Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.157
      1 /*	$NetBSD: ip_output.c,v 1.157 2005/09/11 22:15:19 seb Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.157 2005/09/11 22:15:19 seb Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #ifdef FAST_IPSEC
    116 #include <sys/domain.h>
    117 #endif
    118 #include <sys/systm.h>
    119 #include <sys/proc.h>
    120 
    121 #include <net/if.h>
    122 #include <net/route.h>
    123 #include <net/pfil.h>
    124 
    125 #include <netinet/in.h>
    126 #include <netinet/in_systm.h>
    127 #include <netinet/ip.h>
    128 #include <netinet/in_pcb.h>
    129 #include <netinet/in_var.h>
    130 #include <netinet/ip_var.h>
    131 #include <netinet/in_offload.h>
    132 
    133 #ifdef MROUTING
    134 #include <netinet/ip_mroute.h>
    135 #endif
    136 
    137 #include <machine/stdarg.h>
    138 
    139 #ifdef IPSEC
    140 #include <netinet6/ipsec.h>
    141 #include <netkey/key.h>
    142 #include <netkey/key_debug.h>
    143 #ifdef IPSEC_NAT_T
    144 #include <netinet/udp.h>
    145 #endif
    146 #endif /*IPSEC*/
    147 
    148 #ifdef FAST_IPSEC
    149 #include <netipsec/ipsec.h>
    150 #include <netipsec/key.h>
    151 #include <netipsec/xform.h>
    152 #endif	/* FAST_IPSEC*/
    153 
    154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    155 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
    157 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
    158 
    159 #ifdef PFIL_HOOKS
    160 extern struct pfil_head inet_pfil_hook;			/* XXX */
    161 #endif
    162 
    163 int	ip_do_loopback_cksum = 0;
    164 
    165 #define	IN_NEED_CHECKSUM(ifp, csum_flags) \
    166 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    167 	(((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
    168 	(((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
    169 	(((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
    170 
    171 struct ip_tso_output_args {
    172 	struct ifnet *ifp;
    173 	struct sockaddr *sa;
    174 	struct rtentry *rt;
    175 };
    176 
    177 static int ip_tso_output_callback(void *, struct mbuf *);
    178 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
    179     struct rtentry *);
    180 
    181 static int
    182 ip_tso_output_callback(void *vp, struct mbuf *m)
    183 {
    184 	struct ip_tso_output_args *args = vp;
    185 	struct ifnet *ifp = args->ifp;
    186 
    187 	return (*ifp->if_output)(ifp, m, args->sa, args->rt);
    188 }
    189 
    190 static int
    191 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
    192     struct rtentry *rt)
    193 {
    194 	struct ip_tso_output_args args;
    195 
    196 	args.ifp = ifp;
    197 	args.sa = sa;
    198 	args.rt = rt;
    199 
    200 	return tcp4_segment(m, ip_tso_output_callback, &args);
    201 }
    202 
    203 /*
    204  * IP output.  The packet in mbuf chain m contains a skeletal IP
    205  * header (with len, off, ttl, proto, tos, src, dst).
    206  * The mbuf chain containing the packet will be freed.
    207  * The mbuf opt, if present, will not be freed.
    208  */
    209 int
    210 ip_output(struct mbuf *m0, ...)
    211 {
    212 	struct ip *ip;
    213 	struct ifnet *ifp;
    214 	struct mbuf *m = m0;
    215 	int hlen = sizeof (struct ip);
    216 	int len, error = 0;
    217 	struct route iproute;
    218 	struct sockaddr_in *dst;
    219 	struct in_ifaddr *ia;
    220 	struct mbuf *opt;
    221 	struct route *ro;
    222 	int flags, sw_csum;
    223 	int *mtu_p;
    224 	u_long mtu;
    225 	struct ip_moptions *imo;
    226 	struct socket *so;
    227 	va_list ap;
    228 #ifdef IPSEC
    229 	struct secpolicy *sp = NULL;
    230 #ifdef IPSEC_NAT_T
    231 	int natt_frag = 0;
    232 #endif
    233 #endif /*IPSEC*/
    234 #ifdef FAST_IPSEC
    235 	struct inpcb *inp;
    236 	struct m_tag *mtag;
    237 	struct secpolicy *sp = NULL;
    238 	struct tdb_ident *tdbi;
    239 	int s;
    240 #endif
    241 	u_int16_t ip_len;
    242 
    243 	len = 0;
    244 	va_start(ap, m0);
    245 	opt = va_arg(ap, struct mbuf *);
    246 	ro = va_arg(ap, struct route *);
    247 	flags = va_arg(ap, int);
    248 	imo = va_arg(ap, struct ip_moptions *);
    249 	so = va_arg(ap, struct socket *);
    250 	if (flags & IP_RETURNMTU)
    251 		mtu_p = va_arg(ap, int *);
    252 	else
    253 		mtu_p = NULL;
    254 	va_end(ap);
    255 
    256 	MCLAIM(m, &ip_tx_mowner);
    257 #ifdef FAST_IPSEC
    258 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    259 		inp = (struct inpcb *)so->so_pcb;
    260 	else
    261 		inp = NULL;
    262 #endif /* FAST_IPSEC */
    263 
    264 #ifdef	DIAGNOSTIC
    265 	if ((m->m_flags & M_PKTHDR) == 0)
    266 		panic("ip_output no HDR");
    267 #endif
    268 	if (opt) {
    269 		m = ip_insertoptions(m, opt, &len);
    270 		if (len >= sizeof(struct ip))
    271 			hlen = len;
    272 	}
    273 	ip = mtod(m, struct ip *);
    274 	/*
    275 	 * Fill in IP header.
    276 	 */
    277 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    278 		ip->ip_v = IPVERSION;
    279 		ip->ip_off = htons(0);
    280 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    281 			ip->ip_id = ip_newid();
    282 		} else {
    283 
    284 			/*
    285 			 * TSO capable interfaces (typically?) increment
    286 			 * ip_id for each segment.
    287 			 * "allocate" enough ids here to increase the chance
    288 			 * for them to be unique.
    289 			 *
    290 			 * note that the following calculation is not
    291 			 * needed to be precise.  wasting some ip_id is fine.
    292 			 */
    293 
    294 			unsigned int segsz = m->m_pkthdr.segsz;
    295 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    296 			unsigned int num = howmany(datasz, segsz);
    297 
    298 			ip->ip_id = ip_newid_range(num);
    299 		}
    300 		ip->ip_hl = hlen >> 2;
    301 		ipstat.ips_localout++;
    302 	} else {
    303 		hlen = ip->ip_hl << 2;
    304 	}
    305 	/*
    306 	 * Route packet.
    307 	 */
    308 	if (ro == 0) {
    309 		ro = &iproute;
    310 		bzero((caddr_t)ro, sizeof (*ro));
    311 	}
    312 	dst = satosin(&ro->ro_dst);
    313 	/*
    314 	 * If there is a cached route,
    315 	 * check that it is to the same destination
    316 	 * and is still up.  If not, free it and try again.
    317 	 * The address family should also be checked in case of sharing the
    318 	 * cache with IPv6.
    319 	 */
    320 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    321 	    dst->sin_family != AF_INET ||
    322 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    323 		RTFREE(ro->ro_rt);
    324 		ro->ro_rt = (struct rtentry *)0;
    325 	}
    326 	if (ro->ro_rt == 0) {
    327 		bzero(dst, sizeof(*dst));
    328 		dst->sin_family = AF_INET;
    329 		dst->sin_len = sizeof(*dst);
    330 		dst->sin_addr = ip->ip_dst;
    331 	}
    332 	/*
    333 	 * If routing to interface only,
    334 	 * short circuit routing lookup.
    335 	 */
    336 	if (flags & IP_ROUTETOIF) {
    337 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    338 			ipstat.ips_noroute++;
    339 			error = ENETUNREACH;
    340 			goto bad;
    341 		}
    342 		ifp = ia->ia_ifp;
    343 		mtu = ifp->if_mtu;
    344 		ip->ip_ttl = 1;
    345 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    346 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    347 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    348 		ifp = imo->imo_multicast_ifp;
    349 		mtu = ifp->if_mtu;
    350 		IFP_TO_IA(ifp, ia);
    351 	} else {
    352 		if (ro->ro_rt == 0)
    353 			rtalloc(ro);
    354 		if (ro->ro_rt == 0) {
    355 			ipstat.ips_noroute++;
    356 			error = EHOSTUNREACH;
    357 			goto bad;
    358 		}
    359 		ia = ifatoia(ro->ro_rt->rt_ifa);
    360 		ifp = ro->ro_rt->rt_ifp;
    361 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    362 			mtu = ifp->if_mtu;
    363 		ro->ro_rt->rt_use++;
    364 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    365 			dst = satosin(ro->ro_rt->rt_gateway);
    366 	}
    367 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    368 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    369 		struct in_multi *inm;
    370 
    371 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    372 			M_BCAST : M_MCAST;
    373 		/*
    374 		 * IP destination address is multicast.  Make sure "dst"
    375 		 * still points to the address in "ro".  (It may have been
    376 		 * changed to point to a gateway address, above.)
    377 		 */
    378 		dst = satosin(&ro->ro_dst);
    379 		/*
    380 		 * See if the caller provided any multicast options
    381 		 */
    382 		if (imo != NULL)
    383 			ip->ip_ttl = imo->imo_multicast_ttl;
    384 		else
    385 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    386 
    387 		/*
    388 		 * if we don't know the outgoing ifp yet, we can't generate
    389 		 * output
    390 		 */
    391 		if (!ifp) {
    392 			ipstat.ips_noroute++;
    393 			error = ENETUNREACH;
    394 			goto bad;
    395 		}
    396 
    397 		/*
    398 		 * If the packet is multicast or broadcast, confirm that
    399 		 * the outgoing interface can transmit it.
    400 		 */
    401 		if (((m->m_flags & M_MCAST) &&
    402 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    403 		    ((m->m_flags & M_BCAST) &&
    404 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    405 			ipstat.ips_noroute++;
    406 			error = ENETUNREACH;
    407 			goto bad;
    408 		}
    409 		/*
    410 		 * If source address not specified yet, use an address
    411 		 * of outgoing interface.
    412 		 */
    413 		if (in_nullhost(ip->ip_src)) {
    414 			struct in_ifaddr *xia;
    415 
    416 			IFP_TO_IA(ifp, xia);
    417 			if (!xia) {
    418 				error = EADDRNOTAVAIL;
    419 				goto bad;
    420 			}
    421 			ip->ip_src = xia->ia_addr.sin_addr;
    422 		}
    423 
    424 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    425 		if (inm != NULL &&
    426 		   (imo == NULL || imo->imo_multicast_loop)) {
    427 			/*
    428 			 * If we belong to the destination multicast group
    429 			 * on the outgoing interface, and the caller did not
    430 			 * forbid loopback, loop back a copy.
    431 			 */
    432 			ip_mloopback(ifp, m, dst);
    433 		}
    434 #ifdef MROUTING
    435 		else {
    436 			/*
    437 			 * If we are acting as a multicast router, perform
    438 			 * multicast forwarding as if the packet had just
    439 			 * arrived on the interface to which we are about
    440 			 * to send.  The multicast forwarding function
    441 			 * recursively calls this function, using the
    442 			 * IP_FORWARDING flag to prevent infinite recursion.
    443 			 *
    444 			 * Multicasts that are looped back by ip_mloopback(),
    445 			 * above, will be forwarded by the ip_input() routine,
    446 			 * if necessary.
    447 			 */
    448 			extern struct socket *ip_mrouter;
    449 
    450 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    451 				if (ip_mforward(m, ifp) != 0) {
    452 					m_freem(m);
    453 					goto done;
    454 				}
    455 			}
    456 		}
    457 #endif
    458 		/*
    459 		 * Multicasts with a time-to-live of zero may be looped-
    460 		 * back, above, but must not be transmitted on a network.
    461 		 * Also, multicasts addressed to the loopback interface
    462 		 * are not sent -- the above call to ip_mloopback() will
    463 		 * loop back a copy if this host actually belongs to the
    464 		 * destination group on the loopback interface.
    465 		 */
    466 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    467 			m_freem(m);
    468 			goto done;
    469 		}
    470 
    471 		goto sendit;
    472 	}
    473 #ifndef notdef
    474 	/*
    475 	 * If source address not specified yet, use address
    476 	 * of outgoing interface.
    477 	 */
    478 	if (in_nullhost(ip->ip_src))
    479 		ip->ip_src = ia->ia_addr.sin_addr;
    480 #endif
    481 
    482 	/*
    483 	 * packets with Class-D address as source are not valid per
    484 	 * RFC 1112
    485 	 */
    486 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    487 		ipstat.ips_odropped++;
    488 		error = EADDRNOTAVAIL;
    489 		goto bad;
    490 	}
    491 
    492 	/*
    493 	 * Look for broadcast address and
    494 	 * and verify user is allowed to send
    495 	 * such a packet.
    496 	 */
    497 	if (in_broadcast(dst->sin_addr, ifp)) {
    498 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    499 			error = EADDRNOTAVAIL;
    500 			goto bad;
    501 		}
    502 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    503 			error = EACCES;
    504 			goto bad;
    505 		}
    506 		/* don't allow broadcast messages to be fragmented */
    507 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    508 			error = EMSGSIZE;
    509 			goto bad;
    510 		}
    511 		m->m_flags |= M_BCAST;
    512 	} else
    513 		m->m_flags &= ~M_BCAST;
    514 
    515 sendit:
    516 	/*
    517 	 * If we're doing Path MTU Discovery, we need to set DF unless
    518 	 * the route's MTU is locked.
    519 	 */
    520 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    521 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    522 		ip->ip_off |= htons(IP_DF);
    523 
    524 	/* Remember the current ip_len */
    525 	ip_len = ntohs(ip->ip_len);
    526 
    527 #ifdef IPSEC
    528 	/* get SP for this packet */
    529 	if (so == NULL)
    530 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    531 		    flags, &error);
    532 	else {
    533 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    534 					 IPSEC_DIR_OUTBOUND))
    535 			goto skip_ipsec;
    536 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    537 	}
    538 
    539 	if (sp == NULL) {
    540 		ipsecstat.out_inval++;
    541 		goto bad;
    542 	}
    543 
    544 	error = 0;
    545 
    546 	/* check policy */
    547 	switch (sp->policy) {
    548 	case IPSEC_POLICY_DISCARD:
    549 		/*
    550 		 * This packet is just discarded.
    551 		 */
    552 		ipsecstat.out_polvio++;
    553 		goto bad;
    554 
    555 	case IPSEC_POLICY_BYPASS:
    556 	case IPSEC_POLICY_NONE:
    557 		/* no need to do IPsec. */
    558 		goto skip_ipsec;
    559 
    560 	case IPSEC_POLICY_IPSEC:
    561 		if (sp->req == NULL) {
    562 			/* XXX should be panic ? */
    563 			printf("ip_output: No IPsec request specified.\n");
    564 			error = EINVAL;
    565 			goto bad;
    566 		}
    567 		break;
    568 
    569 	case IPSEC_POLICY_ENTRUST:
    570 	default:
    571 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    572 	}
    573 
    574 #ifdef IPSEC_NAT_T
    575 	/*
    576 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    577 	 * we'll do it on each fragmented packet.
    578 	 */
    579 	if (sp->req->sav &&
    580 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    581 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    582 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    583 			natt_frag = 1;
    584 			mtu = sp->req->sav->esp_frag;
    585 			goto skip_ipsec;
    586 		}
    587 	}
    588 #endif /* IPSEC_NAT_T */
    589 
    590 	/*
    591 	 * ipsec4_output() expects ip_len and ip_off in network
    592 	 * order.  They have been set to network order above.
    593 	 */
    594 
    595     {
    596 	struct ipsec_output_state state;
    597 	bzero(&state, sizeof(state));
    598 	state.m = m;
    599 	if (flags & IP_ROUTETOIF) {
    600 		state.ro = &iproute;
    601 		bzero(&iproute, sizeof(iproute));
    602 	} else
    603 		state.ro = ro;
    604 	state.dst = (struct sockaddr *)dst;
    605 
    606 	/*
    607 	 * We can't defer the checksum of payload data if
    608 	 * we're about to encrypt/authenticate it.
    609 	 *
    610 	 * XXX When we support crypto offloading functions of
    611 	 * XXX network interfaces, we need to reconsider this,
    612 	 * XXX since it's likely that they'll support checksumming,
    613 	 * XXX as well.
    614 	 */
    615 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    616 		in_delayed_cksum(m);
    617 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    618 	}
    619 
    620 	error = ipsec4_output(&state, sp, flags);
    621 
    622 	m = state.m;
    623 	if (flags & IP_ROUTETOIF) {
    624 		/*
    625 		 * if we have tunnel mode SA, we may need to ignore
    626 		 * IP_ROUTETOIF.
    627 		 */
    628 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    629 			flags &= ~IP_ROUTETOIF;
    630 			ro = state.ro;
    631 		}
    632 	} else
    633 		ro = state.ro;
    634 	dst = (struct sockaddr_in *)state.dst;
    635 	if (error) {
    636 		/* mbuf is already reclaimed in ipsec4_output. */
    637 		m0 = NULL;
    638 		switch (error) {
    639 		case EHOSTUNREACH:
    640 		case ENETUNREACH:
    641 		case EMSGSIZE:
    642 		case ENOBUFS:
    643 		case ENOMEM:
    644 			break;
    645 		default:
    646 			printf("ip4_output (ipsec): error code %d\n", error);
    647 			/*fall through*/
    648 		case ENOENT:
    649 			/* don't show these error codes to the user */
    650 			error = 0;
    651 			break;
    652 		}
    653 		goto bad;
    654 	}
    655 
    656 	/* be sure to update variables that are affected by ipsec4_output() */
    657 	ip = mtod(m, struct ip *);
    658 	hlen = ip->ip_hl << 2;
    659 	ip_len = ntohs(ip->ip_len);
    660 
    661 	if (ro->ro_rt == NULL) {
    662 		if ((flags & IP_ROUTETOIF) == 0) {
    663 			printf("ip_output: "
    664 				"can't update route after IPsec processing\n");
    665 			error = EHOSTUNREACH;	/*XXX*/
    666 			goto bad;
    667 		}
    668 	} else {
    669 		/* nobody uses ia beyond here */
    670 		if (state.encap) {
    671 			ifp = ro->ro_rt->rt_ifp;
    672 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    673 				mtu = ifp->if_mtu;
    674 		}
    675 	}
    676     }
    677 skip_ipsec:
    678 #endif /*IPSEC*/
    679 #ifdef FAST_IPSEC
    680 	/*
    681 	 * Check the security policy (SP) for the packet and, if
    682 	 * required, do IPsec-related processing.  There are two
    683 	 * cases here; the first time a packet is sent through
    684 	 * it will be untagged and handled by ipsec4_checkpolicy.
    685 	 * If the packet is resubmitted to ip_output (e.g. after
    686 	 * AH, ESP, etc. processing), there will be a tag to bypass
    687 	 * the lookup and related policy checking.
    688 	 */
    689 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    690 	s = splsoftnet();
    691 	if (mtag != NULL) {
    692 		tdbi = (struct tdb_ident *)(mtag + 1);
    693 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    694 		if (sp == NULL)
    695 			error = -EINVAL;	/* force silent drop */
    696 		m_tag_delete(m, mtag);
    697 	} else {
    698 		if (inp != NULL &&
    699 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    700 			goto spd_done;
    701 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    702 					&error, inp);
    703 	}
    704 	/*
    705 	 * There are four return cases:
    706 	 *    sp != NULL	 	    apply IPsec policy
    707 	 *    sp == NULL, error == 0	    no IPsec handling needed
    708 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    709 	 *    sp == NULL, error != 0	    discard packet, report error
    710 	 */
    711 	if (sp != NULL) {
    712 		/* Loop detection, check if ipsec processing already done */
    713 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    714 		for (mtag = m_tag_first(m); mtag != NULL;
    715 		     mtag = m_tag_next(m, mtag)) {
    716 #ifdef MTAG_ABI_COMPAT
    717 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    718 				continue;
    719 #endif
    720 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    721 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    722 				continue;
    723 			/*
    724 			 * Check if policy has an SA associated with it.
    725 			 * This can happen when an SP has yet to acquire
    726 			 * an SA; e.g. on first reference.  If it occurs,
    727 			 * then we let ipsec4_process_packet do its thing.
    728 			 */
    729 			if (sp->req->sav == NULL)
    730 				break;
    731 			tdbi = (struct tdb_ident *)(mtag + 1);
    732 			if (tdbi->spi == sp->req->sav->spi &&
    733 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    734 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    735 				 sizeof (union sockaddr_union)) == 0) {
    736 				/*
    737 				 * No IPsec processing is needed, free
    738 				 * reference to SP.
    739 				 *
    740 				 * NB: null pointer to avoid free at
    741 				 *     done: below.
    742 				 */
    743 				KEY_FREESP(&sp), sp = NULL;
    744 				splx(s);
    745 				goto spd_done;
    746 			}
    747 		}
    748 
    749 		/*
    750 		 * Do delayed checksums now because we send before
    751 		 * this is done in the normal processing path.
    752 		 */
    753 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    754 			in_delayed_cksum(m);
    755 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    756 		}
    757 
    758 #ifdef __FreeBSD__
    759 		ip->ip_len = htons(ip->ip_len);
    760 		ip->ip_off = htons(ip->ip_off);
    761 #endif
    762 
    763 		/* NB: callee frees mbuf */
    764 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    765 		/*
    766 		 * Preserve KAME behaviour: ENOENT can be returned
    767 		 * when an SA acquire is in progress.  Don't propagate
    768 		 * this to user-level; it confuses applications.
    769 		 *
    770 		 * XXX this will go away when the SADB is redone.
    771 		 */
    772 		if (error == ENOENT)
    773 			error = 0;
    774 		splx(s);
    775 		goto done;
    776 	} else {
    777 		splx(s);
    778 
    779 		if (error != 0) {
    780 			/*
    781 			 * Hack: -EINVAL is used to signal that a packet
    782 			 * should be silently discarded.  This is typically
    783 			 * because we asked key management for an SA and
    784 			 * it was delayed (e.g. kicked up to IKE).
    785 			 */
    786 			if (error == -EINVAL)
    787 				error = 0;
    788 			goto bad;
    789 		} else {
    790 			/* No IPsec processing for this packet. */
    791 		}
    792 #ifdef notyet
    793 		/*
    794 		 * If deferred crypto processing is needed, check that
    795 		 * the interface supports it.
    796 		 */
    797 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    798 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    799 			/* notify IPsec to do its own crypto */
    800 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    801 			error = EHOSTUNREACH;
    802 			goto bad;
    803 		}
    804 #endif
    805 	}
    806 spd_done:
    807 #endif /* FAST_IPSEC */
    808 
    809 #ifdef PFIL_HOOKS
    810 	/*
    811 	 * Run through list of hooks for output packets.
    812 	 */
    813 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    814 		goto done;
    815 	if (m == NULL)
    816 		goto done;
    817 
    818 	ip = mtod(m, struct ip *);
    819 	hlen = ip->ip_hl << 2;
    820 #endif /* PFIL_HOOKS */
    821 
    822 	m->m_pkthdr.csum_data |= hlen << 16;
    823 
    824 #if IFA_STATS
    825 	/*
    826 	 * search for the source address structure to
    827 	 * maintain output statistics.
    828 	 */
    829 	INADDR_TO_IA(ip->ip_src, ia);
    830 #endif
    831 
    832 	/* Maybe skip checksums on loopback interfaces. */
    833 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    834 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    835 	}
    836 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    837 	/*
    838 	 * If small enough for mtu of path, or if using TCP segmentation
    839 	 * offload, can just send directly.
    840 	 */
    841 	if (ip_len <= mtu ||
    842 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    843 #if IFA_STATS
    844 		if (ia)
    845 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    846 #endif
    847 		/*
    848 		 * Always initialize the sum to 0!  Some HW assisted
    849 		 * checksumming requires this.
    850 		 */
    851 		ip->ip_sum = 0;
    852 
    853 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    854 			/*
    855 			 * Perform any checksums that the hardware can't do
    856 			 * for us.
    857 			 *
    858 			 * XXX Does any hardware require the {th,uh}_sum
    859 			 * XXX fields to be 0?
    860 			 */
    861 			if (sw_csum & M_CSUM_IPv4) {
    862 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    863 				ip->ip_sum = in_cksum(m, hlen);
    864 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    865 			}
    866 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    867 				if (IN_NEED_CHECKSUM(ifp,
    868 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    869 					in_delayed_cksum(m);
    870 				}
    871 				m->m_pkthdr.csum_flags &=
    872 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    873 			}
    874 		}
    875 
    876 #ifdef IPSEC
    877 		/* clean ipsec history once it goes out of the node */
    878 		ipsec_delaux(m);
    879 #endif
    880 
    881 		if (__predict_true(
    882 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    883 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    884 			error =
    885 			    (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    886 		} else {
    887 			error =
    888 			    ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
    889 		}
    890 		goto done;
    891 	}
    892 
    893 	/*
    894 	 * We can't use HW checksumming if we're about to
    895 	 * to fragment the packet.
    896 	 *
    897 	 * XXX Some hardware can do this.
    898 	 */
    899 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    900 		if (IN_NEED_CHECKSUM(ifp,
    901 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    902 			in_delayed_cksum(m);
    903 		}
    904 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    905 	}
    906 
    907 	/*
    908 	 * Too large for interface; fragment if possible.
    909 	 * Must be able to put at least 8 bytes per fragment.
    910 	 */
    911 	if (ntohs(ip->ip_off) & IP_DF) {
    912 		if (flags & IP_RETURNMTU)
    913 			*mtu_p = mtu;
    914 		error = EMSGSIZE;
    915 		ipstat.ips_cantfrag++;
    916 		goto bad;
    917 	}
    918 
    919 	error = ip_fragment(m, ifp, mtu);
    920 	if (error) {
    921 		m = NULL;
    922 		goto bad;
    923 	}
    924 
    925 	for (; m; m = m0) {
    926 		m0 = m->m_nextpkt;
    927 		m->m_nextpkt = 0;
    928 		if (error == 0) {
    929 #if IFA_STATS
    930 			if (ia)
    931 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    932 				    ntohs(ip->ip_len);
    933 #endif
    934 #ifdef IPSEC
    935 			/* clean ipsec history once it goes out of the node */
    936 			ipsec_delaux(m);
    937 
    938 #ifdef IPSEC_NAT_T
    939 			/*
    940 			 * If we get there, the packet has not been handeld by
    941 			 * IPSec whereas it should have. Now that it has been
    942 			 * fragmented, re-inject it in ip_output so that IPsec
    943 			 * processing can occur.
    944 			 */
    945 			if (natt_frag) {
    946 				error = ip_output(m, opt,
    947 				    ro, flags, imo, so, mtu_p);
    948 			} else
    949 #endif /* IPSEC_NAT_T */
    950 #endif /* IPSEC */
    951 			{
    952 				KASSERT((m->m_pkthdr.csum_flags &
    953 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    954 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
    955 				    ro->ro_rt);
    956 			}
    957 		} else
    958 			m_freem(m);
    959 	}
    960 
    961 	if (error == 0)
    962 		ipstat.ips_fragmented++;
    963 done:
    964 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
    965 		RTFREE(ro->ro_rt);
    966 		ro->ro_rt = 0;
    967 	}
    968 
    969 #ifdef IPSEC
    970 	if (sp != NULL) {
    971 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
    972 			printf("DP ip_output call free SP:%p\n", sp));
    973 		key_freesp(sp);
    974 	}
    975 #endif /* IPSEC */
    976 #ifdef FAST_IPSEC
    977 	if (sp != NULL)
    978 		KEY_FREESP(&sp);
    979 #endif /* FAST_IPSEC */
    980 
    981 	return (error);
    982 bad:
    983 	m_freem(m);
    984 	goto done;
    985 }
    986 
    987 int
    988 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
    989 {
    990 	struct ip *ip, *mhip;
    991 	struct mbuf *m0;
    992 	int len, hlen, off;
    993 	int mhlen, firstlen;
    994 	struct mbuf **mnext;
    995 	int sw_csum = m->m_pkthdr.csum_flags;
    996 	int fragments = 0;
    997 	int s;
    998 	int error = 0;
    999 
   1000 	ip = mtod(m, struct ip *);
   1001 	hlen = ip->ip_hl << 2;
   1002 	if (ifp != NULL)
   1003 		sw_csum &= ~ifp->if_csum_flags_tx;
   1004 
   1005 	len = (mtu - hlen) &~ 7;
   1006 	if (len < 8) {
   1007 		m_freem(m);
   1008 		return (EMSGSIZE);
   1009 	}
   1010 
   1011 	firstlen = len;
   1012 	mnext = &m->m_nextpkt;
   1013 
   1014 	/*
   1015 	 * Loop through length of segment after first fragment,
   1016 	 * make new header and copy data of each part and link onto chain.
   1017 	 */
   1018 	m0 = m;
   1019 	mhlen = sizeof (struct ip);
   1020 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
   1021 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1022 		if (m == 0) {
   1023 			error = ENOBUFS;
   1024 			ipstat.ips_odropped++;
   1025 			goto sendorfree;
   1026 		}
   1027 		MCLAIM(m, m0->m_owner);
   1028 		*mnext = m;
   1029 		mnext = &m->m_nextpkt;
   1030 		m->m_data += max_linkhdr;
   1031 		mhip = mtod(m, struct ip *);
   1032 		*mhip = *ip;
   1033 		/* we must inherit MCAST and BCAST flags */
   1034 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
   1035 		if (hlen > sizeof (struct ip)) {
   1036 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
   1037 			mhip->ip_hl = mhlen >> 2;
   1038 		}
   1039 		m->m_len = mhlen;
   1040 		mhip->ip_off = ((off - hlen) >> 3) +
   1041 		    (ntohs(ip->ip_off) & ~IP_MF);
   1042 		if (ip->ip_off & htons(IP_MF))
   1043 			mhip->ip_off |= IP_MF;
   1044 		if (off + len >= ntohs(ip->ip_len))
   1045 			len = ntohs(ip->ip_len) - off;
   1046 		else
   1047 			mhip->ip_off |= IP_MF;
   1048 		HTONS(mhip->ip_off);
   1049 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
   1050 		m->m_next = m_copy(m0, off, len);
   1051 		if (m->m_next == 0) {
   1052 			error = ENOBUFS;	/* ??? */
   1053 			ipstat.ips_odropped++;
   1054 			goto sendorfree;
   1055 		}
   1056 		m->m_pkthdr.len = mhlen + len;
   1057 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1058 		mhip->ip_sum = 0;
   1059 		if (sw_csum & M_CSUM_IPv4) {
   1060 			mhip->ip_sum = in_cksum(m, mhlen);
   1061 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1062 		} else {
   1063 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1064 			m->m_pkthdr.csum_data |= mhlen << 16;
   1065 		}
   1066 		ipstat.ips_ofragments++;
   1067 		fragments++;
   1068 	}
   1069 	/*
   1070 	 * Update first fragment by trimming what's been copied out
   1071 	 * and updating header, then send each fragment (in order).
   1072 	 */
   1073 	m = m0;
   1074 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1075 	m->m_pkthdr.len = hlen + firstlen;
   1076 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1077 	ip->ip_off |= htons(IP_MF);
   1078 	ip->ip_sum = 0;
   1079 	if (sw_csum & M_CSUM_IPv4) {
   1080 		ip->ip_sum = in_cksum(m, hlen);
   1081 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1082 	} else {
   1083 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1084 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1085 			sizeof(struct ip));
   1086 	}
   1087 sendorfree:
   1088 	/*
   1089 	 * If there is no room for all the fragments, don't queue
   1090 	 * any of them.
   1091 	 */
   1092 	if (ifp != NULL) {
   1093 		s = splnet();
   1094 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1095 		    error == 0) {
   1096 			error = ENOBUFS;
   1097 			ipstat.ips_odropped++;
   1098 			IFQ_INC_DROPS(&ifp->if_snd);
   1099 		}
   1100 		splx(s);
   1101 	}
   1102 	if (error) {
   1103 		for (m = m0; m; m = m0) {
   1104 			m0 = m->m_nextpkt;
   1105 			m->m_nextpkt = NULL;
   1106 			m_freem(m);
   1107 		}
   1108 	}
   1109 	return (error);
   1110 }
   1111 
   1112 /*
   1113  * Process a delayed payload checksum calculation.
   1114  */
   1115 void
   1116 in_delayed_cksum(struct mbuf *m)
   1117 {
   1118 	struct ip *ip;
   1119 	u_int16_t csum, offset;
   1120 
   1121 	ip = mtod(m, struct ip *);
   1122 	offset = ip->ip_hl << 2;
   1123 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1124 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1125 		csum = 0xffff;
   1126 
   1127 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1128 
   1129 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1130 		/* This happen when ip options were inserted
   1131 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1132 		    m->m_len, offset, ip->ip_p);
   1133 		 */
   1134 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1135 	} else
   1136 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1137 }
   1138 
   1139 /*
   1140  * Determine the maximum length of the options to be inserted;
   1141  * we would far rather allocate too much space rather than too little.
   1142  */
   1143 
   1144 u_int
   1145 ip_optlen(struct inpcb *inp)
   1146 {
   1147 	struct mbuf *m = inp->inp_options;
   1148 
   1149 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1150 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1151 	else
   1152 		return 0;
   1153 }
   1154 
   1155 
   1156 /*
   1157  * Insert IP options into preformed packet.
   1158  * Adjust IP destination as required for IP source routing,
   1159  * as indicated by a non-zero in_addr at the start of the options.
   1160  */
   1161 static struct mbuf *
   1162 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1163 {
   1164 	struct ipoption *p = mtod(opt, struct ipoption *);
   1165 	struct mbuf *n;
   1166 	struct ip *ip = mtod(m, struct ip *);
   1167 	unsigned optlen;
   1168 
   1169 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1170 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1171 		return (m);		/* XXX should fail */
   1172 	if (!in_nullhost(p->ipopt_dst))
   1173 		ip->ip_dst = p->ipopt_dst;
   1174 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1175 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1176 		if (n == 0)
   1177 			return (m);
   1178 		MCLAIM(n, m->m_owner);
   1179 		M_MOVE_PKTHDR(n, m);
   1180 		m->m_len -= sizeof(struct ip);
   1181 		m->m_data += sizeof(struct ip);
   1182 		n->m_next = m;
   1183 		m = n;
   1184 		m->m_len = optlen + sizeof(struct ip);
   1185 		m->m_data += max_linkhdr;
   1186 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1187 	} else {
   1188 		m->m_data -= optlen;
   1189 		m->m_len += optlen;
   1190 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1191 	}
   1192 	m->m_pkthdr.len += optlen;
   1193 	ip = mtod(m, struct ip *);
   1194 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1195 	*phlen = sizeof(struct ip) + optlen;
   1196 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1197 	return (m);
   1198 }
   1199 
   1200 /*
   1201  * Copy options from ip to jp,
   1202  * omitting those not copied during fragmentation.
   1203  */
   1204 int
   1205 ip_optcopy(struct ip *ip, struct ip *jp)
   1206 {
   1207 	u_char *cp, *dp;
   1208 	int opt, optlen, cnt;
   1209 
   1210 	cp = (u_char *)(ip + 1);
   1211 	dp = (u_char *)(jp + 1);
   1212 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1213 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1214 		opt = cp[0];
   1215 		if (opt == IPOPT_EOL)
   1216 			break;
   1217 		if (opt == IPOPT_NOP) {
   1218 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1219 			*dp++ = IPOPT_NOP;
   1220 			optlen = 1;
   1221 			continue;
   1222 		}
   1223 #ifdef DIAGNOSTIC
   1224 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1225 			panic("malformed IPv4 option passed to ip_optcopy");
   1226 #endif
   1227 		optlen = cp[IPOPT_OLEN];
   1228 #ifdef DIAGNOSTIC
   1229 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1230 			panic("malformed IPv4 option passed to ip_optcopy");
   1231 #endif
   1232 		/* bogus lengths should have been caught by ip_dooptions */
   1233 		if (optlen > cnt)
   1234 			optlen = cnt;
   1235 		if (IPOPT_COPIED(opt)) {
   1236 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1237 			dp += optlen;
   1238 		}
   1239 	}
   1240 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1241 		*dp++ = IPOPT_EOL;
   1242 	return (optlen);
   1243 }
   1244 
   1245 /*
   1246  * IP socket option processing.
   1247  */
   1248 int
   1249 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1250     struct mbuf **mp)
   1251 {
   1252 	struct inpcb *inp = sotoinpcb(so);
   1253 	struct mbuf *m = *mp;
   1254 	int optval = 0;
   1255 	int error = 0;
   1256 #if defined(IPSEC) || defined(FAST_IPSEC)
   1257 	struct proc *p = curproc;	/*XXX*/
   1258 #endif
   1259 
   1260 	if (level != IPPROTO_IP) {
   1261 		error = EINVAL;
   1262 		if (op == PRCO_SETOPT && *mp)
   1263 			(void) m_free(*mp);
   1264 	} else switch (op) {
   1265 
   1266 	case PRCO_SETOPT:
   1267 		switch (optname) {
   1268 		case IP_OPTIONS:
   1269 #ifdef notyet
   1270 		case IP_RETOPTS:
   1271 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1272 #else
   1273 			return (ip_pcbopts(&inp->inp_options, m));
   1274 #endif
   1275 
   1276 		case IP_TOS:
   1277 		case IP_TTL:
   1278 		case IP_RECVOPTS:
   1279 		case IP_RECVRETOPTS:
   1280 		case IP_RECVDSTADDR:
   1281 		case IP_RECVIF:
   1282 			if (m == NULL || m->m_len != sizeof(int))
   1283 				error = EINVAL;
   1284 			else {
   1285 				optval = *mtod(m, int *);
   1286 				switch (optname) {
   1287 
   1288 				case IP_TOS:
   1289 					inp->inp_ip.ip_tos = optval;
   1290 					break;
   1291 
   1292 				case IP_TTL:
   1293 					inp->inp_ip.ip_ttl = optval;
   1294 					break;
   1295 #define	OPTSET(bit) \
   1296 	if (optval) \
   1297 		inp->inp_flags |= bit; \
   1298 	else \
   1299 		inp->inp_flags &= ~bit;
   1300 
   1301 				case IP_RECVOPTS:
   1302 					OPTSET(INP_RECVOPTS);
   1303 					break;
   1304 
   1305 				case IP_RECVRETOPTS:
   1306 					OPTSET(INP_RECVRETOPTS);
   1307 					break;
   1308 
   1309 				case IP_RECVDSTADDR:
   1310 					OPTSET(INP_RECVDSTADDR);
   1311 					break;
   1312 
   1313 				case IP_RECVIF:
   1314 					OPTSET(INP_RECVIF);
   1315 					break;
   1316 				}
   1317 			}
   1318 			break;
   1319 #undef OPTSET
   1320 
   1321 		case IP_MULTICAST_IF:
   1322 		case IP_MULTICAST_TTL:
   1323 		case IP_MULTICAST_LOOP:
   1324 		case IP_ADD_MEMBERSHIP:
   1325 		case IP_DROP_MEMBERSHIP:
   1326 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1327 			break;
   1328 
   1329 		case IP_PORTRANGE:
   1330 			if (m == 0 || m->m_len != sizeof(int))
   1331 				error = EINVAL;
   1332 			else {
   1333 				optval = *mtod(m, int *);
   1334 
   1335 				switch (optval) {
   1336 
   1337 				case IP_PORTRANGE_DEFAULT:
   1338 				case IP_PORTRANGE_HIGH:
   1339 					inp->inp_flags &= ~(INP_LOWPORT);
   1340 					break;
   1341 
   1342 				case IP_PORTRANGE_LOW:
   1343 					inp->inp_flags |= INP_LOWPORT;
   1344 					break;
   1345 
   1346 				default:
   1347 					error = EINVAL;
   1348 					break;
   1349 				}
   1350 			}
   1351 			break;
   1352 
   1353 #if defined(IPSEC) || defined(FAST_IPSEC)
   1354 		case IP_IPSEC_POLICY:
   1355 		{
   1356 			caddr_t req = NULL;
   1357 			size_t len = 0;
   1358 			int priv = 0;
   1359 
   1360 #ifdef __NetBSD__
   1361 			if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1362 				priv = 0;
   1363 			else
   1364 				priv = 1;
   1365 #else
   1366 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1367 #endif
   1368 			if (m) {
   1369 				req = mtod(m, caddr_t);
   1370 				len = m->m_len;
   1371 			}
   1372 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1373 			break;
   1374 		    }
   1375 #endif /*IPSEC*/
   1376 
   1377 		default:
   1378 			error = ENOPROTOOPT;
   1379 			break;
   1380 		}
   1381 		if (m)
   1382 			(void)m_free(m);
   1383 		break;
   1384 
   1385 	case PRCO_GETOPT:
   1386 		switch (optname) {
   1387 		case IP_OPTIONS:
   1388 		case IP_RETOPTS:
   1389 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1390 			MCLAIM(m, so->so_mowner);
   1391 			if (inp->inp_options) {
   1392 				m->m_len = inp->inp_options->m_len;
   1393 				bcopy(mtod(inp->inp_options, caddr_t),
   1394 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1395 			} else
   1396 				m->m_len = 0;
   1397 			break;
   1398 
   1399 		case IP_TOS:
   1400 		case IP_TTL:
   1401 		case IP_RECVOPTS:
   1402 		case IP_RECVRETOPTS:
   1403 		case IP_RECVDSTADDR:
   1404 		case IP_RECVIF:
   1405 		case IP_ERRORMTU:
   1406 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1407 			MCLAIM(m, so->so_mowner);
   1408 			m->m_len = sizeof(int);
   1409 			switch (optname) {
   1410 
   1411 			case IP_TOS:
   1412 				optval = inp->inp_ip.ip_tos;
   1413 				break;
   1414 
   1415 			case IP_TTL:
   1416 				optval = inp->inp_ip.ip_ttl;
   1417 				break;
   1418 
   1419 			case IP_ERRORMTU:
   1420 				optval = inp->inp_errormtu;
   1421 				break;
   1422 
   1423 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1424 
   1425 			case IP_RECVOPTS:
   1426 				optval = OPTBIT(INP_RECVOPTS);
   1427 				break;
   1428 
   1429 			case IP_RECVRETOPTS:
   1430 				optval = OPTBIT(INP_RECVRETOPTS);
   1431 				break;
   1432 
   1433 			case IP_RECVDSTADDR:
   1434 				optval = OPTBIT(INP_RECVDSTADDR);
   1435 				break;
   1436 
   1437 			case IP_RECVIF:
   1438 				optval = OPTBIT(INP_RECVIF);
   1439 				break;
   1440 			}
   1441 			*mtod(m, int *) = optval;
   1442 			break;
   1443 
   1444 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1445 		/* XXX: code broken */
   1446 		case IP_IPSEC_POLICY:
   1447 		{
   1448 			caddr_t req = NULL;
   1449 			size_t len = 0;
   1450 
   1451 			if (m) {
   1452 				req = mtod(m, caddr_t);
   1453 				len = m->m_len;
   1454 			}
   1455 			error = ipsec4_get_policy(inp, req, len, mp);
   1456 			break;
   1457 		}
   1458 #endif /*IPSEC*/
   1459 
   1460 		case IP_MULTICAST_IF:
   1461 		case IP_MULTICAST_TTL:
   1462 		case IP_MULTICAST_LOOP:
   1463 		case IP_ADD_MEMBERSHIP:
   1464 		case IP_DROP_MEMBERSHIP:
   1465 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1466 			if (*mp)
   1467 				MCLAIM(*mp, so->so_mowner);
   1468 			break;
   1469 
   1470 		case IP_PORTRANGE:
   1471 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1472 			MCLAIM(m, so->so_mowner);
   1473 			m->m_len = sizeof(int);
   1474 
   1475 			if (inp->inp_flags & INP_LOWPORT)
   1476 				optval = IP_PORTRANGE_LOW;
   1477 			else
   1478 				optval = IP_PORTRANGE_DEFAULT;
   1479 
   1480 			*mtod(m, int *) = optval;
   1481 			break;
   1482 
   1483 		default:
   1484 			error = ENOPROTOOPT;
   1485 			break;
   1486 		}
   1487 		break;
   1488 	}
   1489 	return (error);
   1490 }
   1491 
   1492 /*
   1493  * Set up IP options in pcb for insertion in output packets.
   1494  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1495  * with destination address if source routed.
   1496  */
   1497 int
   1498 #ifdef notyet
   1499 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1500 #else
   1501 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1502 #endif
   1503 {
   1504 	int cnt, optlen;
   1505 	u_char *cp;
   1506 	u_char opt;
   1507 
   1508 	/* turn off any old options */
   1509 	if (*pcbopt)
   1510 		(void)m_free(*pcbopt);
   1511 	*pcbopt = 0;
   1512 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1513 		/*
   1514 		 * Only turning off any previous options.
   1515 		 */
   1516 		if (m)
   1517 			(void)m_free(m);
   1518 		return (0);
   1519 	}
   1520 
   1521 #ifndef	__vax__
   1522 	if (m->m_len % sizeof(int32_t))
   1523 		goto bad;
   1524 #endif
   1525 	/*
   1526 	 * IP first-hop destination address will be stored before
   1527 	 * actual options; move other options back
   1528 	 * and clear it when none present.
   1529 	 */
   1530 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1531 		goto bad;
   1532 	cnt = m->m_len;
   1533 	m->m_len += sizeof(struct in_addr);
   1534 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1535 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1536 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1537 
   1538 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1539 		opt = cp[IPOPT_OPTVAL];
   1540 		if (opt == IPOPT_EOL)
   1541 			break;
   1542 		if (opt == IPOPT_NOP)
   1543 			optlen = 1;
   1544 		else {
   1545 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1546 				goto bad;
   1547 			optlen = cp[IPOPT_OLEN];
   1548 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1549 				goto bad;
   1550 		}
   1551 		switch (opt) {
   1552 
   1553 		default:
   1554 			break;
   1555 
   1556 		case IPOPT_LSRR:
   1557 		case IPOPT_SSRR:
   1558 			/*
   1559 			 * user process specifies route as:
   1560 			 *	->A->B->C->D
   1561 			 * D must be our final destination (but we can't
   1562 			 * check that since we may not have connected yet).
   1563 			 * A is first hop destination, which doesn't appear in
   1564 			 * actual IP option, but is stored before the options.
   1565 			 */
   1566 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1567 				goto bad;
   1568 			m->m_len -= sizeof(struct in_addr);
   1569 			cnt -= sizeof(struct in_addr);
   1570 			optlen -= sizeof(struct in_addr);
   1571 			cp[IPOPT_OLEN] = optlen;
   1572 			/*
   1573 			 * Move first hop before start of options.
   1574 			 */
   1575 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1576 			    sizeof(struct in_addr));
   1577 			/*
   1578 			 * Then copy rest of options back
   1579 			 * to close up the deleted entry.
   1580 			 */
   1581 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1582 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1583 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1584 			break;
   1585 		}
   1586 	}
   1587 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1588 		goto bad;
   1589 	*pcbopt = m;
   1590 	return (0);
   1591 
   1592 bad:
   1593 	(void)m_free(m);
   1594 	return (EINVAL);
   1595 }
   1596 
   1597 /*
   1598  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1599  */
   1600 static struct ifnet *
   1601 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1602 {
   1603 	int ifindex;
   1604 	struct ifnet *ifp = NULL;
   1605 	struct in_ifaddr *ia;
   1606 
   1607 	if (ifindexp)
   1608 		*ifindexp = 0;
   1609 	if (ntohl(a->s_addr) >> 24 == 0) {
   1610 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1611 		if (ifindex < 0 || if_indexlim <= ifindex)
   1612 			return NULL;
   1613 		ifp = ifindex2ifnet[ifindex];
   1614 		if (!ifp)
   1615 			return NULL;
   1616 		if (ifindexp)
   1617 			*ifindexp = ifindex;
   1618 	} else {
   1619 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1620 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1621 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1622 				ifp = ia->ia_ifp;
   1623 				break;
   1624 			}
   1625 		}
   1626 	}
   1627 	return ifp;
   1628 }
   1629 
   1630 static int
   1631 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
   1632 {
   1633 	u_int tval;
   1634 
   1635 	if (m == NULL)
   1636 		return EINVAL;
   1637 
   1638 	switch (m->m_len) {
   1639 	case sizeof(u_char):
   1640 		tval = *(mtod(m, u_char *));
   1641 		break;
   1642 	case sizeof(u_int):
   1643 		tval = *(mtod(m, u_int *));
   1644 		break;
   1645 	default:
   1646 		return EINVAL;
   1647 	}
   1648 
   1649 	if (tval > maxval)
   1650 		return EINVAL;
   1651 
   1652 	*val = tval;
   1653 	return 0;
   1654 }
   1655 
   1656 /*
   1657  * Set the IP multicast options in response to user setsockopt().
   1658  */
   1659 int
   1660 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1661 {
   1662 	int error = 0;
   1663 	int i;
   1664 	struct in_addr addr;
   1665 	struct ip_mreq *mreq;
   1666 	struct ifnet *ifp;
   1667 	struct ip_moptions *imo = *imop;
   1668 	struct route ro;
   1669 	struct sockaddr_in *dst;
   1670 	int ifindex;
   1671 
   1672 	if (imo == NULL) {
   1673 		/*
   1674 		 * No multicast option buffer attached to the pcb;
   1675 		 * allocate one and initialize to default values.
   1676 		 */
   1677 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1678 		    M_WAITOK);
   1679 
   1680 		if (imo == NULL)
   1681 			return (ENOBUFS);
   1682 		*imop = imo;
   1683 		imo->imo_multicast_ifp = NULL;
   1684 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1685 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1686 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1687 		imo->imo_num_memberships = 0;
   1688 	}
   1689 
   1690 	switch (optname) {
   1691 
   1692 	case IP_MULTICAST_IF:
   1693 		/*
   1694 		 * Select the interface for outgoing multicast packets.
   1695 		 */
   1696 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1697 			error = EINVAL;
   1698 			break;
   1699 		}
   1700 		addr = *(mtod(m, struct in_addr *));
   1701 		/*
   1702 		 * INADDR_ANY is used to remove a previous selection.
   1703 		 * When no interface is selected, a default one is
   1704 		 * chosen every time a multicast packet is sent.
   1705 		 */
   1706 		if (in_nullhost(addr)) {
   1707 			imo->imo_multicast_ifp = NULL;
   1708 			break;
   1709 		}
   1710 		/*
   1711 		 * The selected interface is identified by its local
   1712 		 * IP address.  Find the interface and confirm that
   1713 		 * it supports multicasting.
   1714 		 */
   1715 		ifp = ip_multicast_if(&addr, &ifindex);
   1716 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1717 			error = EADDRNOTAVAIL;
   1718 			break;
   1719 		}
   1720 		imo->imo_multicast_ifp = ifp;
   1721 		if (ifindex)
   1722 			imo->imo_multicast_addr = addr;
   1723 		else
   1724 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1725 		break;
   1726 
   1727 	case IP_MULTICAST_TTL:
   1728 		/*
   1729 		 * Set the IP time-to-live for outgoing multicast packets.
   1730 		 */
   1731 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
   1732 		break;
   1733 
   1734 	case IP_MULTICAST_LOOP:
   1735 		/*
   1736 		 * Set the loopback flag for outgoing multicast packets.
   1737 		 * Must be zero or one.
   1738 		 */
   1739 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
   1740 		break;
   1741 
   1742 	case IP_ADD_MEMBERSHIP:
   1743 		/*
   1744 		 * Add a multicast group membership.
   1745 		 * Group must be a valid IP multicast address.
   1746 		 */
   1747 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1748 			error = EINVAL;
   1749 			break;
   1750 		}
   1751 		mreq = mtod(m, struct ip_mreq *);
   1752 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1753 			error = EINVAL;
   1754 			break;
   1755 		}
   1756 		/*
   1757 		 * If no interface address was provided, use the interface of
   1758 		 * the route to the given multicast address.
   1759 		 */
   1760 		if (in_nullhost(mreq->imr_interface)) {
   1761 			bzero((caddr_t)&ro, sizeof(ro));
   1762 			ro.ro_rt = NULL;
   1763 			dst = satosin(&ro.ro_dst);
   1764 			dst->sin_len = sizeof(*dst);
   1765 			dst->sin_family = AF_INET;
   1766 			dst->sin_addr = mreq->imr_multiaddr;
   1767 			rtalloc(&ro);
   1768 			if (ro.ro_rt == NULL) {
   1769 				error = EADDRNOTAVAIL;
   1770 				break;
   1771 			}
   1772 			ifp = ro.ro_rt->rt_ifp;
   1773 			rtfree(ro.ro_rt);
   1774 		} else {
   1775 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1776 		}
   1777 		/*
   1778 		 * See if we found an interface, and confirm that it
   1779 		 * supports multicast.
   1780 		 */
   1781 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1782 			error = EADDRNOTAVAIL;
   1783 			break;
   1784 		}
   1785 		/*
   1786 		 * See if the membership already exists or if all the
   1787 		 * membership slots are full.
   1788 		 */
   1789 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1790 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1791 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1792 				      mreq->imr_multiaddr))
   1793 				break;
   1794 		}
   1795 		if (i < imo->imo_num_memberships) {
   1796 			error = EADDRINUSE;
   1797 			break;
   1798 		}
   1799 		if (i == IP_MAX_MEMBERSHIPS) {
   1800 			error = ETOOMANYREFS;
   1801 			break;
   1802 		}
   1803 		/*
   1804 		 * Everything looks good; add a new record to the multicast
   1805 		 * address list for the given interface.
   1806 		 */
   1807 		if ((imo->imo_membership[i] =
   1808 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1809 			error = ENOBUFS;
   1810 			break;
   1811 		}
   1812 		++imo->imo_num_memberships;
   1813 		break;
   1814 
   1815 	case IP_DROP_MEMBERSHIP:
   1816 		/*
   1817 		 * Drop a multicast group membership.
   1818 		 * Group must be a valid IP multicast address.
   1819 		 */
   1820 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1821 			error = EINVAL;
   1822 			break;
   1823 		}
   1824 		mreq = mtod(m, struct ip_mreq *);
   1825 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1826 			error = EINVAL;
   1827 			break;
   1828 		}
   1829 		/*
   1830 		 * If an interface address was specified, get a pointer
   1831 		 * to its ifnet structure.
   1832 		 */
   1833 		if (in_nullhost(mreq->imr_interface))
   1834 			ifp = NULL;
   1835 		else {
   1836 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1837 			if (ifp == NULL) {
   1838 				error = EADDRNOTAVAIL;
   1839 				break;
   1840 			}
   1841 		}
   1842 		/*
   1843 		 * Find the membership in the membership array.
   1844 		 */
   1845 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1846 			if ((ifp == NULL ||
   1847 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1848 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1849 				       mreq->imr_multiaddr))
   1850 				break;
   1851 		}
   1852 		if (i == imo->imo_num_memberships) {
   1853 			error = EADDRNOTAVAIL;
   1854 			break;
   1855 		}
   1856 		/*
   1857 		 * Give up the multicast address record to which the
   1858 		 * membership points.
   1859 		 */
   1860 		in_delmulti(imo->imo_membership[i]);
   1861 		/*
   1862 		 * Remove the gap in the membership array.
   1863 		 */
   1864 		for (++i; i < imo->imo_num_memberships; ++i)
   1865 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1866 		--imo->imo_num_memberships;
   1867 		break;
   1868 
   1869 	default:
   1870 		error = EOPNOTSUPP;
   1871 		break;
   1872 	}
   1873 
   1874 	/*
   1875 	 * If all options have default values, no need to keep the mbuf.
   1876 	 */
   1877 	if (imo->imo_multicast_ifp == NULL &&
   1878 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1879 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1880 	    imo->imo_num_memberships == 0) {
   1881 		free(*imop, M_IPMOPTS);
   1882 		*imop = NULL;
   1883 	}
   1884 
   1885 	return (error);
   1886 }
   1887 
   1888 /*
   1889  * Return the IP multicast options in response to user getsockopt().
   1890  */
   1891 int
   1892 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1893 {
   1894 	u_char *ttl;
   1895 	u_char *loop;
   1896 	struct in_addr *addr;
   1897 	struct in_ifaddr *ia;
   1898 
   1899 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1900 
   1901 	switch (optname) {
   1902 
   1903 	case IP_MULTICAST_IF:
   1904 		addr = mtod(*mp, struct in_addr *);
   1905 		(*mp)->m_len = sizeof(struct in_addr);
   1906 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1907 			*addr = zeroin_addr;
   1908 		else if (imo->imo_multicast_addr.s_addr) {
   1909 			/* return the value user has set */
   1910 			*addr = imo->imo_multicast_addr;
   1911 		} else {
   1912 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1913 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1914 		}
   1915 		return (0);
   1916 
   1917 	case IP_MULTICAST_TTL:
   1918 		ttl = mtod(*mp, u_char *);
   1919 		(*mp)->m_len = 1;
   1920 		*ttl = imo ? imo->imo_multicast_ttl
   1921 			   : IP_DEFAULT_MULTICAST_TTL;
   1922 		return (0);
   1923 
   1924 	case IP_MULTICAST_LOOP:
   1925 		loop = mtod(*mp, u_char *);
   1926 		(*mp)->m_len = 1;
   1927 		*loop = imo ? imo->imo_multicast_loop
   1928 			    : IP_DEFAULT_MULTICAST_LOOP;
   1929 		return (0);
   1930 
   1931 	default:
   1932 		return (EOPNOTSUPP);
   1933 	}
   1934 }
   1935 
   1936 /*
   1937  * Discard the IP multicast options.
   1938  */
   1939 void
   1940 ip_freemoptions(struct ip_moptions *imo)
   1941 {
   1942 	int i;
   1943 
   1944 	if (imo != NULL) {
   1945 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1946 			in_delmulti(imo->imo_membership[i]);
   1947 		free(imo, M_IPMOPTS);
   1948 	}
   1949 }
   1950 
   1951 /*
   1952  * Routine called from ip_output() to loop back a copy of an IP multicast
   1953  * packet to the input queue of a specified interface.  Note that this
   1954  * calls the output routine of the loopback "driver", but with an interface
   1955  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1956  */
   1957 static void
   1958 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
   1959 {
   1960 	struct ip *ip;
   1961 	struct mbuf *copym;
   1962 
   1963 	copym = m_copy(m, 0, M_COPYALL);
   1964 	if (copym != NULL
   1965 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   1966 		copym = m_pullup(copym, sizeof(struct ip));
   1967 	if (copym != NULL) {
   1968 		/*
   1969 		 * We don't bother to fragment if the IP length is greater
   1970 		 * than the interface's MTU.  Can this possibly matter?
   1971 		 */
   1972 		ip = mtod(copym, struct ip *);
   1973 
   1974 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1975 			in_delayed_cksum(copym);
   1976 			copym->m_pkthdr.csum_flags &=
   1977 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   1978 		}
   1979 
   1980 		ip->ip_sum = 0;
   1981 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   1982 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   1983 	}
   1984 }
   1985