ip_output.c revision 1.160.6.1 1 /* $NetBSD: ip_output.c,v 1.160.6.1 2006/05/24 15:50:45 tron Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.160.6.1 2006/05/24 15:50:45 tron Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
160
161 #ifdef PFIL_HOOKS
162 extern struct pfil_head inet_pfil_hook; /* XXX */
163 #endif
164
165 int ip_do_loopback_cksum = 0;
166
167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
172
173 struct ip_tso_output_args {
174 struct ifnet *ifp;
175 struct sockaddr *sa;
176 struct rtentry *rt;
177 };
178
179 static int ip_tso_output_callback(void *, struct mbuf *);
180 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
181 struct rtentry *);
182
183 static int
184 ip_tso_output_callback(void *vp, struct mbuf *m)
185 {
186 struct ip_tso_output_args *args = vp;
187 struct ifnet *ifp = args->ifp;
188
189 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
190 }
191
192 static int
193 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
194 struct rtentry *rt)
195 {
196 struct ip_tso_output_args args;
197
198 args.ifp = ifp;
199 args.sa = sa;
200 args.rt = rt;
201
202 return tcp4_segment(m, ip_tso_output_callback, &args);
203 }
204
205 /*
206 * IP output. The packet in mbuf chain m contains a skeletal IP
207 * header (with len, off, ttl, proto, tos, src, dst).
208 * The mbuf chain containing the packet will be freed.
209 * The mbuf opt, if present, will not be freed.
210 */
211 int
212 ip_output(struct mbuf *m0, ...)
213 {
214 struct ip *ip;
215 struct ifnet *ifp;
216 struct mbuf *m = m0;
217 int hlen = sizeof (struct ip);
218 int len, error = 0;
219 struct route iproute;
220 struct sockaddr_in *dst;
221 struct in_ifaddr *ia;
222 struct mbuf *opt;
223 struct route *ro;
224 int flags, sw_csum;
225 int *mtu_p;
226 u_long mtu;
227 struct ip_moptions *imo;
228 struct socket *so;
229 va_list ap;
230 #ifdef IPSEC_NAT_T
231 int natt_frag = 0;
232 #endif
233 #ifdef IPSEC
234 struct secpolicy *sp = NULL;
235 #endif /*IPSEC*/
236 #ifdef FAST_IPSEC
237 struct inpcb *inp;
238 struct m_tag *mtag;
239 struct secpolicy *sp = NULL;
240 struct tdb_ident *tdbi;
241 int s;
242 #endif
243 u_int16_t ip_len;
244
245 len = 0;
246 va_start(ap, m0);
247 opt = va_arg(ap, struct mbuf *);
248 ro = va_arg(ap, struct route *);
249 flags = va_arg(ap, int);
250 imo = va_arg(ap, struct ip_moptions *);
251 so = va_arg(ap, struct socket *);
252 if (flags & IP_RETURNMTU)
253 mtu_p = va_arg(ap, int *);
254 else
255 mtu_p = NULL;
256 va_end(ap);
257
258 MCLAIM(m, &ip_tx_mowner);
259 #ifdef FAST_IPSEC
260 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
261 inp = (struct inpcb *)so->so_pcb;
262 else
263 inp = NULL;
264 #endif /* FAST_IPSEC */
265
266 #ifdef DIAGNOSTIC
267 if ((m->m_flags & M_PKTHDR) == 0)
268 panic("ip_output no HDR");
269 #endif
270 if (opt) {
271 m = ip_insertoptions(m, opt, &len);
272 if (len >= sizeof(struct ip))
273 hlen = len;
274 }
275 ip = mtod(m, struct ip *);
276 /*
277 * Fill in IP header.
278 */
279 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
280 ip->ip_v = IPVERSION;
281 ip->ip_off = htons(0);
282 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
283 ip->ip_id = ip_newid();
284 } else {
285
286 /*
287 * TSO capable interfaces (typically?) increment
288 * ip_id for each segment.
289 * "allocate" enough ids here to increase the chance
290 * for them to be unique.
291 *
292 * note that the following calculation is not
293 * needed to be precise. wasting some ip_id is fine.
294 */
295
296 unsigned int segsz = m->m_pkthdr.segsz;
297 unsigned int datasz = ntohs(ip->ip_len) - hlen;
298 unsigned int num = howmany(datasz, segsz);
299
300 ip->ip_id = ip_newid_range(num);
301 }
302 ip->ip_hl = hlen >> 2;
303 ipstat.ips_localout++;
304 } else {
305 hlen = ip->ip_hl << 2;
306 }
307 /*
308 * Route packet.
309 */
310 if (ro == 0) {
311 ro = &iproute;
312 bzero((caddr_t)ro, sizeof (*ro));
313 }
314 dst = satosin(&ro->ro_dst);
315 /*
316 * If there is a cached route,
317 * check that it is to the same destination
318 * and is still up. If not, free it and try again.
319 * The address family should also be checked in case of sharing the
320 * cache with IPv6.
321 */
322 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
323 dst->sin_family != AF_INET ||
324 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
325 RTFREE(ro->ro_rt);
326 ro->ro_rt = (struct rtentry *)0;
327 }
328 if (ro->ro_rt == 0) {
329 bzero(dst, sizeof(*dst));
330 dst->sin_family = AF_INET;
331 dst->sin_len = sizeof(*dst);
332 dst->sin_addr = ip->ip_dst;
333 }
334 /*
335 * If routing to interface only,
336 * short circuit routing lookup.
337 */
338 if (flags & IP_ROUTETOIF) {
339 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
340 ipstat.ips_noroute++;
341 error = ENETUNREACH;
342 goto bad;
343 }
344 ifp = ia->ia_ifp;
345 mtu = ifp->if_mtu;
346 ip->ip_ttl = 1;
347 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
348 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
349 imo != NULL && imo->imo_multicast_ifp != NULL) {
350 ifp = imo->imo_multicast_ifp;
351 mtu = ifp->if_mtu;
352 IFP_TO_IA(ifp, ia);
353 } else {
354 if (ro->ro_rt == 0)
355 rtalloc(ro);
356 if (ro->ro_rt == 0) {
357 ipstat.ips_noroute++;
358 error = EHOSTUNREACH;
359 goto bad;
360 }
361 ia = ifatoia(ro->ro_rt->rt_ifa);
362 ifp = ro->ro_rt->rt_ifp;
363 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
364 mtu = ifp->if_mtu;
365 ro->ro_rt->rt_use++;
366 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
367 dst = satosin(ro->ro_rt->rt_gateway);
368 }
369 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
370 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
371 struct in_multi *inm;
372
373 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
374 M_BCAST : M_MCAST;
375 /*
376 * IP destination address is multicast. Make sure "dst"
377 * still points to the address in "ro". (It may have been
378 * changed to point to a gateway address, above.)
379 */
380 dst = satosin(&ro->ro_dst);
381 /*
382 * See if the caller provided any multicast options
383 */
384 if (imo != NULL)
385 ip->ip_ttl = imo->imo_multicast_ttl;
386 else
387 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
388
389 /*
390 * if we don't know the outgoing ifp yet, we can't generate
391 * output
392 */
393 if (!ifp) {
394 ipstat.ips_noroute++;
395 error = ENETUNREACH;
396 goto bad;
397 }
398
399 /*
400 * If the packet is multicast or broadcast, confirm that
401 * the outgoing interface can transmit it.
402 */
403 if (((m->m_flags & M_MCAST) &&
404 (ifp->if_flags & IFF_MULTICAST) == 0) ||
405 ((m->m_flags & M_BCAST) &&
406 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
407 ipstat.ips_noroute++;
408 error = ENETUNREACH;
409 goto bad;
410 }
411 /*
412 * If source address not specified yet, use an address
413 * of outgoing interface.
414 */
415 if (in_nullhost(ip->ip_src)) {
416 struct in_ifaddr *xia;
417
418 IFP_TO_IA(ifp, xia);
419 if (!xia) {
420 error = EADDRNOTAVAIL;
421 goto bad;
422 }
423 ip->ip_src = xia->ia_addr.sin_addr;
424 }
425
426 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
427 if (inm != NULL &&
428 (imo == NULL || imo->imo_multicast_loop)) {
429 /*
430 * If we belong to the destination multicast group
431 * on the outgoing interface, and the caller did not
432 * forbid loopback, loop back a copy.
433 */
434 ip_mloopback(ifp, m, dst);
435 }
436 #ifdef MROUTING
437 else {
438 /*
439 * If we are acting as a multicast router, perform
440 * multicast forwarding as if the packet had just
441 * arrived on the interface to which we are about
442 * to send. The multicast forwarding function
443 * recursively calls this function, using the
444 * IP_FORWARDING flag to prevent infinite recursion.
445 *
446 * Multicasts that are looped back by ip_mloopback(),
447 * above, will be forwarded by the ip_input() routine,
448 * if necessary.
449 */
450 extern struct socket *ip_mrouter;
451
452 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
453 if (ip_mforward(m, ifp) != 0) {
454 m_freem(m);
455 goto done;
456 }
457 }
458 }
459 #endif
460 /*
461 * Multicasts with a time-to-live of zero may be looped-
462 * back, above, but must not be transmitted on a network.
463 * Also, multicasts addressed to the loopback interface
464 * are not sent -- the above call to ip_mloopback() will
465 * loop back a copy if this host actually belongs to the
466 * destination group on the loopback interface.
467 */
468 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
469 m_freem(m);
470 goto done;
471 }
472
473 goto sendit;
474 }
475 /*
476 * If source address not specified yet, use address
477 * of outgoing interface.
478 */
479 if (in_nullhost(ip->ip_src))
480 ip->ip_src = ia->ia_addr.sin_addr;
481
482 /*
483 * packets with Class-D address as source are not valid per
484 * RFC 1112
485 */
486 if (IN_MULTICAST(ip->ip_src.s_addr)) {
487 ipstat.ips_odropped++;
488 error = EADDRNOTAVAIL;
489 goto bad;
490 }
491
492 /*
493 * Look for broadcast address and
494 * and verify user is allowed to send
495 * such a packet.
496 */
497 if (in_broadcast(dst->sin_addr, ifp)) {
498 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
499 error = EADDRNOTAVAIL;
500 goto bad;
501 }
502 if ((flags & IP_ALLOWBROADCAST) == 0) {
503 error = EACCES;
504 goto bad;
505 }
506 /* don't allow broadcast messages to be fragmented */
507 if (ntohs(ip->ip_len) > ifp->if_mtu) {
508 error = EMSGSIZE;
509 goto bad;
510 }
511 m->m_flags |= M_BCAST;
512 } else
513 m->m_flags &= ~M_BCAST;
514
515 sendit:
516 /*
517 * If we're doing Path MTU Discovery, we need to set DF unless
518 * the route's MTU is locked.
519 */
520 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
521 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
522 ip->ip_off |= htons(IP_DF);
523
524 /* Remember the current ip_len */
525 ip_len = ntohs(ip->ip_len);
526
527 #ifdef IPSEC
528 /* get SP for this packet */
529 if (so == NULL)
530 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
531 flags, &error);
532 else {
533 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
534 IPSEC_DIR_OUTBOUND))
535 goto skip_ipsec;
536 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
537 }
538
539 if (sp == NULL) {
540 ipsecstat.out_inval++;
541 goto bad;
542 }
543
544 error = 0;
545
546 /* check policy */
547 switch (sp->policy) {
548 case IPSEC_POLICY_DISCARD:
549 /*
550 * This packet is just discarded.
551 */
552 ipsecstat.out_polvio++;
553 goto bad;
554
555 case IPSEC_POLICY_BYPASS:
556 case IPSEC_POLICY_NONE:
557 /* no need to do IPsec. */
558 goto skip_ipsec;
559
560 case IPSEC_POLICY_IPSEC:
561 if (sp->req == NULL) {
562 /* XXX should be panic ? */
563 printf("ip_output: No IPsec request specified.\n");
564 error = EINVAL;
565 goto bad;
566 }
567 break;
568
569 case IPSEC_POLICY_ENTRUST:
570 default:
571 printf("ip_output: Invalid policy found. %d\n", sp->policy);
572 }
573
574 #ifdef IPSEC_NAT_T
575 /*
576 * NAT-T ESP fragmentation: don't do IPSec processing now,
577 * we'll do it on each fragmented packet.
578 */
579 if (sp->req->sav &&
580 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
581 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
582 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
583 natt_frag = 1;
584 mtu = sp->req->sav->esp_frag;
585 goto skip_ipsec;
586 }
587 }
588 #endif /* IPSEC_NAT_T */
589
590 /*
591 * ipsec4_output() expects ip_len and ip_off in network
592 * order. They have been set to network order above.
593 */
594
595 {
596 struct ipsec_output_state state;
597 bzero(&state, sizeof(state));
598 state.m = m;
599 if (flags & IP_ROUTETOIF) {
600 state.ro = &iproute;
601 bzero(&iproute, sizeof(iproute));
602 } else
603 state.ro = ro;
604 state.dst = (struct sockaddr *)dst;
605
606 /*
607 * We can't defer the checksum of payload data if
608 * we're about to encrypt/authenticate it.
609 *
610 * XXX When we support crypto offloading functions of
611 * XXX network interfaces, we need to reconsider this,
612 * XXX since it's likely that they'll support checksumming,
613 * XXX as well.
614 */
615 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
616 in_delayed_cksum(m);
617 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
618 }
619
620 error = ipsec4_output(&state, sp, flags);
621
622 m = state.m;
623 if (flags & IP_ROUTETOIF) {
624 /*
625 * if we have tunnel mode SA, we may need to ignore
626 * IP_ROUTETOIF.
627 */
628 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
629 flags &= ~IP_ROUTETOIF;
630 ro = state.ro;
631 }
632 } else
633 ro = state.ro;
634 dst = (struct sockaddr_in *)state.dst;
635 if (error) {
636 /* mbuf is already reclaimed in ipsec4_output. */
637 m0 = NULL;
638 switch (error) {
639 case EHOSTUNREACH:
640 case ENETUNREACH:
641 case EMSGSIZE:
642 case ENOBUFS:
643 case ENOMEM:
644 break;
645 default:
646 printf("ip4_output (ipsec): error code %d\n", error);
647 /*fall through*/
648 case ENOENT:
649 /* don't show these error codes to the user */
650 error = 0;
651 break;
652 }
653 goto bad;
654 }
655
656 /* be sure to update variables that are affected by ipsec4_output() */
657 ip = mtod(m, struct ip *);
658 hlen = ip->ip_hl << 2;
659 ip_len = ntohs(ip->ip_len);
660
661 if (ro->ro_rt == NULL) {
662 if ((flags & IP_ROUTETOIF) == 0) {
663 printf("ip_output: "
664 "can't update route after IPsec processing\n");
665 error = EHOSTUNREACH; /*XXX*/
666 goto bad;
667 }
668 } else {
669 /* nobody uses ia beyond here */
670 if (state.encap) {
671 ifp = ro->ro_rt->rt_ifp;
672 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
673 mtu = ifp->if_mtu;
674 }
675 }
676 }
677 skip_ipsec:
678 #endif /*IPSEC*/
679 #ifdef FAST_IPSEC
680 /*
681 * Check the security policy (SP) for the packet and, if
682 * required, do IPsec-related processing. There are two
683 * cases here; the first time a packet is sent through
684 * it will be untagged and handled by ipsec4_checkpolicy.
685 * If the packet is resubmitted to ip_output (e.g. after
686 * AH, ESP, etc. processing), there will be a tag to bypass
687 * the lookup and related policy checking.
688 */
689 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
690 s = splsoftnet();
691 if (mtag != NULL) {
692 tdbi = (struct tdb_ident *)(mtag + 1);
693 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
694 if (sp == NULL)
695 error = -EINVAL; /* force silent drop */
696 m_tag_delete(m, mtag);
697 } else {
698 if (inp != NULL &&
699 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
700 goto spd_done;
701 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
702 &error, inp);
703 }
704 /*
705 * There are four return cases:
706 * sp != NULL apply IPsec policy
707 * sp == NULL, error == 0 no IPsec handling needed
708 * sp == NULL, error == -EINVAL discard packet w/o error
709 * sp == NULL, error != 0 discard packet, report error
710 */
711 if (sp != NULL) {
712 #ifdef IPSEC_NAT_T
713 /*
714 * NAT-T ESP fragmentation: don't do IPSec processing now,
715 * we'll do it on each fragmented packet.
716 */
717 if (sp->req->sav &&
718 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
719 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
720 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
721 natt_frag = 1;
722 mtu = sp->req->sav->esp_frag;
723 goto spd_done;
724 }
725 }
726 #endif /* IPSEC_NAT_T */
727 /* Loop detection, check if ipsec processing already done */
728 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
729 for (mtag = m_tag_first(m); mtag != NULL;
730 mtag = m_tag_next(m, mtag)) {
731 #ifdef MTAG_ABI_COMPAT
732 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
733 continue;
734 #endif
735 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
736 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
737 continue;
738 /*
739 * Check if policy has an SA associated with it.
740 * This can happen when an SP has yet to acquire
741 * an SA; e.g. on first reference. If it occurs,
742 * then we let ipsec4_process_packet do its thing.
743 */
744 if (sp->req->sav == NULL)
745 break;
746 tdbi = (struct tdb_ident *)(mtag + 1);
747 if (tdbi->spi == sp->req->sav->spi &&
748 tdbi->proto == sp->req->sav->sah->saidx.proto &&
749 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
750 sizeof (union sockaddr_union)) == 0) {
751 /*
752 * No IPsec processing is needed, free
753 * reference to SP.
754 *
755 * NB: null pointer to avoid free at
756 * done: below.
757 */
758 KEY_FREESP(&sp), sp = NULL;
759 splx(s);
760 goto spd_done;
761 }
762 }
763
764 /*
765 * Do delayed checksums now because we send before
766 * this is done in the normal processing path.
767 */
768 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
769 in_delayed_cksum(m);
770 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
771 }
772
773 #ifdef __FreeBSD__
774 ip->ip_len = htons(ip->ip_len);
775 ip->ip_off = htons(ip->ip_off);
776 #endif
777
778 /* NB: callee frees mbuf */
779 error = ipsec4_process_packet(m, sp->req, flags, 0);
780 /*
781 * Preserve KAME behaviour: ENOENT can be returned
782 * when an SA acquire is in progress. Don't propagate
783 * this to user-level; it confuses applications.
784 *
785 * XXX this will go away when the SADB is redone.
786 */
787 if (error == ENOENT)
788 error = 0;
789 splx(s);
790 goto done;
791 } else {
792 splx(s);
793
794 if (error != 0) {
795 /*
796 * Hack: -EINVAL is used to signal that a packet
797 * should be silently discarded. This is typically
798 * because we asked key management for an SA and
799 * it was delayed (e.g. kicked up to IKE).
800 */
801 if (error == -EINVAL)
802 error = 0;
803 goto bad;
804 } else {
805 /* No IPsec processing for this packet. */
806 }
807 #ifdef notyet
808 /*
809 * If deferred crypto processing is needed, check that
810 * the interface supports it.
811 */
812 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
813 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
814 /* notify IPsec to do its own crypto */
815 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
816 error = EHOSTUNREACH;
817 goto bad;
818 }
819 #endif
820 }
821 spd_done:
822 #endif /* FAST_IPSEC */
823
824 #ifdef PFIL_HOOKS
825 /*
826 * Run through list of hooks for output packets.
827 */
828 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
829 goto done;
830 if (m == NULL)
831 goto done;
832
833 ip = mtod(m, struct ip *);
834 hlen = ip->ip_hl << 2;
835 #endif /* PFIL_HOOKS */
836
837 m->m_pkthdr.csum_data |= hlen << 16;
838
839 #if IFA_STATS
840 /*
841 * search for the source address structure to
842 * maintain output statistics.
843 */
844 INADDR_TO_IA(ip->ip_src, ia);
845 #endif
846
847 /* Maybe skip checksums on loopback interfaces. */
848 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
849 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
850 }
851 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
852 /*
853 * If small enough for mtu of path, or if using TCP segmentation
854 * offload, can just send directly.
855 */
856 if (ip_len <= mtu ||
857 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
858 #if IFA_STATS
859 if (ia)
860 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
861 #endif
862 /*
863 * Always initialize the sum to 0! Some HW assisted
864 * checksumming requires this.
865 */
866 ip->ip_sum = 0;
867
868 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
869 /*
870 * Perform any checksums that the hardware can't do
871 * for us.
872 *
873 * XXX Does any hardware require the {th,uh}_sum
874 * XXX fields to be 0?
875 */
876 if (sw_csum & M_CSUM_IPv4) {
877 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
878 ip->ip_sum = in_cksum(m, hlen);
879 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
880 }
881 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
882 if (IN_NEED_CHECKSUM(ifp,
883 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
884 in_delayed_cksum(m);
885 }
886 m->m_pkthdr.csum_flags &=
887 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
888 }
889 }
890
891 #ifdef IPSEC
892 /* clean ipsec history once it goes out of the node */
893 ipsec_delaux(m);
894 #endif
895
896 if (__predict_true(
897 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
898 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
899 error =
900 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
901 } else {
902 error =
903 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
904 }
905 goto done;
906 }
907
908 /*
909 * We can't use HW checksumming if we're about to
910 * to fragment the packet.
911 *
912 * XXX Some hardware can do this.
913 */
914 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
915 if (IN_NEED_CHECKSUM(ifp,
916 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
917 in_delayed_cksum(m);
918 }
919 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
920 }
921
922 /*
923 * Too large for interface; fragment if possible.
924 * Must be able to put at least 8 bytes per fragment.
925 */
926 if (ntohs(ip->ip_off) & IP_DF) {
927 if (flags & IP_RETURNMTU)
928 *mtu_p = mtu;
929 error = EMSGSIZE;
930 ipstat.ips_cantfrag++;
931 goto bad;
932 }
933
934 error = ip_fragment(m, ifp, mtu);
935 if (error) {
936 m = NULL;
937 goto bad;
938 }
939
940 for (; m; m = m0) {
941 m0 = m->m_nextpkt;
942 m->m_nextpkt = 0;
943 if (error == 0) {
944 #if IFA_STATS
945 if (ia)
946 ia->ia_ifa.ifa_data.ifad_outbytes +=
947 ntohs(ip->ip_len);
948 #endif
949 #ifdef IPSEC
950 /* clean ipsec history once it goes out of the node */
951 ipsec_delaux(m);
952 #endif /* IPSEC */
953
954 #ifdef IPSEC_NAT_T
955 /*
956 * If we get there, the packet has not been handeld by
957 * IPSec whereas it should have. Now that it has been
958 * fragmented, re-inject it in ip_output so that IPsec
959 * processing can occur.
960 */
961 if (natt_frag) {
962 error = ip_output(m, opt,
963 ro, flags, imo, so, mtu_p);
964 } else
965 #endif /* IPSEC_NAT_T */
966 {
967 KASSERT((m->m_pkthdr.csum_flags &
968 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
969 error = (*ifp->if_output)(ifp, m, sintosa(dst),
970 ro->ro_rt);
971 }
972 } else
973 m_freem(m);
974 }
975
976 if (error == 0)
977 ipstat.ips_fragmented++;
978 done:
979 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
980 RTFREE(ro->ro_rt);
981 ro->ro_rt = 0;
982 }
983
984 #ifdef IPSEC
985 if (sp != NULL) {
986 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
987 printf("DP ip_output call free SP:%p\n", sp));
988 key_freesp(sp);
989 }
990 #endif /* IPSEC */
991 #ifdef FAST_IPSEC
992 if (sp != NULL)
993 KEY_FREESP(&sp);
994 #endif /* FAST_IPSEC */
995
996 return (error);
997 bad:
998 m_freem(m);
999 goto done;
1000 }
1001
1002 int
1003 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
1004 {
1005 struct ip *ip, *mhip;
1006 struct mbuf *m0;
1007 int len, hlen, off;
1008 int mhlen, firstlen;
1009 struct mbuf **mnext;
1010 int sw_csum = m->m_pkthdr.csum_flags;
1011 int fragments = 0;
1012 int s;
1013 int error = 0;
1014
1015 ip = mtod(m, struct ip *);
1016 hlen = ip->ip_hl << 2;
1017 if (ifp != NULL)
1018 sw_csum &= ~ifp->if_csum_flags_tx;
1019
1020 len = (mtu - hlen) &~ 7;
1021 if (len < 8) {
1022 m_freem(m);
1023 return (EMSGSIZE);
1024 }
1025
1026 firstlen = len;
1027 mnext = &m->m_nextpkt;
1028
1029 /*
1030 * Loop through length of segment after first fragment,
1031 * make new header and copy data of each part and link onto chain.
1032 */
1033 m0 = m;
1034 mhlen = sizeof (struct ip);
1035 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1036 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1037 if (m == 0) {
1038 error = ENOBUFS;
1039 ipstat.ips_odropped++;
1040 goto sendorfree;
1041 }
1042 MCLAIM(m, m0->m_owner);
1043 *mnext = m;
1044 mnext = &m->m_nextpkt;
1045 m->m_data += max_linkhdr;
1046 mhip = mtod(m, struct ip *);
1047 *mhip = *ip;
1048 /* we must inherit MCAST and BCAST flags */
1049 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1050 if (hlen > sizeof (struct ip)) {
1051 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1052 mhip->ip_hl = mhlen >> 2;
1053 }
1054 m->m_len = mhlen;
1055 mhip->ip_off = ((off - hlen) >> 3) +
1056 (ntohs(ip->ip_off) & ~IP_MF);
1057 if (ip->ip_off & htons(IP_MF))
1058 mhip->ip_off |= IP_MF;
1059 if (off + len >= ntohs(ip->ip_len))
1060 len = ntohs(ip->ip_len) - off;
1061 else
1062 mhip->ip_off |= IP_MF;
1063 HTONS(mhip->ip_off);
1064 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1065 m->m_next = m_copy(m0, off, len);
1066 if (m->m_next == 0) {
1067 error = ENOBUFS; /* ??? */
1068 ipstat.ips_odropped++;
1069 goto sendorfree;
1070 }
1071 m->m_pkthdr.len = mhlen + len;
1072 m->m_pkthdr.rcvif = (struct ifnet *)0;
1073 mhip->ip_sum = 0;
1074 if (sw_csum & M_CSUM_IPv4) {
1075 mhip->ip_sum = in_cksum(m, mhlen);
1076 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1077 } else {
1078 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1079 m->m_pkthdr.csum_data |= mhlen << 16;
1080 }
1081 ipstat.ips_ofragments++;
1082 fragments++;
1083 }
1084 /*
1085 * Update first fragment by trimming what's been copied out
1086 * and updating header, then send each fragment (in order).
1087 */
1088 m = m0;
1089 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1090 m->m_pkthdr.len = hlen + firstlen;
1091 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1092 ip->ip_off |= htons(IP_MF);
1093 ip->ip_sum = 0;
1094 if (sw_csum & M_CSUM_IPv4) {
1095 ip->ip_sum = in_cksum(m, hlen);
1096 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1097 } else {
1098 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1099 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1100 sizeof(struct ip));
1101 }
1102 sendorfree:
1103 /*
1104 * If there is no room for all the fragments, don't queue
1105 * any of them.
1106 */
1107 if (ifp != NULL) {
1108 s = splnet();
1109 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1110 error == 0) {
1111 error = ENOBUFS;
1112 ipstat.ips_odropped++;
1113 IFQ_INC_DROPS(&ifp->if_snd);
1114 }
1115 splx(s);
1116 }
1117 if (error) {
1118 for (m = m0; m; m = m0) {
1119 m0 = m->m_nextpkt;
1120 m->m_nextpkt = NULL;
1121 m_freem(m);
1122 }
1123 }
1124 return (error);
1125 }
1126
1127 /*
1128 * Process a delayed payload checksum calculation.
1129 */
1130 void
1131 in_delayed_cksum(struct mbuf *m)
1132 {
1133 struct ip *ip;
1134 u_int16_t csum, offset;
1135
1136 ip = mtod(m, struct ip *);
1137 offset = ip->ip_hl << 2;
1138 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1139 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1140 csum = 0xffff;
1141
1142 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1143
1144 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1145 /* This happen when ip options were inserted
1146 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1147 m->m_len, offset, ip->ip_p);
1148 */
1149 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1150 } else
1151 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1152 }
1153
1154 /*
1155 * Determine the maximum length of the options to be inserted;
1156 * we would far rather allocate too much space rather than too little.
1157 */
1158
1159 u_int
1160 ip_optlen(struct inpcb *inp)
1161 {
1162 struct mbuf *m = inp->inp_options;
1163
1164 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1165 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1166 else
1167 return 0;
1168 }
1169
1170
1171 /*
1172 * Insert IP options into preformed packet.
1173 * Adjust IP destination as required for IP source routing,
1174 * as indicated by a non-zero in_addr at the start of the options.
1175 */
1176 static struct mbuf *
1177 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1178 {
1179 struct ipoption *p = mtod(opt, struct ipoption *);
1180 struct mbuf *n;
1181 struct ip *ip = mtod(m, struct ip *);
1182 unsigned optlen;
1183
1184 optlen = opt->m_len - sizeof(p->ipopt_dst);
1185 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1186 return (m); /* XXX should fail */
1187 if (!in_nullhost(p->ipopt_dst))
1188 ip->ip_dst = p->ipopt_dst;
1189 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1190 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1191 if (n == 0)
1192 return (m);
1193 MCLAIM(n, m->m_owner);
1194 M_MOVE_PKTHDR(n, m);
1195 m->m_len -= sizeof(struct ip);
1196 m->m_data += sizeof(struct ip);
1197 n->m_next = m;
1198 m = n;
1199 m->m_len = optlen + sizeof(struct ip);
1200 m->m_data += max_linkhdr;
1201 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1202 } else {
1203 m->m_data -= optlen;
1204 m->m_len += optlen;
1205 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1206 }
1207 m->m_pkthdr.len += optlen;
1208 ip = mtod(m, struct ip *);
1209 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1210 *phlen = sizeof(struct ip) + optlen;
1211 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1212 return (m);
1213 }
1214
1215 /*
1216 * Copy options from ip to jp,
1217 * omitting those not copied during fragmentation.
1218 */
1219 int
1220 ip_optcopy(struct ip *ip, struct ip *jp)
1221 {
1222 u_char *cp, *dp;
1223 int opt, optlen, cnt;
1224
1225 cp = (u_char *)(ip + 1);
1226 dp = (u_char *)(jp + 1);
1227 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1228 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1229 opt = cp[0];
1230 if (opt == IPOPT_EOL)
1231 break;
1232 if (opt == IPOPT_NOP) {
1233 /* Preserve for IP mcast tunnel's LSRR alignment. */
1234 *dp++ = IPOPT_NOP;
1235 optlen = 1;
1236 continue;
1237 }
1238 #ifdef DIAGNOSTIC
1239 if (cnt < IPOPT_OLEN + sizeof(*cp))
1240 panic("malformed IPv4 option passed to ip_optcopy");
1241 #endif
1242 optlen = cp[IPOPT_OLEN];
1243 #ifdef DIAGNOSTIC
1244 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1245 panic("malformed IPv4 option passed to ip_optcopy");
1246 #endif
1247 /* bogus lengths should have been caught by ip_dooptions */
1248 if (optlen > cnt)
1249 optlen = cnt;
1250 if (IPOPT_COPIED(opt)) {
1251 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1252 dp += optlen;
1253 }
1254 }
1255 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1256 *dp++ = IPOPT_EOL;
1257 return (optlen);
1258 }
1259
1260 /*
1261 * IP socket option processing.
1262 */
1263 int
1264 ip_ctloutput(int op, struct socket *so, int level, int optname,
1265 struct mbuf **mp)
1266 {
1267 struct inpcb *inp = sotoinpcb(so);
1268 struct mbuf *m = *mp;
1269 int optval = 0;
1270 int error = 0;
1271 #if defined(IPSEC) || defined(FAST_IPSEC)
1272 struct proc *p = curproc; /*XXX*/
1273 #endif
1274
1275 if (level != IPPROTO_IP) {
1276 error = EINVAL;
1277 if (op == PRCO_SETOPT && *mp)
1278 (void) m_free(*mp);
1279 } else switch (op) {
1280
1281 case PRCO_SETOPT:
1282 switch (optname) {
1283 case IP_OPTIONS:
1284 #ifdef notyet
1285 case IP_RETOPTS:
1286 return (ip_pcbopts(optname, &inp->inp_options, m));
1287 #else
1288 return (ip_pcbopts(&inp->inp_options, m));
1289 #endif
1290
1291 case IP_TOS:
1292 case IP_TTL:
1293 case IP_RECVOPTS:
1294 case IP_RECVRETOPTS:
1295 case IP_RECVDSTADDR:
1296 case IP_RECVIF:
1297 if (m == NULL || m->m_len != sizeof(int))
1298 error = EINVAL;
1299 else {
1300 optval = *mtod(m, int *);
1301 switch (optname) {
1302
1303 case IP_TOS:
1304 inp->inp_ip.ip_tos = optval;
1305 break;
1306
1307 case IP_TTL:
1308 inp->inp_ip.ip_ttl = optval;
1309 break;
1310 #define OPTSET(bit) \
1311 if (optval) \
1312 inp->inp_flags |= bit; \
1313 else \
1314 inp->inp_flags &= ~bit;
1315
1316 case IP_RECVOPTS:
1317 OPTSET(INP_RECVOPTS);
1318 break;
1319
1320 case IP_RECVRETOPTS:
1321 OPTSET(INP_RECVRETOPTS);
1322 break;
1323
1324 case IP_RECVDSTADDR:
1325 OPTSET(INP_RECVDSTADDR);
1326 break;
1327
1328 case IP_RECVIF:
1329 OPTSET(INP_RECVIF);
1330 break;
1331 }
1332 }
1333 break;
1334 #undef OPTSET
1335
1336 case IP_MULTICAST_IF:
1337 case IP_MULTICAST_TTL:
1338 case IP_MULTICAST_LOOP:
1339 case IP_ADD_MEMBERSHIP:
1340 case IP_DROP_MEMBERSHIP:
1341 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1342 break;
1343
1344 case IP_PORTRANGE:
1345 if (m == 0 || m->m_len != sizeof(int))
1346 error = EINVAL;
1347 else {
1348 optval = *mtod(m, int *);
1349
1350 switch (optval) {
1351
1352 case IP_PORTRANGE_DEFAULT:
1353 case IP_PORTRANGE_HIGH:
1354 inp->inp_flags &= ~(INP_LOWPORT);
1355 break;
1356
1357 case IP_PORTRANGE_LOW:
1358 inp->inp_flags |= INP_LOWPORT;
1359 break;
1360
1361 default:
1362 error = EINVAL;
1363 break;
1364 }
1365 }
1366 break;
1367
1368 #if defined(IPSEC) || defined(FAST_IPSEC)
1369 case IP_IPSEC_POLICY:
1370 {
1371 caddr_t req = NULL;
1372 size_t len = 0;
1373 int priv = 0;
1374
1375 #ifdef __NetBSD__
1376 if (p == 0 || kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
1377 &p->p_acflag))
1378 priv = 0;
1379 else
1380 priv = 1;
1381 #else
1382 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1383 #endif
1384 if (m) {
1385 req = mtod(m, caddr_t);
1386 len = m->m_len;
1387 }
1388 error = ipsec4_set_policy(inp, optname, req, len, priv);
1389 break;
1390 }
1391 #endif /*IPSEC*/
1392
1393 default:
1394 error = ENOPROTOOPT;
1395 break;
1396 }
1397 if (m)
1398 (void)m_free(m);
1399 break;
1400
1401 case PRCO_GETOPT:
1402 switch (optname) {
1403 case IP_OPTIONS:
1404 case IP_RETOPTS:
1405 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1406 MCLAIM(m, so->so_mowner);
1407 if (inp->inp_options) {
1408 m->m_len = inp->inp_options->m_len;
1409 bcopy(mtod(inp->inp_options, caddr_t),
1410 mtod(m, caddr_t), (unsigned)m->m_len);
1411 } else
1412 m->m_len = 0;
1413 break;
1414
1415 case IP_TOS:
1416 case IP_TTL:
1417 case IP_RECVOPTS:
1418 case IP_RECVRETOPTS:
1419 case IP_RECVDSTADDR:
1420 case IP_RECVIF:
1421 case IP_ERRORMTU:
1422 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1423 MCLAIM(m, so->so_mowner);
1424 m->m_len = sizeof(int);
1425 switch (optname) {
1426
1427 case IP_TOS:
1428 optval = inp->inp_ip.ip_tos;
1429 break;
1430
1431 case IP_TTL:
1432 optval = inp->inp_ip.ip_ttl;
1433 break;
1434
1435 case IP_ERRORMTU:
1436 optval = inp->inp_errormtu;
1437 break;
1438
1439 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1440
1441 case IP_RECVOPTS:
1442 optval = OPTBIT(INP_RECVOPTS);
1443 break;
1444
1445 case IP_RECVRETOPTS:
1446 optval = OPTBIT(INP_RECVRETOPTS);
1447 break;
1448
1449 case IP_RECVDSTADDR:
1450 optval = OPTBIT(INP_RECVDSTADDR);
1451 break;
1452
1453 case IP_RECVIF:
1454 optval = OPTBIT(INP_RECVIF);
1455 break;
1456 }
1457 *mtod(m, int *) = optval;
1458 break;
1459
1460 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1461 /* XXX: code broken */
1462 case IP_IPSEC_POLICY:
1463 {
1464 caddr_t req = NULL;
1465 size_t len = 0;
1466
1467 if (m) {
1468 req = mtod(m, caddr_t);
1469 len = m->m_len;
1470 }
1471 error = ipsec4_get_policy(inp, req, len, mp);
1472 break;
1473 }
1474 #endif /*IPSEC*/
1475
1476 case IP_MULTICAST_IF:
1477 case IP_MULTICAST_TTL:
1478 case IP_MULTICAST_LOOP:
1479 case IP_ADD_MEMBERSHIP:
1480 case IP_DROP_MEMBERSHIP:
1481 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1482 if (*mp)
1483 MCLAIM(*mp, so->so_mowner);
1484 break;
1485
1486 case IP_PORTRANGE:
1487 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1488 MCLAIM(m, so->so_mowner);
1489 m->m_len = sizeof(int);
1490
1491 if (inp->inp_flags & INP_LOWPORT)
1492 optval = IP_PORTRANGE_LOW;
1493 else
1494 optval = IP_PORTRANGE_DEFAULT;
1495
1496 *mtod(m, int *) = optval;
1497 break;
1498
1499 default:
1500 error = ENOPROTOOPT;
1501 break;
1502 }
1503 break;
1504 }
1505 return (error);
1506 }
1507
1508 /*
1509 * Set up IP options in pcb for insertion in output packets.
1510 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1511 * with destination address if source routed.
1512 */
1513 int
1514 #ifdef notyet
1515 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1516 #else
1517 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1518 #endif
1519 {
1520 int cnt, optlen;
1521 u_char *cp;
1522 u_char opt;
1523
1524 /* turn off any old options */
1525 if (*pcbopt)
1526 (void)m_free(*pcbopt);
1527 *pcbopt = 0;
1528 if (m == (struct mbuf *)0 || m->m_len == 0) {
1529 /*
1530 * Only turning off any previous options.
1531 */
1532 if (m)
1533 (void)m_free(m);
1534 return (0);
1535 }
1536
1537 #ifndef __vax__
1538 if (m->m_len % sizeof(int32_t))
1539 goto bad;
1540 #endif
1541 /*
1542 * IP first-hop destination address will be stored before
1543 * actual options; move other options back
1544 * and clear it when none present.
1545 */
1546 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1547 goto bad;
1548 cnt = m->m_len;
1549 m->m_len += sizeof(struct in_addr);
1550 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1551 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1552 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1553
1554 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1555 opt = cp[IPOPT_OPTVAL];
1556 if (opt == IPOPT_EOL)
1557 break;
1558 if (opt == IPOPT_NOP)
1559 optlen = 1;
1560 else {
1561 if (cnt < IPOPT_OLEN + sizeof(*cp))
1562 goto bad;
1563 optlen = cp[IPOPT_OLEN];
1564 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1565 goto bad;
1566 }
1567 switch (opt) {
1568
1569 default:
1570 break;
1571
1572 case IPOPT_LSRR:
1573 case IPOPT_SSRR:
1574 /*
1575 * user process specifies route as:
1576 * ->A->B->C->D
1577 * D must be our final destination (but we can't
1578 * check that since we may not have connected yet).
1579 * A is first hop destination, which doesn't appear in
1580 * actual IP option, but is stored before the options.
1581 */
1582 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1583 goto bad;
1584 m->m_len -= sizeof(struct in_addr);
1585 cnt -= sizeof(struct in_addr);
1586 optlen -= sizeof(struct in_addr);
1587 cp[IPOPT_OLEN] = optlen;
1588 /*
1589 * Move first hop before start of options.
1590 */
1591 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1592 sizeof(struct in_addr));
1593 /*
1594 * Then copy rest of options back
1595 * to close up the deleted entry.
1596 */
1597 (void)memmove(&cp[IPOPT_OFFSET+1],
1598 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1599 (unsigned)cnt - (IPOPT_MINOFF - 1));
1600 break;
1601 }
1602 }
1603 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1604 goto bad;
1605 *pcbopt = m;
1606 return (0);
1607
1608 bad:
1609 (void)m_free(m);
1610 return (EINVAL);
1611 }
1612
1613 /*
1614 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1615 */
1616 static struct ifnet *
1617 ip_multicast_if(struct in_addr *a, int *ifindexp)
1618 {
1619 int ifindex;
1620 struct ifnet *ifp = NULL;
1621 struct in_ifaddr *ia;
1622
1623 if (ifindexp)
1624 *ifindexp = 0;
1625 if (ntohl(a->s_addr) >> 24 == 0) {
1626 ifindex = ntohl(a->s_addr) & 0xffffff;
1627 if (ifindex < 0 || if_indexlim <= ifindex)
1628 return NULL;
1629 ifp = ifindex2ifnet[ifindex];
1630 if (!ifp)
1631 return NULL;
1632 if (ifindexp)
1633 *ifindexp = ifindex;
1634 } else {
1635 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1636 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1637 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1638 ifp = ia->ia_ifp;
1639 break;
1640 }
1641 }
1642 }
1643 return ifp;
1644 }
1645
1646 static int
1647 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1648 {
1649 u_int tval;
1650
1651 if (m == NULL)
1652 return EINVAL;
1653
1654 switch (m->m_len) {
1655 case sizeof(u_char):
1656 tval = *(mtod(m, u_char *));
1657 break;
1658 case sizeof(u_int):
1659 tval = *(mtod(m, u_int *));
1660 break;
1661 default:
1662 return EINVAL;
1663 }
1664
1665 if (tval > maxval)
1666 return EINVAL;
1667
1668 *val = tval;
1669 return 0;
1670 }
1671
1672 /*
1673 * Set the IP multicast options in response to user setsockopt().
1674 */
1675 int
1676 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1677 {
1678 int error = 0;
1679 int i;
1680 struct in_addr addr;
1681 struct ip_mreq *mreq;
1682 struct ifnet *ifp;
1683 struct ip_moptions *imo = *imop;
1684 struct route ro;
1685 struct sockaddr_in *dst;
1686 int ifindex;
1687
1688 if (imo == NULL) {
1689 /*
1690 * No multicast option buffer attached to the pcb;
1691 * allocate one and initialize to default values.
1692 */
1693 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1694 M_WAITOK);
1695
1696 if (imo == NULL)
1697 return (ENOBUFS);
1698 *imop = imo;
1699 imo->imo_multicast_ifp = NULL;
1700 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1701 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1702 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1703 imo->imo_num_memberships = 0;
1704 }
1705
1706 switch (optname) {
1707
1708 case IP_MULTICAST_IF:
1709 /*
1710 * Select the interface for outgoing multicast packets.
1711 */
1712 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1713 error = EINVAL;
1714 break;
1715 }
1716 addr = *(mtod(m, struct in_addr *));
1717 /*
1718 * INADDR_ANY is used to remove a previous selection.
1719 * When no interface is selected, a default one is
1720 * chosen every time a multicast packet is sent.
1721 */
1722 if (in_nullhost(addr)) {
1723 imo->imo_multicast_ifp = NULL;
1724 break;
1725 }
1726 /*
1727 * The selected interface is identified by its local
1728 * IP address. Find the interface and confirm that
1729 * it supports multicasting.
1730 */
1731 ifp = ip_multicast_if(&addr, &ifindex);
1732 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1733 error = EADDRNOTAVAIL;
1734 break;
1735 }
1736 imo->imo_multicast_ifp = ifp;
1737 if (ifindex)
1738 imo->imo_multicast_addr = addr;
1739 else
1740 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1741 break;
1742
1743 case IP_MULTICAST_TTL:
1744 /*
1745 * Set the IP time-to-live for outgoing multicast packets.
1746 */
1747 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1748 break;
1749
1750 case IP_MULTICAST_LOOP:
1751 /*
1752 * Set the loopback flag for outgoing multicast packets.
1753 * Must be zero or one.
1754 */
1755 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1756 break;
1757
1758 case IP_ADD_MEMBERSHIP:
1759 /*
1760 * Add a multicast group membership.
1761 * Group must be a valid IP multicast address.
1762 */
1763 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1764 error = EINVAL;
1765 break;
1766 }
1767 mreq = mtod(m, struct ip_mreq *);
1768 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1769 error = EINVAL;
1770 break;
1771 }
1772 /*
1773 * If no interface address was provided, use the interface of
1774 * the route to the given multicast address.
1775 */
1776 if (in_nullhost(mreq->imr_interface)) {
1777 bzero((caddr_t)&ro, sizeof(ro));
1778 ro.ro_rt = NULL;
1779 dst = satosin(&ro.ro_dst);
1780 dst->sin_len = sizeof(*dst);
1781 dst->sin_family = AF_INET;
1782 dst->sin_addr = mreq->imr_multiaddr;
1783 rtalloc(&ro);
1784 if (ro.ro_rt == NULL) {
1785 error = EADDRNOTAVAIL;
1786 break;
1787 }
1788 ifp = ro.ro_rt->rt_ifp;
1789 rtfree(ro.ro_rt);
1790 } else {
1791 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1792 }
1793 /*
1794 * See if we found an interface, and confirm that it
1795 * supports multicast.
1796 */
1797 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1798 error = EADDRNOTAVAIL;
1799 break;
1800 }
1801 /*
1802 * See if the membership already exists or if all the
1803 * membership slots are full.
1804 */
1805 for (i = 0; i < imo->imo_num_memberships; ++i) {
1806 if (imo->imo_membership[i]->inm_ifp == ifp &&
1807 in_hosteq(imo->imo_membership[i]->inm_addr,
1808 mreq->imr_multiaddr))
1809 break;
1810 }
1811 if (i < imo->imo_num_memberships) {
1812 error = EADDRINUSE;
1813 break;
1814 }
1815 if (i == IP_MAX_MEMBERSHIPS) {
1816 error = ETOOMANYREFS;
1817 break;
1818 }
1819 /*
1820 * Everything looks good; add a new record to the multicast
1821 * address list for the given interface.
1822 */
1823 if ((imo->imo_membership[i] =
1824 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1825 error = ENOBUFS;
1826 break;
1827 }
1828 ++imo->imo_num_memberships;
1829 break;
1830
1831 case IP_DROP_MEMBERSHIP:
1832 /*
1833 * Drop a multicast group membership.
1834 * Group must be a valid IP multicast address.
1835 */
1836 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1837 error = EINVAL;
1838 break;
1839 }
1840 mreq = mtod(m, struct ip_mreq *);
1841 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1842 error = EINVAL;
1843 break;
1844 }
1845 /*
1846 * If an interface address was specified, get a pointer
1847 * to its ifnet structure.
1848 */
1849 if (in_nullhost(mreq->imr_interface))
1850 ifp = NULL;
1851 else {
1852 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1853 if (ifp == NULL) {
1854 error = EADDRNOTAVAIL;
1855 break;
1856 }
1857 }
1858 /*
1859 * Find the membership in the membership array.
1860 */
1861 for (i = 0; i < imo->imo_num_memberships; ++i) {
1862 if ((ifp == NULL ||
1863 imo->imo_membership[i]->inm_ifp == ifp) &&
1864 in_hosteq(imo->imo_membership[i]->inm_addr,
1865 mreq->imr_multiaddr))
1866 break;
1867 }
1868 if (i == imo->imo_num_memberships) {
1869 error = EADDRNOTAVAIL;
1870 break;
1871 }
1872 /*
1873 * Give up the multicast address record to which the
1874 * membership points.
1875 */
1876 in_delmulti(imo->imo_membership[i]);
1877 /*
1878 * Remove the gap in the membership array.
1879 */
1880 for (++i; i < imo->imo_num_memberships; ++i)
1881 imo->imo_membership[i-1] = imo->imo_membership[i];
1882 --imo->imo_num_memberships;
1883 break;
1884
1885 default:
1886 error = EOPNOTSUPP;
1887 break;
1888 }
1889
1890 /*
1891 * If all options have default values, no need to keep the mbuf.
1892 */
1893 if (imo->imo_multicast_ifp == NULL &&
1894 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1895 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1896 imo->imo_num_memberships == 0) {
1897 free(*imop, M_IPMOPTS);
1898 *imop = NULL;
1899 }
1900
1901 return (error);
1902 }
1903
1904 /*
1905 * Return the IP multicast options in response to user getsockopt().
1906 */
1907 int
1908 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1909 {
1910 u_char *ttl;
1911 u_char *loop;
1912 struct in_addr *addr;
1913 struct in_ifaddr *ia;
1914
1915 *mp = m_get(M_WAIT, MT_SOOPTS);
1916
1917 switch (optname) {
1918
1919 case IP_MULTICAST_IF:
1920 addr = mtod(*mp, struct in_addr *);
1921 (*mp)->m_len = sizeof(struct in_addr);
1922 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1923 *addr = zeroin_addr;
1924 else if (imo->imo_multicast_addr.s_addr) {
1925 /* return the value user has set */
1926 *addr = imo->imo_multicast_addr;
1927 } else {
1928 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1929 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1930 }
1931 return (0);
1932
1933 case IP_MULTICAST_TTL:
1934 ttl = mtod(*mp, u_char *);
1935 (*mp)->m_len = 1;
1936 *ttl = imo ? imo->imo_multicast_ttl
1937 : IP_DEFAULT_MULTICAST_TTL;
1938 return (0);
1939
1940 case IP_MULTICAST_LOOP:
1941 loop = mtod(*mp, u_char *);
1942 (*mp)->m_len = 1;
1943 *loop = imo ? imo->imo_multicast_loop
1944 : IP_DEFAULT_MULTICAST_LOOP;
1945 return (0);
1946
1947 default:
1948 return (EOPNOTSUPP);
1949 }
1950 }
1951
1952 /*
1953 * Discard the IP multicast options.
1954 */
1955 void
1956 ip_freemoptions(struct ip_moptions *imo)
1957 {
1958 int i;
1959
1960 if (imo != NULL) {
1961 for (i = 0; i < imo->imo_num_memberships; ++i)
1962 in_delmulti(imo->imo_membership[i]);
1963 free(imo, M_IPMOPTS);
1964 }
1965 }
1966
1967 /*
1968 * Routine called from ip_output() to loop back a copy of an IP multicast
1969 * packet to the input queue of a specified interface. Note that this
1970 * calls the output routine of the loopback "driver", but with an interface
1971 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1972 */
1973 static void
1974 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1975 {
1976 struct ip *ip;
1977 struct mbuf *copym;
1978
1979 copym = m_copy(m, 0, M_COPYALL);
1980 if (copym != NULL
1981 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1982 copym = m_pullup(copym, sizeof(struct ip));
1983 if (copym != NULL) {
1984 /*
1985 * We don't bother to fragment if the IP length is greater
1986 * than the interface's MTU. Can this possibly matter?
1987 */
1988 ip = mtod(copym, struct ip *);
1989
1990 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1991 in_delayed_cksum(copym);
1992 copym->m_pkthdr.csum_flags &=
1993 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1994 }
1995
1996 ip->ip_sum = 0;
1997 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1998 (void) looutput(ifp, copym, sintosa(dst), NULL);
1999 }
2000 }
2001