ip_output.c revision 1.154 1 /* $NetBSD: ip_output.c,v 1.154 2005/08/10 13:06:49 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.154 2005/08/10 13:06:49 yamt Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/in_offload.h>
132
133 #ifdef MROUTING
134 #include <netinet/ip_mroute.h>
135 #endif
136
137 #include <machine/stdarg.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #include <netkey/key_debug.h>
143 #ifdef IPSEC_NAT_T
144 #include <netinet/udp.h>
145 #endif
146 #endif /*IPSEC*/
147
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #include <netipsec/xform.h>
152 #endif /* FAST_IPSEC*/
153
154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
157
158 #ifdef PFIL_HOOKS
159 extern struct pfil_head inet_pfil_hook; /* XXX */
160 #endif
161
162 int ip_do_loopback_cksum = 0;
163
164 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
165 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
166 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
167 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
168 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
169
170 struct ip_tso_output_args {
171 struct ifnet *ifp;
172 struct sockaddr *sa;
173 struct rtentry *rt;
174 };
175
176 static int ip_tso_output_callback(void *, struct mbuf *);
177 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
178 struct rtentry *);
179
180 static int
181 ip_tso_output_callback(void *vp, struct mbuf *m)
182 {
183 struct ip_tso_output_args *args = vp;
184 struct ifnet *ifp = args->ifp;
185
186 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
187 }
188
189 static int
190 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
191 struct rtentry *rt)
192 {
193 struct ip_tso_output_args args;
194
195 args.ifp = ifp;
196 args.sa = sa;
197 args.rt = rt;
198
199 return tcp4_segment(m, ip_tso_output_callback, &args);
200 }
201
202 /*
203 * IP output. The packet in mbuf chain m contains a skeletal IP
204 * header (with len, off, ttl, proto, tos, src, dst).
205 * The mbuf chain containing the packet will be freed.
206 * The mbuf opt, if present, will not be freed.
207 */
208 int
209 ip_output(struct mbuf *m0, ...)
210 {
211 struct ip *ip;
212 struct ifnet *ifp;
213 struct mbuf *m = m0;
214 int hlen = sizeof (struct ip);
215 int len, error = 0;
216 struct route iproute;
217 struct sockaddr_in *dst;
218 struct in_ifaddr *ia;
219 struct mbuf *opt;
220 struct route *ro;
221 int flags, sw_csum;
222 int *mtu_p;
223 u_long mtu;
224 struct ip_moptions *imo;
225 struct socket *so;
226 va_list ap;
227 #ifdef IPSEC
228 struct secpolicy *sp = NULL;
229 #ifdef IPSEC_NAT_T
230 int natt_frag = 0;
231 #endif
232 #endif /*IPSEC*/
233 #ifdef FAST_IPSEC
234 struct inpcb *inp;
235 struct m_tag *mtag;
236 struct secpolicy *sp = NULL;
237 struct tdb_ident *tdbi;
238 int s;
239 #endif
240 u_int16_t ip_len;
241
242 len = 0;
243 va_start(ap, m0);
244 opt = va_arg(ap, struct mbuf *);
245 ro = va_arg(ap, struct route *);
246 flags = va_arg(ap, int);
247 imo = va_arg(ap, struct ip_moptions *);
248 so = va_arg(ap, struct socket *);
249 if (flags & IP_RETURNMTU)
250 mtu_p = va_arg(ap, int *);
251 else
252 mtu_p = NULL;
253 va_end(ap);
254
255 MCLAIM(m, &ip_tx_mowner);
256 #ifdef FAST_IPSEC
257 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
258 inp = (struct inpcb *)so->so_pcb;
259 else
260 inp = NULL;
261 #endif /* FAST_IPSEC */
262
263 #ifdef DIAGNOSTIC
264 if ((m->m_flags & M_PKTHDR) == 0)
265 panic("ip_output no HDR");
266 #endif
267 if (opt) {
268 m = ip_insertoptions(m, opt, &len);
269 if (len >= sizeof(struct ip))
270 hlen = len;
271 }
272 ip = mtod(m, struct ip *);
273 /*
274 * Fill in IP header.
275 */
276 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
277 ip->ip_v = IPVERSION;
278 ip->ip_off = htons(0);
279 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
280 ip->ip_id = ip_newid();
281 } else {
282
283 /*
284 * TSO capable interfaces (typically?) increment
285 * ip_id for each segment.
286 * "allocate" enough ids here to increase the chance
287 * for them to be unique.
288 *
289 * note that the following calculation is not
290 * needed to be precise. wasting some ip_id is fine.
291 */
292
293 unsigned int segsz = m->m_pkthdr.segsz;
294 unsigned int datasz = ntohs(ip->ip_len) - hlen;
295 unsigned int num = howmany(datasz, segsz);
296
297 ip->ip_id = ip_newid_range(num);
298 }
299 ip->ip_hl = hlen >> 2;
300 ipstat.ips_localout++;
301 } else {
302 hlen = ip->ip_hl << 2;
303 }
304 /*
305 * Route packet.
306 */
307 if (ro == 0) {
308 ro = &iproute;
309 bzero((caddr_t)ro, sizeof (*ro));
310 }
311 dst = satosin(&ro->ro_dst);
312 /*
313 * If there is a cached route,
314 * check that it is to the same destination
315 * and is still up. If not, free it and try again.
316 * The address family should also be checked in case of sharing the
317 * cache with IPv6.
318 */
319 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
320 dst->sin_family != AF_INET ||
321 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
322 RTFREE(ro->ro_rt);
323 ro->ro_rt = (struct rtentry *)0;
324 }
325 if (ro->ro_rt == 0) {
326 bzero(dst, sizeof(*dst));
327 dst->sin_family = AF_INET;
328 dst->sin_len = sizeof(*dst);
329 dst->sin_addr = ip->ip_dst;
330 }
331 /*
332 * If routing to interface only,
333 * short circuit routing lookup.
334 */
335 if (flags & IP_ROUTETOIF) {
336 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
337 ipstat.ips_noroute++;
338 error = ENETUNREACH;
339 goto bad;
340 }
341 ifp = ia->ia_ifp;
342 mtu = ifp->if_mtu;
343 ip->ip_ttl = 1;
344 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
345 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
346 imo != NULL && imo->imo_multicast_ifp != NULL) {
347 ifp = imo->imo_multicast_ifp;
348 mtu = ifp->if_mtu;
349 IFP_TO_IA(ifp, ia);
350 } else {
351 if (ro->ro_rt == 0)
352 rtalloc(ro);
353 if (ro->ro_rt == 0) {
354 ipstat.ips_noroute++;
355 error = EHOSTUNREACH;
356 goto bad;
357 }
358 ia = ifatoia(ro->ro_rt->rt_ifa);
359 ifp = ro->ro_rt->rt_ifp;
360 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
361 mtu = ifp->if_mtu;
362 ro->ro_rt->rt_use++;
363 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
364 dst = satosin(ro->ro_rt->rt_gateway);
365 }
366 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
367 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
368 struct in_multi *inm;
369
370 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
371 M_BCAST : M_MCAST;
372 /*
373 * IP destination address is multicast. Make sure "dst"
374 * still points to the address in "ro". (It may have been
375 * changed to point to a gateway address, above.)
376 */
377 dst = satosin(&ro->ro_dst);
378 /*
379 * See if the caller provided any multicast options
380 */
381 if (imo != NULL)
382 ip->ip_ttl = imo->imo_multicast_ttl;
383 else
384 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
385
386 /*
387 * if we don't know the outgoing ifp yet, we can't generate
388 * output
389 */
390 if (!ifp) {
391 ipstat.ips_noroute++;
392 error = ENETUNREACH;
393 goto bad;
394 }
395
396 /*
397 * If the packet is multicast or broadcast, confirm that
398 * the outgoing interface can transmit it.
399 */
400 if (((m->m_flags & M_MCAST) &&
401 (ifp->if_flags & IFF_MULTICAST) == 0) ||
402 ((m->m_flags & M_BCAST) &&
403 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
404 ipstat.ips_noroute++;
405 error = ENETUNREACH;
406 goto bad;
407 }
408 /*
409 * If source address not specified yet, use an address
410 * of outgoing interface.
411 */
412 if (in_nullhost(ip->ip_src)) {
413 struct in_ifaddr *xia;
414
415 IFP_TO_IA(ifp, xia);
416 if (!xia) {
417 error = EADDRNOTAVAIL;
418 goto bad;
419 }
420 ip->ip_src = xia->ia_addr.sin_addr;
421 }
422
423 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
424 if (inm != NULL &&
425 (imo == NULL || imo->imo_multicast_loop)) {
426 /*
427 * If we belong to the destination multicast group
428 * on the outgoing interface, and the caller did not
429 * forbid loopback, loop back a copy.
430 */
431 ip_mloopback(ifp, m, dst);
432 }
433 #ifdef MROUTING
434 else {
435 /*
436 * If we are acting as a multicast router, perform
437 * multicast forwarding as if the packet had just
438 * arrived on the interface to which we are about
439 * to send. The multicast forwarding function
440 * recursively calls this function, using the
441 * IP_FORWARDING flag to prevent infinite recursion.
442 *
443 * Multicasts that are looped back by ip_mloopback(),
444 * above, will be forwarded by the ip_input() routine,
445 * if necessary.
446 */
447 extern struct socket *ip_mrouter;
448
449 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
450 if (ip_mforward(m, ifp) != 0) {
451 m_freem(m);
452 goto done;
453 }
454 }
455 }
456 #endif
457 /*
458 * Multicasts with a time-to-live of zero may be looped-
459 * back, above, but must not be transmitted on a network.
460 * Also, multicasts addressed to the loopback interface
461 * are not sent -- the above call to ip_mloopback() will
462 * loop back a copy if this host actually belongs to the
463 * destination group on the loopback interface.
464 */
465 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
466 m_freem(m);
467 goto done;
468 }
469
470 goto sendit;
471 }
472 #ifndef notdef
473 /*
474 * If source address not specified yet, use address
475 * of outgoing interface.
476 */
477 if (in_nullhost(ip->ip_src))
478 ip->ip_src = ia->ia_addr.sin_addr;
479 #endif
480
481 /*
482 * packets with Class-D address as source are not valid per
483 * RFC 1112
484 */
485 if (IN_MULTICAST(ip->ip_src.s_addr)) {
486 ipstat.ips_odropped++;
487 error = EADDRNOTAVAIL;
488 goto bad;
489 }
490
491 /*
492 * Look for broadcast address and
493 * and verify user is allowed to send
494 * such a packet.
495 */
496 if (in_broadcast(dst->sin_addr, ifp)) {
497 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
498 error = EADDRNOTAVAIL;
499 goto bad;
500 }
501 if ((flags & IP_ALLOWBROADCAST) == 0) {
502 error = EACCES;
503 goto bad;
504 }
505 /* don't allow broadcast messages to be fragmented */
506 if (ntohs(ip->ip_len) > ifp->if_mtu) {
507 error = EMSGSIZE;
508 goto bad;
509 }
510 m->m_flags |= M_BCAST;
511 } else
512 m->m_flags &= ~M_BCAST;
513
514 sendit:
515 /*
516 * If we're doing Path MTU Discovery, we need to set DF unless
517 * the route's MTU is locked.
518 */
519 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
520 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
521 ip->ip_off |= htons(IP_DF);
522
523 /* Remember the current ip_len */
524 ip_len = ntohs(ip->ip_len);
525
526 #ifdef IPSEC
527 /* get SP for this packet */
528 if (so == NULL)
529 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
530 flags, &error);
531 else {
532 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
533 IPSEC_DIR_OUTBOUND))
534 goto skip_ipsec;
535 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
536 }
537
538 if (sp == NULL) {
539 ipsecstat.out_inval++;
540 goto bad;
541 }
542
543 error = 0;
544
545 /* check policy */
546 switch (sp->policy) {
547 case IPSEC_POLICY_DISCARD:
548 /*
549 * This packet is just discarded.
550 */
551 ipsecstat.out_polvio++;
552 goto bad;
553
554 case IPSEC_POLICY_BYPASS:
555 case IPSEC_POLICY_NONE:
556 /* no need to do IPsec. */
557 goto skip_ipsec;
558
559 case IPSEC_POLICY_IPSEC:
560 if (sp->req == NULL) {
561 /* XXX should be panic ? */
562 printf("ip_output: No IPsec request specified.\n");
563 error = EINVAL;
564 goto bad;
565 }
566 break;
567
568 case IPSEC_POLICY_ENTRUST:
569 default:
570 printf("ip_output: Invalid policy found. %d\n", sp->policy);
571 }
572
573 #ifdef IPSEC_NAT_T
574 /*
575 * NAT-T ESP fragmentation: don't do IPSec processing now,
576 * we'll do it on each fragmented packet.
577 */
578 if (sp->req->sav &&
579 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
580 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
581 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
582 natt_frag = 1;
583 mtu = sp->req->sav->esp_frag;
584 goto skip_ipsec;
585 }
586 }
587 #endif /* IPSEC_NAT_T */
588
589 /*
590 * ipsec4_output() expects ip_len and ip_off in network
591 * order. They have been set to network order above.
592 */
593
594 {
595 struct ipsec_output_state state;
596 bzero(&state, sizeof(state));
597 state.m = m;
598 if (flags & IP_ROUTETOIF) {
599 state.ro = &iproute;
600 bzero(&iproute, sizeof(iproute));
601 } else
602 state.ro = ro;
603 state.dst = (struct sockaddr *)dst;
604
605 /*
606 * We can't defer the checksum of payload data if
607 * we're about to encrypt/authenticate it.
608 *
609 * XXX When we support crypto offloading functions of
610 * XXX network interfaces, we need to reconsider this,
611 * XXX since it's likely that they'll support checksumming,
612 * XXX as well.
613 */
614 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
615 in_delayed_cksum(m);
616 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
617 }
618
619 error = ipsec4_output(&state, sp, flags);
620
621 m = state.m;
622 if (flags & IP_ROUTETOIF) {
623 /*
624 * if we have tunnel mode SA, we may need to ignore
625 * IP_ROUTETOIF.
626 */
627 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
628 flags &= ~IP_ROUTETOIF;
629 ro = state.ro;
630 }
631 } else
632 ro = state.ro;
633 dst = (struct sockaddr_in *)state.dst;
634 if (error) {
635 /* mbuf is already reclaimed in ipsec4_output. */
636 m0 = NULL;
637 switch (error) {
638 case EHOSTUNREACH:
639 case ENETUNREACH:
640 case EMSGSIZE:
641 case ENOBUFS:
642 case ENOMEM:
643 break;
644 default:
645 printf("ip4_output (ipsec): error code %d\n", error);
646 /*fall through*/
647 case ENOENT:
648 /* don't show these error codes to the user */
649 error = 0;
650 break;
651 }
652 goto bad;
653 }
654
655 /* be sure to update variables that are affected by ipsec4_output() */
656 ip = mtod(m, struct ip *);
657 hlen = ip->ip_hl << 2;
658 ip_len = ntohs(ip->ip_len);
659
660 if (ro->ro_rt == NULL) {
661 if ((flags & IP_ROUTETOIF) == 0) {
662 printf("ip_output: "
663 "can't update route after IPsec processing\n");
664 error = EHOSTUNREACH; /*XXX*/
665 goto bad;
666 }
667 } else {
668 /* nobody uses ia beyond here */
669 if (state.encap) {
670 ifp = ro->ro_rt->rt_ifp;
671 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
672 mtu = ifp->if_mtu;
673 }
674 }
675 }
676 skip_ipsec:
677 #endif /*IPSEC*/
678 #ifdef FAST_IPSEC
679 /*
680 * Check the security policy (SP) for the packet and, if
681 * required, do IPsec-related processing. There are two
682 * cases here; the first time a packet is sent through
683 * it will be untagged and handled by ipsec4_checkpolicy.
684 * If the packet is resubmitted to ip_output (e.g. after
685 * AH, ESP, etc. processing), there will be a tag to bypass
686 * the lookup and related policy checking.
687 */
688 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
689 s = splsoftnet();
690 if (mtag != NULL) {
691 tdbi = (struct tdb_ident *)(mtag + 1);
692 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
693 if (sp == NULL)
694 error = -EINVAL; /* force silent drop */
695 m_tag_delete(m, mtag);
696 } else {
697 if (inp != NULL &&
698 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
699 goto spd_done;
700 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
701 &error, inp);
702 }
703 /*
704 * There are four return cases:
705 * sp != NULL apply IPsec policy
706 * sp == NULL, error == 0 no IPsec handling needed
707 * sp == NULL, error == -EINVAL discard packet w/o error
708 * sp == NULL, error != 0 discard packet, report error
709 */
710 if (sp != NULL) {
711 /* Loop detection, check if ipsec processing already done */
712 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
713 for (mtag = m_tag_first(m); mtag != NULL;
714 mtag = m_tag_next(m, mtag)) {
715 #ifdef MTAG_ABI_COMPAT
716 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
717 continue;
718 #endif
719 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
720 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
721 continue;
722 /*
723 * Check if policy has an SA associated with it.
724 * This can happen when an SP has yet to acquire
725 * an SA; e.g. on first reference. If it occurs,
726 * then we let ipsec4_process_packet do its thing.
727 */
728 if (sp->req->sav == NULL)
729 break;
730 tdbi = (struct tdb_ident *)(mtag + 1);
731 if (tdbi->spi == sp->req->sav->spi &&
732 tdbi->proto == sp->req->sav->sah->saidx.proto &&
733 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
734 sizeof (union sockaddr_union)) == 0) {
735 /*
736 * No IPsec processing is needed, free
737 * reference to SP.
738 *
739 * NB: null pointer to avoid free at
740 * done: below.
741 */
742 KEY_FREESP(&sp), sp = NULL;
743 splx(s);
744 goto spd_done;
745 }
746 }
747
748 /*
749 * Do delayed checksums now because we send before
750 * this is done in the normal processing path.
751 */
752 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
753 in_delayed_cksum(m);
754 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
755 }
756
757 #ifdef __FreeBSD__
758 ip->ip_len = htons(ip->ip_len);
759 ip->ip_off = htons(ip->ip_off);
760 #endif
761
762 /* NB: callee frees mbuf */
763 error = ipsec4_process_packet(m, sp->req, flags, 0);
764 /*
765 * Preserve KAME behaviour: ENOENT can be returned
766 * when an SA acquire is in progress. Don't propagate
767 * this to user-level; it confuses applications.
768 *
769 * XXX this will go away when the SADB is redone.
770 */
771 if (error == ENOENT)
772 error = 0;
773 splx(s);
774 goto done;
775 } else {
776 splx(s);
777
778 if (error != 0) {
779 /*
780 * Hack: -EINVAL is used to signal that a packet
781 * should be silently discarded. This is typically
782 * because we asked key management for an SA and
783 * it was delayed (e.g. kicked up to IKE).
784 */
785 if (error == -EINVAL)
786 error = 0;
787 goto bad;
788 } else {
789 /* No IPsec processing for this packet. */
790 }
791 #ifdef notyet
792 /*
793 * If deferred crypto processing is needed, check that
794 * the interface supports it.
795 */
796 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
797 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
798 /* notify IPsec to do its own crypto */
799 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
800 error = EHOSTUNREACH;
801 goto bad;
802 }
803 #endif
804 }
805 spd_done:
806 #endif /* FAST_IPSEC */
807
808 #ifdef PFIL_HOOKS
809 /*
810 * Run through list of hooks for output packets.
811 */
812 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
813 goto done;
814 if (m == NULL)
815 goto done;
816
817 ip = mtod(m, struct ip *);
818 hlen = ip->ip_hl << 2;
819 #endif /* PFIL_HOOKS */
820
821 m->m_pkthdr.csum_data |= hlen << 16;
822
823 #if IFA_STATS
824 /*
825 * search for the source address structure to
826 * maintain output statistics.
827 */
828 INADDR_TO_IA(ip->ip_src, ia);
829 #endif
830
831 /* Maybe skip checksums on loopback interfaces. */
832 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
833 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
834 }
835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
836 /*
837 * If small enough for mtu of path, or if using TCP segmentation
838 * offload, can just send directly.
839 */
840 if (ip_len <= mtu ||
841 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
842 #if IFA_STATS
843 if (ia)
844 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
845 #endif
846 /*
847 * Always initialize the sum to 0! Some HW assisted
848 * checksumming requires this.
849 */
850 ip->ip_sum = 0;
851
852 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
853 /*
854 * Perform any checksums that the hardware can't do
855 * for us.
856 *
857 * XXX Does any hardware require the {th,uh}_sum
858 * XXX fields to be 0?
859 */
860 if (sw_csum & M_CSUM_IPv4) {
861 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
862 ip->ip_sum = in_cksum(m, hlen);
863 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
864 }
865 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
866 if (IN_NEED_CHECKSUM(ifp,
867 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
868 in_delayed_cksum(m);
869 }
870 m->m_pkthdr.csum_flags &=
871 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
872 }
873 }
874
875 #ifdef IPSEC
876 /* clean ipsec history once it goes out of the node */
877 ipsec_delaux(m);
878 #endif
879
880 if (__predict_true(
881 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
882 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
883 error =
884 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
885 } else {
886 error =
887 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
888 }
889 goto done;
890 }
891
892 /*
893 * We can't use HW checksumming if we're about to
894 * to fragment the packet.
895 *
896 * XXX Some hardware can do this.
897 */
898 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
899 if (IN_NEED_CHECKSUM(ifp,
900 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
901 in_delayed_cksum(m);
902 }
903 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
904 }
905
906 /*
907 * Too large for interface; fragment if possible.
908 * Must be able to put at least 8 bytes per fragment.
909 */
910 if (ntohs(ip->ip_off) & IP_DF) {
911 if (flags & IP_RETURNMTU)
912 *mtu_p = mtu;
913 error = EMSGSIZE;
914 ipstat.ips_cantfrag++;
915 goto bad;
916 }
917
918 error = ip_fragment(m, ifp, mtu);
919 if (error) {
920 m = NULL;
921 goto bad;
922 }
923
924 for (; m; m = m0) {
925 m0 = m->m_nextpkt;
926 m->m_nextpkt = 0;
927 if (error == 0) {
928 #if IFA_STATS
929 if (ia)
930 ia->ia_ifa.ifa_data.ifad_outbytes +=
931 ntohs(ip->ip_len);
932 #endif
933 #ifdef IPSEC
934 /* clean ipsec history once it goes out of the node */
935 ipsec_delaux(m);
936
937 #ifdef IPSEC_NAT_T
938 /*
939 * If we get there, the packet has not been handeld by
940 * IPSec whereas it should have. Now that it has been
941 * fragmented, re-inject it in ip_output so that IPsec
942 * processing can occur.
943 */
944 if (natt_frag) {
945 error = ip_output(m, opt,
946 ro, flags, imo, so, mtu_p);
947 } else
948 #endif /* IPSEC_NAT_T */
949 #endif /* IPSEC */
950 {
951 KASSERT((m->m_pkthdr.csum_flags &
952 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
953 error = (*ifp->if_output)(ifp, m, sintosa(dst),
954 ro->ro_rt);
955 }
956 } else
957 m_freem(m);
958 }
959
960 if (error == 0)
961 ipstat.ips_fragmented++;
962 done:
963 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
964 RTFREE(ro->ro_rt);
965 ro->ro_rt = 0;
966 }
967
968 #ifdef IPSEC
969 if (sp != NULL) {
970 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
971 printf("DP ip_output call free SP:%p\n", sp));
972 key_freesp(sp);
973 }
974 #endif /* IPSEC */
975 #ifdef FAST_IPSEC
976 if (sp != NULL)
977 KEY_FREESP(&sp);
978 #endif /* FAST_IPSEC */
979
980 return (error);
981 bad:
982 m_freem(m);
983 goto done;
984 }
985
986 int
987 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
988 {
989 struct ip *ip, *mhip;
990 struct mbuf *m0;
991 int len, hlen, off;
992 int mhlen, firstlen;
993 struct mbuf **mnext;
994 int sw_csum = m->m_pkthdr.csum_flags;
995 int fragments = 0;
996 int s;
997 int error = 0;
998
999 ip = mtod(m, struct ip *);
1000 hlen = ip->ip_hl << 2;
1001 if (ifp != NULL)
1002 sw_csum &= ~ifp->if_csum_flags_tx;
1003
1004 len = (mtu - hlen) &~ 7;
1005 if (len < 8) {
1006 m_freem(m);
1007 return (EMSGSIZE);
1008 }
1009
1010 firstlen = len;
1011 mnext = &m->m_nextpkt;
1012
1013 /*
1014 * Loop through length of segment after first fragment,
1015 * make new header and copy data of each part and link onto chain.
1016 */
1017 m0 = m;
1018 mhlen = sizeof (struct ip);
1019 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1020 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1021 if (m == 0) {
1022 error = ENOBUFS;
1023 ipstat.ips_odropped++;
1024 goto sendorfree;
1025 }
1026 MCLAIM(m, m0->m_owner);
1027 *mnext = m;
1028 mnext = &m->m_nextpkt;
1029 m->m_data += max_linkhdr;
1030 mhip = mtod(m, struct ip *);
1031 *mhip = *ip;
1032 /* we must inherit MCAST and BCAST flags */
1033 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1034 if (hlen > sizeof (struct ip)) {
1035 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1036 mhip->ip_hl = mhlen >> 2;
1037 }
1038 m->m_len = mhlen;
1039 mhip->ip_off = ((off - hlen) >> 3) +
1040 (ntohs(ip->ip_off) & ~IP_MF);
1041 if (ip->ip_off & htons(IP_MF))
1042 mhip->ip_off |= IP_MF;
1043 if (off + len >= ntohs(ip->ip_len))
1044 len = ntohs(ip->ip_len) - off;
1045 else
1046 mhip->ip_off |= IP_MF;
1047 HTONS(mhip->ip_off);
1048 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1049 m->m_next = m_copy(m0, off, len);
1050 if (m->m_next == 0) {
1051 error = ENOBUFS; /* ??? */
1052 ipstat.ips_odropped++;
1053 goto sendorfree;
1054 }
1055 m->m_pkthdr.len = mhlen + len;
1056 m->m_pkthdr.rcvif = (struct ifnet *)0;
1057 mhip->ip_sum = 0;
1058 if (sw_csum & M_CSUM_IPv4) {
1059 mhip->ip_sum = in_cksum(m, mhlen);
1060 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1061 } else {
1062 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1063 m->m_pkthdr.csum_data |= mhlen << 16;
1064 }
1065 ipstat.ips_ofragments++;
1066 fragments++;
1067 }
1068 /*
1069 * Update first fragment by trimming what's been copied out
1070 * and updating header, then send each fragment (in order).
1071 */
1072 m = m0;
1073 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1074 m->m_pkthdr.len = hlen + firstlen;
1075 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1076 ip->ip_off |= htons(IP_MF);
1077 ip->ip_sum = 0;
1078 if (sw_csum & M_CSUM_IPv4) {
1079 ip->ip_sum = in_cksum(m, hlen);
1080 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1081 } else {
1082 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1083 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1084 sizeof(struct ip));
1085 }
1086 sendorfree:
1087 /*
1088 * If there is no room for all the fragments, don't queue
1089 * any of them.
1090 */
1091 if (ifp != NULL) {
1092 s = splnet();
1093 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1094 error == 0) {
1095 error = ENOBUFS;
1096 ipstat.ips_odropped++;
1097 IFQ_INC_DROPS(&ifp->if_snd);
1098 }
1099 splx(s);
1100 }
1101 if (error) {
1102 for (m = m0; m; m = m0) {
1103 m0 = m->m_nextpkt;
1104 m->m_nextpkt = NULL;
1105 m_freem(m);
1106 }
1107 }
1108 return (error);
1109 }
1110
1111 /*
1112 * Process a delayed payload checksum calculation.
1113 */
1114 void
1115 in_delayed_cksum(struct mbuf *m)
1116 {
1117 struct ip *ip;
1118 u_int16_t csum, offset;
1119
1120 ip = mtod(m, struct ip *);
1121 offset = ip->ip_hl << 2;
1122 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1123 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1124 csum = 0xffff;
1125
1126 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1127
1128 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1129 /* This happen when ip options were inserted
1130 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1131 m->m_len, offset, ip->ip_p);
1132 */
1133 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1134 } else
1135 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1136 }
1137
1138 /*
1139 * Determine the maximum length of the options to be inserted;
1140 * we would far rather allocate too much space rather than too little.
1141 */
1142
1143 u_int
1144 ip_optlen(struct inpcb *inp)
1145 {
1146 struct mbuf *m = inp->inp_options;
1147
1148 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1149 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1150 else
1151 return 0;
1152 }
1153
1154
1155 /*
1156 * Insert IP options into preformed packet.
1157 * Adjust IP destination as required for IP source routing,
1158 * as indicated by a non-zero in_addr at the start of the options.
1159 */
1160 static struct mbuf *
1161 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1162 {
1163 struct ipoption *p = mtod(opt, struct ipoption *);
1164 struct mbuf *n;
1165 struct ip *ip = mtod(m, struct ip *);
1166 unsigned optlen;
1167
1168 optlen = opt->m_len - sizeof(p->ipopt_dst);
1169 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1170 return (m); /* XXX should fail */
1171 if (!in_nullhost(p->ipopt_dst))
1172 ip->ip_dst = p->ipopt_dst;
1173 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1174 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1175 if (n == 0)
1176 return (m);
1177 MCLAIM(n, m->m_owner);
1178 M_COPY_PKTHDR(n, m);
1179 m_tag_delete_chain(m, NULL);
1180 m->m_flags &= ~M_PKTHDR;
1181 m->m_len -= sizeof(struct ip);
1182 m->m_data += sizeof(struct ip);
1183 n->m_next = m;
1184 m = n;
1185 m->m_len = optlen + sizeof(struct ip);
1186 m->m_data += max_linkhdr;
1187 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1188 } else {
1189 m->m_data -= optlen;
1190 m->m_len += optlen;
1191 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1192 }
1193 m->m_pkthdr.len += optlen;
1194 ip = mtod(m, struct ip *);
1195 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1196 *phlen = sizeof(struct ip) + optlen;
1197 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1198 return (m);
1199 }
1200
1201 /*
1202 * Copy options from ip to jp,
1203 * omitting those not copied during fragmentation.
1204 */
1205 int
1206 ip_optcopy(struct ip *ip, struct ip *jp)
1207 {
1208 u_char *cp, *dp;
1209 int opt, optlen, cnt;
1210
1211 cp = (u_char *)(ip + 1);
1212 dp = (u_char *)(jp + 1);
1213 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1214 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1215 opt = cp[0];
1216 if (opt == IPOPT_EOL)
1217 break;
1218 if (opt == IPOPT_NOP) {
1219 /* Preserve for IP mcast tunnel's LSRR alignment. */
1220 *dp++ = IPOPT_NOP;
1221 optlen = 1;
1222 continue;
1223 }
1224 #ifdef DIAGNOSTIC
1225 if (cnt < IPOPT_OLEN + sizeof(*cp))
1226 panic("malformed IPv4 option passed to ip_optcopy");
1227 #endif
1228 optlen = cp[IPOPT_OLEN];
1229 #ifdef DIAGNOSTIC
1230 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1231 panic("malformed IPv4 option passed to ip_optcopy");
1232 #endif
1233 /* bogus lengths should have been caught by ip_dooptions */
1234 if (optlen > cnt)
1235 optlen = cnt;
1236 if (IPOPT_COPIED(opt)) {
1237 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1238 dp += optlen;
1239 }
1240 }
1241 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1242 *dp++ = IPOPT_EOL;
1243 return (optlen);
1244 }
1245
1246 /*
1247 * IP socket option processing.
1248 */
1249 int
1250 ip_ctloutput(int op, struct socket *so, int level, int optname,
1251 struct mbuf **mp)
1252 {
1253 struct inpcb *inp = sotoinpcb(so);
1254 struct mbuf *m = *mp;
1255 int optval = 0;
1256 int error = 0;
1257 #if defined(IPSEC) || defined(FAST_IPSEC)
1258 struct proc *p = curproc; /*XXX*/
1259 #endif
1260
1261 if (level != IPPROTO_IP) {
1262 error = EINVAL;
1263 if (op == PRCO_SETOPT && *mp)
1264 (void) m_free(*mp);
1265 } else switch (op) {
1266
1267 case PRCO_SETOPT:
1268 switch (optname) {
1269 case IP_OPTIONS:
1270 #ifdef notyet
1271 case IP_RETOPTS:
1272 return (ip_pcbopts(optname, &inp->inp_options, m));
1273 #else
1274 return (ip_pcbopts(&inp->inp_options, m));
1275 #endif
1276
1277 case IP_TOS:
1278 case IP_TTL:
1279 case IP_RECVOPTS:
1280 case IP_RECVRETOPTS:
1281 case IP_RECVDSTADDR:
1282 case IP_RECVIF:
1283 if (m == NULL || m->m_len != sizeof(int))
1284 error = EINVAL;
1285 else {
1286 optval = *mtod(m, int *);
1287 switch (optname) {
1288
1289 case IP_TOS:
1290 inp->inp_ip.ip_tos = optval;
1291 break;
1292
1293 case IP_TTL:
1294 inp->inp_ip.ip_ttl = optval;
1295 break;
1296 #define OPTSET(bit) \
1297 if (optval) \
1298 inp->inp_flags |= bit; \
1299 else \
1300 inp->inp_flags &= ~bit;
1301
1302 case IP_RECVOPTS:
1303 OPTSET(INP_RECVOPTS);
1304 break;
1305
1306 case IP_RECVRETOPTS:
1307 OPTSET(INP_RECVRETOPTS);
1308 break;
1309
1310 case IP_RECVDSTADDR:
1311 OPTSET(INP_RECVDSTADDR);
1312 break;
1313
1314 case IP_RECVIF:
1315 OPTSET(INP_RECVIF);
1316 break;
1317 }
1318 }
1319 break;
1320 #undef OPTSET
1321
1322 case IP_MULTICAST_IF:
1323 case IP_MULTICAST_TTL:
1324 case IP_MULTICAST_LOOP:
1325 case IP_ADD_MEMBERSHIP:
1326 case IP_DROP_MEMBERSHIP:
1327 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1328 break;
1329
1330 case IP_PORTRANGE:
1331 if (m == 0 || m->m_len != sizeof(int))
1332 error = EINVAL;
1333 else {
1334 optval = *mtod(m, int *);
1335
1336 switch (optval) {
1337
1338 case IP_PORTRANGE_DEFAULT:
1339 case IP_PORTRANGE_HIGH:
1340 inp->inp_flags &= ~(INP_LOWPORT);
1341 break;
1342
1343 case IP_PORTRANGE_LOW:
1344 inp->inp_flags |= INP_LOWPORT;
1345 break;
1346
1347 default:
1348 error = EINVAL;
1349 break;
1350 }
1351 }
1352 break;
1353
1354 #if defined(IPSEC) || defined(FAST_IPSEC)
1355 case IP_IPSEC_POLICY:
1356 {
1357 caddr_t req = NULL;
1358 size_t len = 0;
1359 int priv = 0;
1360
1361 #ifdef __NetBSD__
1362 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1363 priv = 0;
1364 else
1365 priv = 1;
1366 #else
1367 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1368 #endif
1369 if (m) {
1370 req = mtod(m, caddr_t);
1371 len = m->m_len;
1372 }
1373 error = ipsec4_set_policy(inp, optname, req, len, priv);
1374 break;
1375 }
1376 #endif /*IPSEC*/
1377
1378 default:
1379 error = ENOPROTOOPT;
1380 break;
1381 }
1382 if (m)
1383 (void)m_free(m);
1384 break;
1385
1386 case PRCO_GETOPT:
1387 switch (optname) {
1388 case IP_OPTIONS:
1389 case IP_RETOPTS:
1390 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1391 MCLAIM(m, so->so_mowner);
1392 if (inp->inp_options) {
1393 m->m_len = inp->inp_options->m_len;
1394 bcopy(mtod(inp->inp_options, caddr_t),
1395 mtod(m, caddr_t), (unsigned)m->m_len);
1396 } else
1397 m->m_len = 0;
1398 break;
1399
1400 case IP_TOS:
1401 case IP_TTL:
1402 case IP_RECVOPTS:
1403 case IP_RECVRETOPTS:
1404 case IP_RECVDSTADDR:
1405 case IP_RECVIF:
1406 case IP_ERRORMTU:
1407 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1408 MCLAIM(m, so->so_mowner);
1409 m->m_len = sizeof(int);
1410 switch (optname) {
1411
1412 case IP_TOS:
1413 optval = inp->inp_ip.ip_tos;
1414 break;
1415
1416 case IP_TTL:
1417 optval = inp->inp_ip.ip_ttl;
1418 break;
1419
1420 case IP_ERRORMTU:
1421 optval = inp->inp_errormtu;
1422 break;
1423
1424 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1425
1426 case IP_RECVOPTS:
1427 optval = OPTBIT(INP_RECVOPTS);
1428 break;
1429
1430 case IP_RECVRETOPTS:
1431 optval = OPTBIT(INP_RECVRETOPTS);
1432 break;
1433
1434 case IP_RECVDSTADDR:
1435 optval = OPTBIT(INP_RECVDSTADDR);
1436 break;
1437
1438 case IP_RECVIF:
1439 optval = OPTBIT(INP_RECVIF);
1440 break;
1441 }
1442 *mtod(m, int *) = optval;
1443 break;
1444
1445 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1446 /* XXX: code broken */
1447 case IP_IPSEC_POLICY:
1448 {
1449 caddr_t req = NULL;
1450 size_t len = 0;
1451
1452 if (m) {
1453 req = mtod(m, caddr_t);
1454 len = m->m_len;
1455 }
1456 error = ipsec4_get_policy(inp, req, len, mp);
1457 break;
1458 }
1459 #endif /*IPSEC*/
1460
1461 case IP_MULTICAST_IF:
1462 case IP_MULTICAST_TTL:
1463 case IP_MULTICAST_LOOP:
1464 case IP_ADD_MEMBERSHIP:
1465 case IP_DROP_MEMBERSHIP:
1466 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1467 if (*mp)
1468 MCLAIM(*mp, so->so_mowner);
1469 break;
1470
1471 case IP_PORTRANGE:
1472 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1473 MCLAIM(m, so->so_mowner);
1474 m->m_len = sizeof(int);
1475
1476 if (inp->inp_flags & INP_LOWPORT)
1477 optval = IP_PORTRANGE_LOW;
1478 else
1479 optval = IP_PORTRANGE_DEFAULT;
1480
1481 *mtod(m, int *) = optval;
1482 break;
1483
1484 default:
1485 error = ENOPROTOOPT;
1486 break;
1487 }
1488 break;
1489 }
1490 return (error);
1491 }
1492
1493 /*
1494 * Set up IP options in pcb for insertion in output packets.
1495 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1496 * with destination address if source routed.
1497 */
1498 int
1499 #ifdef notyet
1500 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1501 #else
1502 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1503 #endif
1504 {
1505 int cnt, optlen;
1506 u_char *cp;
1507 u_char opt;
1508
1509 /* turn off any old options */
1510 if (*pcbopt)
1511 (void)m_free(*pcbopt);
1512 *pcbopt = 0;
1513 if (m == (struct mbuf *)0 || m->m_len == 0) {
1514 /*
1515 * Only turning off any previous options.
1516 */
1517 if (m)
1518 (void)m_free(m);
1519 return (0);
1520 }
1521
1522 #ifndef __vax__
1523 if (m->m_len % sizeof(int32_t))
1524 goto bad;
1525 #endif
1526 /*
1527 * IP first-hop destination address will be stored before
1528 * actual options; move other options back
1529 * and clear it when none present.
1530 */
1531 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1532 goto bad;
1533 cnt = m->m_len;
1534 m->m_len += sizeof(struct in_addr);
1535 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1536 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1537 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1538
1539 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1540 opt = cp[IPOPT_OPTVAL];
1541 if (opt == IPOPT_EOL)
1542 break;
1543 if (opt == IPOPT_NOP)
1544 optlen = 1;
1545 else {
1546 if (cnt < IPOPT_OLEN + sizeof(*cp))
1547 goto bad;
1548 optlen = cp[IPOPT_OLEN];
1549 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1550 goto bad;
1551 }
1552 switch (opt) {
1553
1554 default:
1555 break;
1556
1557 case IPOPT_LSRR:
1558 case IPOPT_SSRR:
1559 /*
1560 * user process specifies route as:
1561 * ->A->B->C->D
1562 * D must be our final destination (but we can't
1563 * check that since we may not have connected yet).
1564 * A is first hop destination, which doesn't appear in
1565 * actual IP option, but is stored before the options.
1566 */
1567 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1568 goto bad;
1569 m->m_len -= sizeof(struct in_addr);
1570 cnt -= sizeof(struct in_addr);
1571 optlen -= sizeof(struct in_addr);
1572 cp[IPOPT_OLEN] = optlen;
1573 /*
1574 * Move first hop before start of options.
1575 */
1576 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1577 sizeof(struct in_addr));
1578 /*
1579 * Then copy rest of options back
1580 * to close up the deleted entry.
1581 */
1582 (void)memmove(&cp[IPOPT_OFFSET+1],
1583 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1584 (unsigned)cnt - (IPOPT_MINOFF - 1));
1585 break;
1586 }
1587 }
1588 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1589 goto bad;
1590 *pcbopt = m;
1591 return (0);
1592
1593 bad:
1594 (void)m_free(m);
1595 return (EINVAL);
1596 }
1597
1598 /*
1599 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1600 */
1601 static struct ifnet *
1602 ip_multicast_if(struct in_addr *a, int *ifindexp)
1603 {
1604 int ifindex;
1605 struct ifnet *ifp = NULL;
1606 struct in_ifaddr *ia;
1607
1608 if (ifindexp)
1609 *ifindexp = 0;
1610 if (ntohl(a->s_addr) >> 24 == 0) {
1611 ifindex = ntohl(a->s_addr) & 0xffffff;
1612 if (ifindex < 0 || if_indexlim <= ifindex)
1613 return NULL;
1614 ifp = ifindex2ifnet[ifindex];
1615 if (!ifp)
1616 return NULL;
1617 if (ifindexp)
1618 *ifindexp = ifindex;
1619 } else {
1620 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1621 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1622 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1623 ifp = ia->ia_ifp;
1624 break;
1625 }
1626 }
1627 }
1628 return ifp;
1629 }
1630
1631 /*
1632 * Set the IP multicast options in response to user setsockopt().
1633 */
1634 int
1635 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1636 {
1637 int error = 0;
1638 u_char loop;
1639 int i;
1640 struct in_addr addr;
1641 struct ip_mreq *mreq;
1642 struct ifnet *ifp;
1643 struct ip_moptions *imo = *imop;
1644 struct route ro;
1645 struct sockaddr_in *dst;
1646 int ifindex;
1647
1648 if (imo == NULL) {
1649 /*
1650 * No multicast option buffer attached to the pcb;
1651 * allocate one and initialize to default values.
1652 */
1653 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1654 M_WAITOK);
1655
1656 if (imo == NULL)
1657 return (ENOBUFS);
1658 *imop = imo;
1659 imo->imo_multicast_ifp = NULL;
1660 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1661 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1662 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1663 imo->imo_num_memberships = 0;
1664 }
1665
1666 switch (optname) {
1667
1668 case IP_MULTICAST_IF:
1669 /*
1670 * Select the interface for outgoing multicast packets.
1671 */
1672 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1673 error = EINVAL;
1674 break;
1675 }
1676 addr = *(mtod(m, struct in_addr *));
1677 /*
1678 * INADDR_ANY is used to remove a previous selection.
1679 * When no interface is selected, a default one is
1680 * chosen every time a multicast packet is sent.
1681 */
1682 if (in_nullhost(addr)) {
1683 imo->imo_multicast_ifp = NULL;
1684 break;
1685 }
1686 /*
1687 * The selected interface is identified by its local
1688 * IP address. Find the interface and confirm that
1689 * it supports multicasting.
1690 */
1691 ifp = ip_multicast_if(&addr, &ifindex);
1692 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1693 error = EADDRNOTAVAIL;
1694 break;
1695 }
1696 imo->imo_multicast_ifp = ifp;
1697 if (ifindex)
1698 imo->imo_multicast_addr = addr;
1699 else
1700 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1701 break;
1702
1703 case IP_MULTICAST_TTL:
1704 /*
1705 * Set the IP time-to-live for outgoing multicast packets.
1706 */
1707 if (m == NULL || m->m_len != 1) {
1708 error = EINVAL;
1709 break;
1710 }
1711 imo->imo_multicast_ttl = *(mtod(m, u_char *));
1712 break;
1713
1714 case IP_MULTICAST_LOOP:
1715 /*
1716 * Set the loopback flag for outgoing multicast packets.
1717 * Must be zero or one.
1718 */
1719 if (m == NULL || m->m_len != 1 ||
1720 (loop = *(mtod(m, u_char *))) > 1) {
1721 error = EINVAL;
1722 break;
1723 }
1724 imo->imo_multicast_loop = loop;
1725 break;
1726
1727 case IP_ADD_MEMBERSHIP:
1728 /*
1729 * Add a multicast group membership.
1730 * Group must be a valid IP multicast address.
1731 */
1732 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1733 error = EINVAL;
1734 break;
1735 }
1736 mreq = mtod(m, struct ip_mreq *);
1737 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1738 error = EINVAL;
1739 break;
1740 }
1741 /*
1742 * If no interface address was provided, use the interface of
1743 * the route to the given multicast address.
1744 */
1745 if (in_nullhost(mreq->imr_interface)) {
1746 bzero((caddr_t)&ro, sizeof(ro));
1747 ro.ro_rt = NULL;
1748 dst = satosin(&ro.ro_dst);
1749 dst->sin_len = sizeof(*dst);
1750 dst->sin_family = AF_INET;
1751 dst->sin_addr = mreq->imr_multiaddr;
1752 rtalloc(&ro);
1753 if (ro.ro_rt == NULL) {
1754 error = EADDRNOTAVAIL;
1755 break;
1756 }
1757 ifp = ro.ro_rt->rt_ifp;
1758 rtfree(ro.ro_rt);
1759 } else {
1760 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1761 }
1762 /*
1763 * See if we found an interface, and confirm that it
1764 * supports multicast.
1765 */
1766 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1767 error = EADDRNOTAVAIL;
1768 break;
1769 }
1770 /*
1771 * See if the membership already exists or if all the
1772 * membership slots are full.
1773 */
1774 for (i = 0; i < imo->imo_num_memberships; ++i) {
1775 if (imo->imo_membership[i]->inm_ifp == ifp &&
1776 in_hosteq(imo->imo_membership[i]->inm_addr,
1777 mreq->imr_multiaddr))
1778 break;
1779 }
1780 if (i < imo->imo_num_memberships) {
1781 error = EADDRINUSE;
1782 break;
1783 }
1784 if (i == IP_MAX_MEMBERSHIPS) {
1785 error = ETOOMANYREFS;
1786 break;
1787 }
1788 /*
1789 * Everything looks good; add a new record to the multicast
1790 * address list for the given interface.
1791 */
1792 if ((imo->imo_membership[i] =
1793 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1794 error = ENOBUFS;
1795 break;
1796 }
1797 ++imo->imo_num_memberships;
1798 break;
1799
1800 case IP_DROP_MEMBERSHIP:
1801 /*
1802 * Drop a multicast group membership.
1803 * Group must be a valid IP multicast address.
1804 */
1805 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1806 error = EINVAL;
1807 break;
1808 }
1809 mreq = mtod(m, struct ip_mreq *);
1810 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1811 error = EINVAL;
1812 break;
1813 }
1814 /*
1815 * If an interface address was specified, get a pointer
1816 * to its ifnet structure.
1817 */
1818 if (in_nullhost(mreq->imr_interface))
1819 ifp = NULL;
1820 else {
1821 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1822 if (ifp == NULL) {
1823 error = EADDRNOTAVAIL;
1824 break;
1825 }
1826 }
1827 /*
1828 * Find the membership in the membership array.
1829 */
1830 for (i = 0; i < imo->imo_num_memberships; ++i) {
1831 if ((ifp == NULL ||
1832 imo->imo_membership[i]->inm_ifp == ifp) &&
1833 in_hosteq(imo->imo_membership[i]->inm_addr,
1834 mreq->imr_multiaddr))
1835 break;
1836 }
1837 if (i == imo->imo_num_memberships) {
1838 error = EADDRNOTAVAIL;
1839 break;
1840 }
1841 /*
1842 * Give up the multicast address record to which the
1843 * membership points.
1844 */
1845 in_delmulti(imo->imo_membership[i]);
1846 /*
1847 * Remove the gap in the membership array.
1848 */
1849 for (++i; i < imo->imo_num_memberships; ++i)
1850 imo->imo_membership[i-1] = imo->imo_membership[i];
1851 --imo->imo_num_memberships;
1852 break;
1853
1854 default:
1855 error = EOPNOTSUPP;
1856 break;
1857 }
1858
1859 /*
1860 * If all options have default values, no need to keep the mbuf.
1861 */
1862 if (imo->imo_multicast_ifp == NULL &&
1863 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1864 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1865 imo->imo_num_memberships == 0) {
1866 free(*imop, M_IPMOPTS);
1867 *imop = NULL;
1868 }
1869
1870 return (error);
1871 }
1872
1873 /*
1874 * Return the IP multicast options in response to user getsockopt().
1875 */
1876 int
1877 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1878 {
1879 u_char *ttl;
1880 u_char *loop;
1881 struct in_addr *addr;
1882 struct in_ifaddr *ia;
1883
1884 *mp = m_get(M_WAIT, MT_SOOPTS);
1885
1886 switch (optname) {
1887
1888 case IP_MULTICAST_IF:
1889 addr = mtod(*mp, struct in_addr *);
1890 (*mp)->m_len = sizeof(struct in_addr);
1891 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1892 *addr = zeroin_addr;
1893 else if (imo->imo_multicast_addr.s_addr) {
1894 /* return the value user has set */
1895 *addr = imo->imo_multicast_addr;
1896 } else {
1897 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1898 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1899 }
1900 return (0);
1901
1902 case IP_MULTICAST_TTL:
1903 ttl = mtod(*mp, u_char *);
1904 (*mp)->m_len = 1;
1905 *ttl = imo ? imo->imo_multicast_ttl
1906 : IP_DEFAULT_MULTICAST_TTL;
1907 return (0);
1908
1909 case IP_MULTICAST_LOOP:
1910 loop = mtod(*mp, u_char *);
1911 (*mp)->m_len = 1;
1912 *loop = imo ? imo->imo_multicast_loop
1913 : IP_DEFAULT_MULTICAST_LOOP;
1914 return (0);
1915
1916 default:
1917 return (EOPNOTSUPP);
1918 }
1919 }
1920
1921 /*
1922 * Discard the IP multicast options.
1923 */
1924 void
1925 ip_freemoptions(struct ip_moptions *imo)
1926 {
1927 int i;
1928
1929 if (imo != NULL) {
1930 for (i = 0; i < imo->imo_num_memberships; ++i)
1931 in_delmulti(imo->imo_membership[i]);
1932 free(imo, M_IPMOPTS);
1933 }
1934 }
1935
1936 /*
1937 * Routine called from ip_output() to loop back a copy of an IP multicast
1938 * packet to the input queue of a specified interface. Note that this
1939 * calls the output routine of the loopback "driver", but with an interface
1940 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1941 */
1942 static void
1943 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1944 {
1945 struct ip *ip;
1946 struct mbuf *copym;
1947
1948 copym = m_copy(m, 0, M_COPYALL);
1949 if (copym != NULL
1950 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1951 copym = m_pullup(copym, sizeof(struct ip));
1952 if (copym != NULL) {
1953 /*
1954 * We don't bother to fragment if the IP length is greater
1955 * than the interface's MTU. Can this possibly matter?
1956 */
1957 ip = mtod(copym, struct ip *);
1958
1959 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1960 in_delayed_cksum(copym);
1961 copym->m_pkthdr.csum_flags &=
1962 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1963 }
1964
1965 ip->ip_sum = 0;
1966 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1967 (void) looutput(ifp, copym, sintosa(dst), NULL);
1968 }
1969 }
1970