Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.151
      1 /*	$NetBSD: ip_output.c,v 1.151 2005/04/18 21:50:25 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.151 2005/04/18 21:50:25 yamt Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #ifdef FAST_IPSEC
    116 #include <sys/domain.h>
    117 #endif
    118 #include <sys/systm.h>
    119 #include <sys/proc.h>
    120 
    121 #include <net/if.h>
    122 #include <net/route.h>
    123 #include <net/pfil.h>
    124 
    125 #include <netinet/in.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/in_pcb.h>
    129 #include <netinet/in_var.h>
    130 #include <netinet/ip_var.h>
    131 
    132 #ifdef MROUTING
    133 #include <netinet/ip_mroute.h>
    134 #endif
    135 
    136 #include <machine/stdarg.h>
    137 
    138 #ifdef IPSEC
    139 #include <netinet6/ipsec.h>
    140 #include <netkey/key.h>
    141 #include <netkey/key_debug.h>
    142 #ifdef IPSEC_NAT_T
    143 #include <netinet/udp.h>
    144 #endif
    145 #endif /*IPSEC*/
    146 
    147 #ifdef FAST_IPSEC
    148 #include <netipsec/ipsec.h>
    149 #include <netipsec/key.h>
    150 #include <netipsec/xform.h>
    151 #endif	/* FAST_IPSEC*/
    152 
    153 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    154 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    155 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
    156 
    157 #ifdef PFIL_HOOKS
    158 extern struct pfil_head inet_pfil_hook;			/* XXX */
    159 #endif
    160 
    161 int	udp_do_loopback_cksum = 0;
    162 int	tcp_do_loopback_cksum = 0;
    163 int	ip_do_loopback_cksum = 0;
    164 
    165 #define	IN_NEED_CHECKSUM(ifp, csum_flags) \
    166 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    167 	(((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
    168 	(((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
    169 	(((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
    170 
    171 /*
    172  * IP output.  The packet in mbuf chain m contains a skeletal IP
    173  * header (with len, off, ttl, proto, tos, src, dst).
    174  * The mbuf chain containing the packet will be freed.
    175  * The mbuf opt, if present, will not be freed.
    176  */
    177 int
    178 ip_output(struct mbuf *m0, ...)
    179 {
    180 	struct ip *ip;
    181 	struct ifnet *ifp;
    182 	struct mbuf *m = m0;
    183 	int hlen = sizeof (struct ip);
    184 	int len, error = 0;
    185 	struct route iproute;
    186 	struct sockaddr_in *dst;
    187 	struct in_ifaddr *ia;
    188 	struct mbuf *opt;
    189 	struct route *ro;
    190 	int flags, sw_csum;
    191 	int *mtu_p;
    192 	u_long mtu;
    193 	struct ip_moptions *imo;
    194 	struct socket *so;
    195 	va_list ap;
    196 #ifdef IPSEC
    197 	struct secpolicy *sp = NULL;
    198 #ifdef IPSEC_NAT_T
    199 	int natt_frag = 0;
    200 #endif
    201 #endif /*IPSEC*/
    202 #ifdef FAST_IPSEC
    203 	struct inpcb *inp;
    204 	struct m_tag *mtag;
    205 	struct secpolicy *sp = NULL;
    206 	struct tdb_ident *tdbi;
    207 	int s;
    208 #endif
    209 	u_int16_t ip_len;
    210 
    211 	len = 0;
    212 	va_start(ap, m0);
    213 	opt = va_arg(ap, struct mbuf *);
    214 	ro = va_arg(ap, struct route *);
    215 	flags = va_arg(ap, int);
    216 	imo = va_arg(ap, struct ip_moptions *);
    217 	so = va_arg(ap, struct socket *);
    218 	if (flags & IP_RETURNMTU)
    219 		mtu_p = va_arg(ap, int *);
    220 	else
    221 		mtu_p = NULL;
    222 	va_end(ap);
    223 
    224 	MCLAIM(m, &ip_tx_mowner);
    225 #ifdef FAST_IPSEC
    226 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    227 		inp = (struct inpcb *)so->so_pcb;
    228 	else
    229 		inp = NULL;
    230 #endif /* FAST_IPSEC */
    231 
    232 #ifdef	DIAGNOSTIC
    233 	if ((m->m_flags & M_PKTHDR) == 0)
    234 		panic("ip_output no HDR");
    235 #endif
    236 	if (opt) {
    237 		m = ip_insertoptions(m, opt, &len);
    238 		if (len >= sizeof(struct ip))
    239 			hlen = len;
    240 	}
    241 	ip = mtod(m, struct ip *);
    242 	/*
    243 	 * Fill in IP header.
    244 	 */
    245 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    246 		ip->ip_v = IPVERSION;
    247 		ip->ip_off = htons(0);
    248 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    249 			ip->ip_id = ip_newid();
    250 		} else {
    251 
    252 			/*
    253 			 * TSO capable interfaces (typically?) increment
    254 			 * ip_id for each segment.
    255 			 * "allocate" enough ids here to increase the chance
    256 			 * for them to be unique.
    257 			 *
    258 			 * note that the following calculation is not
    259 			 * needed to be precise.  wasting some ip_id is fine.
    260 			 */
    261 
    262 			unsigned int segsz = m->m_pkthdr.segsz;
    263 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    264 			unsigned int num = howmany(datasz, segsz);
    265 
    266 			ip->ip_id = ip_newid_range(num);
    267 		}
    268 		ip->ip_hl = hlen >> 2;
    269 		ipstat.ips_localout++;
    270 	} else {
    271 		hlen = ip->ip_hl << 2;
    272 	}
    273 	/*
    274 	 * Route packet.
    275 	 */
    276 	if (ro == 0) {
    277 		ro = &iproute;
    278 		bzero((caddr_t)ro, sizeof (*ro));
    279 	}
    280 	dst = satosin(&ro->ro_dst);
    281 	/*
    282 	 * If there is a cached route,
    283 	 * check that it is to the same destination
    284 	 * and is still up.  If not, free it and try again.
    285 	 * The address family should also be checked in case of sharing the
    286 	 * cache with IPv6.
    287 	 */
    288 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    289 	    dst->sin_family != AF_INET ||
    290 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    291 		RTFREE(ro->ro_rt);
    292 		ro->ro_rt = (struct rtentry *)0;
    293 	}
    294 	if (ro->ro_rt == 0) {
    295 		bzero(dst, sizeof(*dst));
    296 		dst->sin_family = AF_INET;
    297 		dst->sin_len = sizeof(*dst);
    298 		dst->sin_addr = ip->ip_dst;
    299 	}
    300 	/*
    301 	 * If routing to interface only,
    302 	 * short circuit routing lookup.
    303 	 */
    304 	if (flags & IP_ROUTETOIF) {
    305 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    306 			ipstat.ips_noroute++;
    307 			error = ENETUNREACH;
    308 			goto bad;
    309 		}
    310 		ifp = ia->ia_ifp;
    311 		mtu = ifp->if_mtu;
    312 		ip->ip_ttl = 1;
    313 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    314 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    315 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    316 		ifp = imo->imo_multicast_ifp;
    317 		mtu = ifp->if_mtu;
    318 		IFP_TO_IA(ifp, ia);
    319 	} else {
    320 		if (ro->ro_rt == 0)
    321 			rtalloc(ro);
    322 		if (ro->ro_rt == 0) {
    323 			ipstat.ips_noroute++;
    324 			error = EHOSTUNREACH;
    325 			goto bad;
    326 		}
    327 		ia = ifatoia(ro->ro_rt->rt_ifa);
    328 		ifp = ro->ro_rt->rt_ifp;
    329 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    330 			mtu = ifp->if_mtu;
    331 		ro->ro_rt->rt_use++;
    332 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    333 			dst = satosin(ro->ro_rt->rt_gateway);
    334 	}
    335 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    336 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    337 		struct in_multi *inm;
    338 
    339 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    340 			M_BCAST : M_MCAST;
    341 		/*
    342 		 * IP destination address is multicast.  Make sure "dst"
    343 		 * still points to the address in "ro".  (It may have been
    344 		 * changed to point to a gateway address, above.)
    345 		 */
    346 		dst = satosin(&ro->ro_dst);
    347 		/*
    348 		 * See if the caller provided any multicast options
    349 		 */
    350 		if (imo != NULL)
    351 			ip->ip_ttl = imo->imo_multicast_ttl;
    352 		else
    353 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    354 
    355 		/*
    356 		 * if we don't know the outgoing ifp yet, we can't generate
    357 		 * output
    358 		 */
    359 		if (!ifp) {
    360 			ipstat.ips_noroute++;
    361 			error = ENETUNREACH;
    362 			goto bad;
    363 		}
    364 
    365 		/*
    366 		 * If the packet is multicast or broadcast, confirm that
    367 		 * the outgoing interface can transmit it.
    368 		 */
    369 		if (((m->m_flags & M_MCAST) &&
    370 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    371 		    ((m->m_flags & M_BCAST) &&
    372 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    373 			ipstat.ips_noroute++;
    374 			error = ENETUNREACH;
    375 			goto bad;
    376 		}
    377 		/*
    378 		 * If source address not specified yet, use an address
    379 		 * of outgoing interface.
    380 		 */
    381 		if (in_nullhost(ip->ip_src)) {
    382 			struct in_ifaddr *ia;
    383 
    384 			IFP_TO_IA(ifp, ia);
    385 			if (!ia) {
    386 				error = EADDRNOTAVAIL;
    387 				goto bad;
    388 			}
    389 			ip->ip_src = ia->ia_addr.sin_addr;
    390 		}
    391 
    392 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    393 		if (inm != NULL &&
    394 		   (imo == NULL || imo->imo_multicast_loop)) {
    395 			/*
    396 			 * If we belong to the destination multicast group
    397 			 * on the outgoing interface, and the caller did not
    398 			 * forbid loopback, loop back a copy.
    399 			 */
    400 			ip_mloopback(ifp, m, dst);
    401 		}
    402 #ifdef MROUTING
    403 		else {
    404 			/*
    405 			 * If we are acting as a multicast router, perform
    406 			 * multicast forwarding as if the packet had just
    407 			 * arrived on the interface to which we are about
    408 			 * to send.  The multicast forwarding function
    409 			 * recursively calls this function, using the
    410 			 * IP_FORWARDING flag to prevent infinite recursion.
    411 			 *
    412 			 * Multicasts that are looped back by ip_mloopback(),
    413 			 * above, will be forwarded by the ip_input() routine,
    414 			 * if necessary.
    415 			 */
    416 			extern struct socket *ip_mrouter;
    417 
    418 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    419 				if (ip_mforward(m, ifp) != 0) {
    420 					m_freem(m);
    421 					goto done;
    422 				}
    423 			}
    424 		}
    425 #endif
    426 		/*
    427 		 * Multicasts with a time-to-live of zero may be looped-
    428 		 * back, above, but must not be transmitted on a network.
    429 		 * Also, multicasts addressed to the loopback interface
    430 		 * are not sent -- the above call to ip_mloopback() will
    431 		 * loop back a copy if this host actually belongs to the
    432 		 * destination group on the loopback interface.
    433 		 */
    434 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    435 			m_freem(m);
    436 			goto done;
    437 		}
    438 
    439 		goto sendit;
    440 	}
    441 #ifndef notdef
    442 	/*
    443 	 * If source address not specified yet, use address
    444 	 * of outgoing interface.
    445 	 */
    446 	if (in_nullhost(ip->ip_src))
    447 		ip->ip_src = ia->ia_addr.sin_addr;
    448 #endif
    449 
    450 	/*
    451 	 * packets with Class-D address as source are not valid per
    452 	 * RFC 1112
    453 	 */
    454 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    455 		ipstat.ips_odropped++;
    456 		error = EADDRNOTAVAIL;
    457 		goto bad;
    458 	}
    459 
    460 	/*
    461 	 * Look for broadcast address and
    462 	 * and verify user is allowed to send
    463 	 * such a packet.
    464 	 */
    465 	if (in_broadcast(dst->sin_addr, ifp)) {
    466 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    467 			error = EADDRNOTAVAIL;
    468 			goto bad;
    469 		}
    470 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    471 			error = EACCES;
    472 			goto bad;
    473 		}
    474 		/* don't allow broadcast messages to be fragmented */
    475 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    476 			error = EMSGSIZE;
    477 			goto bad;
    478 		}
    479 		m->m_flags |= M_BCAST;
    480 	} else
    481 		m->m_flags &= ~M_BCAST;
    482 
    483 sendit:
    484 	/*
    485 	 * If we're doing Path MTU Discovery, we need to set DF unless
    486 	 * the route's MTU is locked.
    487 	 */
    488 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    489 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    490 		ip->ip_off |= htons(IP_DF);
    491 
    492 	/* Remember the current ip_len */
    493 	ip_len = ntohs(ip->ip_len);
    494 
    495 #ifdef IPSEC
    496 	/* get SP for this packet */
    497 	if (so == NULL)
    498 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    499 		    flags, &error);
    500 	else {
    501 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    502 					 IPSEC_DIR_OUTBOUND))
    503 			goto skip_ipsec;
    504 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    505 	}
    506 
    507 	if (sp == NULL) {
    508 		ipsecstat.out_inval++;
    509 		goto bad;
    510 	}
    511 
    512 	error = 0;
    513 
    514 	/* check policy */
    515 	switch (sp->policy) {
    516 	case IPSEC_POLICY_DISCARD:
    517 		/*
    518 		 * This packet is just discarded.
    519 		 */
    520 		ipsecstat.out_polvio++;
    521 		goto bad;
    522 
    523 	case IPSEC_POLICY_BYPASS:
    524 	case IPSEC_POLICY_NONE:
    525 		/* no need to do IPsec. */
    526 		goto skip_ipsec;
    527 
    528 	case IPSEC_POLICY_IPSEC:
    529 		if (sp->req == NULL) {
    530 			/* XXX should be panic ? */
    531 			printf("ip_output: No IPsec request specified.\n");
    532 			error = EINVAL;
    533 			goto bad;
    534 		}
    535 		break;
    536 
    537 	case IPSEC_POLICY_ENTRUST:
    538 	default:
    539 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    540 	}
    541 
    542 #ifdef IPSEC_NAT_T
    543 	/*
    544 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    545 	 * we'll do it on each fragmented packet.
    546 	 */
    547 	if (sp->req->sav &&
    548 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    549 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    550 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    551 			natt_frag = 1;
    552 			mtu = sp->req->sav->esp_frag;
    553 			goto skip_ipsec;
    554 		}
    555 	}
    556 #endif /* IPSEC_NAT_T */
    557 
    558 	/*
    559 	 * ipsec4_output() expects ip_len and ip_off in network
    560 	 * order.  They have been set to network order above.
    561 	 */
    562 
    563     {
    564 	struct ipsec_output_state state;
    565 	bzero(&state, sizeof(state));
    566 	state.m = m;
    567 	if (flags & IP_ROUTETOIF) {
    568 		state.ro = &iproute;
    569 		bzero(&iproute, sizeof(iproute));
    570 	} else
    571 		state.ro = ro;
    572 	state.dst = (struct sockaddr *)dst;
    573 
    574 	/*
    575 	 * We can't defer the checksum of payload data if
    576 	 * we're about to encrypt/authenticate it.
    577 	 *
    578 	 * XXX When we support crypto offloading functions of
    579 	 * XXX network interfaces, we need to reconsider this,
    580 	 * XXX since it's likely that they'll support checksumming,
    581 	 * XXX as well.
    582 	 */
    583 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    584 		in_delayed_cksum(m);
    585 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    586 	}
    587 
    588 	error = ipsec4_output(&state, sp, flags);
    589 
    590 	m = state.m;
    591 	if (flags & IP_ROUTETOIF) {
    592 		/*
    593 		 * if we have tunnel mode SA, we may need to ignore
    594 		 * IP_ROUTETOIF.
    595 		 */
    596 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    597 			flags &= ~IP_ROUTETOIF;
    598 			ro = state.ro;
    599 		}
    600 	} else
    601 		ro = state.ro;
    602 	dst = (struct sockaddr_in *)state.dst;
    603 	if (error) {
    604 		/* mbuf is already reclaimed in ipsec4_output. */
    605 		m0 = NULL;
    606 		switch (error) {
    607 		case EHOSTUNREACH:
    608 		case ENETUNREACH:
    609 		case EMSGSIZE:
    610 		case ENOBUFS:
    611 		case ENOMEM:
    612 			break;
    613 		default:
    614 			printf("ip4_output (ipsec): error code %d\n", error);
    615 			/*fall through*/
    616 		case ENOENT:
    617 			/* don't show these error codes to the user */
    618 			error = 0;
    619 			break;
    620 		}
    621 		goto bad;
    622 	}
    623 
    624 	/* be sure to update variables that are affected by ipsec4_output() */
    625 	ip = mtod(m, struct ip *);
    626 	hlen = ip->ip_hl << 2;
    627 	ip_len = ntohs(ip->ip_len);
    628 
    629 	if (ro->ro_rt == NULL) {
    630 		if ((flags & IP_ROUTETOIF) == 0) {
    631 			printf("ip_output: "
    632 				"can't update route after IPsec processing\n");
    633 			error = EHOSTUNREACH;	/*XXX*/
    634 			goto bad;
    635 		}
    636 	} else {
    637 		/* nobody uses ia beyond here */
    638 		if (state.encap) {
    639 			ifp = ro->ro_rt->rt_ifp;
    640 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    641 				mtu = ifp->if_mtu;
    642 		}
    643 	}
    644     }
    645 skip_ipsec:
    646 #endif /*IPSEC*/
    647 #ifdef FAST_IPSEC
    648 	/*
    649 	 * Check the security policy (SP) for the packet and, if
    650 	 * required, do IPsec-related processing.  There are two
    651 	 * cases here; the first time a packet is sent through
    652 	 * it will be untagged and handled by ipsec4_checkpolicy.
    653 	 * If the packet is resubmitted to ip_output (e.g. after
    654 	 * AH, ESP, etc. processing), there will be a tag to bypass
    655 	 * the lookup and related policy checking.
    656 	 */
    657 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    658 	s = splsoftnet();
    659 	if (mtag != NULL) {
    660 		tdbi = (struct tdb_ident *)(mtag + 1);
    661 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    662 		if (sp == NULL)
    663 			error = -EINVAL;	/* force silent drop */
    664 		m_tag_delete(m, mtag);
    665 	} else {
    666 		if (inp != NULL &&
    667 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    668 			goto spd_done;
    669 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    670 					&error, inp);
    671 	}
    672 	/*
    673 	 * There are four return cases:
    674 	 *    sp != NULL	 	    apply IPsec policy
    675 	 *    sp == NULL, error == 0	    no IPsec handling needed
    676 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    677 	 *    sp == NULL, error != 0	    discard packet, report error
    678 	 */
    679 	if (sp != NULL) {
    680 		/* Loop detection, check if ipsec processing already done */
    681 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    682 		for (mtag = m_tag_first(m); mtag != NULL;
    683 		     mtag = m_tag_next(m, mtag)) {
    684 #ifdef MTAG_ABI_COMPAT
    685 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    686 				continue;
    687 #endif
    688 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    689 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    690 				continue;
    691 			/*
    692 			 * Check if policy has an SA associated with it.
    693 			 * This can happen when an SP has yet to acquire
    694 			 * an SA; e.g. on first reference.  If it occurs,
    695 			 * then we let ipsec4_process_packet do its thing.
    696 			 */
    697 			if (sp->req->sav == NULL)
    698 				break;
    699 			tdbi = (struct tdb_ident *)(mtag + 1);
    700 			if (tdbi->spi == sp->req->sav->spi &&
    701 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    702 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    703 				 sizeof (union sockaddr_union)) == 0) {
    704 				/*
    705 				 * No IPsec processing is needed, free
    706 				 * reference to SP.
    707 				 *
    708 				 * NB: null pointer to avoid free at
    709 				 *     done: below.
    710 				 */
    711 				KEY_FREESP(&sp), sp = NULL;
    712 				splx(s);
    713 				goto spd_done;
    714 			}
    715 		}
    716 
    717 		/*
    718 		 * Do delayed checksums now because we send before
    719 		 * this is done in the normal processing path.
    720 		 */
    721 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    722 			in_delayed_cksum(m);
    723 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    724 		}
    725 
    726 #ifdef __FreeBSD__
    727 		ip->ip_len = htons(ip->ip_len);
    728 		ip->ip_off = htons(ip->ip_off);
    729 #endif
    730 
    731 		/* NB: callee frees mbuf */
    732 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    733 		/*
    734 		 * Preserve KAME behaviour: ENOENT can be returned
    735 		 * when an SA acquire is in progress.  Don't propagate
    736 		 * this to user-level; it confuses applications.
    737 		 *
    738 		 * XXX this will go away when the SADB is redone.
    739 		 */
    740 		if (error == ENOENT)
    741 			error = 0;
    742 		splx(s);
    743 		goto done;
    744 	} else {
    745 		splx(s);
    746 
    747 		if (error != 0) {
    748 			/*
    749 			 * Hack: -EINVAL is used to signal that a packet
    750 			 * should be silently discarded.  This is typically
    751 			 * because we asked key management for an SA and
    752 			 * it was delayed (e.g. kicked up to IKE).
    753 			 */
    754 			if (error == -EINVAL)
    755 				error = 0;
    756 			goto bad;
    757 		} else {
    758 			/* No IPsec processing for this packet. */
    759 		}
    760 #ifdef notyet
    761 		/*
    762 		 * If deferred crypto processing is needed, check that
    763 		 * the interface supports it.
    764 		 */
    765 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    766 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    767 			/* notify IPsec to do its own crypto */
    768 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    769 			error = EHOSTUNREACH;
    770 			goto bad;
    771 		}
    772 #endif
    773 	}
    774 spd_done:
    775 #endif /* FAST_IPSEC */
    776 
    777 #ifdef PFIL_HOOKS
    778 	/*
    779 	 * Run through list of hooks for output packets.
    780 	 */
    781 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    782 		goto done;
    783 	if (m == NULL)
    784 		goto done;
    785 
    786 	ip = mtod(m, struct ip *);
    787 	hlen = ip->ip_hl << 2;
    788 #endif /* PFIL_HOOKS */
    789 
    790 	m->m_pkthdr.csum_data |= hlen << 16;
    791 
    792 #if IFA_STATS
    793 	/*
    794 	 * search for the source address structure to
    795 	 * maintain output statistics.
    796 	 */
    797 	INADDR_TO_IA(ip->ip_src, ia);
    798 #endif
    799 
    800 	/* Maybe skip checksums on loopback interfaces. */
    801 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    802 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    803 	}
    804 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    805 	/*
    806 	 * If small enough for mtu of path, or if using TCP segmentation
    807 	 * offload, can just send directly.
    808 	 */
    809 	if (ip_len <= mtu ||
    810 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    811 #if IFA_STATS
    812 		if (ia)
    813 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    814 #endif
    815 		/*
    816 		 * Always initialize the sum to 0!  Some HW assisted
    817 		 * checksumming requires this.
    818 		 */
    819 		ip->ip_sum = 0;
    820 
    821 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    822 			/*
    823 			 * Perform any checksums that the hardware can't do
    824 			 * for us.
    825 			 *
    826 			 * XXX Does any hardware require the {th,uh}_sum
    827 			 * XXX fields to be 0?
    828 			 */
    829 			if (sw_csum & M_CSUM_IPv4) {
    830 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    831 				ip->ip_sum = in_cksum(m, hlen);
    832 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    833 			}
    834 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    835 				if (IN_NEED_CHECKSUM(ifp,
    836 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    837 					in_delayed_cksum(m);
    838 				}
    839 				m->m_pkthdr.csum_flags &=
    840 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    841 			}
    842 		}
    843 
    844 #ifdef IPSEC
    845 		/* clean ipsec history once it goes out of the node */
    846 		ipsec_delaux(m);
    847 #endif
    848 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    849 		goto done;
    850 	}
    851 
    852 	/*
    853 	 * We can't use HW checksumming if we're about to
    854 	 * to fragment the packet.
    855 	 *
    856 	 * XXX Some hardware can do this.
    857 	 */
    858 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    859 		if (IN_NEED_CHECKSUM(ifp,
    860 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    861 			in_delayed_cksum(m);
    862 		}
    863 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    864 	}
    865 
    866 	/*
    867 	 * Too large for interface; fragment if possible.
    868 	 * Must be able to put at least 8 bytes per fragment.
    869 	 */
    870 	if (ntohs(ip->ip_off) & IP_DF) {
    871 		if (flags & IP_RETURNMTU)
    872 			*mtu_p = mtu;
    873 		error = EMSGSIZE;
    874 		ipstat.ips_cantfrag++;
    875 		goto bad;
    876 	}
    877 
    878 	error = ip_fragment(m, ifp, mtu);
    879 	if (error) {
    880 		m = NULL;
    881 		goto bad;
    882 	}
    883 
    884 	for (; m; m = m0) {
    885 		m0 = m->m_nextpkt;
    886 		m->m_nextpkt = 0;
    887 		if (error == 0) {
    888 #if IFA_STATS
    889 			if (ia)
    890 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    891 				    ntohs(ip->ip_len);
    892 #endif
    893 #ifdef IPSEC
    894 			/* clean ipsec history once it goes out of the node */
    895 			ipsec_delaux(m);
    896 
    897 #ifdef IPSEC_NAT_T
    898 			/*
    899 			 * If we get there, the packet has not been handeld by
    900 			 * IPSec whereas it should have. Now that it has been
    901 			 * fragmented, re-inject it in ip_output so that IPsec
    902 			 * processing can occur.
    903 			 */
    904 			if (natt_frag) {
    905 				error = ip_output(m, opt,
    906 				    ro, flags, imo, so, mtu_p);
    907 			} else
    908 #endif /* IPSEC_NAT_T */
    909 #endif /* IPSEC */
    910 			{
    911 				KASSERT((m->m_pkthdr.csum_flags &
    912 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    913 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
    914 				    ro->ro_rt);
    915 			}
    916 		} else
    917 			m_freem(m);
    918 	}
    919 
    920 	if (error == 0)
    921 		ipstat.ips_fragmented++;
    922 done:
    923 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
    924 		RTFREE(ro->ro_rt);
    925 		ro->ro_rt = 0;
    926 	}
    927 
    928 #ifdef IPSEC
    929 	if (sp != NULL) {
    930 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    931 			printf("DP ip_output call free SP:%p\n", sp));
    932 		key_freesp(sp);
    933 	}
    934 #endif /* IPSEC */
    935 #ifdef FAST_IPSEC
    936 	if (sp != NULL)
    937 		KEY_FREESP(&sp);
    938 #endif /* FAST_IPSEC */
    939 
    940 	return (error);
    941 bad:
    942 	m_freem(m);
    943 	goto done;
    944 }
    945 
    946 int
    947 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    948 {
    949 	struct ip *ip, *mhip;
    950 	struct mbuf *m0;
    951 	int len, hlen, off;
    952 	int mhlen, firstlen;
    953 	struct mbuf **mnext;
    954 	int sw_csum = m->m_pkthdr.csum_flags;
    955 	int fragments = 0;
    956 	int s;
    957 	int error = 0;
    958 
    959 	ip = mtod(m, struct ip *);
    960 	hlen = ip->ip_hl << 2;
    961 	if (ifp != NULL)
    962 		sw_csum &= ~ifp->if_csum_flags_tx;
    963 
    964 	len = (mtu - hlen) &~ 7;
    965 	if (len < 8) {
    966 		m_freem(m);
    967 		return (EMSGSIZE);
    968 	}
    969 
    970 	firstlen = len;
    971 	mnext = &m->m_nextpkt;
    972 
    973 	/*
    974 	 * Loop through length of segment after first fragment,
    975 	 * make new header and copy data of each part and link onto chain.
    976 	 */
    977 	m0 = m;
    978 	mhlen = sizeof (struct ip);
    979 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
    980 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    981 		if (m == 0) {
    982 			error = ENOBUFS;
    983 			ipstat.ips_odropped++;
    984 			goto sendorfree;
    985 		}
    986 		MCLAIM(m, m0->m_owner);
    987 		*mnext = m;
    988 		mnext = &m->m_nextpkt;
    989 		m->m_data += max_linkhdr;
    990 		mhip = mtod(m, struct ip *);
    991 		*mhip = *ip;
    992 		/* we must inherit MCAST and BCAST flags */
    993 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
    994 		if (hlen > sizeof (struct ip)) {
    995 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
    996 			mhip->ip_hl = mhlen >> 2;
    997 		}
    998 		m->m_len = mhlen;
    999 		mhip->ip_off = ((off - hlen) >> 3) +
   1000 		    (ntohs(ip->ip_off) & ~IP_MF);
   1001 		if (ip->ip_off & htons(IP_MF))
   1002 			mhip->ip_off |= IP_MF;
   1003 		if (off + len >= ntohs(ip->ip_len))
   1004 			len = ntohs(ip->ip_len) - off;
   1005 		else
   1006 			mhip->ip_off |= IP_MF;
   1007 		HTONS(mhip->ip_off);
   1008 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
   1009 		m->m_next = m_copy(m0, off, len);
   1010 		if (m->m_next == 0) {
   1011 			error = ENOBUFS;	/* ??? */
   1012 			ipstat.ips_odropped++;
   1013 			goto sendorfree;
   1014 		}
   1015 		m->m_pkthdr.len = mhlen + len;
   1016 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1017 		mhip->ip_sum = 0;
   1018 		if (sw_csum & M_CSUM_IPv4) {
   1019 			mhip->ip_sum = in_cksum(m, mhlen);
   1020 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1021 		} else {
   1022 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1023 			m->m_pkthdr.csum_data |= mhlen << 16;
   1024 		}
   1025 		ipstat.ips_ofragments++;
   1026 		fragments++;
   1027 	}
   1028 	/*
   1029 	 * Update first fragment by trimming what's been copied out
   1030 	 * and updating header, then send each fragment (in order).
   1031 	 */
   1032 	m = m0;
   1033 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1034 	m->m_pkthdr.len = hlen + firstlen;
   1035 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1036 	ip->ip_off |= htons(IP_MF);
   1037 	ip->ip_sum = 0;
   1038 	if (sw_csum & M_CSUM_IPv4) {
   1039 		ip->ip_sum = in_cksum(m, hlen);
   1040 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1041 	} else {
   1042 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1043 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1044 			sizeof(struct ip));
   1045 	}
   1046 sendorfree:
   1047 	/*
   1048 	 * If there is no room for all the fragments, don't queue
   1049 	 * any of them.
   1050 	 */
   1051 	if (ifp != NULL) {
   1052 		s = splnet();
   1053 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1054 		    error == 0) {
   1055 			error = ENOBUFS;
   1056 			ipstat.ips_odropped++;
   1057 			IFQ_INC_DROPS(&ifp->if_snd);
   1058 		}
   1059 		splx(s);
   1060 	}
   1061 	if (error) {
   1062 		for (m = m0; m; m = m0) {
   1063 			m0 = m->m_nextpkt;
   1064 			m->m_nextpkt = NULL;
   1065 			m_freem(m);
   1066 		}
   1067 	}
   1068 	return (error);
   1069 }
   1070 
   1071 /*
   1072  * Process a delayed payload checksum calculation.
   1073  */
   1074 void
   1075 in_delayed_cksum(struct mbuf *m)
   1076 {
   1077 	struct ip *ip;
   1078 	u_int16_t csum, offset;
   1079 
   1080 	ip = mtod(m, struct ip *);
   1081 	offset = ip->ip_hl << 2;
   1082 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1083 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1084 		csum = 0xffff;
   1085 
   1086 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1087 
   1088 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1089 		/* This happen when ip options were inserted
   1090 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1091 		    m->m_len, offset, ip->ip_p);
   1092 		 */
   1093 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1094 	} else
   1095 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1096 }
   1097 
   1098 /*
   1099  * Determine the maximum length of the options to be inserted;
   1100  * we would far rather allocate too much space rather than too little.
   1101  */
   1102 
   1103 u_int
   1104 ip_optlen(struct inpcb *inp)
   1105 {
   1106 	struct mbuf *m = inp->inp_options;
   1107 
   1108 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1109 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1110 	else
   1111 		return 0;
   1112 }
   1113 
   1114 
   1115 /*
   1116  * Insert IP options into preformed packet.
   1117  * Adjust IP destination as required for IP source routing,
   1118  * as indicated by a non-zero in_addr at the start of the options.
   1119  */
   1120 static struct mbuf *
   1121 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1122 {
   1123 	struct ipoption *p = mtod(opt, struct ipoption *);
   1124 	struct mbuf *n;
   1125 	struct ip *ip = mtod(m, struct ip *);
   1126 	unsigned optlen;
   1127 
   1128 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1129 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1130 		return (m);		/* XXX should fail */
   1131 	if (!in_nullhost(p->ipopt_dst))
   1132 		ip->ip_dst = p->ipopt_dst;
   1133 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1134 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1135 		if (n == 0)
   1136 			return (m);
   1137 		MCLAIM(n, m->m_owner);
   1138 		M_COPY_PKTHDR(n, m);
   1139 		m_tag_delete_chain(m, NULL);
   1140 		m->m_flags &= ~M_PKTHDR;
   1141 		m->m_len -= sizeof(struct ip);
   1142 		m->m_data += sizeof(struct ip);
   1143 		n->m_next = m;
   1144 		m = n;
   1145 		m->m_len = optlen + sizeof(struct ip);
   1146 		m->m_data += max_linkhdr;
   1147 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1148 	} else {
   1149 		m->m_data -= optlen;
   1150 		m->m_len += optlen;
   1151 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1152 	}
   1153 	m->m_pkthdr.len += optlen;
   1154 	ip = mtod(m, struct ip *);
   1155 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1156 	*phlen = sizeof(struct ip) + optlen;
   1157 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1158 	return (m);
   1159 }
   1160 
   1161 /*
   1162  * Copy options from ip to jp,
   1163  * omitting those not copied during fragmentation.
   1164  */
   1165 int
   1166 ip_optcopy(struct ip *ip, struct ip *jp)
   1167 {
   1168 	u_char *cp, *dp;
   1169 	int opt, optlen, cnt;
   1170 
   1171 	cp = (u_char *)(ip + 1);
   1172 	dp = (u_char *)(jp + 1);
   1173 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1174 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1175 		opt = cp[0];
   1176 		if (opt == IPOPT_EOL)
   1177 			break;
   1178 		if (opt == IPOPT_NOP) {
   1179 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1180 			*dp++ = IPOPT_NOP;
   1181 			optlen = 1;
   1182 			continue;
   1183 		}
   1184 #ifdef DIAGNOSTIC
   1185 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1186 			panic("malformed IPv4 option passed to ip_optcopy");
   1187 #endif
   1188 		optlen = cp[IPOPT_OLEN];
   1189 #ifdef DIAGNOSTIC
   1190 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1191 			panic("malformed IPv4 option passed to ip_optcopy");
   1192 #endif
   1193 		/* bogus lengths should have been caught by ip_dooptions */
   1194 		if (optlen > cnt)
   1195 			optlen = cnt;
   1196 		if (IPOPT_COPIED(opt)) {
   1197 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1198 			dp += optlen;
   1199 		}
   1200 	}
   1201 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1202 		*dp++ = IPOPT_EOL;
   1203 	return (optlen);
   1204 }
   1205 
   1206 /*
   1207  * IP socket option processing.
   1208  */
   1209 int
   1210 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1211     struct mbuf **mp)
   1212 {
   1213 	struct inpcb *inp = sotoinpcb(so);
   1214 	struct mbuf *m = *mp;
   1215 	int optval = 0;
   1216 	int error = 0;
   1217 #if defined(IPSEC) || defined(FAST_IPSEC)
   1218 	struct proc *p = curproc;	/*XXX*/
   1219 #endif
   1220 
   1221 	if (level != IPPROTO_IP) {
   1222 		error = EINVAL;
   1223 		if (op == PRCO_SETOPT && *mp)
   1224 			(void) m_free(*mp);
   1225 	} else switch (op) {
   1226 
   1227 	case PRCO_SETOPT:
   1228 		switch (optname) {
   1229 		case IP_OPTIONS:
   1230 #ifdef notyet
   1231 		case IP_RETOPTS:
   1232 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1233 #else
   1234 			return (ip_pcbopts(&inp->inp_options, m));
   1235 #endif
   1236 
   1237 		case IP_TOS:
   1238 		case IP_TTL:
   1239 		case IP_RECVOPTS:
   1240 		case IP_RECVRETOPTS:
   1241 		case IP_RECVDSTADDR:
   1242 		case IP_RECVIF:
   1243 			if (m == NULL || m->m_len != sizeof(int))
   1244 				error = EINVAL;
   1245 			else {
   1246 				optval = *mtod(m, int *);
   1247 				switch (optname) {
   1248 
   1249 				case IP_TOS:
   1250 					inp->inp_ip.ip_tos = optval;
   1251 					break;
   1252 
   1253 				case IP_TTL:
   1254 					inp->inp_ip.ip_ttl = optval;
   1255 					break;
   1256 #define	OPTSET(bit) \
   1257 	if (optval) \
   1258 		inp->inp_flags |= bit; \
   1259 	else \
   1260 		inp->inp_flags &= ~bit;
   1261 
   1262 				case IP_RECVOPTS:
   1263 					OPTSET(INP_RECVOPTS);
   1264 					break;
   1265 
   1266 				case IP_RECVRETOPTS:
   1267 					OPTSET(INP_RECVRETOPTS);
   1268 					break;
   1269 
   1270 				case IP_RECVDSTADDR:
   1271 					OPTSET(INP_RECVDSTADDR);
   1272 					break;
   1273 
   1274 				case IP_RECVIF:
   1275 					OPTSET(INP_RECVIF);
   1276 					break;
   1277 				}
   1278 			}
   1279 			break;
   1280 #undef OPTSET
   1281 
   1282 		case IP_MULTICAST_IF:
   1283 		case IP_MULTICAST_TTL:
   1284 		case IP_MULTICAST_LOOP:
   1285 		case IP_ADD_MEMBERSHIP:
   1286 		case IP_DROP_MEMBERSHIP:
   1287 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1288 			break;
   1289 
   1290 		case IP_PORTRANGE:
   1291 			if (m == 0 || m->m_len != sizeof(int))
   1292 				error = EINVAL;
   1293 			else {
   1294 				optval = *mtod(m, int *);
   1295 
   1296 				switch (optval) {
   1297 
   1298 				case IP_PORTRANGE_DEFAULT:
   1299 				case IP_PORTRANGE_HIGH:
   1300 					inp->inp_flags &= ~(INP_LOWPORT);
   1301 					break;
   1302 
   1303 				case IP_PORTRANGE_LOW:
   1304 					inp->inp_flags |= INP_LOWPORT;
   1305 					break;
   1306 
   1307 				default:
   1308 					error = EINVAL;
   1309 					break;
   1310 				}
   1311 			}
   1312 			break;
   1313 
   1314 #if defined(IPSEC) || defined(FAST_IPSEC)
   1315 		case IP_IPSEC_POLICY:
   1316 		{
   1317 			caddr_t req = NULL;
   1318 			size_t len = 0;
   1319 			int priv = 0;
   1320 
   1321 #ifdef __NetBSD__
   1322 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1323 				priv = 0;
   1324 			else
   1325 				priv = 1;
   1326 #else
   1327 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1328 #endif
   1329 			if (m) {
   1330 				req = mtod(m, caddr_t);
   1331 				len = m->m_len;
   1332 			}
   1333 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1334 			break;
   1335 		    }
   1336 #endif /*IPSEC*/
   1337 
   1338 		default:
   1339 			error = ENOPROTOOPT;
   1340 			break;
   1341 		}
   1342 		if (m)
   1343 			(void)m_free(m);
   1344 		break;
   1345 
   1346 	case PRCO_GETOPT:
   1347 		switch (optname) {
   1348 		case IP_OPTIONS:
   1349 		case IP_RETOPTS:
   1350 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1351 			MCLAIM(m, so->so_mowner);
   1352 			if (inp->inp_options) {
   1353 				m->m_len = inp->inp_options->m_len;
   1354 				bcopy(mtod(inp->inp_options, caddr_t),
   1355 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1356 			} else
   1357 				m->m_len = 0;
   1358 			break;
   1359 
   1360 		case IP_TOS:
   1361 		case IP_TTL:
   1362 		case IP_RECVOPTS:
   1363 		case IP_RECVRETOPTS:
   1364 		case IP_RECVDSTADDR:
   1365 		case IP_RECVIF:
   1366 		case IP_ERRORMTU:
   1367 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1368 			MCLAIM(m, so->so_mowner);
   1369 			m->m_len = sizeof(int);
   1370 			switch (optname) {
   1371 
   1372 			case IP_TOS:
   1373 				optval = inp->inp_ip.ip_tos;
   1374 				break;
   1375 
   1376 			case IP_TTL:
   1377 				optval = inp->inp_ip.ip_ttl;
   1378 				break;
   1379 
   1380 			case IP_ERRORMTU:
   1381 				optval = inp->inp_errormtu;
   1382 				break;
   1383 
   1384 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1385 
   1386 			case IP_RECVOPTS:
   1387 				optval = OPTBIT(INP_RECVOPTS);
   1388 				break;
   1389 
   1390 			case IP_RECVRETOPTS:
   1391 				optval = OPTBIT(INP_RECVRETOPTS);
   1392 				break;
   1393 
   1394 			case IP_RECVDSTADDR:
   1395 				optval = OPTBIT(INP_RECVDSTADDR);
   1396 				break;
   1397 
   1398 			case IP_RECVIF:
   1399 				optval = OPTBIT(INP_RECVIF);
   1400 				break;
   1401 			}
   1402 			*mtod(m, int *) = optval;
   1403 			break;
   1404 
   1405 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1406 		/* XXX: code broken */
   1407 		case IP_IPSEC_POLICY:
   1408 		{
   1409 			caddr_t req = NULL;
   1410 			size_t len = 0;
   1411 
   1412 			if (m) {
   1413 				req = mtod(m, caddr_t);
   1414 				len = m->m_len;
   1415 			}
   1416 			error = ipsec4_get_policy(inp, req, len, mp);
   1417 			break;
   1418 		}
   1419 #endif /*IPSEC*/
   1420 
   1421 		case IP_MULTICAST_IF:
   1422 		case IP_MULTICAST_TTL:
   1423 		case IP_MULTICAST_LOOP:
   1424 		case IP_ADD_MEMBERSHIP:
   1425 		case IP_DROP_MEMBERSHIP:
   1426 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1427 			if (*mp)
   1428 				MCLAIM(*mp, so->so_mowner);
   1429 			break;
   1430 
   1431 		case IP_PORTRANGE:
   1432 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1433 			MCLAIM(m, so->so_mowner);
   1434 			m->m_len = sizeof(int);
   1435 
   1436 			if (inp->inp_flags & INP_LOWPORT)
   1437 				optval = IP_PORTRANGE_LOW;
   1438 			else
   1439 				optval = IP_PORTRANGE_DEFAULT;
   1440 
   1441 			*mtod(m, int *) = optval;
   1442 			break;
   1443 
   1444 		default:
   1445 			error = ENOPROTOOPT;
   1446 			break;
   1447 		}
   1448 		break;
   1449 	}
   1450 	return (error);
   1451 }
   1452 
   1453 /*
   1454  * Set up IP options in pcb for insertion in output packets.
   1455  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1456  * with destination address if source routed.
   1457  */
   1458 int
   1459 #ifdef notyet
   1460 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1461 #else
   1462 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1463 #endif
   1464 {
   1465 	int cnt, optlen;
   1466 	u_char *cp;
   1467 	u_char opt;
   1468 
   1469 	/* turn off any old options */
   1470 	if (*pcbopt)
   1471 		(void)m_free(*pcbopt);
   1472 	*pcbopt = 0;
   1473 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1474 		/*
   1475 		 * Only turning off any previous options.
   1476 		 */
   1477 		if (m)
   1478 			(void)m_free(m);
   1479 		return (0);
   1480 	}
   1481 
   1482 #ifndef	__vax__
   1483 	if (m->m_len % sizeof(int32_t))
   1484 		goto bad;
   1485 #endif
   1486 	/*
   1487 	 * IP first-hop destination address will be stored before
   1488 	 * actual options; move other options back
   1489 	 * and clear it when none present.
   1490 	 */
   1491 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1492 		goto bad;
   1493 	cnt = m->m_len;
   1494 	m->m_len += sizeof(struct in_addr);
   1495 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1496 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1497 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1498 
   1499 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1500 		opt = cp[IPOPT_OPTVAL];
   1501 		if (opt == IPOPT_EOL)
   1502 			break;
   1503 		if (opt == IPOPT_NOP)
   1504 			optlen = 1;
   1505 		else {
   1506 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1507 				goto bad;
   1508 			optlen = cp[IPOPT_OLEN];
   1509 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1510 				goto bad;
   1511 		}
   1512 		switch (opt) {
   1513 
   1514 		default:
   1515 			break;
   1516 
   1517 		case IPOPT_LSRR:
   1518 		case IPOPT_SSRR:
   1519 			/*
   1520 			 * user process specifies route as:
   1521 			 *	->A->B->C->D
   1522 			 * D must be our final destination (but we can't
   1523 			 * check that since we may not have connected yet).
   1524 			 * A is first hop destination, which doesn't appear in
   1525 			 * actual IP option, but is stored before the options.
   1526 			 */
   1527 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1528 				goto bad;
   1529 			m->m_len -= sizeof(struct in_addr);
   1530 			cnt -= sizeof(struct in_addr);
   1531 			optlen -= sizeof(struct in_addr);
   1532 			cp[IPOPT_OLEN] = optlen;
   1533 			/*
   1534 			 * Move first hop before start of options.
   1535 			 */
   1536 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1537 			    sizeof(struct in_addr));
   1538 			/*
   1539 			 * Then copy rest of options back
   1540 			 * to close up the deleted entry.
   1541 			 */
   1542 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1543 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1544 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1545 			break;
   1546 		}
   1547 	}
   1548 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1549 		goto bad;
   1550 	*pcbopt = m;
   1551 	return (0);
   1552 
   1553 bad:
   1554 	(void)m_free(m);
   1555 	return (EINVAL);
   1556 }
   1557 
   1558 /*
   1559  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1560  */
   1561 static struct ifnet *
   1562 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1563 {
   1564 	int ifindex;
   1565 	struct ifnet *ifp = NULL;
   1566 	struct in_ifaddr *ia;
   1567 
   1568 	if (ifindexp)
   1569 		*ifindexp = 0;
   1570 	if (ntohl(a->s_addr) >> 24 == 0) {
   1571 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1572 		if (ifindex < 0 || if_indexlim <= ifindex)
   1573 			return NULL;
   1574 		ifp = ifindex2ifnet[ifindex];
   1575 		if (!ifp)
   1576 			return NULL;
   1577 		if (ifindexp)
   1578 			*ifindexp = ifindex;
   1579 	} else {
   1580 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1581 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1582 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1583 				ifp = ia->ia_ifp;
   1584 				break;
   1585 			}
   1586 		}
   1587 	}
   1588 	return ifp;
   1589 }
   1590 
   1591 /*
   1592  * Set the IP multicast options in response to user setsockopt().
   1593  */
   1594 int
   1595 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1596 {
   1597 	int error = 0;
   1598 	u_char loop;
   1599 	int i;
   1600 	struct in_addr addr;
   1601 	struct ip_mreq *mreq;
   1602 	struct ifnet *ifp;
   1603 	struct ip_moptions *imo = *imop;
   1604 	struct route ro;
   1605 	struct sockaddr_in *dst;
   1606 	int ifindex;
   1607 
   1608 	if (imo == NULL) {
   1609 		/*
   1610 		 * No multicast option buffer attached to the pcb;
   1611 		 * allocate one and initialize to default values.
   1612 		 */
   1613 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1614 		    M_WAITOK);
   1615 
   1616 		if (imo == NULL)
   1617 			return (ENOBUFS);
   1618 		*imop = imo;
   1619 		imo->imo_multicast_ifp = NULL;
   1620 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1621 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1622 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1623 		imo->imo_num_memberships = 0;
   1624 	}
   1625 
   1626 	switch (optname) {
   1627 
   1628 	case IP_MULTICAST_IF:
   1629 		/*
   1630 		 * Select the interface for outgoing multicast packets.
   1631 		 */
   1632 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1633 			error = EINVAL;
   1634 			break;
   1635 		}
   1636 		addr = *(mtod(m, struct in_addr *));
   1637 		/*
   1638 		 * INADDR_ANY is used to remove a previous selection.
   1639 		 * When no interface is selected, a default one is
   1640 		 * chosen every time a multicast packet is sent.
   1641 		 */
   1642 		if (in_nullhost(addr)) {
   1643 			imo->imo_multicast_ifp = NULL;
   1644 			break;
   1645 		}
   1646 		/*
   1647 		 * The selected interface is identified by its local
   1648 		 * IP address.  Find the interface and confirm that
   1649 		 * it supports multicasting.
   1650 		 */
   1651 		ifp = ip_multicast_if(&addr, &ifindex);
   1652 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1653 			error = EADDRNOTAVAIL;
   1654 			break;
   1655 		}
   1656 		imo->imo_multicast_ifp = ifp;
   1657 		if (ifindex)
   1658 			imo->imo_multicast_addr = addr;
   1659 		else
   1660 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1661 		break;
   1662 
   1663 	case IP_MULTICAST_TTL:
   1664 		/*
   1665 		 * Set the IP time-to-live for outgoing multicast packets.
   1666 		 */
   1667 		if (m == NULL || m->m_len != 1) {
   1668 			error = EINVAL;
   1669 			break;
   1670 		}
   1671 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
   1672 		break;
   1673 
   1674 	case IP_MULTICAST_LOOP:
   1675 		/*
   1676 		 * Set the loopback flag for outgoing multicast packets.
   1677 		 * Must be zero or one.
   1678 		 */
   1679 		if (m == NULL || m->m_len != 1 ||
   1680 		   (loop = *(mtod(m, u_char *))) > 1) {
   1681 			error = EINVAL;
   1682 			break;
   1683 		}
   1684 		imo->imo_multicast_loop = loop;
   1685 		break;
   1686 
   1687 	case IP_ADD_MEMBERSHIP:
   1688 		/*
   1689 		 * Add a multicast group membership.
   1690 		 * Group must be a valid IP multicast address.
   1691 		 */
   1692 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1693 			error = EINVAL;
   1694 			break;
   1695 		}
   1696 		mreq = mtod(m, struct ip_mreq *);
   1697 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1698 			error = EINVAL;
   1699 			break;
   1700 		}
   1701 		/*
   1702 		 * If no interface address was provided, use the interface of
   1703 		 * the route to the given multicast address.
   1704 		 */
   1705 		if (in_nullhost(mreq->imr_interface)) {
   1706 			bzero((caddr_t)&ro, sizeof(ro));
   1707 			ro.ro_rt = NULL;
   1708 			dst = satosin(&ro.ro_dst);
   1709 			dst->sin_len = sizeof(*dst);
   1710 			dst->sin_family = AF_INET;
   1711 			dst->sin_addr = mreq->imr_multiaddr;
   1712 			rtalloc(&ro);
   1713 			if (ro.ro_rt == NULL) {
   1714 				error = EADDRNOTAVAIL;
   1715 				break;
   1716 			}
   1717 			ifp = ro.ro_rt->rt_ifp;
   1718 			rtfree(ro.ro_rt);
   1719 		} else {
   1720 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1721 		}
   1722 		/*
   1723 		 * See if we found an interface, and confirm that it
   1724 		 * supports multicast.
   1725 		 */
   1726 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1727 			error = EADDRNOTAVAIL;
   1728 			break;
   1729 		}
   1730 		/*
   1731 		 * See if the membership already exists or if all the
   1732 		 * membership slots are full.
   1733 		 */
   1734 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1735 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1736 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1737 				      mreq->imr_multiaddr))
   1738 				break;
   1739 		}
   1740 		if (i < imo->imo_num_memberships) {
   1741 			error = EADDRINUSE;
   1742 			break;
   1743 		}
   1744 		if (i == IP_MAX_MEMBERSHIPS) {
   1745 			error = ETOOMANYREFS;
   1746 			break;
   1747 		}
   1748 		/*
   1749 		 * Everything looks good; add a new record to the multicast
   1750 		 * address list for the given interface.
   1751 		 */
   1752 		if ((imo->imo_membership[i] =
   1753 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1754 			error = ENOBUFS;
   1755 			break;
   1756 		}
   1757 		++imo->imo_num_memberships;
   1758 		break;
   1759 
   1760 	case IP_DROP_MEMBERSHIP:
   1761 		/*
   1762 		 * Drop a multicast group membership.
   1763 		 * Group must be a valid IP multicast address.
   1764 		 */
   1765 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1766 			error = EINVAL;
   1767 			break;
   1768 		}
   1769 		mreq = mtod(m, struct ip_mreq *);
   1770 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1771 			error = EINVAL;
   1772 			break;
   1773 		}
   1774 		/*
   1775 		 * If an interface address was specified, get a pointer
   1776 		 * to its ifnet structure.
   1777 		 */
   1778 		if (in_nullhost(mreq->imr_interface))
   1779 			ifp = NULL;
   1780 		else {
   1781 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1782 			if (ifp == NULL) {
   1783 				error = EADDRNOTAVAIL;
   1784 				break;
   1785 			}
   1786 		}
   1787 		/*
   1788 		 * Find the membership in the membership array.
   1789 		 */
   1790 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1791 			if ((ifp == NULL ||
   1792 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1793 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1794 				       mreq->imr_multiaddr))
   1795 				break;
   1796 		}
   1797 		if (i == imo->imo_num_memberships) {
   1798 			error = EADDRNOTAVAIL;
   1799 			break;
   1800 		}
   1801 		/*
   1802 		 * Give up the multicast address record to which the
   1803 		 * membership points.
   1804 		 */
   1805 		in_delmulti(imo->imo_membership[i]);
   1806 		/*
   1807 		 * Remove the gap in the membership array.
   1808 		 */
   1809 		for (++i; i < imo->imo_num_memberships; ++i)
   1810 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1811 		--imo->imo_num_memberships;
   1812 		break;
   1813 
   1814 	default:
   1815 		error = EOPNOTSUPP;
   1816 		break;
   1817 	}
   1818 
   1819 	/*
   1820 	 * If all options have default values, no need to keep the mbuf.
   1821 	 */
   1822 	if (imo->imo_multicast_ifp == NULL &&
   1823 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1824 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1825 	    imo->imo_num_memberships == 0) {
   1826 		free(*imop, M_IPMOPTS);
   1827 		*imop = NULL;
   1828 	}
   1829 
   1830 	return (error);
   1831 }
   1832 
   1833 /*
   1834  * Return the IP multicast options in response to user getsockopt().
   1835  */
   1836 int
   1837 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1838 {
   1839 	u_char *ttl;
   1840 	u_char *loop;
   1841 	struct in_addr *addr;
   1842 	struct in_ifaddr *ia;
   1843 
   1844 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1845 
   1846 	switch (optname) {
   1847 
   1848 	case IP_MULTICAST_IF:
   1849 		addr = mtod(*mp, struct in_addr *);
   1850 		(*mp)->m_len = sizeof(struct in_addr);
   1851 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1852 			*addr = zeroin_addr;
   1853 		else if (imo->imo_multicast_addr.s_addr) {
   1854 			/* return the value user has set */
   1855 			*addr = imo->imo_multicast_addr;
   1856 		} else {
   1857 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1858 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1859 		}
   1860 		return (0);
   1861 
   1862 	case IP_MULTICAST_TTL:
   1863 		ttl = mtod(*mp, u_char *);
   1864 		(*mp)->m_len = 1;
   1865 		*ttl = imo ? imo->imo_multicast_ttl
   1866 			   : IP_DEFAULT_MULTICAST_TTL;
   1867 		return (0);
   1868 
   1869 	case IP_MULTICAST_LOOP:
   1870 		loop = mtod(*mp, u_char *);
   1871 		(*mp)->m_len = 1;
   1872 		*loop = imo ? imo->imo_multicast_loop
   1873 			    : IP_DEFAULT_MULTICAST_LOOP;
   1874 		return (0);
   1875 
   1876 	default:
   1877 		return (EOPNOTSUPP);
   1878 	}
   1879 }
   1880 
   1881 /*
   1882  * Discard the IP multicast options.
   1883  */
   1884 void
   1885 ip_freemoptions(struct ip_moptions *imo)
   1886 {
   1887 	int i;
   1888 
   1889 	if (imo != NULL) {
   1890 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1891 			in_delmulti(imo->imo_membership[i]);
   1892 		free(imo, M_IPMOPTS);
   1893 	}
   1894 }
   1895 
   1896 /*
   1897  * Routine called from ip_output() to loop back a copy of an IP multicast
   1898  * packet to the input queue of a specified interface.  Note that this
   1899  * calls the output routine of the loopback "driver", but with an interface
   1900  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1901  */
   1902 static void
   1903 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
   1904 {
   1905 	struct ip *ip;
   1906 	struct mbuf *copym;
   1907 
   1908 	copym = m_copy(m, 0, M_COPYALL);
   1909 	if (copym != NULL
   1910 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1911 		copym = m_pullup(copym, sizeof(struct ip));
   1912 	if (copym != NULL) {
   1913 		/*
   1914 		 * We don't bother to fragment if the IP length is greater
   1915 		 * than the interface's MTU.  Can this possibly matter?
   1916 		 */
   1917 		ip = mtod(copym, struct ip *);
   1918 
   1919 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1920 			in_delayed_cksum(copym);
   1921 			copym->m_pkthdr.csum_flags &=
   1922 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1923 		}
   1924 
   1925 		ip->ip_sum = 0;
   1926 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1927 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1928 	}
   1929 }
   1930