ip_output.c revision 1.153 1 /* $NetBSD: ip_output.c,v 1.153 2005/05/29 21:41:23 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.153 2005/05/29 21:41:23 christos Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/in_offload.h>
132
133 #ifdef MROUTING
134 #include <netinet/ip_mroute.h>
135 #endif
136
137 #include <machine/stdarg.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #include <netkey/key_debug.h>
143 #ifdef IPSEC_NAT_T
144 #include <netinet/udp.h>
145 #endif
146 #endif /*IPSEC*/
147
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #include <netipsec/xform.h>
152 #endif /* FAST_IPSEC*/
153
154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
157
158 #ifdef PFIL_HOOKS
159 extern struct pfil_head inet_pfil_hook; /* XXX */
160 #endif
161
162 int udp_do_loopback_cksum = 0;
163 int tcp_do_loopback_cksum = 0;
164 int ip_do_loopback_cksum = 0;
165
166 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
167 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
168 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
169 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
171
172 struct ip_tso_output_args {
173 struct ifnet *ifp;
174 struct sockaddr *sa;
175 struct rtentry *rt;
176 };
177
178 static int ip_tso_output_callback(void *, struct mbuf *);
179 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
180 struct rtentry *);
181
182 static int
183 ip_tso_output_callback(void *vp, struct mbuf *m)
184 {
185 struct ip_tso_output_args *args = vp;
186 struct ifnet *ifp = args->ifp;
187
188 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
189 }
190
191 static int
192 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
193 struct rtentry *rt)
194 {
195 struct ip_tso_output_args args;
196
197 args.ifp = ifp;
198 args.sa = sa;
199 args.rt = rt;
200
201 return tcp4_segment(m, ip_tso_output_callback, &args);
202 }
203
204 /*
205 * IP output. The packet in mbuf chain m contains a skeletal IP
206 * header (with len, off, ttl, proto, tos, src, dst).
207 * The mbuf chain containing the packet will be freed.
208 * The mbuf opt, if present, will not be freed.
209 */
210 int
211 ip_output(struct mbuf *m0, ...)
212 {
213 struct ip *ip;
214 struct ifnet *ifp;
215 struct mbuf *m = m0;
216 int hlen = sizeof (struct ip);
217 int len, error = 0;
218 struct route iproute;
219 struct sockaddr_in *dst;
220 struct in_ifaddr *ia;
221 struct mbuf *opt;
222 struct route *ro;
223 int flags, sw_csum;
224 int *mtu_p;
225 u_long mtu;
226 struct ip_moptions *imo;
227 struct socket *so;
228 va_list ap;
229 #ifdef IPSEC
230 struct secpolicy *sp = NULL;
231 #ifdef IPSEC_NAT_T
232 int natt_frag = 0;
233 #endif
234 #endif /*IPSEC*/
235 #ifdef FAST_IPSEC
236 struct inpcb *inp;
237 struct m_tag *mtag;
238 struct secpolicy *sp = NULL;
239 struct tdb_ident *tdbi;
240 int s;
241 #endif
242 u_int16_t ip_len;
243
244 len = 0;
245 va_start(ap, m0);
246 opt = va_arg(ap, struct mbuf *);
247 ro = va_arg(ap, struct route *);
248 flags = va_arg(ap, int);
249 imo = va_arg(ap, struct ip_moptions *);
250 so = va_arg(ap, struct socket *);
251 if (flags & IP_RETURNMTU)
252 mtu_p = va_arg(ap, int *);
253 else
254 mtu_p = NULL;
255 va_end(ap);
256
257 MCLAIM(m, &ip_tx_mowner);
258 #ifdef FAST_IPSEC
259 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
260 inp = (struct inpcb *)so->so_pcb;
261 else
262 inp = NULL;
263 #endif /* FAST_IPSEC */
264
265 #ifdef DIAGNOSTIC
266 if ((m->m_flags & M_PKTHDR) == 0)
267 panic("ip_output no HDR");
268 #endif
269 if (opt) {
270 m = ip_insertoptions(m, opt, &len);
271 if (len >= sizeof(struct ip))
272 hlen = len;
273 }
274 ip = mtod(m, struct ip *);
275 /*
276 * Fill in IP header.
277 */
278 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
279 ip->ip_v = IPVERSION;
280 ip->ip_off = htons(0);
281 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
282 ip->ip_id = ip_newid();
283 } else {
284
285 /*
286 * TSO capable interfaces (typically?) increment
287 * ip_id for each segment.
288 * "allocate" enough ids here to increase the chance
289 * for them to be unique.
290 *
291 * note that the following calculation is not
292 * needed to be precise. wasting some ip_id is fine.
293 */
294
295 unsigned int segsz = m->m_pkthdr.segsz;
296 unsigned int datasz = ntohs(ip->ip_len) - hlen;
297 unsigned int num = howmany(datasz, segsz);
298
299 ip->ip_id = ip_newid_range(num);
300 }
301 ip->ip_hl = hlen >> 2;
302 ipstat.ips_localout++;
303 } else {
304 hlen = ip->ip_hl << 2;
305 }
306 /*
307 * Route packet.
308 */
309 if (ro == 0) {
310 ro = &iproute;
311 bzero((caddr_t)ro, sizeof (*ro));
312 }
313 dst = satosin(&ro->ro_dst);
314 /*
315 * If there is a cached route,
316 * check that it is to the same destination
317 * and is still up. If not, free it and try again.
318 * The address family should also be checked in case of sharing the
319 * cache with IPv6.
320 */
321 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
322 dst->sin_family != AF_INET ||
323 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
324 RTFREE(ro->ro_rt);
325 ro->ro_rt = (struct rtentry *)0;
326 }
327 if (ro->ro_rt == 0) {
328 bzero(dst, sizeof(*dst));
329 dst->sin_family = AF_INET;
330 dst->sin_len = sizeof(*dst);
331 dst->sin_addr = ip->ip_dst;
332 }
333 /*
334 * If routing to interface only,
335 * short circuit routing lookup.
336 */
337 if (flags & IP_ROUTETOIF) {
338 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
339 ipstat.ips_noroute++;
340 error = ENETUNREACH;
341 goto bad;
342 }
343 ifp = ia->ia_ifp;
344 mtu = ifp->if_mtu;
345 ip->ip_ttl = 1;
346 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
347 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
348 imo != NULL && imo->imo_multicast_ifp != NULL) {
349 ifp = imo->imo_multicast_ifp;
350 mtu = ifp->if_mtu;
351 IFP_TO_IA(ifp, ia);
352 } else {
353 if (ro->ro_rt == 0)
354 rtalloc(ro);
355 if (ro->ro_rt == 0) {
356 ipstat.ips_noroute++;
357 error = EHOSTUNREACH;
358 goto bad;
359 }
360 ia = ifatoia(ro->ro_rt->rt_ifa);
361 ifp = ro->ro_rt->rt_ifp;
362 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
363 mtu = ifp->if_mtu;
364 ro->ro_rt->rt_use++;
365 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
366 dst = satosin(ro->ro_rt->rt_gateway);
367 }
368 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
369 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
370 struct in_multi *inm;
371
372 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
373 M_BCAST : M_MCAST;
374 /*
375 * IP destination address is multicast. Make sure "dst"
376 * still points to the address in "ro". (It may have been
377 * changed to point to a gateway address, above.)
378 */
379 dst = satosin(&ro->ro_dst);
380 /*
381 * See if the caller provided any multicast options
382 */
383 if (imo != NULL)
384 ip->ip_ttl = imo->imo_multicast_ttl;
385 else
386 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
387
388 /*
389 * if we don't know the outgoing ifp yet, we can't generate
390 * output
391 */
392 if (!ifp) {
393 ipstat.ips_noroute++;
394 error = ENETUNREACH;
395 goto bad;
396 }
397
398 /*
399 * If the packet is multicast or broadcast, confirm that
400 * the outgoing interface can transmit it.
401 */
402 if (((m->m_flags & M_MCAST) &&
403 (ifp->if_flags & IFF_MULTICAST) == 0) ||
404 ((m->m_flags & M_BCAST) &&
405 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
406 ipstat.ips_noroute++;
407 error = ENETUNREACH;
408 goto bad;
409 }
410 /*
411 * If source address not specified yet, use an address
412 * of outgoing interface.
413 */
414 if (in_nullhost(ip->ip_src)) {
415 struct in_ifaddr *xia;
416
417 IFP_TO_IA(ifp, xia);
418 if (!xia) {
419 error = EADDRNOTAVAIL;
420 goto bad;
421 }
422 ip->ip_src = xia->ia_addr.sin_addr;
423 }
424
425 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
426 if (inm != NULL &&
427 (imo == NULL || imo->imo_multicast_loop)) {
428 /*
429 * If we belong to the destination multicast group
430 * on the outgoing interface, and the caller did not
431 * forbid loopback, loop back a copy.
432 */
433 ip_mloopback(ifp, m, dst);
434 }
435 #ifdef MROUTING
436 else {
437 /*
438 * If we are acting as a multicast router, perform
439 * multicast forwarding as if the packet had just
440 * arrived on the interface to which we are about
441 * to send. The multicast forwarding function
442 * recursively calls this function, using the
443 * IP_FORWARDING flag to prevent infinite recursion.
444 *
445 * Multicasts that are looped back by ip_mloopback(),
446 * above, will be forwarded by the ip_input() routine,
447 * if necessary.
448 */
449 extern struct socket *ip_mrouter;
450
451 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
452 if (ip_mforward(m, ifp) != 0) {
453 m_freem(m);
454 goto done;
455 }
456 }
457 }
458 #endif
459 /*
460 * Multicasts with a time-to-live of zero may be looped-
461 * back, above, but must not be transmitted on a network.
462 * Also, multicasts addressed to the loopback interface
463 * are not sent -- the above call to ip_mloopback() will
464 * loop back a copy if this host actually belongs to the
465 * destination group on the loopback interface.
466 */
467 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
468 m_freem(m);
469 goto done;
470 }
471
472 goto sendit;
473 }
474 #ifndef notdef
475 /*
476 * If source address not specified yet, use address
477 * of outgoing interface.
478 */
479 if (in_nullhost(ip->ip_src))
480 ip->ip_src = ia->ia_addr.sin_addr;
481 #endif
482
483 /*
484 * packets with Class-D address as source are not valid per
485 * RFC 1112
486 */
487 if (IN_MULTICAST(ip->ip_src.s_addr)) {
488 ipstat.ips_odropped++;
489 error = EADDRNOTAVAIL;
490 goto bad;
491 }
492
493 /*
494 * Look for broadcast address and
495 * and verify user is allowed to send
496 * such a packet.
497 */
498 if (in_broadcast(dst->sin_addr, ifp)) {
499 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
500 error = EADDRNOTAVAIL;
501 goto bad;
502 }
503 if ((flags & IP_ALLOWBROADCAST) == 0) {
504 error = EACCES;
505 goto bad;
506 }
507 /* don't allow broadcast messages to be fragmented */
508 if (ntohs(ip->ip_len) > ifp->if_mtu) {
509 error = EMSGSIZE;
510 goto bad;
511 }
512 m->m_flags |= M_BCAST;
513 } else
514 m->m_flags &= ~M_BCAST;
515
516 sendit:
517 /*
518 * If we're doing Path MTU Discovery, we need to set DF unless
519 * the route's MTU is locked.
520 */
521 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
522 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
523 ip->ip_off |= htons(IP_DF);
524
525 /* Remember the current ip_len */
526 ip_len = ntohs(ip->ip_len);
527
528 #ifdef IPSEC
529 /* get SP for this packet */
530 if (so == NULL)
531 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
532 flags, &error);
533 else {
534 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
535 IPSEC_DIR_OUTBOUND))
536 goto skip_ipsec;
537 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
538 }
539
540 if (sp == NULL) {
541 ipsecstat.out_inval++;
542 goto bad;
543 }
544
545 error = 0;
546
547 /* check policy */
548 switch (sp->policy) {
549 case IPSEC_POLICY_DISCARD:
550 /*
551 * This packet is just discarded.
552 */
553 ipsecstat.out_polvio++;
554 goto bad;
555
556 case IPSEC_POLICY_BYPASS:
557 case IPSEC_POLICY_NONE:
558 /* no need to do IPsec. */
559 goto skip_ipsec;
560
561 case IPSEC_POLICY_IPSEC:
562 if (sp->req == NULL) {
563 /* XXX should be panic ? */
564 printf("ip_output: No IPsec request specified.\n");
565 error = EINVAL;
566 goto bad;
567 }
568 break;
569
570 case IPSEC_POLICY_ENTRUST:
571 default:
572 printf("ip_output: Invalid policy found. %d\n", sp->policy);
573 }
574
575 #ifdef IPSEC_NAT_T
576 /*
577 * NAT-T ESP fragmentation: don't do IPSec processing now,
578 * we'll do it on each fragmented packet.
579 */
580 if (sp->req->sav &&
581 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
582 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
583 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
584 natt_frag = 1;
585 mtu = sp->req->sav->esp_frag;
586 goto skip_ipsec;
587 }
588 }
589 #endif /* IPSEC_NAT_T */
590
591 /*
592 * ipsec4_output() expects ip_len and ip_off in network
593 * order. They have been set to network order above.
594 */
595
596 {
597 struct ipsec_output_state state;
598 bzero(&state, sizeof(state));
599 state.m = m;
600 if (flags & IP_ROUTETOIF) {
601 state.ro = &iproute;
602 bzero(&iproute, sizeof(iproute));
603 } else
604 state.ro = ro;
605 state.dst = (struct sockaddr *)dst;
606
607 /*
608 * We can't defer the checksum of payload data if
609 * we're about to encrypt/authenticate it.
610 *
611 * XXX When we support crypto offloading functions of
612 * XXX network interfaces, we need to reconsider this,
613 * XXX since it's likely that they'll support checksumming,
614 * XXX as well.
615 */
616 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
617 in_delayed_cksum(m);
618 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
619 }
620
621 error = ipsec4_output(&state, sp, flags);
622
623 m = state.m;
624 if (flags & IP_ROUTETOIF) {
625 /*
626 * if we have tunnel mode SA, we may need to ignore
627 * IP_ROUTETOIF.
628 */
629 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
630 flags &= ~IP_ROUTETOIF;
631 ro = state.ro;
632 }
633 } else
634 ro = state.ro;
635 dst = (struct sockaddr_in *)state.dst;
636 if (error) {
637 /* mbuf is already reclaimed in ipsec4_output. */
638 m0 = NULL;
639 switch (error) {
640 case EHOSTUNREACH:
641 case ENETUNREACH:
642 case EMSGSIZE:
643 case ENOBUFS:
644 case ENOMEM:
645 break;
646 default:
647 printf("ip4_output (ipsec): error code %d\n", error);
648 /*fall through*/
649 case ENOENT:
650 /* don't show these error codes to the user */
651 error = 0;
652 break;
653 }
654 goto bad;
655 }
656
657 /* be sure to update variables that are affected by ipsec4_output() */
658 ip = mtod(m, struct ip *);
659 hlen = ip->ip_hl << 2;
660 ip_len = ntohs(ip->ip_len);
661
662 if (ro->ro_rt == NULL) {
663 if ((flags & IP_ROUTETOIF) == 0) {
664 printf("ip_output: "
665 "can't update route after IPsec processing\n");
666 error = EHOSTUNREACH; /*XXX*/
667 goto bad;
668 }
669 } else {
670 /* nobody uses ia beyond here */
671 if (state.encap) {
672 ifp = ro->ro_rt->rt_ifp;
673 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
674 mtu = ifp->if_mtu;
675 }
676 }
677 }
678 skip_ipsec:
679 #endif /*IPSEC*/
680 #ifdef FAST_IPSEC
681 /*
682 * Check the security policy (SP) for the packet and, if
683 * required, do IPsec-related processing. There are two
684 * cases here; the first time a packet is sent through
685 * it will be untagged and handled by ipsec4_checkpolicy.
686 * If the packet is resubmitted to ip_output (e.g. after
687 * AH, ESP, etc. processing), there will be a tag to bypass
688 * the lookup and related policy checking.
689 */
690 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
691 s = splsoftnet();
692 if (mtag != NULL) {
693 tdbi = (struct tdb_ident *)(mtag + 1);
694 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
695 if (sp == NULL)
696 error = -EINVAL; /* force silent drop */
697 m_tag_delete(m, mtag);
698 } else {
699 if (inp != NULL &&
700 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
701 goto spd_done;
702 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
703 &error, inp);
704 }
705 /*
706 * There are four return cases:
707 * sp != NULL apply IPsec policy
708 * sp == NULL, error == 0 no IPsec handling needed
709 * sp == NULL, error == -EINVAL discard packet w/o error
710 * sp == NULL, error != 0 discard packet, report error
711 */
712 if (sp != NULL) {
713 /* Loop detection, check if ipsec processing already done */
714 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
715 for (mtag = m_tag_first(m); mtag != NULL;
716 mtag = m_tag_next(m, mtag)) {
717 #ifdef MTAG_ABI_COMPAT
718 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
719 continue;
720 #endif
721 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
722 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
723 continue;
724 /*
725 * Check if policy has an SA associated with it.
726 * This can happen when an SP has yet to acquire
727 * an SA; e.g. on first reference. If it occurs,
728 * then we let ipsec4_process_packet do its thing.
729 */
730 if (sp->req->sav == NULL)
731 break;
732 tdbi = (struct tdb_ident *)(mtag + 1);
733 if (tdbi->spi == sp->req->sav->spi &&
734 tdbi->proto == sp->req->sav->sah->saidx.proto &&
735 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
736 sizeof (union sockaddr_union)) == 0) {
737 /*
738 * No IPsec processing is needed, free
739 * reference to SP.
740 *
741 * NB: null pointer to avoid free at
742 * done: below.
743 */
744 KEY_FREESP(&sp), sp = NULL;
745 splx(s);
746 goto spd_done;
747 }
748 }
749
750 /*
751 * Do delayed checksums now because we send before
752 * this is done in the normal processing path.
753 */
754 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
755 in_delayed_cksum(m);
756 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
757 }
758
759 #ifdef __FreeBSD__
760 ip->ip_len = htons(ip->ip_len);
761 ip->ip_off = htons(ip->ip_off);
762 #endif
763
764 /* NB: callee frees mbuf */
765 error = ipsec4_process_packet(m, sp->req, flags, 0);
766 /*
767 * Preserve KAME behaviour: ENOENT can be returned
768 * when an SA acquire is in progress. Don't propagate
769 * this to user-level; it confuses applications.
770 *
771 * XXX this will go away when the SADB is redone.
772 */
773 if (error == ENOENT)
774 error = 0;
775 splx(s);
776 goto done;
777 } else {
778 splx(s);
779
780 if (error != 0) {
781 /*
782 * Hack: -EINVAL is used to signal that a packet
783 * should be silently discarded. This is typically
784 * because we asked key management for an SA and
785 * it was delayed (e.g. kicked up to IKE).
786 */
787 if (error == -EINVAL)
788 error = 0;
789 goto bad;
790 } else {
791 /* No IPsec processing for this packet. */
792 }
793 #ifdef notyet
794 /*
795 * If deferred crypto processing is needed, check that
796 * the interface supports it.
797 */
798 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
799 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
800 /* notify IPsec to do its own crypto */
801 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
802 error = EHOSTUNREACH;
803 goto bad;
804 }
805 #endif
806 }
807 spd_done:
808 #endif /* FAST_IPSEC */
809
810 #ifdef PFIL_HOOKS
811 /*
812 * Run through list of hooks for output packets.
813 */
814 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
815 goto done;
816 if (m == NULL)
817 goto done;
818
819 ip = mtod(m, struct ip *);
820 hlen = ip->ip_hl << 2;
821 #endif /* PFIL_HOOKS */
822
823 m->m_pkthdr.csum_data |= hlen << 16;
824
825 #if IFA_STATS
826 /*
827 * search for the source address structure to
828 * maintain output statistics.
829 */
830 INADDR_TO_IA(ip->ip_src, ia);
831 #endif
832
833 /* Maybe skip checksums on loopback interfaces. */
834 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
835 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
836 }
837 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
838 /*
839 * If small enough for mtu of path, or if using TCP segmentation
840 * offload, can just send directly.
841 */
842 if (ip_len <= mtu ||
843 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
844 #if IFA_STATS
845 if (ia)
846 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
847 #endif
848 /*
849 * Always initialize the sum to 0! Some HW assisted
850 * checksumming requires this.
851 */
852 ip->ip_sum = 0;
853
854 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
855 /*
856 * Perform any checksums that the hardware can't do
857 * for us.
858 *
859 * XXX Does any hardware require the {th,uh}_sum
860 * XXX fields to be 0?
861 */
862 if (sw_csum & M_CSUM_IPv4) {
863 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
864 ip->ip_sum = in_cksum(m, hlen);
865 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
866 }
867 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
868 if (IN_NEED_CHECKSUM(ifp,
869 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
870 in_delayed_cksum(m);
871 }
872 m->m_pkthdr.csum_flags &=
873 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
874 }
875 }
876
877 #ifdef IPSEC
878 /* clean ipsec history once it goes out of the node */
879 ipsec_delaux(m);
880 #endif
881
882 if (__predict_true(
883 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
884 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
885 error =
886 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
887 } else {
888 error =
889 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
890 }
891 goto done;
892 }
893
894 /*
895 * We can't use HW checksumming if we're about to
896 * to fragment the packet.
897 *
898 * XXX Some hardware can do this.
899 */
900 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
901 if (IN_NEED_CHECKSUM(ifp,
902 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
903 in_delayed_cksum(m);
904 }
905 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
906 }
907
908 /*
909 * Too large for interface; fragment if possible.
910 * Must be able to put at least 8 bytes per fragment.
911 */
912 if (ntohs(ip->ip_off) & IP_DF) {
913 if (flags & IP_RETURNMTU)
914 *mtu_p = mtu;
915 error = EMSGSIZE;
916 ipstat.ips_cantfrag++;
917 goto bad;
918 }
919
920 error = ip_fragment(m, ifp, mtu);
921 if (error) {
922 m = NULL;
923 goto bad;
924 }
925
926 for (; m; m = m0) {
927 m0 = m->m_nextpkt;
928 m->m_nextpkt = 0;
929 if (error == 0) {
930 #if IFA_STATS
931 if (ia)
932 ia->ia_ifa.ifa_data.ifad_outbytes +=
933 ntohs(ip->ip_len);
934 #endif
935 #ifdef IPSEC
936 /* clean ipsec history once it goes out of the node */
937 ipsec_delaux(m);
938
939 #ifdef IPSEC_NAT_T
940 /*
941 * If we get there, the packet has not been handeld by
942 * IPSec whereas it should have. Now that it has been
943 * fragmented, re-inject it in ip_output so that IPsec
944 * processing can occur.
945 */
946 if (natt_frag) {
947 error = ip_output(m, opt,
948 ro, flags, imo, so, mtu_p);
949 } else
950 #endif /* IPSEC_NAT_T */
951 #endif /* IPSEC */
952 {
953 KASSERT((m->m_pkthdr.csum_flags &
954 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
955 error = (*ifp->if_output)(ifp, m, sintosa(dst),
956 ro->ro_rt);
957 }
958 } else
959 m_freem(m);
960 }
961
962 if (error == 0)
963 ipstat.ips_fragmented++;
964 done:
965 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
966 RTFREE(ro->ro_rt);
967 ro->ro_rt = 0;
968 }
969
970 #ifdef IPSEC
971 if (sp != NULL) {
972 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
973 printf("DP ip_output call free SP:%p\n", sp));
974 key_freesp(sp);
975 }
976 #endif /* IPSEC */
977 #ifdef FAST_IPSEC
978 if (sp != NULL)
979 KEY_FREESP(&sp);
980 #endif /* FAST_IPSEC */
981
982 return (error);
983 bad:
984 m_freem(m);
985 goto done;
986 }
987
988 int
989 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
990 {
991 struct ip *ip, *mhip;
992 struct mbuf *m0;
993 int len, hlen, off;
994 int mhlen, firstlen;
995 struct mbuf **mnext;
996 int sw_csum = m->m_pkthdr.csum_flags;
997 int fragments = 0;
998 int s;
999 int error = 0;
1000
1001 ip = mtod(m, struct ip *);
1002 hlen = ip->ip_hl << 2;
1003 if (ifp != NULL)
1004 sw_csum &= ~ifp->if_csum_flags_tx;
1005
1006 len = (mtu - hlen) &~ 7;
1007 if (len < 8) {
1008 m_freem(m);
1009 return (EMSGSIZE);
1010 }
1011
1012 firstlen = len;
1013 mnext = &m->m_nextpkt;
1014
1015 /*
1016 * Loop through length of segment after first fragment,
1017 * make new header and copy data of each part and link onto chain.
1018 */
1019 m0 = m;
1020 mhlen = sizeof (struct ip);
1021 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1022 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1023 if (m == 0) {
1024 error = ENOBUFS;
1025 ipstat.ips_odropped++;
1026 goto sendorfree;
1027 }
1028 MCLAIM(m, m0->m_owner);
1029 *mnext = m;
1030 mnext = &m->m_nextpkt;
1031 m->m_data += max_linkhdr;
1032 mhip = mtod(m, struct ip *);
1033 *mhip = *ip;
1034 /* we must inherit MCAST and BCAST flags */
1035 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1036 if (hlen > sizeof (struct ip)) {
1037 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1038 mhip->ip_hl = mhlen >> 2;
1039 }
1040 m->m_len = mhlen;
1041 mhip->ip_off = ((off - hlen) >> 3) +
1042 (ntohs(ip->ip_off) & ~IP_MF);
1043 if (ip->ip_off & htons(IP_MF))
1044 mhip->ip_off |= IP_MF;
1045 if (off + len >= ntohs(ip->ip_len))
1046 len = ntohs(ip->ip_len) - off;
1047 else
1048 mhip->ip_off |= IP_MF;
1049 HTONS(mhip->ip_off);
1050 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1051 m->m_next = m_copy(m0, off, len);
1052 if (m->m_next == 0) {
1053 error = ENOBUFS; /* ??? */
1054 ipstat.ips_odropped++;
1055 goto sendorfree;
1056 }
1057 m->m_pkthdr.len = mhlen + len;
1058 m->m_pkthdr.rcvif = (struct ifnet *)0;
1059 mhip->ip_sum = 0;
1060 if (sw_csum & M_CSUM_IPv4) {
1061 mhip->ip_sum = in_cksum(m, mhlen);
1062 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1063 } else {
1064 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1065 m->m_pkthdr.csum_data |= mhlen << 16;
1066 }
1067 ipstat.ips_ofragments++;
1068 fragments++;
1069 }
1070 /*
1071 * Update first fragment by trimming what's been copied out
1072 * and updating header, then send each fragment (in order).
1073 */
1074 m = m0;
1075 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1076 m->m_pkthdr.len = hlen + firstlen;
1077 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1078 ip->ip_off |= htons(IP_MF);
1079 ip->ip_sum = 0;
1080 if (sw_csum & M_CSUM_IPv4) {
1081 ip->ip_sum = in_cksum(m, hlen);
1082 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1083 } else {
1084 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1085 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1086 sizeof(struct ip));
1087 }
1088 sendorfree:
1089 /*
1090 * If there is no room for all the fragments, don't queue
1091 * any of them.
1092 */
1093 if (ifp != NULL) {
1094 s = splnet();
1095 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1096 error == 0) {
1097 error = ENOBUFS;
1098 ipstat.ips_odropped++;
1099 IFQ_INC_DROPS(&ifp->if_snd);
1100 }
1101 splx(s);
1102 }
1103 if (error) {
1104 for (m = m0; m; m = m0) {
1105 m0 = m->m_nextpkt;
1106 m->m_nextpkt = NULL;
1107 m_freem(m);
1108 }
1109 }
1110 return (error);
1111 }
1112
1113 /*
1114 * Process a delayed payload checksum calculation.
1115 */
1116 void
1117 in_delayed_cksum(struct mbuf *m)
1118 {
1119 struct ip *ip;
1120 u_int16_t csum, offset;
1121
1122 ip = mtod(m, struct ip *);
1123 offset = ip->ip_hl << 2;
1124 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1125 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1126 csum = 0xffff;
1127
1128 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1129
1130 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1131 /* This happen when ip options were inserted
1132 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1133 m->m_len, offset, ip->ip_p);
1134 */
1135 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1136 } else
1137 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1138 }
1139
1140 /*
1141 * Determine the maximum length of the options to be inserted;
1142 * we would far rather allocate too much space rather than too little.
1143 */
1144
1145 u_int
1146 ip_optlen(struct inpcb *inp)
1147 {
1148 struct mbuf *m = inp->inp_options;
1149
1150 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1151 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1152 else
1153 return 0;
1154 }
1155
1156
1157 /*
1158 * Insert IP options into preformed packet.
1159 * Adjust IP destination as required for IP source routing,
1160 * as indicated by a non-zero in_addr at the start of the options.
1161 */
1162 static struct mbuf *
1163 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1164 {
1165 struct ipoption *p = mtod(opt, struct ipoption *);
1166 struct mbuf *n;
1167 struct ip *ip = mtod(m, struct ip *);
1168 unsigned optlen;
1169
1170 optlen = opt->m_len - sizeof(p->ipopt_dst);
1171 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1172 return (m); /* XXX should fail */
1173 if (!in_nullhost(p->ipopt_dst))
1174 ip->ip_dst = p->ipopt_dst;
1175 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1176 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1177 if (n == 0)
1178 return (m);
1179 MCLAIM(n, m->m_owner);
1180 M_COPY_PKTHDR(n, m);
1181 m_tag_delete_chain(m, NULL);
1182 m->m_flags &= ~M_PKTHDR;
1183 m->m_len -= sizeof(struct ip);
1184 m->m_data += sizeof(struct ip);
1185 n->m_next = m;
1186 m = n;
1187 m->m_len = optlen + sizeof(struct ip);
1188 m->m_data += max_linkhdr;
1189 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1190 } else {
1191 m->m_data -= optlen;
1192 m->m_len += optlen;
1193 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1194 }
1195 m->m_pkthdr.len += optlen;
1196 ip = mtod(m, struct ip *);
1197 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1198 *phlen = sizeof(struct ip) + optlen;
1199 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1200 return (m);
1201 }
1202
1203 /*
1204 * Copy options from ip to jp,
1205 * omitting those not copied during fragmentation.
1206 */
1207 int
1208 ip_optcopy(struct ip *ip, struct ip *jp)
1209 {
1210 u_char *cp, *dp;
1211 int opt, optlen, cnt;
1212
1213 cp = (u_char *)(ip + 1);
1214 dp = (u_char *)(jp + 1);
1215 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1216 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1217 opt = cp[0];
1218 if (opt == IPOPT_EOL)
1219 break;
1220 if (opt == IPOPT_NOP) {
1221 /* Preserve for IP mcast tunnel's LSRR alignment. */
1222 *dp++ = IPOPT_NOP;
1223 optlen = 1;
1224 continue;
1225 }
1226 #ifdef DIAGNOSTIC
1227 if (cnt < IPOPT_OLEN + sizeof(*cp))
1228 panic("malformed IPv4 option passed to ip_optcopy");
1229 #endif
1230 optlen = cp[IPOPT_OLEN];
1231 #ifdef DIAGNOSTIC
1232 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1233 panic("malformed IPv4 option passed to ip_optcopy");
1234 #endif
1235 /* bogus lengths should have been caught by ip_dooptions */
1236 if (optlen > cnt)
1237 optlen = cnt;
1238 if (IPOPT_COPIED(opt)) {
1239 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1240 dp += optlen;
1241 }
1242 }
1243 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1244 *dp++ = IPOPT_EOL;
1245 return (optlen);
1246 }
1247
1248 /*
1249 * IP socket option processing.
1250 */
1251 int
1252 ip_ctloutput(int op, struct socket *so, int level, int optname,
1253 struct mbuf **mp)
1254 {
1255 struct inpcb *inp = sotoinpcb(so);
1256 struct mbuf *m = *mp;
1257 int optval = 0;
1258 int error = 0;
1259 #if defined(IPSEC) || defined(FAST_IPSEC)
1260 struct proc *p = curproc; /*XXX*/
1261 #endif
1262
1263 if (level != IPPROTO_IP) {
1264 error = EINVAL;
1265 if (op == PRCO_SETOPT && *mp)
1266 (void) m_free(*mp);
1267 } else switch (op) {
1268
1269 case PRCO_SETOPT:
1270 switch (optname) {
1271 case IP_OPTIONS:
1272 #ifdef notyet
1273 case IP_RETOPTS:
1274 return (ip_pcbopts(optname, &inp->inp_options, m));
1275 #else
1276 return (ip_pcbopts(&inp->inp_options, m));
1277 #endif
1278
1279 case IP_TOS:
1280 case IP_TTL:
1281 case IP_RECVOPTS:
1282 case IP_RECVRETOPTS:
1283 case IP_RECVDSTADDR:
1284 case IP_RECVIF:
1285 if (m == NULL || m->m_len != sizeof(int))
1286 error = EINVAL;
1287 else {
1288 optval = *mtod(m, int *);
1289 switch (optname) {
1290
1291 case IP_TOS:
1292 inp->inp_ip.ip_tos = optval;
1293 break;
1294
1295 case IP_TTL:
1296 inp->inp_ip.ip_ttl = optval;
1297 break;
1298 #define OPTSET(bit) \
1299 if (optval) \
1300 inp->inp_flags |= bit; \
1301 else \
1302 inp->inp_flags &= ~bit;
1303
1304 case IP_RECVOPTS:
1305 OPTSET(INP_RECVOPTS);
1306 break;
1307
1308 case IP_RECVRETOPTS:
1309 OPTSET(INP_RECVRETOPTS);
1310 break;
1311
1312 case IP_RECVDSTADDR:
1313 OPTSET(INP_RECVDSTADDR);
1314 break;
1315
1316 case IP_RECVIF:
1317 OPTSET(INP_RECVIF);
1318 break;
1319 }
1320 }
1321 break;
1322 #undef OPTSET
1323
1324 case IP_MULTICAST_IF:
1325 case IP_MULTICAST_TTL:
1326 case IP_MULTICAST_LOOP:
1327 case IP_ADD_MEMBERSHIP:
1328 case IP_DROP_MEMBERSHIP:
1329 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1330 break;
1331
1332 case IP_PORTRANGE:
1333 if (m == 0 || m->m_len != sizeof(int))
1334 error = EINVAL;
1335 else {
1336 optval = *mtod(m, int *);
1337
1338 switch (optval) {
1339
1340 case IP_PORTRANGE_DEFAULT:
1341 case IP_PORTRANGE_HIGH:
1342 inp->inp_flags &= ~(INP_LOWPORT);
1343 break;
1344
1345 case IP_PORTRANGE_LOW:
1346 inp->inp_flags |= INP_LOWPORT;
1347 break;
1348
1349 default:
1350 error = EINVAL;
1351 break;
1352 }
1353 }
1354 break;
1355
1356 #if defined(IPSEC) || defined(FAST_IPSEC)
1357 case IP_IPSEC_POLICY:
1358 {
1359 caddr_t req = NULL;
1360 size_t len = 0;
1361 int priv = 0;
1362
1363 #ifdef __NetBSD__
1364 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1365 priv = 0;
1366 else
1367 priv = 1;
1368 #else
1369 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1370 #endif
1371 if (m) {
1372 req = mtod(m, caddr_t);
1373 len = m->m_len;
1374 }
1375 error = ipsec4_set_policy(inp, optname, req, len, priv);
1376 break;
1377 }
1378 #endif /*IPSEC*/
1379
1380 default:
1381 error = ENOPROTOOPT;
1382 break;
1383 }
1384 if (m)
1385 (void)m_free(m);
1386 break;
1387
1388 case PRCO_GETOPT:
1389 switch (optname) {
1390 case IP_OPTIONS:
1391 case IP_RETOPTS:
1392 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1393 MCLAIM(m, so->so_mowner);
1394 if (inp->inp_options) {
1395 m->m_len = inp->inp_options->m_len;
1396 bcopy(mtod(inp->inp_options, caddr_t),
1397 mtod(m, caddr_t), (unsigned)m->m_len);
1398 } else
1399 m->m_len = 0;
1400 break;
1401
1402 case IP_TOS:
1403 case IP_TTL:
1404 case IP_RECVOPTS:
1405 case IP_RECVRETOPTS:
1406 case IP_RECVDSTADDR:
1407 case IP_RECVIF:
1408 case IP_ERRORMTU:
1409 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1410 MCLAIM(m, so->so_mowner);
1411 m->m_len = sizeof(int);
1412 switch (optname) {
1413
1414 case IP_TOS:
1415 optval = inp->inp_ip.ip_tos;
1416 break;
1417
1418 case IP_TTL:
1419 optval = inp->inp_ip.ip_ttl;
1420 break;
1421
1422 case IP_ERRORMTU:
1423 optval = inp->inp_errormtu;
1424 break;
1425
1426 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1427
1428 case IP_RECVOPTS:
1429 optval = OPTBIT(INP_RECVOPTS);
1430 break;
1431
1432 case IP_RECVRETOPTS:
1433 optval = OPTBIT(INP_RECVRETOPTS);
1434 break;
1435
1436 case IP_RECVDSTADDR:
1437 optval = OPTBIT(INP_RECVDSTADDR);
1438 break;
1439
1440 case IP_RECVIF:
1441 optval = OPTBIT(INP_RECVIF);
1442 break;
1443 }
1444 *mtod(m, int *) = optval;
1445 break;
1446
1447 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1448 /* XXX: code broken */
1449 case IP_IPSEC_POLICY:
1450 {
1451 caddr_t req = NULL;
1452 size_t len = 0;
1453
1454 if (m) {
1455 req = mtod(m, caddr_t);
1456 len = m->m_len;
1457 }
1458 error = ipsec4_get_policy(inp, req, len, mp);
1459 break;
1460 }
1461 #endif /*IPSEC*/
1462
1463 case IP_MULTICAST_IF:
1464 case IP_MULTICAST_TTL:
1465 case IP_MULTICAST_LOOP:
1466 case IP_ADD_MEMBERSHIP:
1467 case IP_DROP_MEMBERSHIP:
1468 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1469 if (*mp)
1470 MCLAIM(*mp, so->so_mowner);
1471 break;
1472
1473 case IP_PORTRANGE:
1474 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1475 MCLAIM(m, so->so_mowner);
1476 m->m_len = sizeof(int);
1477
1478 if (inp->inp_flags & INP_LOWPORT)
1479 optval = IP_PORTRANGE_LOW;
1480 else
1481 optval = IP_PORTRANGE_DEFAULT;
1482
1483 *mtod(m, int *) = optval;
1484 break;
1485
1486 default:
1487 error = ENOPROTOOPT;
1488 break;
1489 }
1490 break;
1491 }
1492 return (error);
1493 }
1494
1495 /*
1496 * Set up IP options in pcb for insertion in output packets.
1497 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1498 * with destination address if source routed.
1499 */
1500 int
1501 #ifdef notyet
1502 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1503 #else
1504 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1505 #endif
1506 {
1507 int cnt, optlen;
1508 u_char *cp;
1509 u_char opt;
1510
1511 /* turn off any old options */
1512 if (*pcbopt)
1513 (void)m_free(*pcbopt);
1514 *pcbopt = 0;
1515 if (m == (struct mbuf *)0 || m->m_len == 0) {
1516 /*
1517 * Only turning off any previous options.
1518 */
1519 if (m)
1520 (void)m_free(m);
1521 return (0);
1522 }
1523
1524 #ifndef __vax__
1525 if (m->m_len % sizeof(int32_t))
1526 goto bad;
1527 #endif
1528 /*
1529 * IP first-hop destination address will be stored before
1530 * actual options; move other options back
1531 * and clear it when none present.
1532 */
1533 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1534 goto bad;
1535 cnt = m->m_len;
1536 m->m_len += sizeof(struct in_addr);
1537 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1538 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1539 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1540
1541 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1542 opt = cp[IPOPT_OPTVAL];
1543 if (opt == IPOPT_EOL)
1544 break;
1545 if (opt == IPOPT_NOP)
1546 optlen = 1;
1547 else {
1548 if (cnt < IPOPT_OLEN + sizeof(*cp))
1549 goto bad;
1550 optlen = cp[IPOPT_OLEN];
1551 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1552 goto bad;
1553 }
1554 switch (opt) {
1555
1556 default:
1557 break;
1558
1559 case IPOPT_LSRR:
1560 case IPOPT_SSRR:
1561 /*
1562 * user process specifies route as:
1563 * ->A->B->C->D
1564 * D must be our final destination (but we can't
1565 * check that since we may not have connected yet).
1566 * A is first hop destination, which doesn't appear in
1567 * actual IP option, but is stored before the options.
1568 */
1569 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1570 goto bad;
1571 m->m_len -= sizeof(struct in_addr);
1572 cnt -= sizeof(struct in_addr);
1573 optlen -= sizeof(struct in_addr);
1574 cp[IPOPT_OLEN] = optlen;
1575 /*
1576 * Move first hop before start of options.
1577 */
1578 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1579 sizeof(struct in_addr));
1580 /*
1581 * Then copy rest of options back
1582 * to close up the deleted entry.
1583 */
1584 (void)memmove(&cp[IPOPT_OFFSET+1],
1585 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1586 (unsigned)cnt - (IPOPT_MINOFF - 1));
1587 break;
1588 }
1589 }
1590 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1591 goto bad;
1592 *pcbopt = m;
1593 return (0);
1594
1595 bad:
1596 (void)m_free(m);
1597 return (EINVAL);
1598 }
1599
1600 /*
1601 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1602 */
1603 static struct ifnet *
1604 ip_multicast_if(struct in_addr *a, int *ifindexp)
1605 {
1606 int ifindex;
1607 struct ifnet *ifp = NULL;
1608 struct in_ifaddr *ia;
1609
1610 if (ifindexp)
1611 *ifindexp = 0;
1612 if (ntohl(a->s_addr) >> 24 == 0) {
1613 ifindex = ntohl(a->s_addr) & 0xffffff;
1614 if (ifindex < 0 || if_indexlim <= ifindex)
1615 return NULL;
1616 ifp = ifindex2ifnet[ifindex];
1617 if (!ifp)
1618 return NULL;
1619 if (ifindexp)
1620 *ifindexp = ifindex;
1621 } else {
1622 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1623 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1624 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1625 ifp = ia->ia_ifp;
1626 break;
1627 }
1628 }
1629 }
1630 return ifp;
1631 }
1632
1633 /*
1634 * Set the IP multicast options in response to user setsockopt().
1635 */
1636 int
1637 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1638 {
1639 int error = 0;
1640 u_char loop;
1641 int i;
1642 struct in_addr addr;
1643 struct ip_mreq *mreq;
1644 struct ifnet *ifp;
1645 struct ip_moptions *imo = *imop;
1646 struct route ro;
1647 struct sockaddr_in *dst;
1648 int ifindex;
1649
1650 if (imo == NULL) {
1651 /*
1652 * No multicast option buffer attached to the pcb;
1653 * allocate one and initialize to default values.
1654 */
1655 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1656 M_WAITOK);
1657
1658 if (imo == NULL)
1659 return (ENOBUFS);
1660 *imop = imo;
1661 imo->imo_multicast_ifp = NULL;
1662 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1663 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1664 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1665 imo->imo_num_memberships = 0;
1666 }
1667
1668 switch (optname) {
1669
1670 case IP_MULTICAST_IF:
1671 /*
1672 * Select the interface for outgoing multicast packets.
1673 */
1674 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1675 error = EINVAL;
1676 break;
1677 }
1678 addr = *(mtod(m, struct in_addr *));
1679 /*
1680 * INADDR_ANY is used to remove a previous selection.
1681 * When no interface is selected, a default one is
1682 * chosen every time a multicast packet is sent.
1683 */
1684 if (in_nullhost(addr)) {
1685 imo->imo_multicast_ifp = NULL;
1686 break;
1687 }
1688 /*
1689 * The selected interface is identified by its local
1690 * IP address. Find the interface and confirm that
1691 * it supports multicasting.
1692 */
1693 ifp = ip_multicast_if(&addr, &ifindex);
1694 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1695 error = EADDRNOTAVAIL;
1696 break;
1697 }
1698 imo->imo_multicast_ifp = ifp;
1699 if (ifindex)
1700 imo->imo_multicast_addr = addr;
1701 else
1702 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1703 break;
1704
1705 case IP_MULTICAST_TTL:
1706 /*
1707 * Set the IP time-to-live for outgoing multicast packets.
1708 */
1709 if (m == NULL || m->m_len != 1) {
1710 error = EINVAL;
1711 break;
1712 }
1713 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1714 break;
1715
1716 case IP_MULTICAST_LOOP:
1717 /*
1718 * Set the loopback flag for outgoing multicast packets.
1719 * Must be zero or one.
1720 */
1721 if (m == NULL || m->m_len != 1 ||
1722 (loop = *(mtod(m, u_char *))) > 1) {
1723 error = EINVAL;
1724 break;
1725 }
1726 imo->imo_multicast_loop = loop;
1727 break;
1728
1729 case IP_ADD_MEMBERSHIP:
1730 /*
1731 * Add a multicast group membership.
1732 * Group must be a valid IP multicast address.
1733 */
1734 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1735 error = EINVAL;
1736 break;
1737 }
1738 mreq = mtod(m, struct ip_mreq *);
1739 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1740 error = EINVAL;
1741 break;
1742 }
1743 /*
1744 * If no interface address was provided, use the interface of
1745 * the route to the given multicast address.
1746 */
1747 if (in_nullhost(mreq->imr_interface)) {
1748 bzero((caddr_t)&ro, sizeof(ro));
1749 ro.ro_rt = NULL;
1750 dst = satosin(&ro.ro_dst);
1751 dst->sin_len = sizeof(*dst);
1752 dst->sin_family = AF_INET;
1753 dst->sin_addr = mreq->imr_multiaddr;
1754 rtalloc(&ro);
1755 if (ro.ro_rt == NULL) {
1756 error = EADDRNOTAVAIL;
1757 break;
1758 }
1759 ifp = ro.ro_rt->rt_ifp;
1760 rtfree(ro.ro_rt);
1761 } else {
1762 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1763 }
1764 /*
1765 * See if we found an interface, and confirm that it
1766 * supports multicast.
1767 */
1768 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1769 error = EADDRNOTAVAIL;
1770 break;
1771 }
1772 /*
1773 * See if the membership already exists or if all the
1774 * membership slots are full.
1775 */
1776 for (i = 0; i < imo->imo_num_memberships; ++i) {
1777 if (imo->imo_membership[i]->inm_ifp == ifp &&
1778 in_hosteq(imo->imo_membership[i]->inm_addr,
1779 mreq->imr_multiaddr))
1780 break;
1781 }
1782 if (i < imo->imo_num_memberships) {
1783 error = EADDRINUSE;
1784 break;
1785 }
1786 if (i == IP_MAX_MEMBERSHIPS) {
1787 error = ETOOMANYREFS;
1788 break;
1789 }
1790 /*
1791 * Everything looks good; add a new record to the multicast
1792 * address list for the given interface.
1793 */
1794 if ((imo->imo_membership[i] =
1795 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1796 error = ENOBUFS;
1797 break;
1798 }
1799 ++imo->imo_num_memberships;
1800 break;
1801
1802 case IP_DROP_MEMBERSHIP:
1803 /*
1804 * Drop a multicast group membership.
1805 * Group must be a valid IP multicast address.
1806 */
1807 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1808 error = EINVAL;
1809 break;
1810 }
1811 mreq = mtod(m, struct ip_mreq *);
1812 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1813 error = EINVAL;
1814 break;
1815 }
1816 /*
1817 * If an interface address was specified, get a pointer
1818 * to its ifnet structure.
1819 */
1820 if (in_nullhost(mreq->imr_interface))
1821 ifp = NULL;
1822 else {
1823 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1824 if (ifp == NULL) {
1825 error = EADDRNOTAVAIL;
1826 break;
1827 }
1828 }
1829 /*
1830 * Find the membership in the membership array.
1831 */
1832 for (i = 0; i < imo->imo_num_memberships; ++i) {
1833 if ((ifp == NULL ||
1834 imo->imo_membership[i]->inm_ifp == ifp) &&
1835 in_hosteq(imo->imo_membership[i]->inm_addr,
1836 mreq->imr_multiaddr))
1837 break;
1838 }
1839 if (i == imo->imo_num_memberships) {
1840 error = EADDRNOTAVAIL;
1841 break;
1842 }
1843 /*
1844 * Give up the multicast address record to which the
1845 * membership points.
1846 */
1847 in_delmulti(imo->imo_membership[i]);
1848 /*
1849 * Remove the gap in the membership array.
1850 */
1851 for (++i; i < imo->imo_num_memberships; ++i)
1852 imo->imo_membership[i-1] = imo->imo_membership[i];
1853 --imo->imo_num_memberships;
1854 break;
1855
1856 default:
1857 error = EOPNOTSUPP;
1858 break;
1859 }
1860
1861 /*
1862 * If all options have default values, no need to keep the mbuf.
1863 */
1864 if (imo->imo_multicast_ifp == NULL &&
1865 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1866 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1867 imo->imo_num_memberships == 0) {
1868 free(*imop, M_IPMOPTS);
1869 *imop = NULL;
1870 }
1871
1872 return (error);
1873 }
1874
1875 /*
1876 * Return the IP multicast options in response to user getsockopt().
1877 */
1878 int
1879 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1880 {
1881 u_char *ttl;
1882 u_char *loop;
1883 struct in_addr *addr;
1884 struct in_ifaddr *ia;
1885
1886 *mp = m_get(M_WAIT, MT_SOOPTS);
1887
1888 switch (optname) {
1889
1890 case IP_MULTICAST_IF:
1891 addr = mtod(*mp, struct in_addr *);
1892 (*mp)->m_len = sizeof(struct in_addr);
1893 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1894 *addr = zeroin_addr;
1895 else if (imo->imo_multicast_addr.s_addr) {
1896 /* return the value user has set */
1897 *addr = imo->imo_multicast_addr;
1898 } else {
1899 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1900 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1901 }
1902 return (0);
1903
1904 case IP_MULTICAST_TTL:
1905 ttl = mtod(*mp, u_char *);
1906 (*mp)->m_len = 1;
1907 *ttl = imo ? imo->imo_multicast_ttl
1908 : IP_DEFAULT_MULTICAST_TTL;
1909 return (0);
1910
1911 case IP_MULTICAST_LOOP:
1912 loop = mtod(*mp, u_char *);
1913 (*mp)->m_len = 1;
1914 *loop = imo ? imo->imo_multicast_loop
1915 : IP_DEFAULT_MULTICAST_LOOP;
1916 return (0);
1917
1918 default:
1919 return (EOPNOTSUPP);
1920 }
1921 }
1922
1923 /*
1924 * Discard the IP multicast options.
1925 */
1926 void
1927 ip_freemoptions(struct ip_moptions *imo)
1928 {
1929 int i;
1930
1931 if (imo != NULL) {
1932 for (i = 0; i < imo->imo_num_memberships; ++i)
1933 in_delmulti(imo->imo_membership[i]);
1934 free(imo, M_IPMOPTS);
1935 }
1936 }
1937
1938 /*
1939 * Routine called from ip_output() to loop back a copy of an IP multicast
1940 * packet to the input queue of a specified interface. Note that this
1941 * calls the output routine of the loopback "driver", but with an interface
1942 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1943 */
1944 static void
1945 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1946 {
1947 struct ip *ip;
1948 struct mbuf *copym;
1949
1950 copym = m_copy(m, 0, M_COPYALL);
1951 if (copym != NULL
1952 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1953 copym = m_pullup(copym, sizeof(struct ip));
1954 if (copym != NULL) {
1955 /*
1956 * We don't bother to fragment if the IP length is greater
1957 * than the interface's MTU. Can this possibly matter?
1958 */
1959 ip = mtod(copym, struct ip *);
1960
1961 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1962 in_delayed_cksum(copym);
1963 copym->m_pkthdr.csum_flags &=
1964 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1965 }
1966
1967 ip->ip_sum = 0;
1968 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1969 (void) looutput(ifp, copym, sintosa(dst), NULL);
1970 }
1971 }
1972