag++;
858 goto bad;
859 }
860
861 error = ip_fragment(m, ifp, mtu);
862 if (error) {
863 m = NULL;
864 goto bad;
865 }
866
867 for (; m; m = m0) {
868 m0 = m->m_nextpkt;
869 m->m_nextpkt = 0;
870 if (error == 0) {
871 #if IFA_STATS
872 if (ia)
873 ia->ia_ifa.ifa_data.ifad_outbytes +=
874 ntohs(ip->ip_len);
875 #endif
876 #ifdef IPSEC
877 /* clean ipsec history once it goes out of the node */
878 ipsec_delaux(m);
879
880 #ifdef IPSEC_NAT_T
881 /*
882 * If we get there, the packet has not been handeld by
883 * IPSec whereas it should have. Now that it has been
884 * fragmented, re-inject it in ip_output so that IPsec
885 * processing can occur.
886 */
887 if (natt_frag) {
888 error = ip_output(m, opt,
889 ro, flags, imo, so, mtu_p);
890 } else
891 #endif /* IPSEC_NAT_T */
892 #endif /* IPSEC */
893 {
894 KASSERT((m->m_pkthdr.csum_flags &
895 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
896 error = (*ifp->if_output)(ifp, m, sintosa(dst),
897 ro->ro_rt);
898 }
899 } else
900 m_freem(m);
901 }
902
903 if (error == 0)
904 ipstat.ips_fragmented++;
905 done:
906 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
907 RTFREE(ro->ro_rt);
908 ro->ro_rt = 0;
909 }
910
911 #ifdef IPSEC
912 if (sp != NULL) {
913 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
914 printf("DP ip_output call free SP:%p\n", sp));
915 key_freesp(sp);
916 }
917 #endif /* IPSEC */
918 #ifdef FAST_IPSEC
919 if (sp != NULL)
920 KEY_FREESP(&sp);
921 #endif /* FAST_IPSEC */
922
923 return (error);
924 bad:
925 m_freem(m);
926 goto done;
927 }
928
929 int
930 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
931 {
932 struct ip *ip, *mhip;
933 struct mbuf *m0;
934 int len, hlen, off;
935 int mhlen, firstlen;
936 struct mbuf **mnext;
937 int sw_csum = m->m_pkthdr.csum_flags;
938 int fragments = 0;
939 int s;
940 int error = 0;
941
942 ip = mtod(m, struct ip *);
943 hlen = ip->ip_hl << 2;
944 if (ifp != NULL)
945 sw_csum &= ~ifp->if_csum_flags_tx;
946
947 len = (mtu - hlen) &~ 7;
948 if (len < 8) {
949 m_freem(m);
950 return (EMSGSIZE);
951 }
952
953 firstlen = len;
954 mnext = &m->m_nextpkt;
955
956 /*
957 * Loop through length of segment after first fragment,
958 * make new header and copy data of each part and link onto chain.
959 */
960 m0 = m;
961 mhlen = sizeof (struct ip);
962 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
963 MGETHDR(m, M_DONTWAIT, MT_HEADER);
964 if (m == 0) {
965 error = ENOBUFS;
966 ipstat.ips_odropped++;
967 goto sendorfree;
968 }
969 MCLAIM(m, m0->m_owner);
970 *mnext = m;
971 mnext = &m->m_nextpkt;
972 m->m_data += max_linkhdr;
973 mhip = mtod(m, struct ip *);
974 *mhip = *ip;
975 /* we must inherit MCAST and BCAST flags */
976 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
977 if (hlen > sizeof (struct ip)) {
978 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
979 mhip->ip_hl = mhlen >> 2;
980 }
981 m->m_len = mhlen;
982 mhip->ip_off = ((off - hlen) >> 3) +
983 (ntohs(ip->ip_off) & ~IP_MF);
984 if (ip->ip_off & htons(IP_MF))
985 mhip->ip_off |= IP_MF;
986 if (off + len >= ntohs(ip->ip_len))
987 len = ntohs(ip->ip_len) - off;
988 else
989 mhip->ip_off |= IP_MF;
990 HTONS(mhip->ip_off);
991 mhip->ip_len = htons((u_int16_t)(len + mhlen));
992 m->m_next = m_copy(m0, off, len);
993 if (m->m_next == 0) {
994 error = ENOBUFS; /* ??? */
995 ipstat.ips_odropped++;
996 goto sendorfree;
997 }
998 m->m_pkthdr.len = mhlen + len;
999 m->m_pkthdr.rcvif = (struct ifnet *)0;
1000 mhip->ip_sum = 0;
1001 if (sw_csum & M_CSUM_IPv4) {
1002 mhip->ip_sum = in_cksum(m, mhlen);
1003 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1004 } else {
1005 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1006 m->m_pkthdr.csum_data |= mhlen << 16;
1007 }
1008 ipstat.ips_ofragments++;
1009 fragments++;
1010 }
1011 /*
1012 * Update first fragment by trimming what's been copied out
1013 * and updating header, then send each fragment (in order).
1014 */
1015 m = m0;
1016 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1017 m->m_pkthdr.len = hlen + firstlen;
1018 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1019 ip->ip_off |= htons(IP_MF);
1020 ip->ip_sum = 0;
1021 if (sw_csum & M_CSUM_IPv4) {
1022 ip->ip_sum = in_cksum(m, hlen);
1023 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1024 } else {
1025 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1026 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1027 sizeof(struct ip));
1028 }
1029 sendorfree:
1030 /*
1031 * If there is no room for all the fragments, don't queue
1032 * any of them.
1033 */
1034 if (ifp != NULL) {
1035 s = splnet();
1036 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1037 error == 0) {
1038 error = ENOBUFS;
1039 ipstat.ips_odropped++;
1040 IFQ_INC_DROPS(&ifp->if_snd);
1041 }
1042 splx(s);
1043 }
1044 if (error) {
1045 for (m = m0; m; m = m0) {
1046 m0 = m->m_nextpkt;
1047 m->m_nextpkt = NULL;
1048 m_freem(m);
1049 }
1050 }
1051 return (error);
1052 }
1053
1054 /*
1055 * Process a delayed payload checksum calculation.
1056 */
1057 void
1058 in_delayed_cksum(struct mbuf *m)
1059 {
1060 struct ip *ip;
1061 u_int16_t csum, offset;
1062
1063 ip = mtod(m, struct ip *);
1064 offset = ip->ip_hl << 2;
1065 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1066 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1067 csum = 0xffff;
1068
1069 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1070
1071 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1072 /* This happen when ip options were inserted
1073 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1074 m->m_len, offset, ip->ip_p);
1075 */
1076 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1077 } else
1078 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1079 }
1080
1081 /*
1082 * Determine the maximum length of the options to be inserted;
1083 * we would far rather allocate too much space rather than too little.
1084 */
1085
1086 u_int
1087 ip_optlen(struct inpcb *inp)
1088 {
1089 struct mbuf *m = inp->inp_options;
1090
1091 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1092 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1093 else
1094 return 0;
1095 }
1096
1097
1098 /*
1099 * Insert IP options into preformed packet.
1100 * Adjust IP destination as required for IP source routing,
1101 * as indicated by a non-zero in_addr at the start of the options.
1102 */
1103 static struct mbuf *
1104 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1105 {
1106 struct ipoption *p = mtod(opt, struct ipoption *);
1107 struct mbuf *n;
1108 struct ip *ip = mtod(m, struct ip *);
1109 unsigned optlen;
1110
1111 optlen = opt->m_len - sizeof(p->ipopt_dst);
1112 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1113 return (m); /* XXX should fail */
1114 if (!in_nullhost(p->ipopt_dst))
1115 ip->ip_dst = p->ipopt_dst;
1116 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1117 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1118 if (n == 0)
1119 return (m);
1120 MCLAIM(n, m->m_owner);
1121 M_COPY_PKTHDR(n, m);
1122 m_tag_delete_chain(m, NULL);
1123 m->m_flags &= ~M_PKTHDR;
1124 m->m_len -= sizeof(struct ip);
1125 m->m_data += sizeof(struct ip);
1126 n->m_next = m;
1127 m = n;
1128 m->m_len = optlen + sizeof(struct ip);
1129 m->m_data += max_linkhdr;
1130 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1131 } else {
1132 m->m_data -= optlen;
1133 m->m_len += optlen;
1134 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1135 }
1136 m->m_pkthdr.len += optlen;
1137 ip = mtod(m, struct ip *);
1138 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1139 *phlen = sizeof(struct ip) + optlen;
1140 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1141 return (m);
1142 }
1143
1144 /*
1145 * Copy options from ip to jp,
1146 * omitting those not copied during fragmentation.
1147 */
1148 int
1149 ip_optcopy(struct ip *ip, struct ip *jp)
1150 {
1151 u_char *cp, *dp;
1152 int opt, optlen, cnt;
1153
1154 cp = (u_char *)(ip + 1);
1155 dp = (u_char *)(jp + 1);
1156 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1157 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1158 opt = cp[0];
1159 if (opt == IPOPT_EOL)
1160 break;
1161 if (opt == IPOPT_NOP) {
1162 /* Preserve for IP mcast tunnel's LSRR alignment. */
1163 *dp++ = IPOPT_NOP;
1164 optlen = 1;
1165 continue;
1166 }
1167 #ifdef DIAGNOSTIC
1168 if (cnt < IPOPT_OLEN + sizeof(*cp))
1169 panic("malformed IPv4 option passed to ip_optcopy");
1170 #endif
1171 optlen = cp[IPOPT_OLEN];
1172 #ifdef DIAGNOSTIC
1173 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1174 panic("malformed IPv4 option passed to ip_optcopy");
1175 #endif
1176 /* bogus lengths should have been caught by ip_dooptions */
1177 if (optlen > cnt)
1178 optlen = cnt;
1179 if (IPOPT_COPIED(opt)) {
1180 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1181 dp += optlen;
1182 }
1183 }
1184 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1185 *dp++ = IPOPT_EOL;
1186 return (optlen);
1187 }
1188
1189 /*
1190 * IP socket option processing.
1191 */
1192 int
1193 ip_ctloutput(int op, struct socket *so, int level, int optname,
1194 struct mbuf **mp)
1195 {
1196 struct inpcb *inp = sotoinpcb(so);
1197 struct mbuf *m = *mp;
1198 int optval = 0;
1199 int error = 0;
1200 #if defined(IPSEC) || defined(FAST_IPSEC)
1201 struct proc *p = curproc; /*XXX*/
1202 #endif
1203
1204 if (level != IPPROTO_IP) {
1205 error = EINVAL;
1206 if (op == PRCO_SETOPT && *mp)
1207 (void) m_free(*mp);
1208 } else switch (op) {
1209
1210 case PRCO_SETOPT:
1211 switch (optname) {
1212 case IP_OPTIONS:
1213 #ifdef notyet
1214 case IP_RETOPTS:
1215 return (ip_pcbopts(optname, &inp->inp_options, m));
1216 #else
1217 return (ip_pcbopts(&inp->inp_options, m));
1218 #endif
1219
1220 case IP_TOS:
1221 case IP_TTL:
1222 case IP_RECVOPTS:
1223 case IP_RECVRETOPTS:
1224 case IP_RECVDSTADDR:
1225 case IP_RECVIF:
1226 if (m == NULL || m->m_len != sizeof(int))
1227 error = EINVAL;
1228 else {
1229 optval = *mtod(m, int *);
1230 switch (optname) {
1231
1232 case IP_TOS:
1233 inp->inp_ip.ip_tos = optval;
1234 break;
1235
1236 case IP_TTL:
1237 inp->inp_ip.ip_ttl = optval;
1238 break;
1239 #define OPTSET(bit) \
1240 if (optval) \
1241 inp->inp_flags |= bit; \
1242 else \
1243 inp->inp_flags &= ~bit;
1244
1245 case IP_RECVOPTS:
1246 OPTSET(INP_RECVOPTS);
1247 break;
1248
1249 case IP_RECVRETOPTS:
1250 OPTSET(INP_RECVRETOPTS);
1251 break;
1252
1253 case IP_RECVDSTADDR:
1254 OPTSET(INP_RECVDSTADDR);
1255 break;
1256
1257 case IP_RECVIF:
1258 OPTSET(INP_RECVIF);
1259 break;
1260 }
1261 }
1262 break;
1263 #undef OPTSET
1264
1265 case IP_MULTICAST_IF:
1266 case IP_MULTICAST_TTL:
1267 case IP_MULTICAST_LOOP:
1268 case IP_ADD_MEMBERSHIP:
1269 case IP_DROP_MEMBERSHIP:
1270 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1271 break;
1272
1273 case IP_PORTRANGE:
1274 if (m == 0 || m->m_len != sizeof(int))
1275 error = EINVAL;
1276 else {
1277 optval = *mtod(m, int *);
1278
1279 switch (optval) {
1280
1281 case IP_PORTRANGE_DEFAULT:
1282 case IP_PORTRANGE_HIGH:
1283 inp->inp_flags &= ~(INP_LOWPORT);
1284 break;
1285
1286 case IP_PORTRANGE_LOW:
1287 inp->inp_flags |= INP_LOWPORT;
1288 break;
1289
1290 default:
1291 error = EINVAL;
1292 break;
1293 }
1294 }
1295 break;
1296
1297 #if defined(IPSEC) || defined(FAST_IPSEC)
1298 case IP_IPSEC_POLICY:
1299 {
1300 caddr_t req = NULL;
1301 size_t len = 0;
1302 int priv = 0;
1303
1304 #ifdef __NetBSD__
1305 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1306 priv = 0;
1307 else
1308 priv = 1;
1309 #else
1310 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1311 #endif
1312 if (m) {
1313 req = mtod(m, caddr_t);
1314 len = m->m_len;
1315 }
1316 error = ipsec4_set_policy(inp, optname, req, len, priv);
1317 break;
1318 }
1319 #endif /*IPSEC*/
1320
1321 default:
1322 error = ENOPROTOOPT;
1323 break;
1324 }
1325 if (m)
1326 (void)m_free(m);
1327 break;
1328
1329 case PRCO_GETOPT:
1330 switch (optname) {
1331 case IP_OPTIONS:
1332 case IP_RETOPTS:
1333 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1334 MCLAIM(m, so->so_mowner);
1335 if (inp->inp_options) {
1336 m->m_len = inp->inp_options->m_len;
1337 bcopy(mtod(inp->inp_options, caddr_t),
1338 mtod(m, caddr_t), (unsigned)m->m_len);
1339 } else
1340 m->m_len = 0;
1341 break;
1342
1343 case IP_TOS:
1344 case IP_TTL:
1345 case IP_RECVOPTS:
1346 case IP_RECVRETOPTS:
1347 case IP_RECVDSTADDR:
1348 case IP_RECVIF:
1349 case IP_ERRORMTU:
1350 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1351 MCLAIM(m, so->so_mowner);
1352 m->m_len = sizeof(int);
1353 switch (optname) {
1354
1355 case IP_TOS:
1356 optval = inp->inp_ip.ip_tos;
1357 break;
1358
1359 case IP_TTL:
1360 optval = inp->inp_ip.ip_ttl;
1361 break;
1362
1363 case IP_ERRORMTU:
1364 optval = inp->inp_errormtu;
1365 break;
1366
1367 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1368
1369 case IP_RECVOPTS:
1370 optval = OPTBIT(INP_RECVOPTS);
1371 break;
1372
1373 case IP_RECVRETOPTS:
1374 optval = OPTBIT(INP_RECVRETOPTS);
1375 break;
1376
1377 case IP_RECVDSTADDR:
1378 optval = OPTBIT(INP_RECVDSTADDR);
1379 break;
1380
1381 case IP_RECVIF:
1382 optval = OPTBIT(INP_RECVIF);
1383 break;
1384 }
1385 *mtod(m, int *) = optval;
1386 break;
1387
1388 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1389 /* XXX: code broken */
1390 case IP_IPSEC_POLICY:
1391 {
1392 caddr_t req = NULL;
1393 size_t len = 0;
1394
1395 if (m) {
1396 req = mtod(m, caddr_t);
1397 len = m->m_len;
1398 }
1399 error = ipsec4_get_policy(inp, req, len, mp);
1400 break;
1401 }
1402 #endif /*IPSEC*/
1403
1404 case IP_MULTICAST_IF:
1405 case IP_MULTICAST_TTL:
1406 case IP_MULTICAST_LOOP:
1407 case IP_ADD_MEMBERSHIP:
1408 case IP_DROP_MEMBERSHIP:
1409 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1410 if (*mp)
1411 MCLAIM(*mp, so->so_mowner);
1412 break;
1413
1414 case IP_PORTRANGE:
1415 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1416 MCLAIM(m, so->so_mowner);
1417 m->m_len = sizeof(int);
1418
1419 if (inp->inp_flags & INP_LOWPORT)
1420 optval = IP_PORTRANGE_LOW;
1421 else
1422 optval = IP_PORTRANGE_DEFAULT;
1423
1424 *mtod(m, int *) = optval;
1425 break;
1426
1427 default:
1428 error = ENOPROTOOPT;
1429 break;
1430 }
1431 break;
1432 }
1433 return (error);
1434 }
1435
1436 /*
1437 * Set up IP options in pcb for insertion in output packets.
1438 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1439 * with destination address if source routed.
1440 */
1441 int
1442 #ifdef notyet
1443 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1444 #else
1445 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1446 #endif
1447 {
1448 int cnt, optlen;
1449 u_char *cp;
1450 u_char opt;
1451
1452 /* turn off any old options */
1453 if (*pcbopt)
1454 (void)m_free(*pcbopt);
1455 *pcbopt = 0;
1456 if (m == (struct mbuf *)0 || m->m_len == 0) {
1457 /*
1458 * Only turning off any previous options.
1459 */
1460 if (m)
1461 (void)m_free(m);
1462 return (0);
1463 }
1464
1465 #ifndef __vax__
1466 if (m->m_len % sizeof(int32_t))
1467 goto bad;
1468 #endif
1469 /*
1470 * IP first-hop destination address will be stored before
1471 * actual options; move other options back
1472 * and clear it when none present.
1473 */
1474 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1475 goto bad;
1476 cnt = m->m_len;
1477 m->m_len += sizeof(struct in_addr);
1478 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1479 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1480 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1481
1482 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1483 opt = cp[IPOPT_OPTVAL];
1484 if (opt == IPOPT_EOL)
1485 break;
1486 if (opt == IPOPT_NOP)
1487 optlen = 1;
1488 else {
1489 if (cnt < IPOPT_OLEN + sizeof(*cp))
1490 goto bad;
1491 optlen = cp[IPOPT_OLEN];
1492 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1493 goto bad;
1494 }
1495 switch (opt) {
1496
1497 default:
1498 break;
1499
1500 case IPOPT_LSRR:
1501 case IPOPT_SSRR:
1502 /*
1503 * user process specifies route as:
1504 * ->A->B->C->D
1505 * D must be our final destination (but we can't
1506 * check that since we may not have connected yet).
1507 * A is first hop destination, which doesn't appear in
1508 * actual IP option, but is stored before the options.
1509 */
1510 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1511 goto bad;
1512 m->m_len -= sizeof(struct in_addr);
1513 cnt -= sizeof(struct in_addr);
1514 optlen -= sizeof(struct in_addr);
1515 cp[IPOPT_OLEN] = optlen;
1516 /*
1517 * Move first hop before start of options.
1518 */
1519 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1520 sizeof(struct in_addr));
1521 /*
1522 * Then copy rest of options back
1523 * to close up the deleted entry.
1524 */
1525 (void)memmove(&cp[IPOPT_OFFSET+1],
1526 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1527 (unsigned)cnt - (IPOPT_MINOFF - 1));
1528 break;
1529 }
1530 }
1531 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1532 goto bad;
1533 *pcbopt = m;
1534 return (0);
1535
1536 bad:
1537 (void)m_free(m);
1538 return (EINVAL);
1539 }
1540
1541 /*
1542 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1543 */
1544 static struct ifnet *
1545 ip_multicast_if(struct in_addr *a, int *ifindexp)
1546 {
1547 int ifindex;
1548 struct ifnet *ifp = NULL;
1549 struct in_ifaddr *ia;
1550
1551 if (ifindexp)
1552 *ifindexp = 0;
1553 if (ntohl(a->s_addr) >> 24 == 0) {
1554 ifindex = ntohl(a->s_addr) & 0xffffff;
1555 if (ifindex < 0 || if_indexlim <= ifindex)
1556 return NULL;
1557 ifp = ifindex2ifnet[ifindex];
1558 if (!ifp)
1559 return NULL;
1560 if (ifindexp)
1561 *ifindexp = ifindex;
1562 } else {
1563 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1564 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1565 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1566 ifp = ia->ia_ifp;
1567 break;
1568 }
1569 }
1570 }
1571 return ifp;
1572 }
1573
1574 /*
1575 * Set the IP multicast options in response to user setsockopt().
1576 */
1577 int
1578 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1579 {
1580 int error = 0;
1581 u_char loop;
1582 int i;
1583 struct in_addr addr;
1584 struct ip_mreq *mreq;
1585 struct ifnet *ifp;
1586 struct ip_moptions *imo = *imop;
1587 struct route ro;
1588 struct sockaddr_in *dst;
1589 int ifindex;
1590
1591 if (imo == NULL) {
1592 /*
1593 * No multicast option buffer attached to the pcb;
1594 * allocate one and initialize to default values.
1595 */
1596 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1597 M_WAITOK);
1598
1599 if (imo == NULL)
1600 return (ENOBUFS);
1601 *imop = imo;
1602 imo->imo_multicast_ifp = NULL;
1603 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1604 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1605 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1606 imo->imo_num_memberships = 0;
1607 }
1608
1609 switch (optname) {
1610
1611 case IP_MULTICAST_IF:
1612 /*
1613 * Select the interface for outgoing multicast packets.
1614 */
1615 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1616 error = EINVAL;
1617 break;
1618 }
1619 addr = *(mtod(m, struct in_addr *));
1620 /*
1621 * INADDR_ANY is used to remove a previous selection.
1622 * When no interface is selected, a default one is
1623 * chosen every time a multicast packet is sent.
1624 */
1625 if (in_nullhost(addr)) {
1626 imo->imo_multicast_ifp = NULL;
1627 break;
1628 }
1629 /*
1630 * The selected interface is identified by its local
1631 * IP address. Find the interface and confirm that
1632 * it supports multicasting.
1633 */
1634 ifp = ip_multicast_if(&addr, &ifindex);
1635 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1636 error = EADDRNOTAVAIL;
1637 break;
1638 }
1639 imo->imo_multicast_ifp = ifp;
1640 if (ifindex)
1641 imo->imo_multicast_addr = addr;
1642 else
1643 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1644 break;
1645
1646 case IP_MULTICAST_TTL:
1647 /*
1648 * Set the IP time-to-live for outgoing multicast packets.
1649 */
1650 if (m == NULL || m->m_len != 1) {
1651 error = EINVAL;
1652 break;
1653 }
1654 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1655 break;
1656
1657 case IP_MULTICAST_LOOP:
1658 /*
1659 * Set the loopback flag for outgoing multicast packets.
1660 * Must be zero or one.
1661 */
1662 if (m == NULL || m->m_len != 1 ||
1663 (loop = *(mtod(m, u_char *))) > 1) {
1664 error = EINVAL;
1665 break;
1666 }
1667 imo->imo_multicast_loop = loop;
1668 break;
1669
1670 case IP_ADD_MEMBERSHIP:
1671 /*
1672 * Add a multicast group membership.
1673 * Group must be a valid IP multicast address.
1674 */
1675 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1676 error = EINVAL;
1677 break;
1678 }
1679 mreq = mtod(m, struct ip_mreq *);
1680 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1681 error = EINVAL;
1682 break;
1683 }
1684 /*
1685 * If no interface address was provided, use the interface of
1686 * the route to the given multicast address.
1687 */
1688 if (in_nullhost(mreq->imr_interface)) {
1689 bzero((caddr_t)&ro, sizeof(ro));
1690 ro.ro_rt = NULL;
1691 dst = satosin(&ro.ro_dst);
1692 dst->sin_len = sizeof(*dst);
1693 dst->sin_family = AF_INET;
1694 dst->sin_addr = mreq->imr_multiaddr;
1695 rtalloc(&ro);
1696 if (ro.ro_rt == NULL) {
1697 error = EADDRNOTAVAIL;
1698 break;
1699 }
1700 ifp = ro.ro_rt->rt_ifp;
1701 rtfree(ro.ro_rt);
1702 } else {
1703 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1704 }
1705 /*
1706 * See if we found an interface, and confirm that it
1707 * supports multicast.
1708 */
1709 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1710 error = EADDRNOTAVAIL;
1711 break;
1712 }
1713 /*
1714 * See if the membership already exists or if all the
1715 * membership slots are full.
1716 */
1717 for (i = 0; i < imo->imo_num_memberships; ++i) {
1718 if (imo->imo_membership[i]->inm_ifp == ifp &&
1719 in_hosteq(imo->imo_membership[i]->inm_addr,
1720 mreq->imr_multiaddr))
1721 break;
1722 }
1723 if (i < imo->imo_num_memberships) {
1724 error = EADDRINUSE;
1725 break;
1726 }
1727 if (i == IP_MAX_MEMBERSHIPS) {
1728 error = ETOOMANYREFS;
1729 break;
1730 }
1731 /*
1732 * Everything looks good; add a new record to the multicast
1733 * address list for the given interface.
1734 */
1735 if ((imo->imo_membership[i] =
1736 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1737 error = ENOBUFS;
1738 break;
1739 }
1740 ++imo->imo_num_memberships;
1741 break;
1742
1743 case IP_DROP_MEMBERSHIP:
1744 /*
1745 * Drop a multicast group membership.
1746 * Group must be a valid IP multicast address.
1747 */
1748 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1749 error = EINVAL;
1750 break;
1751 }
1752 mreq = mtod(m, struct ip_mreq *);
1753 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1754 error = EINVAL;
1755 break;
1756 }
1757 /*
1758 * If an interface address was specified, get a pointer
1759 * to its ifnet structure.
1760 */
1761 if (in_nullhost(mreq->imr_interface))
1762 ifp = NULL;
1763 else {
1764 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1765 if (ifp == NULL) {
1766 error = EADDRNOTAVAIL;
1767 break;
1768 }
1769 }
1770 /*
1771 * Find the membership in the membership array.
1772 */
1773 for (i = 0; i < imo->imo_num_memberships; ++i) {
1774 if ((ifp == NULL ||
1775 imo->imo_membership[i]->inm_ifp == ifp) &&
1776 in_hosteq(imo->imo_membership[i]->inm_addr,
1777 mreq->imr_multiaddr))
1778 break;
1779 }
1780 if (i == imo->imo_num_memberships) {
1781 error = EADDRNOTAVAIL;
1782 break;
1783 }
1784 /*
1785 * Give up the multicast address record to which the
1786 * membership points.
1787 */
1788 in_delmulti(imo->imo_membership[i]);
1789 /*
1790 * Remove the gap in the membership array.
1791 */
1792 for (++i; i < imo->imo_num_memberships; ++i)
1793 imo->imo_membership[i-1] = imo->imo_membership[i];
1794 --imo->imo_num_memberships;
1795 break;
1796
1797 default:
1798 error = EOPNOTSUPP;
1799 break;
1800 }
1801
1802 /*
1803 * If all options have default values, no need to keep the mbuf.
1804 */
1805 if (imo->imo_multicast_ifp == NULL &&
1806 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1807 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1808 imo->imo_num_memberships == 0) {
1809 free(*imop, M_IPMOPTS);
1810 *imop = NULL;
1811 }
1812
1813 return (error);
1814 }
1815
1816 /*
1817 * Return the IP multicast options in response to user getsockopt().
1818 */
1819 int
1820 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1821 {
1822 u_char *ttl;
1823 u_char *loop;
1824 struct in_addr *addr;
1825 struct in_ifaddr *ia;
1826
1827 *mp = m_get(M_WAIT, MT_SOOPTS);
1828
1829 switch (optname) {
1830
1831 case IP_MULTICAST_IF:
1832 addr = mtod(*mp, struct in_addr *);
1833 (*mp)->m_len = sizeof(struct in_addr);
1834 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1835 *addr = zeroin_addr;
1836 else if (imo->imo_multicast_addr.s_addr) {
1837 /* return the value user has set */
1838 *addr = imo->imo_multicast_addr;
1839 } else {
1840 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1841 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1842 }
1843 return (0);
1844
1845 case IP_MULTICAST_TTL:
1846 ttl = mtod(*mp, u_char *);
1847 (*mp)->m_len = 1;
1848 *ttl = imo ? imo->imo_multicast_ttl
1849 : IP_DEFAULT_MULTICAST_TTL;
1850 return (0);
1851
1852 case IP_MULTICAST_LOOP:
1853 loop = mtod(*mp, u_char *);
1854 (*mp)->m_len = 1;
1855 *loop = imo ? imo->imo_multicast_loop
1856 : IP_DEFAULT_MULTICAST_LOOP;
1857 return (0);
1858
1859 default:
1860 return (EOPNOTSUPP);
1861 }
1862 }
1863
1864 /*
1865 * Discard the IP multicast options.
1866 */
1867 void
1868 ip_freemoptions(struct ip_moptions *imo)
1869 {
1870 int i;
1871
1872 if (imo != NULL) {
1873 for (i = 0; i < imo->imo_num_memberships; ++i)
1874 in_delmulti(imo->imo_membership[i]);
1875 free(imo, M_IPMOPTS);
1876 }
1877 }
1878
1879 /*
1880 * Routine called from ip_output() to loop back a copy of an IP multicast
1881 * packet to the input queue of a specified interface. Note that this
1882 * calls the output routine of the loopback "driver", but with an interface
1883 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1884 */
1885 static void
1886 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1887 {
1888 struct ip *ip;
1889 struct mbuf *copym;
1890
1891 copym = m_copy(m, 0, M_COPYALL);
1892 if (copym != NULL
1893 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1894 copym = m_pullup(copym, sizeof(struct ip));
1895 if (copym != NULL) {
1896 /*
1897 * We don't bother to fragment if the IP length is greater
1898 * than the interface's MTU. Can this possibly matter?
1899 */
1900 ip = mtod(copym, struct ip *);
1901
1902 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1903 in_delayed_cksum(copym);
1904 copym->m_pkthdr.csum_flags &=
1905 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1906 }
1907
1908 ip->ip_sum = 0;
1909 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1910 (void) looutput(ifp, copym, sintosa(dst), NULL);
1911 }
1912 }
1913