ip_output.c revision 1.157 1 /* $NetBSD: ip_output.c,v 1.157 2005/09/11 22:15:19 seb Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.157 2005/09/11 22:15:19 seb Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/in_offload.h>
132
133 #ifdef MROUTING
134 #include <netinet/ip_mroute.h>
135 #endif
136
137 #include <machine/stdarg.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #include <netkey/key_debug.h>
143 #ifdef IPSEC_NAT_T
144 #include <netinet/udp.h>
145 #endif
146 #endif /*IPSEC*/
147
148 #ifdef FAST_IPSEC
149 #include <netipsec/ipsec.h>
150 #include <netipsec/key.h>
151 #include <netipsec/xform.h>
152 #endif /* FAST_IPSEC*/
153
154 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
155 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
156 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
157 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
158
159 #ifdef PFIL_HOOKS
160 extern struct pfil_head inet_pfil_hook; /* XXX */
161 #endif
162
163 int ip_do_loopback_cksum = 0;
164
165 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
166 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
167 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
168 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
169 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
170
171 struct ip_tso_output_args {
172 struct ifnet *ifp;
173 struct sockaddr *sa;
174 struct rtentry *rt;
175 };
176
177 static int ip_tso_output_callback(void *, struct mbuf *);
178 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
179 struct rtentry *);
180
181 static int
182 ip_tso_output_callback(void *vp, struct mbuf *m)
183 {
184 struct ip_tso_output_args *args = vp;
185 struct ifnet *ifp = args->ifp;
186
187 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
188 }
189
190 static int
191 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
192 struct rtentry *rt)
193 {
194 struct ip_tso_output_args args;
195
196 args.ifp = ifp;
197 args.sa = sa;
198 args.rt = rt;
199
200 return tcp4_segment(m, ip_tso_output_callback, &args);
201 }
202
203 /*
204 * IP output. The packet in mbuf chain m contains a skeletal IP
205 * header (with len, off, ttl, proto, tos, src, dst).
206 * The mbuf chain containing the packet will be freed.
207 * The mbuf opt, if present, will not be freed.
208 */
209 int
210 ip_output(struct mbuf *m0, ...)
211 {
212 struct ip *ip;
213 struct ifnet *ifp;
214 struct mbuf *m = m0;
215 int hlen = sizeof (struct ip);
216 int len, error = 0;
217 struct route iproute;
218 struct sockaddr_in *dst;
219 struct in_ifaddr *ia;
220 struct mbuf *opt;
221 struct route *ro;
222 int flags, sw_csum;
223 int *mtu_p;
224 u_long mtu;
225 struct ip_moptions *imo;
226 struct socket *so;
227 va_list ap;
228 #ifdef IPSEC
229 struct secpolicy *sp = NULL;
230 #ifdef IPSEC_NAT_T
231 int natt_frag = 0;
232 #endif
233 #endif /*IPSEC*/
234 #ifdef FAST_IPSEC
235 struct inpcb *inp;
236 struct m_tag *mtag;
237 struct secpolicy *sp = NULL;
238 struct tdb_ident *tdbi;
239 int s;
240 #endif
241 u_int16_t ip_len;
242
243 len = 0;
244 va_start(ap, m0);
245 opt = va_arg(ap, struct mbuf *);
246 ro = va_arg(ap, struct route *);
247 flags = va_arg(ap, int);
248 imo = va_arg(ap, struct ip_moptions *);
249 so = va_arg(ap, struct socket *);
250 if (flags & IP_RETURNMTU)
251 mtu_p = va_arg(ap, int *);
252 else
253 mtu_p = NULL;
254 va_end(ap);
255
256 MCLAIM(m, &ip_tx_mowner);
257 #ifdef FAST_IPSEC
258 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
259 inp = (struct inpcb *)so->so_pcb;
260 else
261 inp = NULL;
262 #endif /* FAST_IPSEC */
263
264 #ifdef DIAGNOSTIC
265 if ((m->m_flags & M_PKTHDR) == 0)
266 panic("ip_output no HDR");
267 #endif
268 if (opt) {
269 m = ip_insertoptions(m, opt, &len);
270 if (len >= sizeof(struct ip))
271 hlen = len;
272 }
273 ip = mtod(m, struct ip *);
274 /*
275 * Fill in IP header.
276 */
277 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
278 ip->ip_v = IPVERSION;
279 ip->ip_off = htons(0);
280 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
281 ip->ip_id = ip_newid();
282 } else {
283
284 /*
285 * TSO capable interfaces (typically?) increment
286 * ip_id for each segment.
287 * "allocate" enough ids here to increase the chance
288 * for them to be unique.
289 *
290 * note that the following calculation is not
291 * needed to be precise. wasting some ip_id is fine.
292 */
293
294 unsigned int segsz = m->m_pkthdr.segsz;
295 unsigned int datasz = ntohs(ip->ip_len) - hlen;
296 unsigned int num = howmany(datasz, segsz);
297
298 ip->ip_id = ip_newid_range(num);
299 }
300 ip->ip_hl = hlen >> 2;
301 ipstat.ips_localout++;
302 } else {
303 hlen = ip->ip_hl << 2;
304 }
305 /*
306 * Route packet.
307 */
308 if (ro == 0) {
309 ro = &iproute;
310 bzero((caddr_t)ro, sizeof (*ro));
311 }
312 dst = satosin(&ro->ro_dst);
313 /*
314 * If there is a cached route,
315 * check that it is to the same destination
316 * and is still up. If not, free it and try again.
317 * The address family should also be checked in case of sharing the
318 * cache with IPv6.
319 */
320 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
321 dst->sin_family != AF_INET ||
322 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
323 RTFREE(ro->ro_rt);
324 ro->ro_rt = (struct rtentry *)0;
325 }
326 if (ro->ro_rt == 0) {
327 bzero(dst, sizeof(*dst));
328 dst->sin_family = AF_INET;
329 dst->sin_len = sizeof(*dst);
330 dst->sin_addr = ip->ip_dst;
331 }
332 /*
333 * If routing to interface only,
334 * short circuit routing lookup.
335 */
336 if (flags & IP_ROUTETOIF) {
337 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
338 ipstat.ips_noroute++;
339 error = ENETUNREACH;
340 goto bad;
341 }
342 ifp = ia->ia_ifp;
343 mtu = ifp->if_mtu;
344 ip->ip_ttl = 1;
345 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
346 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
347 imo != NULL && imo->imo_multicast_ifp != NULL) {
348 ifp = imo->imo_multicast_ifp;
349 mtu = ifp->if_mtu;
350 IFP_TO_IA(ifp, ia);
351 } else {
352 if (ro->ro_rt == 0)
353 rtalloc(ro);
354 if (ro->ro_rt == 0) {
355 ipstat.ips_noroute++;
356 error = EHOSTUNREACH;
357 goto bad;
358 }
359 ia = ifatoia(ro->ro_rt->rt_ifa);
360 ifp = ro->ro_rt->rt_ifp;
361 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
362 mtu = ifp->if_mtu;
363 ro->ro_rt->rt_use++;
364 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
365 dst = satosin(ro->ro_rt->rt_gateway);
366 }
367 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
368 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
369 struct in_multi *inm;
370
371 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
372 M_BCAST : M_MCAST;
373 /*
374 * IP destination address is multicast. Make sure "dst"
375 * still points to the address in "ro". (It may have been
376 * changed to point to a gateway address, above.)
377 */
378 dst = satosin(&ro->ro_dst);
379 /*
380 * See if the caller provided any multicast options
381 */
382 if (imo != NULL)
383 ip->ip_ttl = imo->imo_multicast_ttl;
384 else
385 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
386
387 /*
388 * if we don't know the outgoing ifp yet, we can't generate
389 * output
390 */
391 if (!ifp) {
392 ipstat.ips_noroute++;
393 error = ENETUNREACH;
394 goto bad;
395 }
396
397 /*
398 * If the packet is multicast or broadcast, confirm that
399 * the outgoing interface can transmit it.
400 */
401 if (((m->m_flags & M_MCAST) &&
402 (ifp->if_flags & IFF_MULTICAST) == 0) ||
403 ((m->m_flags & M_BCAST) &&
404 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
405 ipstat.ips_noroute++;
406 error = ENETUNREACH;
407 goto bad;
408 }
409 /*
410 * If source address not specified yet, use an address
411 * of outgoing interface.
412 */
413 if (in_nullhost(ip->ip_src)) {
414 struct in_ifaddr *xia;
415
416 IFP_TO_IA(ifp, xia);
417 if (!xia) {
418 error = EADDRNOTAVAIL;
419 goto bad;
420 }
421 ip->ip_src = xia->ia_addr.sin_addr;
422 }
423
424 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
425 if (inm != NULL &&
426 (imo == NULL || imo->imo_multicast_loop)) {
427 /*
428 * If we belong to the destination multicast group
429 * on the outgoing interface, and the caller did not
430 * forbid loopback, loop back a copy.
431 */
432 ip_mloopback(ifp, m, dst);
433 }
434 #ifdef MROUTING
435 else {
436 /*
437 * If we are acting as a multicast router, perform
438 * multicast forwarding as if the packet had just
439 * arrived on the interface to which we are about
440 * to send. The multicast forwarding function
441 * recursively calls this function, using the
442 * IP_FORWARDING flag to prevent infinite recursion.
443 *
444 * Multicasts that are looped back by ip_mloopback(),
445 * above, will be forwarded by the ip_input() routine,
446 * if necessary.
447 */
448 extern struct socket *ip_mrouter;
449
450 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
451 if (ip_mforward(m, ifp) != 0) {
452 m_freem(m);
453 goto done;
454 }
455 }
456 }
457 #endif
458 /*
459 * Multicasts with a time-to-live of zero may be looped-
460 * back, above, but must not be transmitted on a network.
461 * Also, multicasts addressed to the loopback interface
462 * are not sent -- the above call to ip_mloopback() will
463 * loop back a copy if this host actually belongs to the
464 * destination group on the loopback interface.
465 */
466 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
467 m_freem(m);
468 goto done;
469 }
470
471 goto sendit;
472 }
473 #ifndef notdef
474 /*
475 * If source address not specified yet, use address
476 * of outgoing interface.
477 */
478 if (in_nullhost(ip->ip_src))
479 ip->ip_src = ia->ia_addr.sin_addr;
480 #endif
481
482 /*
483 * packets with Class-D address as source are not valid per
484 * RFC 1112
485 */
486 if (IN_MULTICAST(ip->ip_src.s_addr)) {
487 ipstat.ips_odropped++;
488 error = EADDRNOTAVAIL;
489 goto bad;
490 }
491
492 /*
493 * Look for broadcast address and
494 * and verify user is allowed to send
495 * such a packet.
496 */
497 if (in_broadcast(dst->sin_addr, ifp)) {
498 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
499 error = EADDRNOTAVAIL;
500 goto bad;
501 }
502 if ((flags & IP_ALLOWBROADCAST) == 0) {
503 error = EACCES;
504 goto bad;
505 }
506 /* don't allow broadcast messages to be fragmented */
507 if (ntohs(ip->ip_len) > ifp->if_mtu) {
508 error = EMSGSIZE;
509 goto bad;
510 }
511 m->m_flags |= M_BCAST;
512 } else
513 m->m_flags &= ~M_BCAST;
514
515 sendit:
516 /*
517 * If we're doing Path MTU Discovery, we need to set DF unless
518 * the route's MTU is locked.
519 */
520 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
521 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
522 ip->ip_off |= htons(IP_DF);
523
524 /* Remember the current ip_len */
525 ip_len = ntohs(ip->ip_len);
526
527 #ifdef IPSEC
528 /* get SP for this packet */
529 if (so == NULL)
530 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
531 flags, &error);
532 else {
533 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
534 IPSEC_DIR_OUTBOUND))
535 goto skip_ipsec;
536 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
537 }
538
539 if (sp == NULL) {
540 ipsecstat.out_inval++;
541 goto bad;
542 }
543
544 error = 0;
545
546 /* check policy */
547 switch (sp->policy) {
548 case IPSEC_POLICY_DISCARD:
549 /*
550 * This packet is just discarded.
551 */
552 ipsecstat.out_polvio++;
553 goto bad;
554
555 case IPSEC_POLICY_BYPASS:
556 case IPSEC_POLICY_NONE:
557 /* no need to do IPsec. */
558 goto skip_ipsec;
559
560 case IPSEC_POLICY_IPSEC:
561 if (sp->req == NULL) {
562 /* XXX should be panic ? */
563 printf("ip_output: No IPsec request specified.\n");
564 error = EINVAL;
565 goto bad;
566 }
567 break;
568
569 case IPSEC_POLICY_ENTRUST:
570 default:
571 printf("ip_output: Invalid policy found. %d\n", sp->policy);
572 }
573
574 #ifdef IPSEC_NAT_T
575 /*
576 * NAT-T ESP fragmentation: don't do IPSec processing now,
577 * we'll do it on each fragmented packet.
578 */
579 if (sp->req->sav &&
580 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
581 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
582 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
583 natt_frag = 1;
584 mtu = sp->req->sav->esp_frag;
585 goto skip_ipsec;
586 }
587 }
588 #endif /* IPSEC_NAT_T */
589
590 /*
591 * ipsec4_output() expects ip_len and ip_off in network
592 * order. They have been set to network order above.
593 */
594
595 {
596 struct ipsec_output_state state;
597 bzero(&state, sizeof(state));
598 state.m = m;
599 if (flags & IP_ROUTETOIF) {
600 state.ro = &iproute;
601 bzero(&iproute, sizeof(iproute));
602 } else
603 state.ro = ro;
604 state.dst = (struct sockaddr *)dst;
605
606 /*
607 * We can't defer the checksum of payload data if
608 * we're about to encrypt/authenticate it.
609 *
610 * XXX When we support crypto offloading functions of
611 * XXX network interfaces, we need to reconsider this,
612 * XXX since it's likely that they'll support checksumming,
613 * XXX as well.
614 */
615 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
616 in_delayed_cksum(m);
617 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
618 }
619
620 error = ipsec4_output(&state, sp, flags);
621
622 m = state.m;
623 if (flags & IP_ROUTETOIF) {
624 /*
625 * if we have tunnel mode SA, we may need to ignore
626 * IP_ROUTETOIF.
627 */
628 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
629 flags &= ~IP_ROUTETOIF;
630 ro = state.ro;
631 }
632 } else
633 ro = state.ro;
634 dst = (struct sockaddr_in *)state.dst;
635 if (error) {
636 /* mbuf is already reclaimed in ipsec4_output. */
637 m0 = NULL;
638 switch (error) {
639 case EHOSTUNREACH:
640 case ENETUNREACH:
641 case EMSGSIZE:
642 case ENOBUFS:
643 case ENOMEM:
644 break;
645 default:
646 printf("ip4_output (ipsec): error code %d\n", error);
647 /*fall through*/
648 case ENOENT:
649 /* don't show these error codes to the user */
650 error = 0;
651 break;
652 }
653 goto bad;
654 }
655
656 /* be sure to update variables that are affected by ipsec4_output() */
657 ip = mtod(m, struct ip *);
658 hlen = ip->ip_hl << 2;
659 ip_len = ntohs(ip->ip_len);
660
661 if (ro->ro_rt == NULL) {
662 if ((flags & IP_ROUTETOIF) == 0) {
663 printf("ip_output: "
664 "can't update route after IPsec processing\n");
665 error = EHOSTUNREACH; /*XXX*/
666 goto bad;
667 }
668 } else {
669 /* nobody uses ia beyond here */
670 if (state.encap) {
671 ifp = ro->ro_rt->rt_ifp;
672 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
673 mtu = ifp->if_mtu;
674 }
675 }
676 }
677 skip_ipsec:
678 #endif /*IPSEC*/
679 #ifdef FAST_IPSEC
680 /*
681 * Check the security policy (SP) for the packet and, if
682 * required, do IPsec-related processing. There are two
683 * cases here; the first time a packet is sent through
684 * it will be untagged and handled by ipsec4_checkpolicy.
685 * If the packet is resubmitted to ip_output (e.g. after
686 * AH, ESP, etc. processing), there will be a tag to bypass
687 * the lookup and related policy checking.
688 */
689 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
690 s = splsoftnet();
691 if (mtag != NULL) {
692 tdbi = (struct tdb_ident *)(mtag + 1);
693 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
694 if (sp == NULL)
695 error = -EINVAL; /* force silent drop */
696 m_tag_delete(m, mtag);
697 } else {
698 if (inp != NULL &&
699 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
700 goto spd_done;
701 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
702 &error, inp);
703 }
704 /*
705 * There are four return cases:
706 * sp != NULL apply IPsec policy
707 * sp == NULL, error == 0 no IPsec handling needed
708 * sp == NULL, error == -EINVAL discard packet w/o error
709 * sp == NULL, error != 0 discard packet, report error
710 */
711 if (sp != NULL) {
712 /* Loop detection, check if ipsec processing already done */
713 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
714 for (mtag = m_tag_first(m); mtag != NULL;
715 mtag = m_tag_next(m, mtag)) {
716 #ifdef MTAG_ABI_COMPAT
717 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
718 continue;
719 #endif
720 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
721 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
722 continue;
723 /*
724 * Check if policy has an SA associated with it.
725 * This can happen when an SP has yet to acquire
726 * an SA; e.g. on first reference. If it occurs,
727 * then we let ipsec4_process_packet do its thing.
728 */
729 if (sp->req->sav == NULL)
730 break;
731 tdbi = (struct tdb_ident *)(mtag + 1);
732 if (tdbi->spi == sp->req->sav->spi &&
733 tdbi->proto == sp->req->sav->sah->saidx.proto &&
734 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
735 sizeof (union sockaddr_union)) == 0) {
736 /*
737 * No IPsec processing is needed, free
738 * reference to SP.
739 *
740 * NB: null pointer to avoid free at
741 * done: below.
742 */
743 KEY_FREESP(&sp), sp = NULL;
744 splx(s);
745 goto spd_done;
746 }
747 }
748
749 /*
750 * Do delayed checksums now because we send before
751 * this is done in the normal processing path.
752 */
753 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
754 in_delayed_cksum(m);
755 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
756 }
757
758 #ifdef __FreeBSD__
759 ip->ip_len = htons(ip->ip_len);
760 ip->ip_off = htons(ip->ip_off);
761 #endif
762
763 /* NB: callee frees mbuf */
764 error = ipsec4_process_packet(m, sp->req, flags, 0);
765 /*
766 * Preserve KAME behaviour: ENOENT can be returned
767 * when an SA acquire is in progress. Don't propagate
768 * this to user-level; it confuses applications.
769 *
770 * XXX this will go away when the SADB is redone.
771 */
772 if (error == ENOENT)
773 error = 0;
774 splx(s);
775 goto done;
776 } else {
777 splx(s);
778
779 if (error != 0) {
780 /*
781 * Hack: -EINVAL is used to signal that a packet
782 * should be silently discarded. This is typically
783 * because we asked key management for an SA and
784 * it was delayed (e.g. kicked up to IKE).
785 */
786 if (error == -EINVAL)
787 error = 0;
788 goto bad;
789 } else {
790 /* No IPsec processing for this packet. */
791 }
792 #ifdef notyet
793 /*
794 * If deferred crypto processing is needed, check that
795 * the interface supports it.
796 */
797 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
798 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
799 /* notify IPsec to do its own crypto */
800 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
801 error = EHOSTUNREACH;
802 goto bad;
803 }
804 #endif
805 }
806 spd_done:
807 #endif /* FAST_IPSEC */
808
809 #ifdef PFIL_HOOKS
810 /*
811 * Run through list of hooks for output packets.
812 */
813 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
814 goto done;
815 if (m == NULL)
816 goto done;
817
818 ip = mtod(m, struct ip *);
819 hlen = ip->ip_hl << 2;
820 #endif /* PFIL_HOOKS */
821
822 m->m_pkthdr.csum_data |= hlen << 16;
823
824 #if IFA_STATS
825 /*
826 * search for the source address structure to
827 * maintain output statistics.
828 */
829 INADDR_TO_IA(ip->ip_src, ia);
830 #endif
831
832 /* Maybe skip checksums on loopback interfaces. */
833 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
834 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
835 }
836 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
837 /*
838 * If small enough for mtu of path, or if using TCP segmentation
839 * offload, can just send directly.
840 */
841 if (ip_len <= mtu ||
842 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
843 #if IFA_STATS
844 if (ia)
845 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
846 #endif
847 /*
848 * Always initialize the sum to 0! Some HW assisted
849 * checksumming requires this.
850 */
851 ip->ip_sum = 0;
852
853 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
854 /*
855 * Perform any checksums that the hardware can't do
856 * for us.
857 *
858 * XXX Does any hardware require the {th,uh}_sum
859 * XXX fields to be 0?
860 */
861 if (sw_csum & M_CSUM_IPv4) {
862 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
863 ip->ip_sum = in_cksum(m, hlen);
864 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
865 }
866 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
867 if (IN_NEED_CHECKSUM(ifp,
868 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
869 in_delayed_cksum(m);
870 }
871 m->m_pkthdr.csum_flags &=
872 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
873 }
874 }
875
876 #ifdef IPSEC
877 /* clean ipsec history once it goes out of the node */
878 ipsec_delaux(m);
879 #endif
880
881 if (__predict_true(
882 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
883 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
884 error =
885 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
886 } else {
887 error =
888 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
889 }
890 goto done;
891 }
892
893 /*
894 * We can't use HW checksumming if we're about to
895 * to fragment the packet.
896 *
897 * XXX Some hardware can do this.
898 */
899 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
900 if (IN_NEED_CHECKSUM(ifp,
901 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
902 in_delayed_cksum(m);
903 }
904 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
905 }
906
907 /*
908 * Too large for interface; fragment if possible.
909 * Must be able to put at least 8 bytes per fragment.
910 */
911 if (ntohs(ip->ip_off) & IP_DF) {
912 if (flags & IP_RETURNMTU)
913 *mtu_p = mtu;
914 error = EMSGSIZE;
915 ipstat.ips_cantfrag++;
916 goto bad;
917 }
918
919 error = ip_fragment(m, ifp, mtu);
920 if (error) {
921 m = NULL;
922 goto bad;
923 }
924
925 for (; m; m = m0) {
926 m0 = m->m_nextpkt;
927 m->m_nextpkt = 0;
928 if (error == 0) {
929 #if IFA_STATS
930 if (ia)
931 ia->ia_ifa.ifa_data.ifad_outbytes +=
932 ntohs(ip->ip_len);
933 #endif
934 #ifdef IPSEC
935 /* clean ipsec history once it goes out of the node */
936 ipsec_delaux(m);
937
938 #ifdef IPSEC_NAT_T
939 /*
940 * If we get there, the packet has not been handeld by
941 * IPSec whereas it should have. Now that it has been
942 * fragmented, re-inject it in ip_output so that IPsec
943 * processing can occur.
944 */
945 if (natt_frag) {
946 error = ip_output(m, opt,
947 ro, flags, imo, so, mtu_p);
948 } else
949 #endif /* IPSEC_NAT_T */
950 #endif /* IPSEC */
951 {
952 KASSERT((m->m_pkthdr.csum_flags &
953 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
954 error = (*ifp->if_output)(ifp, m, sintosa(dst),
955 ro->ro_rt);
956 }
957 } else
958 m_freem(m);
959 }
960
961 if (error == 0)
962 ipstat.ips_fragmented++;
963 done:
964 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
965 RTFREE(ro->ro_rt);
966 ro->ro_rt = 0;
967 }
968
969 #ifdef IPSEC
970 if (sp != NULL) {
971 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
972 printf("DP ip_output call free SP:%p\n", sp));
973 key_freesp(sp);
974 }
975 #endif /* IPSEC */
976 #ifdef FAST_IPSEC
977 if (sp != NULL)
978 KEY_FREESP(&sp);
979 #endif /* FAST_IPSEC */
980
981 return (error);
982 bad:
983 m_freem(m);
984 goto done;
985 }
986
987 int
988 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
989 {
990 struct ip *ip, *mhip;
991 struct mbuf *m0;
992 int len, hlen, off;
993 int mhlen, firstlen;
994 struct mbuf **mnext;
995 int sw_csum = m->m_pkthdr.csum_flags;
996 int fragments = 0;
997 int s;
998 int error = 0;
999
1000 ip = mtod(m, struct ip *);
1001 hlen = ip->ip_hl << 2;
1002 if (ifp != NULL)
1003 sw_csum &= ~ifp->if_csum_flags_tx;
1004
1005 len = (mtu - hlen) &~ 7;
1006 if (len < 8) {
1007 m_freem(m);
1008 return (EMSGSIZE);
1009 }
1010
1011 firstlen = len;
1012 mnext = &m->m_nextpkt;
1013
1014 /*
1015 * Loop through length of segment after first fragment,
1016 * make new header and copy data of each part and link onto chain.
1017 */
1018 m0 = m;
1019 mhlen = sizeof (struct ip);
1020 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1021 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1022 if (m == 0) {
1023 error = ENOBUFS;
1024 ipstat.ips_odropped++;
1025 goto sendorfree;
1026 }
1027 MCLAIM(m, m0->m_owner);
1028 *mnext = m;
1029 mnext = &m->m_nextpkt;
1030 m->m_data += max_linkhdr;
1031 mhip = mtod(m, struct ip *);
1032 *mhip = *ip;
1033 /* we must inherit MCAST and BCAST flags */
1034 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1035 if (hlen > sizeof (struct ip)) {
1036 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1037 mhip->ip_hl = mhlen >> 2;
1038 }
1039 m->m_len = mhlen;
1040 mhip->ip_off = ((off - hlen) >> 3) +
1041 (ntohs(ip->ip_off) & ~IP_MF);
1042 if (ip->ip_off & htons(IP_MF))
1043 mhip->ip_off |= IP_MF;
1044 if (off + len >= ntohs(ip->ip_len))
1045 len = ntohs(ip->ip_len) - off;
1046 else
1047 mhip->ip_off |= IP_MF;
1048 HTONS(mhip->ip_off);
1049 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1050 m->m_next = m_copy(m0, off, len);
1051 if (m->m_next == 0) {
1052 error = ENOBUFS; /* ??? */
1053 ipstat.ips_odropped++;
1054 goto sendorfree;
1055 }
1056 m->m_pkthdr.len = mhlen + len;
1057 m->m_pkthdr.rcvif = (struct ifnet *)0;
1058 mhip->ip_sum = 0;
1059 if (sw_csum & M_CSUM_IPv4) {
1060 mhip->ip_sum = in_cksum(m, mhlen);
1061 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1062 } else {
1063 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1064 m->m_pkthdr.csum_data |= mhlen << 16;
1065 }
1066 ipstat.ips_ofragments++;
1067 fragments++;
1068 }
1069 /*
1070 * Update first fragment by trimming what's been copied out
1071 * and updating header, then send each fragment (in order).
1072 */
1073 m = m0;
1074 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1075 m->m_pkthdr.len = hlen + firstlen;
1076 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1077 ip->ip_off |= htons(IP_MF);
1078 ip->ip_sum = 0;
1079 if (sw_csum & M_CSUM_IPv4) {
1080 ip->ip_sum = in_cksum(m, hlen);
1081 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1082 } else {
1083 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1084 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1085 sizeof(struct ip));
1086 }
1087 sendorfree:
1088 /*
1089 * If there is no room for all the fragments, don't queue
1090 * any of them.
1091 */
1092 if (ifp != NULL) {
1093 s = splnet();
1094 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1095 error == 0) {
1096 error = ENOBUFS;
1097 ipstat.ips_odropped++;
1098 IFQ_INC_DROPS(&ifp->if_snd);
1099 }
1100 splx(s);
1101 }
1102 if (error) {
1103 for (m = m0; m; m = m0) {
1104 m0 = m->m_nextpkt;
1105 m->m_nextpkt = NULL;
1106 m_freem(m);
1107 }
1108 }
1109 return (error);
1110 }
1111
1112 /*
1113 * Process a delayed payload checksum calculation.
1114 */
1115 void
1116 in_delayed_cksum(struct mbuf *m)
1117 {
1118 struct ip *ip;
1119 u_int16_t csum, offset;
1120
1121 ip = mtod(m, struct ip *);
1122 offset = ip->ip_hl << 2;
1123 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1124 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1125 csum = 0xffff;
1126
1127 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1128
1129 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1130 /* This happen when ip options were inserted
1131 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1132 m->m_len, offset, ip->ip_p);
1133 */
1134 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1135 } else
1136 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1137 }
1138
1139 /*
1140 * Determine the maximum length of the options to be inserted;
1141 * we would far rather allocate too much space rather than too little.
1142 */
1143
1144 u_int
1145 ip_optlen(struct inpcb *inp)
1146 {
1147 struct mbuf *m = inp->inp_options;
1148
1149 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1150 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1151 else
1152 return 0;
1153 }
1154
1155
1156 /*
1157 * Insert IP options into preformed packet.
1158 * Adjust IP destination as required for IP source routing,
1159 * as indicated by a non-zero in_addr at the start of the options.
1160 */
1161 static struct mbuf *
1162 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1163 {
1164 struct ipoption *p = mtod(opt, struct ipoption *);
1165 struct mbuf *n;
1166 struct ip *ip = mtod(m, struct ip *);
1167 unsigned optlen;
1168
1169 optlen = opt->m_len - sizeof(p->ipopt_dst);
1170 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1171 return (m); /* XXX should fail */
1172 if (!in_nullhost(p->ipopt_dst))
1173 ip->ip_dst = p->ipopt_dst;
1174 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1175 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1176 if (n == 0)
1177 return (m);
1178 MCLAIM(n, m->m_owner);
1179 M_MOVE_PKTHDR(n, m);
1180 m->m_len -= sizeof(struct ip);
1181 m->m_data += sizeof(struct ip);
1182 n->m_next = m;
1183 m = n;
1184 m->m_len = optlen + sizeof(struct ip);
1185 m->m_data += max_linkhdr;
1186 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1187 } else {
1188 m->m_data -= optlen;
1189 m->m_len += optlen;
1190 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1191 }
1192 m->m_pkthdr.len += optlen;
1193 ip = mtod(m, struct ip *);
1194 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1195 *phlen = sizeof(struct ip) + optlen;
1196 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1197 return (m);
1198 }
1199
1200 /*
1201 * Copy options from ip to jp,
1202 * omitting those not copied during fragmentation.
1203 */
1204 int
1205 ip_optcopy(struct ip *ip, struct ip *jp)
1206 {
1207 u_char *cp, *dp;
1208 int opt, optlen, cnt;
1209
1210 cp = (u_char *)(ip + 1);
1211 dp = (u_char *)(jp + 1);
1212 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1213 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1214 opt = cp[0];
1215 if (opt == IPOPT_EOL)
1216 break;
1217 if (opt == IPOPT_NOP) {
1218 /* Preserve for IP mcast tunnel's LSRR alignment. */
1219 *dp++ = IPOPT_NOP;
1220 optlen = 1;
1221 continue;
1222 }
1223 #ifdef DIAGNOSTIC
1224 if (cnt < IPOPT_OLEN + sizeof(*cp))
1225 panic("malformed IPv4 option passed to ip_optcopy");
1226 #endif
1227 optlen = cp[IPOPT_OLEN];
1228 #ifdef DIAGNOSTIC
1229 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1230 panic("malformed IPv4 option passed to ip_optcopy");
1231 #endif
1232 /* bogus lengths should have been caught by ip_dooptions */
1233 if (optlen > cnt)
1234 optlen = cnt;
1235 if (IPOPT_COPIED(opt)) {
1236 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1237 dp += optlen;
1238 }
1239 }
1240 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1241 *dp++ = IPOPT_EOL;
1242 return (optlen);
1243 }
1244
1245 /*
1246 * IP socket option processing.
1247 */
1248 int
1249 ip_ctloutput(int op, struct socket *so, int level, int optname,
1250 struct mbuf **mp)
1251 {
1252 struct inpcb *inp = sotoinpcb(so);
1253 struct mbuf *m = *mp;
1254 int optval = 0;
1255 int error = 0;
1256 #if defined(IPSEC) || defined(FAST_IPSEC)
1257 struct proc *p = curproc; /*XXX*/
1258 #endif
1259
1260 if (level != IPPROTO_IP) {
1261 error = EINVAL;
1262 if (op == PRCO_SETOPT && *mp)
1263 (void) m_free(*mp);
1264 } else switch (op) {
1265
1266 case PRCO_SETOPT:
1267 switch (optname) {
1268 case IP_OPTIONS:
1269 #ifdef notyet
1270 case IP_RETOPTS:
1271 return (ip_pcbopts(optname, &inp->inp_options, m));
1272 #else
1273 return (ip_pcbopts(&inp->inp_options, m));
1274 #endif
1275
1276 case IP_TOS:
1277 case IP_TTL:
1278 case IP_RECVOPTS:
1279 case IP_RECVRETOPTS:
1280 case IP_RECVDSTADDR:
1281 case IP_RECVIF:
1282 if (m == NULL || m->m_len != sizeof(int))
1283 error = EINVAL;
1284 else {
1285 optval = *mtod(m, int *);
1286 switch (optname) {
1287
1288 case IP_TOS:
1289 inp->inp_ip.ip_tos = optval;
1290 break;
1291
1292 case IP_TTL:
1293 inp->inp_ip.ip_ttl = optval;
1294 break;
1295 #define OPTSET(bit) \
1296 if (optval) \
1297 inp->inp_flags |= bit; \
1298 else \
1299 inp->inp_flags &= ~bit;
1300
1301 case IP_RECVOPTS:
1302 OPTSET(INP_RECVOPTS);
1303 break;
1304
1305 case IP_RECVRETOPTS:
1306 OPTSET(INP_RECVRETOPTS);
1307 break;
1308
1309 case IP_RECVDSTADDR:
1310 OPTSET(INP_RECVDSTADDR);
1311 break;
1312
1313 case IP_RECVIF:
1314 OPTSET(INP_RECVIF);
1315 break;
1316 }
1317 }
1318 break;
1319 #undef OPTSET
1320
1321 case IP_MULTICAST_IF:
1322 case IP_MULTICAST_TTL:
1323 case IP_MULTICAST_LOOP:
1324 case IP_ADD_MEMBERSHIP:
1325 case IP_DROP_MEMBERSHIP:
1326 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1327 break;
1328
1329 case IP_PORTRANGE:
1330 if (m == 0 || m->m_len != sizeof(int))
1331 error = EINVAL;
1332 else {
1333 optval = *mtod(m, int *);
1334
1335 switch (optval) {
1336
1337 case IP_PORTRANGE_DEFAULT:
1338 case IP_PORTRANGE_HIGH:
1339 inp->inp_flags &= ~(INP_LOWPORT);
1340 break;
1341
1342 case IP_PORTRANGE_LOW:
1343 inp->inp_flags |= INP_LOWPORT;
1344 break;
1345
1346 default:
1347 error = EINVAL;
1348 break;
1349 }
1350 }
1351 break;
1352
1353 #if defined(IPSEC) || defined(FAST_IPSEC)
1354 case IP_IPSEC_POLICY:
1355 {
1356 caddr_t req = NULL;
1357 size_t len = 0;
1358 int priv = 0;
1359
1360 #ifdef __NetBSD__
1361 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1362 priv = 0;
1363 else
1364 priv = 1;
1365 #else
1366 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1367 #endif
1368 if (m) {
1369 req = mtod(m, caddr_t);
1370 len = m->m_len;
1371 }
1372 error = ipsec4_set_policy(inp, optname, req, len, priv);
1373 break;
1374 }
1375 #endif /*IPSEC*/
1376
1377 default:
1378 error = ENOPROTOOPT;
1379 break;
1380 }
1381 if (m)
1382 (void)m_free(m);
1383 break;
1384
1385 case PRCO_GETOPT:
1386 switch (optname) {
1387 case IP_OPTIONS:
1388 case IP_RETOPTS:
1389 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1390 MCLAIM(m, so->so_mowner);
1391 if (inp->inp_options) {
1392 m->m_len = inp->inp_options->m_len;
1393 bcopy(mtod(inp->inp_options, caddr_t),
1394 mtod(m, caddr_t), (unsigned)m->m_len);
1395 } else
1396 m->m_len = 0;
1397 break;
1398
1399 case IP_TOS:
1400 case IP_TTL:
1401 case IP_RECVOPTS:
1402 case IP_RECVRETOPTS:
1403 case IP_RECVDSTADDR:
1404 case IP_RECVIF:
1405 case IP_ERRORMTU:
1406 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1407 MCLAIM(m, so->so_mowner);
1408 m->m_len = sizeof(int);
1409 switch (optname) {
1410
1411 case IP_TOS:
1412 optval = inp->inp_ip.ip_tos;
1413 break;
1414
1415 case IP_TTL:
1416 optval = inp->inp_ip.ip_ttl;
1417 break;
1418
1419 case IP_ERRORMTU:
1420 optval = inp->inp_errormtu;
1421 break;
1422
1423 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1424
1425 case IP_RECVOPTS:
1426 optval = OPTBIT(INP_RECVOPTS);
1427 break;
1428
1429 case IP_RECVRETOPTS:
1430 optval = OPTBIT(INP_RECVRETOPTS);
1431 break;
1432
1433 case IP_RECVDSTADDR:
1434 optval = OPTBIT(INP_RECVDSTADDR);
1435 break;
1436
1437 case IP_RECVIF:
1438 optval = OPTBIT(INP_RECVIF);
1439 break;
1440 }
1441 *mtod(m, int *) = optval;
1442 break;
1443
1444 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1445 /* XXX: code broken */
1446 case IP_IPSEC_POLICY:
1447 {
1448 caddr_t req = NULL;
1449 size_t len = 0;
1450
1451 if (m) {
1452 req = mtod(m, caddr_t);
1453 len = m->m_len;
1454 }
1455 error = ipsec4_get_policy(inp, req, len, mp);
1456 break;
1457 }
1458 #endif /*IPSEC*/
1459
1460 case IP_MULTICAST_IF:
1461 case IP_MULTICAST_TTL:
1462 case IP_MULTICAST_LOOP:
1463 case IP_ADD_MEMBERSHIP:
1464 case IP_DROP_MEMBERSHIP:
1465 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1466 if (*mp)
1467 MCLAIM(*mp, so->so_mowner);
1468 break;
1469
1470 case IP_PORTRANGE:
1471 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1472 MCLAIM(m, so->so_mowner);
1473 m->m_len = sizeof(int);
1474
1475 if (inp->inp_flags & INP_LOWPORT)
1476 optval = IP_PORTRANGE_LOW;
1477 else
1478 optval = IP_PORTRANGE_DEFAULT;
1479
1480 *mtod(m, int *) = optval;
1481 break;
1482
1483 default:
1484 error = ENOPROTOOPT;
1485 break;
1486 }
1487 break;
1488 }
1489 return (error);
1490 }
1491
1492 /*
1493 * Set up IP options in pcb for insertion in output packets.
1494 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1495 * with destination address if source routed.
1496 */
1497 int
1498 #ifdef notyet
1499 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1500 #else
1501 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1502 #endif
1503 {
1504 int cnt, optlen;
1505 u_char *cp;
1506 u_char opt;
1507
1508 /* turn off any old options */
1509 if (*pcbopt)
1510 (void)m_free(*pcbopt);
1511 *pcbopt = 0;
1512 if (m == (struct mbuf *)0 || m->m_len == 0) {
1513 /*
1514 * Only turning off any previous options.
1515 */
1516 if (m)
1517 (void)m_free(m);
1518 return (0);
1519 }
1520
1521 #ifndef __vax__
1522 if (m->m_len % sizeof(int32_t))
1523 goto bad;
1524 #endif
1525 /*
1526 * IP first-hop destination address will be stored before
1527 * actual options; move other options back
1528 * and clear it when none present.
1529 */
1530 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1531 goto bad;
1532 cnt = m->m_len;
1533 m->m_len += sizeof(struct in_addr);
1534 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1535 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1536 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1537
1538 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1539 opt = cp[IPOPT_OPTVAL];
1540 if (opt == IPOPT_EOL)
1541 break;
1542 if (opt == IPOPT_NOP)
1543 optlen = 1;
1544 else {
1545 if (cnt < IPOPT_OLEN + sizeof(*cp))
1546 goto bad;
1547 optlen = cp[IPOPT_OLEN];
1548 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1549 goto bad;
1550 }
1551 switch (opt) {
1552
1553 default:
1554 break;
1555
1556 case IPOPT_LSRR:
1557 case IPOPT_SSRR:
1558 /*
1559 * user process specifies route as:
1560 * ->A->B->C->D
1561 * D must be our final destination (but we can't
1562 * check that since we may not have connected yet).
1563 * A is first hop destination, which doesn't appear in
1564 * actual IP option, but is stored before the options.
1565 */
1566 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1567 goto bad;
1568 m->m_len -= sizeof(struct in_addr);
1569 cnt -= sizeof(struct in_addr);
1570 optlen -= sizeof(struct in_addr);
1571 cp[IPOPT_OLEN] = optlen;
1572 /*
1573 * Move first hop before start of options.
1574 */
1575 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1576 sizeof(struct in_addr));
1577 /*
1578 * Then copy rest of options back
1579 * to close up the deleted entry.
1580 */
1581 (void)memmove(&cp[IPOPT_OFFSET+1],
1582 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1583 (unsigned)cnt - (IPOPT_MINOFF - 1));
1584 break;
1585 }
1586 }
1587 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1588 goto bad;
1589 *pcbopt = m;
1590 return (0);
1591
1592 bad:
1593 (void)m_free(m);
1594 return (EINVAL);
1595 }
1596
1597 /*
1598 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1599 */
1600 static struct ifnet *
1601 ip_multicast_if(struct in_addr *a, int *ifindexp)
1602 {
1603 int ifindex;
1604 struct ifnet *ifp = NULL;
1605 struct in_ifaddr *ia;
1606
1607 if (ifindexp)
1608 *ifindexp = 0;
1609 if (ntohl(a->s_addr) >> 24 == 0) {
1610 ifindex = ntohl(a->s_addr) & 0xffffff;
1611 if (ifindex < 0 || if_indexlim <= ifindex)
1612 return NULL;
1613 ifp = ifindex2ifnet[ifindex];
1614 if (!ifp)
1615 return NULL;
1616 if (ifindexp)
1617 *ifindexp = ifindex;
1618 } else {
1619 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1620 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1621 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1622 ifp = ia->ia_ifp;
1623 break;
1624 }
1625 }
1626 }
1627 return ifp;
1628 }
1629
1630 static int
1631 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1632 {
1633 u_int tval;
1634
1635 if (m == NULL)
1636 return EINVAL;
1637
1638 switch (m->m_len) {
1639 case sizeof(u_char):
1640 tval = *(mtod(m, u_char *));
1641 break;
1642 case sizeof(u_int):
1643 tval = *(mtod(m, u_int *));
1644 break;
1645 default:
1646 return EINVAL;
1647 }
1648
1649 if (tval > maxval)
1650 return EINVAL;
1651
1652 *val = tval;
1653 return 0;
1654 }
1655
1656 /*
1657 * Set the IP multicast options in response to user setsockopt().
1658 */
1659 int
1660 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1661 {
1662 int error = 0;
1663 int i;
1664 struct in_addr addr;
1665 struct ip_mreq *mreq;
1666 struct ifnet *ifp;
1667 struct ip_moptions *imo = *imop;
1668 struct route ro;
1669 struct sockaddr_in *dst;
1670 int ifindex;
1671
1672 if (imo == NULL) {
1673 /*
1674 * No multicast option buffer attached to the pcb;
1675 * allocate one and initialize to default values.
1676 */
1677 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1678 M_WAITOK);
1679
1680 if (imo == NULL)
1681 return (ENOBUFS);
1682 *imop = imo;
1683 imo->imo_multicast_ifp = NULL;
1684 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1685 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1686 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1687 imo->imo_num_memberships = 0;
1688 }
1689
1690 switch (optname) {
1691
1692 case IP_MULTICAST_IF:
1693 /*
1694 * Select the interface for outgoing multicast packets.
1695 */
1696 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1697 error = EINVAL;
1698 break;
1699 }
1700 addr = *(mtod(m, struct in_addr *));
1701 /*
1702 * INADDR_ANY is used to remove a previous selection.
1703 * When no interface is selected, a default one is
1704 * chosen every time a multicast packet is sent.
1705 */
1706 if (in_nullhost(addr)) {
1707 imo->imo_multicast_ifp = NULL;
1708 break;
1709 }
1710 /*
1711 * The selected interface is identified by its local
1712 * IP address. Find the interface and confirm that
1713 * it supports multicasting.
1714 */
1715 ifp = ip_multicast_if(&addr, &ifindex);
1716 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1717 error = EADDRNOTAVAIL;
1718 break;
1719 }
1720 imo->imo_multicast_ifp = ifp;
1721 if (ifindex)
1722 imo->imo_multicast_addr = addr;
1723 else
1724 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1725 break;
1726
1727 case IP_MULTICAST_TTL:
1728 /*
1729 * Set the IP time-to-live for outgoing multicast packets.
1730 */
1731 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1732 break;
1733
1734 case IP_MULTICAST_LOOP:
1735 /*
1736 * Set the loopback flag for outgoing multicast packets.
1737 * Must be zero or one.
1738 */
1739 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1740 break;
1741
1742 case IP_ADD_MEMBERSHIP:
1743 /*
1744 * Add a multicast group membership.
1745 * Group must be a valid IP multicast address.
1746 */
1747 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1748 error = EINVAL;
1749 break;
1750 }
1751 mreq = mtod(m, struct ip_mreq *);
1752 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1753 error = EINVAL;
1754 break;
1755 }
1756 /*
1757 * If no interface address was provided, use the interface of
1758 * the route to the given multicast address.
1759 */
1760 if (in_nullhost(mreq->imr_interface)) {
1761 bzero((caddr_t)&ro, sizeof(ro));
1762 ro.ro_rt = NULL;
1763 dst = satosin(&ro.ro_dst);
1764 dst->sin_len = sizeof(*dst);
1765 dst->sin_family = AF_INET;
1766 dst->sin_addr = mreq->imr_multiaddr;
1767 rtalloc(&ro);
1768 if (ro.ro_rt == NULL) {
1769 error = EADDRNOTAVAIL;
1770 break;
1771 }
1772 ifp = ro.ro_rt->rt_ifp;
1773 rtfree(ro.ro_rt);
1774 } else {
1775 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1776 }
1777 /*
1778 * See if we found an interface, and confirm that it
1779 * supports multicast.
1780 */
1781 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1782 error = EADDRNOTAVAIL;
1783 break;
1784 }
1785 /*
1786 * See if the membership already exists or if all the
1787 * membership slots are full.
1788 */
1789 for (i = 0; i < imo->imo_num_memberships; ++i) {
1790 if (imo->imo_membership[i]->inm_ifp == ifp &&
1791 in_hosteq(imo->imo_membership[i]->inm_addr,
1792 mreq->imr_multiaddr))
1793 break;
1794 }
1795 if (i < imo->imo_num_memberships) {
1796 error = EADDRINUSE;
1797 break;
1798 }
1799 if (i == IP_MAX_MEMBERSHIPS) {
1800 error = ETOOMANYREFS;
1801 break;
1802 }
1803 /*
1804 * Everything looks good; add a new record to the multicast
1805 * address list for the given interface.
1806 */
1807 if ((imo->imo_membership[i] =
1808 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1809 error = ENOBUFS;
1810 break;
1811 }
1812 ++imo->imo_num_memberships;
1813 break;
1814
1815 case IP_DROP_MEMBERSHIP:
1816 /*
1817 * Drop a multicast group membership.
1818 * Group must be a valid IP multicast address.
1819 */
1820 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1821 error = EINVAL;
1822 break;
1823 }
1824 mreq = mtod(m, struct ip_mreq *);
1825 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1826 error = EINVAL;
1827 break;
1828 }
1829 /*
1830 * If an interface address was specified, get a pointer
1831 * to its ifnet structure.
1832 */
1833 if (in_nullhost(mreq->imr_interface))
1834 ifp = NULL;
1835 else {
1836 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1837 if (ifp == NULL) {
1838 error = EADDRNOTAVAIL;
1839 break;
1840 }
1841 }
1842 /*
1843 * Find the membership in the membership array.
1844 */
1845 for (i = 0; i < imo->imo_num_memberships; ++i) {
1846 if ((ifp == NULL ||
1847 imo->imo_membership[i]->inm_ifp == ifp) &&
1848 in_hosteq(imo->imo_membership[i]->inm_addr,
1849 mreq->imr_multiaddr))
1850 break;
1851 }
1852 if (i == imo->imo_num_memberships) {
1853 error = EADDRNOTAVAIL;
1854 break;
1855 }
1856 /*
1857 * Give up the multicast address record to which the
1858 * membership points.
1859 */
1860 in_delmulti(imo->imo_membership[i]);
1861 /*
1862 * Remove the gap in the membership array.
1863 */
1864 for (++i; i < imo->imo_num_memberships; ++i)
1865 imo->imo_membership[i-1] = imo->imo_membership[i];
1866 --imo->imo_num_memberships;
1867 break;
1868
1869 default:
1870 error = EOPNOTSUPP;
1871 break;
1872 }
1873
1874 /*
1875 * If all options have default values, no need to keep the mbuf.
1876 */
1877 if (imo->imo_multicast_ifp == NULL &&
1878 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1879 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1880 imo->imo_num_memberships == 0) {
1881 free(*imop, M_IPMOPTS);
1882 *imop = NULL;
1883 }
1884
1885 return (error);
1886 }
1887
1888 /*
1889 * Return the IP multicast options in response to user getsockopt().
1890 */
1891 int
1892 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1893 {
1894 u_char *ttl;
1895 u_char *loop;
1896 struct in_addr *addr;
1897 struct in_ifaddr *ia;
1898
1899 *mp = m_get(M_WAIT, MT_SOOPTS);
1900
1901 switch (optname) {
1902
1903 case IP_MULTICAST_IF:
1904 addr = mtod(*mp, struct in_addr *);
1905 (*mp)->m_len = sizeof(struct in_addr);
1906 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1907 *addr = zeroin_addr;
1908 else if (imo->imo_multicast_addr.s_addr) {
1909 /* return the value user has set */
1910 *addr = imo->imo_multicast_addr;
1911 } else {
1912 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1913 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1914 }
1915 return (0);
1916
1917 case IP_MULTICAST_TTL:
1918 ttl = mtod(*mp, u_char *);
1919 (*mp)->m_len = 1;
1920 *ttl = imo ? imo->imo_multicast_ttl
1921 : IP_DEFAULT_MULTICAST_TTL;
1922 return (0);
1923
1924 case IP_MULTICAST_LOOP:
1925 loop = mtod(*mp, u_char *);
1926 (*mp)->m_len = 1;
1927 *loop = imo ? imo->imo_multicast_loop
1928 : IP_DEFAULT_MULTICAST_LOOP;
1929 return (0);
1930
1931 default:
1932 return (EOPNOTSUPP);
1933 }
1934 }
1935
1936 /*
1937 * Discard the IP multicast options.
1938 */
1939 void
1940 ip_freemoptions(struct ip_moptions *imo)
1941 {
1942 int i;
1943
1944 if (imo != NULL) {
1945 for (i = 0; i < imo->imo_num_memberships; ++i)
1946 in_delmulti(imo->imo_membership[i]);
1947 free(imo, M_IPMOPTS);
1948 }
1949 }
1950
1951 /*
1952 * Routine called from ip_output() to loop back a copy of an IP multicast
1953 * packet to the input queue of a specified interface. Note that this
1954 * calls the output routine of the loopback "driver", but with an interface
1955 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1956 */
1957 static void
1958 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1959 {
1960 struct ip *ip;
1961 struct mbuf *copym;
1962
1963 copym = m_copy(m, 0, M_COPYALL);
1964 if (copym != NULL
1965 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1966 copym = m_pullup(copym, sizeof(struct ip));
1967 if (copym != NULL) {
1968 /*
1969 * We don't bother to fragment if the IP length is greater
1970 * than the interface's MTU. Can this possibly matter?
1971 */
1972 ip = mtod(copym, struct ip *);
1973
1974 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1975 in_delayed_cksum(copym);
1976 copym->m_pkthdr.csum_flags &=
1977 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1978 }
1979
1980 ip->ip_sum = 0;
1981 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1982 (void) looutput(ifp, copym, sintosa(dst), NULL);
1983 }
1984 }
1985