ip_output.c revision 1.161 1 /* $NetBSD: ip_output.c,v 1.161 2006/05/14 21:19:34 elad Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.161 2006/05/14 21:19:34 elad Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #ifdef FAST_IPSEC
116 #include <sys/domain.h>
117 #endif
118 #include <sys/systm.h>
119 #include <sys/proc.h>
120
121 #include <net/if.h>
122 #include <net/route.h>
123 #include <net/pfil.h>
124
125 #include <netinet/in.h>
126 #include <netinet/in_systm.h>
127 #include <netinet/ip.h>
128 #include <netinet/in_pcb.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/in_offload.h>
132
133 #ifdef MROUTING
134 #include <netinet/ip_mroute.h>
135 #endif
136
137 #include <machine/stdarg.h>
138
139 #ifdef IPSEC
140 #include <netinet6/ipsec.h>
141 #include <netkey/key.h>
142 #include <netkey/key_debug.h>
143 #endif /*IPSEC*/
144
145 #ifdef FAST_IPSEC
146 #include <netipsec/ipsec.h>
147 #include <netipsec/key.h>
148 #include <netipsec/xform.h>
149 #endif /* FAST_IPSEC*/
150
151 #ifdef IPSEC_NAT_T
152 #include <netinet/udp.h>
153 #endif
154
155 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
156 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
157 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
158 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
159
160 #ifdef PFIL_HOOKS
161 extern struct pfil_head inet_pfil_hook; /* XXX */
162 #endif
163
164 int ip_do_loopback_cksum = 0;
165
166 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
167 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
168 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
169 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
171
172 struct ip_tso_output_args {
173 struct ifnet *ifp;
174 struct sockaddr *sa;
175 struct rtentry *rt;
176 };
177
178 static int ip_tso_output_callback(void *, struct mbuf *);
179 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
180 struct rtentry *);
181
182 static int
183 ip_tso_output_callback(void *vp, struct mbuf *m)
184 {
185 struct ip_tso_output_args *args = vp;
186 struct ifnet *ifp = args->ifp;
187
188 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
189 }
190
191 static int
192 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
193 struct rtentry *rt)
194 {
195 struct ip_tso_output_args args;
196
197 args.ifp = ifp;
198 args.sa = sa;
199 args.rt = rt;
200
201 return tcp4_segment(m, ip_tso_output_callback, &args);
202 }
203
204 /*
205 * IP output. The packet in mbuf chain m contains a skeletal IP
206 * header (with len, off, ttl, proto, tos, src, dst).
207 * The mbuf chain containing the packet will be freed.
208 * The mbuf opt, if present, will not be freed.
209 */
210 int
211 ip_output(struct mbuf *m0, ...)
212 {
213 struct ip *ip;
214 struct ifnet *ifp;
215 struct mbuf *m = m0;
216 int hlen = sizeof (struct ip);
217 int len, error = 0;
218 struct route iproute;
219 struct sockaddr_in *dst;
220 struct in_ifaddr *ia;
221 struct mbuf *opt;
222 struct route *ro;
223 int flags, sw_csum;
224 int *mtu_p;
225 u_long mtu;
226 struct ip_moptions *imo;
227 struct socket *so;
228 va_list ap;
229 #ifdef IPSEC_NAT_T
230 int natt_frag = 0;
231 #endif
232 #ifdef IPSEC
233 struct secpolicy *sp = NULL;
234 #endif /*IPSEC*/
235 #ifdef FAST_IPSEC
236 struct inpcb *inp;
237 struct m_tag *mtag;
238 struct secpolicy *sp = NULL;
239 struct tdb_ident *tdbi;
240 int s;
241 #endif
242 u_int16_t ip_len;
243
244 len = 0;
245 va_start(ap, m0);
246 opt = va_arg(ap, struct mbuf *);
247 ro = va_arg(ap, struct route *);
248 flags = va_arg(ap, int);
249 imo = va_arg(ap, struct ip_moptions *);
250 so = va_arg(ap, struct socket *);
251 if (flags & IP_RETURNMTU)
252 mtu_p = va_arg(ap, int *);
253 else
254 mtu_p = NULL;
255 va_end(ap);
256
257 MCLAIM(m, &ip_tx_mowner);
258 #ifdef FAST_IPSEC
259 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
260 inp = (struct inpcb *)so->so_pcb;
261 else
262 inp = NULL;
263 #endif /* FAST_IPSEC */
264
265 #ifdef DIAGNOSTIC
266 if ((m->m_flags & M_PKTHDR) == 0)
267 panic("ip_output no HDR");
268 #endif
269 if (opt) {
270 m = ip_insertoptions(m, opt, &len);
271 if (len >= sizeof(struct ip))
272 hlen = len;
273 }
274 ip = mtod(m, struct ip *);
275 /*
276 * Fill in IP header.
277 */
278 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
279 ip->ip_v = IPVERSION;
280 ip->ip_off = htons(0);
281 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
282 ip->ip_id = ip_newid();
283 } else {
284
285 /*
286 * TSO capable interfaces (typically?) increment
287 * ip_id for each segment.
288 * "allocate" enough ids here to increase the chance
289 * for them to be unique.
290 *
291 * note that the following calculation is not
292 * needed to be precise. wasting some ip_id is fine.
293 */
294
295 unsigned int segsz = m->m_pkthdr.segsz;
296 unsigned int datasz = ntohs(ip->ip_len) - hlen;
297 unsigned int num = howmany(datasz, segsz);
298
299 ip->ip_id = ip_newid_range(num);
300 }
301 ip->ip_hl = hlen >> 2;
302 ipstat.ips_localout++;
303 } else {
304 hlen = ip->ip_hl << 2;
305 }
306 /*
307 * Route packet.
308 */
309 if (ro == 0) {
310 ro = &iproute;
311 bzero((caddr_t)ro, sizeof (*ro));
312 }
313 dst = satosin(&ro->ro_dst);
314 /*
315 * If there is a cached route,
316 * check that it is to the same destination
317 * and is still up. If not, free it and try again.
318 * The address family should also be checked in case of sharing the
319 * cache with IPv6.
320 */
321 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
322 dst->sin_family != AF_INET ||
323 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
324 RTFREE(ro->ro_rt);
325 ro->ro_rt = (struct rtentry *)0;
326 }
327 if (ro->ro_rt == 0) {
328 bzero(dst, sizeof(*dst));
329 dst->sin_family = AF_INET;
330 dst->sin_len = sizeof(*dst);
331 dst->sin_addr = ip->ip_dst;
332 }
333 /*
334 * If routing to interface only,
335 * short circuit routing lookup.
336 */
337 if (flags & IP_ROUTETOIF) {
338 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
339 ipstat.ips_noroute++;
340 error = ENETUNREACH;
341 goto bad;
342 }
343 ifp = ia->ia_ifp;
344 mtu = ifp->if_mtu;
345 ip->ip_ttl = 1;
346 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
347 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
348 imo != NULL && imo->imo_multicast_ifp != NULL) {
349 ifp = imo->imo_multicast_ifp;
350 mtu = ifp->if_mtu;
351 IFP_TO_IA(ifp, ia);
352 } else {
353 if (ro->ro_rt == 0)
354 rtalloc(ro);
355 if (ro->ro_rt == 0) {
356 ipstat.ips_noroute++;
357 error = EHOSTUNREACH;
358 goto bad;
359 }
360 ia = ifatoia(ro->ro_rt->rt_ifa);
361 ifp = ro->ro_rt->rt_ifp;
362 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
363 mtu = ifp->if_mtu;
364 ro->ro_rt->rt_use++;
365 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
366 dst = satosin(ro->ro_rt->rt_gateway);
367 }
368 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
369 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
370 struct in_multi *inm;
371
372 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
373 M_BCAST : M_MCAST;
374 /*
375 * IP destination address is multicast. Make sure "dst"
376 * still points to the address in "ro". (It may have been
377 * changed to point to a gateway address, above.)
378 */
379 dst = satosin(&ro->ro_dst);
380 /*
381 * See if the caller provided any multicast options
382 */
383 if (imo != NULL)
384 ip->ip_ttl = imo->imo_multicast_ttl;
385 else
386 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
387
388 /*
389 * if we don't know the outgoing ifp yet, we can't generate
390 * output
391 */
392 if (!ifp) {
393 ipstat.ips_noroute++;
394 error = ENETUNREACH;
395 goto bad;
396 }
397
398 /*
399 * If the packet is multicast or broadcast, confirm that
400 * the outgoing interface can transmit it.
401 */
402 if (((m->m_flags & M_MCAST) &&
403 (ifp->if_flags & IFF_MULTICAST) == 0) ||
404 ((m->m_flags & M_BCAST) &&
405 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
406 ipstat.ips_noroute++;
407 error = ENETUNREACH;
408 goto bad;
409 }
410 /*
411 * If source address not specified yet, use an address
412 * of outgoing interface.
413 */
414 if (in_nullhost(ip->ip_src)) {
415 struct in_ifaddr *xia;
416
417 IFP_TO_IA(ifp, xia);
418 if (!xia) {
419 error = EADDRNOTAVAIL;
420 goto bad;
421 }
422 ip->ip_src = xia->ia_addr.sin_addr;
423 }
424
425 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
426 if (inm != NULL &&
427 (imo == NULL || imo->imo_multicast_loop)) {
428 /*
429 * If we belong to the destination multicast group
430 * on the outgoing interface, and the caller did not
431 * forbid loopback, loop back a copy.
432 */
433 ip_mloopback(ifp, m, dst);
434 }
435 #ifdef MROUTING
436 else {
437 /*
438 * If we are acting as a multicast router, perform
439 * multicast forwarding as if the packet had just
440 * arrived on the interface to which we are about
441 * to send. The multicast forwarding function
442 * recursively calls this function, using the
443 * IP_FORWARDING flag to prevent infinite recursion.
444 *
445 * Multicasts that are looped back by ip_mloopback(),
446 * above, will be forwarded by the ip_input() routine,
447 * if necessary.
448 */
449 extern struct socket *ip_mrouter;
450
451 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
452 if (ip_mforward(m, ifp) != 0) {
453 m_freem(m);
454 goto done;
455 }
456 }
457 }
458 #endif
459 /*
460 * Multicasts with a time-to-live of zero may be looped-
461 * back, above, but must not be transmitted on a network.
462 * Also, multicasts addressed to the loopback interface
463 * are not sent -- the above call to ip_mloopback() will
464 * loop back a copy if this host actually belongs to the
465 * destination group on the loopback interface.
466 */
467 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
468 m_freem(m);
469 goto done;
470 }
471
472 goto sendit;
473 }
474 /*
475 * If source address not specified yet, use address
476 * of outgoing interface.
477 */
478 if (in_nullhost(ip->ip_src))
479 ip->ip_src = ia->ia_addr.sin_addr;
480
481 /*
482 * packets with Class-D address as source are not valid per
483 * RFC 1112
484 */
485 if (IN_MULTICAST(ip->ip_src.s_addr)) {
486 ipstat.ips_odropped++;
487 error = EADDRNOTAVAIL;
488 goto bad;
489 }
490
491 /*
492 * Look for broadcast address and
493 * and verify user is allowed to send
494 * such a packet.
495 */
496 if (in_broadcast(dst->sin_addr, ifp)) {
497 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
498 error = EADDRNOTAVAIL;
499 goto bad;
500 }
501 if ((flags & IP_ALLOWBROADCAST) == 0) {
502 error = EACCES;
503 goto bad;
504 }
505 /* don't allow broadcast messages to be fragmented */
506 if (ntohs(ip->ip_len) > ifp->if_mtu) {
507 error = EMSGSIZE;
508 goto bad;
509 }
510 m->m_flags |= M_BCAST;
511 } else
512 m->m_flags &= ~M_BCAST;
513
514 sendit:
515 /*
516 * If we're doing Path MTU Discovery, we need to set DF unless
517 * the route's MTU is locked.
518 */
519 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
520 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
521 ip->ip_off |= htons(IP_DF);
522
523 /* Remember the current ip_len */
524 ip_len = ntohs(ip->ip_len);
525
526 #ifdef IPSEC
527 /* get SP for this packet */
528 if (so == NULL)
529 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
530 flags, &error);
531 else {
532 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
533 IPSEC_DIR_OUTBOUND))
534 goto skip_ipsec;
535 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
536 }
537
538 if (sp == NULL) {
539 ipsecstat.out_inval++;
540 goto bad;
541 }
542
543 error = 0;
544
545 /* check policy */
546 switch (sp->policy) {
547 case IPSEC_POLICY_DISCARD:
548 /*
549 * This packet is just discarded.
550 */
551 ipsecstat.out_polvio++;
552 goto bad;
553
554 case IPSEC_POLICY_BYPASS:
555 case IPSEC_POLICY_NONE:
556 /* no need to do IPsec. */
557 goto skip_ipsec;
558
559 case IPSEC_POLICY_IPSEC:
560 if (sp->req == NULL) {
561 /* XXX should be panic ? */
562 printf("ip_output: No IPsec request specified.\n");
563 error = EINVAL;
564 goto bad;
565 }
566 break;
567
568 case IPSEC_POLICY_ENTRUST:
569 default:
570 printf("ip_output: Invalid policy found. %d\n", sp->policy);
571 }
572
573 #ifdef IPSEC_NAT_T
574 /*
575 * NAT-T ESP fragmentation: don't do IPSec processing now,
576 * we'll do it on each fragmented packet.
577 */
578 if (sp->req->sav &&
579 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
580 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
581 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
582 natt_frag = 1;
583 mtu = sp->req->sav->esp_frag;
584 goto skip_ipsec;
585 }
586 }
587 #endif /* IPSEC_NAT_T */
588
589 /*
590 * ipsec4_output() expects ip_len and ip_off in network
591 * order. They have been set to network order above.
592 */
593
594 {
595 struct ipsec_output_state state;
596 bzero(&state, sizeof(state));
597 state.m = m;
598 if (flags & IP_ROUTETOIF) {
599 state.ro = &iproute;
600 bzero(&iproute, sizeof(iproute));
601 } else
602 state.ro = ro;
603 state.dst = (struct sockaddr *)dst;
604
605 /*
606 * We can't defer the checksum of payload data if
607 * we're about to encrypt/authenticate it.
608 *
609 * XXX When we support crypto offloading functions of
610 * XXX network interfaces, we need to reconsider this,
611 * XXX since it's likely that they'll support checksumming,
612 * XXX as well.
613 */
614 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
615 in_delayed_cksum(m);
616 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
617 }
618
619 error = ipsec4_output(&state, sp, flags);
620
621 m = state.m;
622 if (flags & IP_ROUTETOIF) {
623 /*
624 * if we have tunnel mode SA, we may need to ignore
625 * IP_ROUTETOIF.
626 */
627 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
628 flags &= ~IP_ROUTETOIF;
629 ro = state.ro;
630 }
631 } else
632 ro = state.ro;
633 dst = (struct sockaddr_in *)state.dst;
634 if (error) {
635 /* mbuf is already reclaimed in ipsec4_output. */
636 m0 = NULL;
637 switch (error) {
638 case EHOSTUNREACH:
639 case ENETUNREACH:
640 case EMSGSIZE:
641 case ENOBUFS:
642 case ENOMEM:
643 break;
644 default:
645 printf("ip4_output (ipsec): error code %d\n", error);
646 /*fall through*/
647 case ENOENT:
648 /* don't show these error codes to the user */
649 error = 0;
650 break;
651 }
652 goto bad;
653 }
654
655 /* be sure to update variables that are affected by ipsec4_output() */
656 ip = mtod(m, struct ip *);
657 hlen = ip->ip_hl << 2;
658 ip_len = ntohs(ip->ip_len);
659
660 if (ro->ro_rt == NULL) {
661 if ((flags & IP_ROUTETOIF) == 0) {
662 printf("ip_output: "
663 "can't update route after IPsec processing\n");
664 error = EHOSTUNREACH; /*XXX*/
665 goto bad;
666 }
667 } else {
668 /* nobody uses ia beyond here */
669 if (state.encap) {
670 ifp = ro->ro_rt->rt_ifp;
671 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
672 mtu = ifp->if_mtu;
673 }
674 }
675 }
676 skip_ipsec:
677 #endif /*IPSEC*/
678 #ifdef FAST_IPSEC
679 /*
680 * Check the security policy (SP) for the packet and, if
681 * required, do IPsec-related processing. There are two
682 * cases here; the first time a packet is sent through
683 * it will be untagged and handled by ipsec4_checkpolicy.
684 * If the packet is resubmitted to ip_output (e.g. after
685 * AH, ESP, etc. processing), there will be a tag to bypass
686 * the lookup and related policy checking.
687 */
688 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
689 s = splsoftnet();
690 if (mtag != NULL) {
691 tdbi = (struct tdb_ident *)(mtag + 1);
692 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
693 if (sp == NULL)
694 error = -EINVAL; /* force silent drop */
695 m_tag_delete(m, mtag);
696 } else {
697 if (inp != NULL &&
698 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
699 goto spd_done;
700 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
701 &error, inp);
702 }
703 /*
704 * There are four return cases:
705 * sp != NULL apply IPsec policy
706 * sp == NULL, error == 0 no IPsec handling needed
707 * sp == NULL, error == -EINVAL discard packet w/o error
708 * sp == NULL, error != 0 discard packet, report error
709 */
710 if (sp != NULL) {
711 #ifdef IPSEC_NAT_T
712 /*
713 * NAT-T ESP fragmentation: don't do IPSec processing now,
714 * we'll do it on each fragmented packet.
715 */
716 if (sp->req->sav &&
717 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
718 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
719 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
720 natt_frag = 1;
721 mtu = sp->req->sav->esp_frag;
722 goto spd_done;
723 }
724 }
725 #endif /* IPSEC_NAT_T */
726 /* Loop detection, check if ipsec processing already done */
727 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
728 for (mtag = m_tag_first(m); mtag != NULL;
729 mtag = m_tag_next(m, mtag)) {
730 #ifdef MTAG_ABI_COMPAT
731 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
732 continue;
733 #endif
734 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
735 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
736 continue;
737 /*
738 * Check if policy has an SA associated with it.
739 * This can happen when an SP has yet to acquire
740 * an SA; e.g. on first reference. If it occurs,
741 * then we let ipsec4_process_packet do its thing.
742 */
743 if (sp->req->sav == NULL)
744 break;
745 tdbi = (struct tdb_ident *)(mtag + 1);
746 if (tdbi->spi == sp->req->sav->spi &&
747 tdbi->proto == sp->req->sav->sah->saidx.proto &&
748 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
749 sizeof (union sockaddr_union)) == 0) {
750 /*
751 * No IPsec processing is needed, free
752 * reference to SP.
753 *
754 * NB: null pointer to avoid free at
755 * done: below.
756 */
757 KEY_FREESP(&sp), sp = NULL;
758 splx(s);
759 goto spd_done;
760 }
761 }
762
763 /*
764 * Do delayed checksums now because we send before
765 * this is done in the normal processing path.
766 */
767 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
768 in_delayed_cksum(m);
769 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
770 }
771
772 #ifdef __FreeBSD__
773 ip->ip_len = htons(ip->ip_len);
774 ip->ip_off = htons(ip->ip_off);
775 #endif
776
777 /* NB: callee frees mbuf */
778 error = ipsec4_process_packet(m, sp->req, flags, 0);
779 /*
780 * Preserve KAME behaviour: ENOENT can be returned
781 * when an SA acquire is in progress. Don't propagate
782 * this to user-level; it confuses applications.
783 *
784 * XXX this will go away when the SADB is redone.
785 */
786 if (error == ENOENT)
787 error = 0;
788 splx(s);
789 goto done;
790 } else {
791 splx(s);
792
793 if (error != 0) {
794 /*
795 * Hack: -EINVAL is used to signal that a packet
796 * should be silently discarded. This is typically
797 * because we asked key management for an SA and
798 * it was delayed (e.g. kicked up to IKE).
799 */
800 if (error == -EINVAL)
801 error = 0;
802 goto bad;
803 } else {
804 /* No IPsec processing for this packet. */
805 }
806 #ifdef notyet
807 /*
808 * If deferred crypto processing is needed, check that
809 * the interface supports it.
810 */
811 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
812 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
813 /* notify IPsec to do its own crypto */
814 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
815 error = EHOSTUNREACH;
816 goto bad;
817 }
818 #endif
819 }
820 spd_done:
821 #endif /* FAST_IPSEC */
822
823 #ifdef PFIL_HOOKS
824 /*
825 * Run through list of hooks for output packets.
826 */
827 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
828 goto done;
829 if (m == NULL)
830 goto done;
831
832 ip = mtod(m, struct ip *);
833 hlen = ip->ip_hl << 2;
834 #endif /* PFIL_HOOKS */
835
836 m->m_pkthdr.csum_data |= hlen << 16;
837
838 #if IFA_STATS
839 /*
840 * search for the source address structure to
841 * maintain output statistics.
842 */
843 INADDR_TO_IA(ip->ip_src, ia);
844 #endif
845
846 /* Maybe skip checksums on loopback interfaces. */
847 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
848 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
849 }
850 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
851 /*
852 * If small enough for mtu of path, or if using TCP segmentation
853 * offload, can just send directly.
854 */
855 if (ip_len <= mtu ||
856 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
857 #if IFA_STATS
858 if (ia)
859 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
860 #endif
861 /*
862 * Always initialize the sum to 0! Some HW assisted
863 * checksumming requires this.
864 */
865 ip->ip_sum = 0;
866
867 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
868 /*
869 * Perform any checksums that the hardware can't do
870 * for us.
871 *
872 * XXX Does any hardware require the {th,uh}_sum
873 * XXX fields to be 0?
874 */
875 if (sw_csum & M_CSUM_IPv4) {
876 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
877 ip->ip_sum = in_cksum(m, hlen);
878 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
879 }
880 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
881 if (IN_NEED_CHECKSUM(ifp,
882 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
883 in_delayed_cksum(m);
884 }
885 m->m_pkthdr.csum_flags &=
886 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
887 }
888 }
889
890 #ifdef IPSEC
891 /* clean ipsec history once it goes out of the node */
892 ipsec_delaux(m);
893 #endif
894
895 if (__predict_true(
896 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
897 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
898 error =
899 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
900 } else {
901 error =
902 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
903 }
904 goto done;
905 }
906
907 /*
908 * We can't use HW checksumming if we're about to
909 * to fragment the packet.
910 *
911 * XXX Some hardware can do this.
912 */
913 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
914 if (IN_NEED_CHECKSUM(ifp,
915 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
916 in_delayed_cksum(m);
917 }
918 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
919 }
920
921 /*
922 * Too large for interface; fragment if possible.
923 * Must be able to put at least 8 bytes per fragment.
924 */
925 if (ntohs(ip->ip_off) & IP_DF) {
926 if (flags & IP_RETURNMTU)
927 *mtu_p = mtu;
928 error = EMSGSIZE;
929 ipstat.ips_cantfrag++;
930 goto bad;
931 }
932
933 error = ip_fragment(m, ifp, mtu);
934 if (error) {
935 m = NULL;
936 goto bad;
937 }
938
939 for (; m; m = m0) {
940 m0 = m->m_nextpkt;
941 m->m_nextpkt = 0;
942 if (error == 0) {
943 #if IFA_STATS
944 if (ia)
945 ia->ia_ifa.ifa_data.ifad_outbytes +=
946 ntohs(ip->ip_len);
947 #endif
948 #ifdef IPSEC
949 /* clean ipsec history once it goes out of the node */
950 ipsec_delaux(m);
951 #endif /* IPSEC */
952
953 #ifdef IPSEC_NAT_T
954 /*
955 * If we get there, the packet has not been handeld by
956 * IPSec whereas it should have. Now that it has been
957 * fragmented, re-inject it in ip_output so that IPsec
958 * processing can occur.
959 */
960 if (natt_frag) {
961 error = ip_output(m, opt,
962 ro, flags, imo, so, mtu_p);
963 } else
964 #endif /* IPSEC_NAT_T */
965 {
966 KASSERT((m->m_pkthdr.csum_flags &
967 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
968 error = (*ifp->if_output)(ifp, m, sintosa(dst),
969 ro->ro_rt);
970 }
971 } else
972 m_freem(m);
973 }
974
975 if (error == 0)
976 ipstat.ips_fragmented++;
977 done:
978 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
979 RTFREE(ro->ro_rt);
980 ro->ro_rt = 0;
981 }
982
983 #ifdef IPSEC
984 if (sp != NULL) {
985 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
986 printf("DP ip_output call free SP:%p\n", sp));
987 key_freesp(sp);
988 }
989 #endif /* IPSEC */
990 #ifdef FAST_IPSEC
991 if (sp != NULL)
992 KEY_FREESP(&sp);
993 #endif /* FAST_IPSEC */
994
995 return (error);
996 bad:
997 m_freem(m);
998 goto done;
999 }
1000
1001 int
1002 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
1003 {
1004 struct ip *ip, *mhip;
1005 struct mbuf *m0;
1006 int len, hlen, off;
1007 int mhlen, firstlen;
1008 struct mbuf **mnext;
1009 int sw_csum = m->m_pkthdr.csum_flags;
1010 int fragments = 0;
1011 int s;
1012 int error = 0;
1013
1014 ip = mtod(m, struct ip *);
1015 hlen = ip->ip_hl << 2;
1016 if (ifp != NULL)
1017 sw_csum &= ~ifp->if_csum_flags_tx;
1018
1019 len = (mtu - hlen) &~ 7;
1020 if (len < 8) {
1021 m_freem(m);
1022 return (EMSGSIZE);
1023 }
1024
1025 firstlen = len;
1026 mnext = &m->m_nextpkt;
1027
1028 /*
1029 * Loop through length of segment after first fragment,
1030 * make new header and copy data of each part and link onto chain.
1031 */
1032 m0 = m;
1033 mhlen = sizeof (struct ip);
1034 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1035 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1036 if (m == 0) {
1037 error = ENOBUFS;
1038 ipstat.ips_odropped++;
1039 goto sendorfree;
1040 }
1041 MCLAIM(m, m0->m_owner);
1042 *mnext = m;
1043 mnext = &m->m_nextpkt;
1044 m->m_data += max_linkhdr;
1045 mhip = mtod(m, struct ip *);
1046 *mhip = *ip;
1047 /* we must inherit MCAST and BCAST flags */
1048 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1049 if (hlen > sizeof (struct ip)) {
1050 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1051 mhip->ip_hl = mhlen >> 2;
1052 }
1053 m->m_len = mhlen;
1054 mhip->ip_off = ((off - hlen) >> 3) +
1055 (ntohs(ip->ip_off) & ~IP_MF);
1056 if (ip->ip_off & htons(IP_MF))
1057 mhip->ip_off |= IP_MF;
1058 if (off + len >= ntohs(ip->ip_len))
1059 len = ntohs(ip->ip_len) - off;
1060 else
1061 mhip->ip_off |= IP_MF;
1062 HTONS(mhip->ip_off);
1063 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1064 m->m_next = m_copy(m0, off, len);
1065 if (m->m_next == 0) {
1066 error = ENOBUFS; /* ??? */
1067 ipstat.ips_odropped++;
1068 goto sendorfree;
1069 }
1070 m->m_pkthdr.len = mhlen + len;
1071 m->m_pkthdr.rcvif = (struct ifnet *)0;
1072 mhip->ip_sum = 0;
1073 if (sw_csum & M_CSUM_IPv4) {
1074 mhip->ip_sum = in_cksum(m, mhlen);
1075 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1076 } else {
1077 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1078 m->m_pkthdr.csum_data |= mhlen << 16;
1079 }
1080 ipstat.ips_ofragments++;
1081 fragments++;
1082 }
1083 /*
1084 * Update first fragment by trimming what's been copied out
1085 * and updating header, then send each fragment (in order).
1086 */
1087 m = m0;
1088 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1089 m->m_pkthdr.len = hlen + firstlen;
1090 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1091 ip->ip_off |= htons(IP_MF);
1092 ip->ip_sum = 0;
1093 if (sw_csum & M_CSUM_IPv4) {
1094 ip->ip_sum = in_cksum(m, hlen);
1095 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1096 } else {
1097 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1098 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1099 sizeof(struct ip));
1100 }
1101 sendorfree:
1102 /*
1103 * If there is no room for all the fragments, don't queue
1104 * any of them.
1105 */
1106 if (ifp != NULL) {
1107 s = splnet();
1108 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1109 error == 0) {
1110 error = ENOBUFS;
1111 ipstat.ips_odropped++;
1112 IFQ_INC_DROPS(&ifp->if_snd);
1113 }
1114 splx(s);
1115 }
1116 if (error) {
1117 for (m = m0; m; m = m0) {
1118 m0 = m->m_nextpkt;
1119 m->m_nextpkt = NULL;
1120 m_freem(m);
1121 }
1122 }
1123 return (error);
1124 }
1125
1126 /*
1127 * Process a delayed payload checksum calculation.
1128 */
1129 void
1130 in_delayed_cksum(struct mbuf *m)
1131 {
1132 struct ip *ip;
1133 u_int16_t csum, offset;
1134
1135 ip = mtod(m, struct ip *);
1136 offset = ip->ip_hl << 2;
1137 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1138 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1139 csum = 0xffff;
1140
1141 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1142
1143 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1144 /* This happen when ip options were inserted
1145 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1146 m->m_len, offset, ip->ip_p);
1147 */
1148 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1149 } else
1150 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1151 }
1152
1153 /*
1154 * Determine the maximum length of the options to be inserted;
1155 * we would far rather allocate too much space rather than too little.
1156 */
1157
1158 u_int
1159 ip_optlen(struct inpcb *inp)
1160 {
1161 struct mbuf *m = inp->inp_options;
1162
1163 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1164 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1165 else
1166 return 0;
1167 }
1168
1169
1170 /*
1171 * Insert IP options into preformed packet.
1172 * Adjust IP destination as required for IP source routing,
1173 * as indicated by a non-zero in_addr at the start of the options.
1174 */
1175 static struct mbuf *
1176 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1177 {
1178 struct ipoption *p = mtod(opt, struct ipoption *);
1179 struct mbuf *n;
1180 struct ip *ip = mtod(m, struct ip *);
1181 unsigned optlen;
1182
1183 optlen = opt->m_len - sizeof(p->ipopt_dst);
1184 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1185 return (m); /* XXX should fail */
1186 if (!in_nullhost(p->ipopt_dst))
1187 ip->ip_dst = p->ipopt_dst;
1188 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1189 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1190 if (n == 0)
1191 return (m);
1192 MCLAIM(n, m->m_owner);
1193 M_MOVE_PKTHDR(n, m);
1194 m->m_len -= sizeof(struct ip);
1195 m->m_data += sizeof(struct ip);
1196 n->m_next = m;
1197 m = n;
1198 m->m_len = optlen + sizeof(struct ip);
1199 m->m_data += max_linkhdr;
1200 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1201 } else {
1202 m->m_data -= optlen;
1203 m->m_len += optlen;
1204 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1205 }
1206 m->m_pkthdr.len += optlen;
1207 ip = mtod(m, struct ip *);
1208 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1209 *phlen = sizeof(struct ip) + optlen;
1210 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1211 return (m);
1212 }
1213
1214 /*
1215 * Copy options from ip to jp,
1216 * omitting those not copied during fragmentation.
1217 */
1218 int
1219 ip_optcopy(struct ip *ip, struct ip *jp)
1220 {
1221 u_char *cp, *dp;
1222 int opt, optlen, cnt;
1223
1224 cp = (u_char *)(ip + 1);
1225 dp = (u_char *)(jp + 1);
1226 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1227 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1228 opt = cp[0];
1229 if (opt == IPOPT_EOL)
1230 break;
1231 if (opt == IPOPT_NOP) {
1232 /* Preserve for IP mcast tunnel's LSRR alignment. */
1233 *dp++ = IPOPT_NOP;
1234 optlen = 1;
1235 continue;
1236 }
1237 #ifdef DIAGNOSTIC
1238 if (cnt < IPOPT_OLEN + sizeof(*cp))
1239 panic("malformed IPv4 option passed to ip_optcopy");
1240 #endif
1241 optlen = cp[IPOPT_OLEN];
1242 #ifdef DIAGNOSTIC
1243 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1244 panic("malformed IPv4 option passed to ip_optcopy");
1245 #endif
1246 /* bogus lengths should have been caught by ip_dooptions */
1247 if (optlen > cnt)
1248 optlen = cnt;
1249 if (IPOPT_COPIED(opt)) {
1250 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1251 dp += optlen;
1252 }
1253 }
1254 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1255 *dp++ = IPOPT_EOL;
1256 return (optlen);
1257 }
1258
1259 /*
1260 * IP socket option processing.
1261 */
1262 int
1263 ip_ctloutput(int op, struct socket *so, int level, int optname,
1264 struct mbuf **mp)
1265 {
1266 struct inpcb *inp = sotoinpcb(so);
1267 struct mbuf *m = *mp;
1268 int optval = 0;
1269 int error = 0;
1270 #if defined(IPSEC) || defined(FAST_IPSEC)
1271 struct proc *p = curproc; /*XXX*/
1272 #endif
1273
1274 if (level != IPPROTO_IP) {
1275 error = EINVAL;
1276 if (op == PRCO_SETOPT && *mp)
1277 (void) m_free(*mp);
1278 } else switch (op) {
1279
1280 case PRCO_SETOPT:
1281 switch (optname) {
1282 case IP_OPTIONS:
1283 #ifdef notyet
1284 case IP_RETOPTS:
1285 return (ip_pcbopts(optname, &inp->inp_options, m));
1286 #else
1287 return (ip_pcbopts(&inp->inp_options, m));
1288 #endif
1289
1290 case IP_TOS:
1291 case IP_TTL:
1292 case IP_RECVOPTS:
1293 case IP_RECVRETOPTS:
1294 case IP_RECVDSTADDR:
1295 case IP_RECVIF:
1296 if (m == NULL || m->m_len != sizeof(int))
1297 error = EINVAL;
1298 else {
1299 optval = *mtod(m, int *);
1300 switch (optname) {
1301
1302 case IP_TOS:
1303 inp->inp_ip.ip_tos = optval;
1304 break;
1305
1306 case IP_TTL:
1307 inp->inp_ip.ip_ttl = optval;
1308 break;
1309 #define OPTSET(bit) \
1310 if (optval) \
1311 inp->inp_flags |= bit; \
1312 else \
1313 inp->inp_flags &= ~bit;
1314
1315 case IP_RECVOPTS:
1316 OPTSET(INP_RECVOPTS);
1317 break;
1318
1319 case IP_RECVRETOPTS:
1320 OPTSET(INP_RECVRETOPTS);
1321 break;
1322
1323 case IP_RECVDSTADDR:
1324 OPTSET(INP_RECVDSTADDR);
1325 break;
1326
1327 case IP_RECVIF:
1328 OPTSET(INP_RECVIF);
1329 break;
1330 }
1331 }
1332 break;
1333 #undef OPTSET
1334
1335 case IP_MULTICAST_IF:
1336 case IP_MULTICAST_TTL:
1337 case IP_MULTICAST_LOOP:
1338 case IP_ADD_MEMBERSHIP:
1339 case IP_DROP_MEMBERSHIP:
1340 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1341 break;
1342
1343 case IP_PORTRANGE:
1344 if (m == 0 || m->m_len != sizeof(int))
1345 error = EINVAL;
1346 else {
1347 optval = *mtod(m, int *);
1348
1349 switch (optval) {
1350
1351 case IP_PORTRANGE_DEFAULT:
1352 case IP_PORTRANGE_HIGH:
1353 inp->inp_flags &= ~(INP_LOWPORT);
1354 break;
1355
1356 case IP_PORTRANGE_LOW:
1357 inp->inp_flags |= INP_LOWPORT;
1358 break;
1359
1360 default:
1361 error = EINVAL;
1362 break;
1363 }
1364 }
1365 break;
1366
1367 #if defined(IPSEC) || defined(FAST_IPSEC)
1368 case IP_IPSEC_POLICY:
1369 {
1370 caddr_t req = NULL;
1371 size_t len = 0;
1372 int priv = 0;
1373
1374 #ifdef __NetBSD__
1375 if (p == 0 || kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
1376 &p->p_acflag))
1377 priv = 0;
1378 else
1379 priv = 1;
1380 #else
1381 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1382 #endif
1383 if (m) {
1384 req = mtod(m, caddr_t);
1385 len = m->m_len;
1386 }
1387 error = ipsec4_set_policy(inp, optname, req, len, priv);
1388 break;
1389 }
1390 #endif /*IPSEC*/
1391
1392 default:
1393 error = ENOPROTOOPT;
1394 break;
1395 }
1396 if (m)
1397 (void)m_free(m);
1398 break;
1399
1400 case PRCO_GETOPT:
1401 switch (optname) {
1402 case IP_OPTIONS:
1403 case IP_RETOPTS:
1404 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1405 MCLAIM(m, so->so_mowner);
1406 if (inp->inp_options) {
1407 m->m_len = inp->inp_options->m_len;
1408 bcopy(mtod(inp->inp_options, caddr_t),
1409 mtod(m, caddr_t), (unsigned)m->m_len);
1410 } else
1411 m->m_len = 0;
1412 break;
1413
1414 case IP_TOS:
1415 case IP_TTL:
1416 case IP_RECVOPTS:
1417 case IP_RECVRETOPTS:
1418 case IP_RECVDSTADDR:
1419 case IP_RECVIF:
1420 case IP_ERRORMTU:
1421 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1422 MCLAIM(m, so->so_mowner);
1423 m->m_len = sizeof(int);
1424 switch (optname) {
1425
1426 case IP_TOS:
1427 optval = inp->inp_ip.ip_tos;
1428 break;
1429
1430 case IP_TTL:
1431 optval = inp->inp_ip.ip_ttl;
1432 break;
1433
1434 case IP_ERRORMTU:
1435 optval = inp->inp_errormtu;
1436 break;
1437
1438 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1439
1440 case IP_RECVOPTS:
1441 optval = OPTBIT(INP_RECVOPTS);
1442 break;
1443
1444 case IP_RECVRETOPTS:
1445 optval = OPTBIT(INP_RECVRETOPTS);
1446 break;
1447
1448 case IP_RECVDSTADDR:
1449 optval = OPTBIT(INP_RECVDSTADDR);
1450 break;
1451
1452 case IP_RECVIF:
1453 optval = OPTBIT(INP_RECVIF);
1454 break;
1455 }
1456 *mtod(m, int *) = optval;
1457 break;
1458
1459 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1460 /* XXX: code broken */
1461 case IP_IPSEC_POLICY:
1462 {
1463 caddr_t req = NULL;
1464 size_t len = 0;
1465
1466 if (m) {
1467 req = mtod(m, caddr_t);
1468 len = m->m_len;
1469 }
1470 error = ipsec4_get_policy(inp, req, len, mp);
1471 break;
1472 }
1473 #endif /*IPSEC*/
1474
1475 case IP_MULTICAST_IF:
1476 case IP_MULTICAST_TTL:
1477 case IP_MULTICAST_LOOP:
1478 case IP_ADD_MEMBERSHIP:
1479 case IP_DROP_MEMBERSHIP:
1480 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1481 if (*mp)
1482 MCLAIM(*mp, so->so_mowner);
1483 break;
1484
1485 case IP_PORTRANGE:
1486 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1487 MCLAIM(m, so->so_mowner);
1488 m->m_len = sizeof(int);
1489
1490 if (inp->inp_flags & INP_LOWPORT)
1491 optval = IP_PORTRANGE_LOW;
1492 else
1493 optval = IP_PORTRANGE_DEFAULT;
1494
1495 *mtod(m, int *) = optval;
1496 break;
1497
1498 default:
1499 error = ENOPROTOOPT;
1500 break;
1501 }
1502 break;
1503 }
1504 return (error);
1505 }
1506
1507 /*
1508 * Set up IP options in pcb for insertion in output packets.
1509 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1510 * with destination address if source routed.
1511 */
1512 int
1513 #ifdef notyet
1514 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1515 #else
1516 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1517 #endif
1518 {
1519 int cnt, optlen;
1520 u_char *cp;
1521 u_char opt;
1522
1523 /* turn off any old options */
1524 if (*pcbopt)
1525 (void)m_free(*pcbopt);
1526 *pcbopt = 0;
1527 if (m == (struct mbuf *)0 || m->m_len == 0) {
1528 /*
1529 * Only turning off any previous options.
1530 */
1531 if (m)
1532 (void)m_free(m);
1533 return (0);
1534 }
1535
1536 #ifndef __vax__
1537 if (m->m_len % sizeof(int32_t))
1538 goto bad;
1539 #endif
1540 /*
1541 * IP first-hop destination address will be stored before
1542 * actual options; move other options back
1543 * and clear it when none present.
1544 */
1545 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1546 goto bad;
1547 cnt = m->m_len;
1548 m->m_len += sizeof(struct in_addr);
1549 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1550 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1551 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1552
1553 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1554 opt = cp[IPOPT_OPTVAL];
1555 if (opt == IPOPT_EOL)
1556 break;
1557 if (opt == IPOPT_NOP)
1558 optlen = 1;
1559 else {
1560 if (cnt < IPOPT_OLEN + sizeof(*cp))
1561 goto bad;
1562 optlen = cp[IPOPT_OLEN];
1563 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1564 goto bad;
1565 }
1566 switch (opt) {
1567
1568 default:
1569 break;
1570
1571 case IPOPT_LSRR:
1572 case IPOPT_SSRR:
1573 /*
1574 * user process specifies route as:
1575 * ->A->B->C->D
1576 * D must be our final destination (but we can't
1577 * check that since we may not have connected yet).
1578 * A is first hop destination, which doesn't appear in
1579 * actual IP option, but is stored before the options.
1580 */
1581 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1582 goto bad;
1583 m->m_len -= sizeof(struct in_addr);
1584 cnt -= sizeof(struct in_addr);
1585 optlen -= sizeof(struct in_addr);
1586 cp[IPOPT_OLEN] = optlen;
1587 /*
1588 * Move first hop before start of options.
1589 */
1590 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1591 sizeof(struct in_addr));
1592 /*
1593 * Then copy rest of options back
1594 * to close up the deleted entry.
1595 */
1596 (void)memmove(&cp[IPOPT_OFFSET+1],
1597 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1598 (unsigned)cnt - (IPOPT_MINOFF - 1));
1599 break;
1600 }
1601 }
1602 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1603 goto bad;
1604 *pcbopt = m;
1605 return (0);
1606
1607 bad:
1608 (void)m_free(m);
1609 return (EINVAL);
1610 }
1611
1612 /*
1613 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1614 */
1615 static struct ifnet *
1616 ip_multicast_if(struct in_addr *a, int *ifindexp)
1617 {
1618 int ifindex;
1619 struct ifnet *ifp = NULL;
1620 struct in_ifaddr *ia;
1621
1622 if (ifindexp)
1623 *ifindexp = 0;
1624 if (ntohl(a->s_addr) >> 24 == 0) {
1625 ifindex = ntohl(a->s_addr) & 0xffffff;
1626 if (ifindex < 0 || if_indexlim <= ifindex)
1627 return NULL;
1628 ifp = ifindex2ifnet[ifindex];
1629 if (!ifp)
1630 return NULL;
1631 if (ifindexp)
1632 *ifindexp = ifindex;
1633 } else {
1634 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1635 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1636 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1637 ifp = ia->ia_ifp;
1638 break;
1639 }
1640 }
1641 }
1642 return ifp;
1643 }
1644
1645 static int
1646 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1647 {
1648 u_int tval;
1649
1650 if (m == NULL)
1651 return EINVAL;
1652
1653 switch (m->m_len) {
1654 case sizeof(u_char):
1655 tval = *(mtod(m, u_char *));
1656 break;
1657 case sizeof(u_int):
1658 tval = *(mtod(m, u_int *));
1659 break;
1660 default:
1661 return EINVAL;
1662 }
1663
1664 if (tval > maxval)
1665 return EINVAL;
1666
1667 *val = tval;
1668 return 0;
1669 }
1670
1671 /*
1672 * Set the IP multicast options in response to user setsockopt().
1673 */
1674 int
1675 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1676 {
1677 int error = 0;
1678 int i;
1679 struct in_addr addr;
1680 struct ip_mreq *mreq;
1681 struct ifnet *ifp;
1682 struct ip_moptions *imo = *imop;
1683 struct route ro;
1684 struct sockaddr_in *dst;
1685 int ifindex;
1686
1687 if (imo == NULL) {
1688 /*
1689 * No multicast option buffer attached to the pcb;
1690 * allocate one and initialize to default values.
1691 */
1692 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1693 M_WAITOK);
1694
1695 if (imo == NULL)
1696 return (ENOBUFS);
1697 *imop = imo;
1698 imo->imo_multicast_ifp = NULL;
1699 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1700 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1701 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1702 imo->imo_num_memberships = 0;
1703 }
1704
1705 switch (optname) {
1706
1707 case IP_MULTICAST_IF:
1708 /*
1709 * Select the interface for outgoing multicast packets.
1710 */
1711 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1712 error = EINVAL;
1713 break;
1714 }
1715 addr = *(mtod(m, struct in_addr *));
1716 /*
1717 * INADDR_ANY is used to remove a previous selection.
1718 * When no interface is selected, a default one is
1719 * chosen every time a multicast packet is sent.
1720 */
1721 if (in_nullhost(addr)) {
1722 imo->imo_multicast_ifp = NULL;
1723 break;
1724 }
1725 /*
1726 * The selected interface is identified by its local
1727 * IP address. Find the interface and confirm that
1728 * it supports multicasting.
1729 */
1730 ifp = ip_multicast_if(&addr, &ifindex);
1731 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1732 error = EADDRNOTAVAIL;
1733 break;
1734 }
1735 imo->imo_multicast_ifp = ifp;
1736 if (ifindex)
1737 imo->imo_multicast_addr = addr;
1738 else
1739 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1740 break;
1741
1742 case IP_MULTICAST_TTL:
1743 /*
1744 * Set the IP time-to-live for outgoing multicast packets.
1745 */
1746 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1747 break;
1748
1749 case IP_MULTICAST_LOOP:
1750 /*
1751 * Set the loopback flag for outgoing multicast packets.
1752 * Must be zero or one.
1753 */
1754 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1755 break;
1756
1757 case IP_ADD_MEMBERSHIP:
1758 /*
1759 * Add a multicast group membership.
1760 * Group must be a valid IP multicast address.
1761 */
1762 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1763 error = EINVAL;
1764 break;
1765 }
1766 mreq = mtod(m, struct ip_mreq *);
1767 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1768 error = EINVAL;
1769 break;
1770 }
1771 /*
1772 * If no interface address was provided, use the interface of
1773 * the route to the given multicast address.
1774 */
1775 if (in_nullhost(mreq->imr_interface)) {
1776 bzero((caddr_t)&ro, sizeof(ro));
1777 ro.ro_rt = NULL;
1778 dst = satosin(&ro.ro_dst);
1779 dst->sin_len = sizeof(*dst);
1780 dst->sin_family = AF_INET;
1781 dst->sin_addr = mreq->imr_multiaddr;
1782 rtalloc(&ro);
1783 if (ro.ro_rt == NULL) {
1784 error = EADDRNOTAVAIL;
1785 break;
1786 }
1787 ifp = ro.ro_rt->rt_ifp;
1788 rtfree(ro.ro_rt);
1789 } else {
1790 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1791 }
1792 /*
1793 * See if we found an interface, and confirm that it
1794 * supports multicast.
1795 */
1796 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1797 error = EADDRNOTAVAIL;
1798 break;
1799 }
1800 /*
1801 * See if the membership already exists or if all the
1802 * membership slots are full.
1803 */
1804 for (i = 0; i < imo->imo_num_memberships; ++i) {
1805 if (imo->imo_membership[i]->inm_ifp == ifp &&
1806 in_hosteq(imo->imo_membership[i]->inm_addr,
1807 mreq->imr_multiaddr))
1808 break;
1809 }
1810 if (i < imo->imo_num_memberships) {
1811 error = EADDRINUSE;
1812 break;
1813 }
1814 if (i == IP_MAX_MEMBERSHIPS) {
1815 error = ETOOMANYREFS;
1816 break;
1817 }
1818 /*
1819 * Everything looks good; add a new record to the multicast
1820 * address list for the given interface.
1821 */
1822 if ((imo->imo_membership[i] =
1823 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1824 error = ENOBUFS;
1825 break;
1826 }
1827 ++imo->imo_num_memberships;
1828 break;
1829
1830 case IP_DROP_MEMBERSHIP:
1831 /*
1832 * Drop a multicast group membership.
1833 * Group must be a valid IP multicast address.
1834 */
1835 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1836 error = EINVAL;
1837 break;
1838 }
1839 mreq = mtod(m, struct ip_mreq *);
1840 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1841 error = EINVAL;
1842 break;
1843 }
1844 /*
1845 * If an interface address was specified, get a pointer
1846 * to its ifnet structure.
1847 */
1848 if (in_nullhost(mreq->imr_interface))
1849 ifp = NULL;
1850 else {
1851 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1852 if (ifp == NULL) {
1853 error = EADDRNOTAVAIL;
1854 break;
1855 }
1856 }
1857 /*
1858 * Find the membership in the membership array.
1859 */
1860 for (i = 0; i < imo->imo_num_memberships; ++i) {
1861 if ((ifp == NULL ||
1862 imo->imo_membership[i]->inm_ifp == ifp) &&
1863 in_hosteq(imo->imo_membership[i]->inm_addr,
1864 mreq->imr_multiaddr))
1865 break;
1866 }
1867 if (i == imo->imo_num_memberships) {
1868 error = EADDRNOTAVAIL;
1869 break;
1870 }
1871 /*
1872 * Give up the multicast address record to which the
1873 * membership points.
1874 */
1875 in_delmulti(imo->imo_membership[i]);
1876 /*
1877 * Remove the gap in the membership array.
1878 */
1879 for (++i; i < imo->imo_num_memberships; ++i)
1880 imo->imo_membership[i-1] = imo->imo_membership[i];
1881 --imo->imo_num_memberships;
1882 break;
1883
1884 default:
1885 error = EOPNOTSUPP;
1886 break;
1887 }
1888
1889 /*
1890 * If all options have default values, no need to keep the mbuf.
1891 */
1892 if (imo->imo_multicast_ifp == NULL &&
1893 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1894 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1895 imo->imo_num_memberships == 0) {
1896 free(*imop, M_IPMOPTS);
1897 *imop = NULL;
1898 }
1899
1900 return (error);
1901 }
1902
1903 /*
1904 * Return the IP multicast options in response to user getsockopt().
1905 */
1906 int
1907 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1908 {
1909 u_char *ttl;
1910 u_char *loop;
1911 struct in_addr *addr;
1912 struct in_ifaddr *ia;
1913
1914 *mp = m_get(M_WAIT, MT_SOOPTS);
1915
1916 switch (optname) {
1917
1918 case IP_MULTICAST_IF:
1919 addr = mtod(*mp, struct in_addr *);
1920 (*mp)->m_len = sizeof(struct in_addr);
1921 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1922 *addr = zeroin_addr;
1923 else if (imo->imo_multicast_addr.s_addr) {
1924 /* return the value user has set */
1925 *addr = imo->imo_multicast_addr;
1926 } else {
1927 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1928 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1929 }
1930 return (0);
1931
1932 case IP_MULTICAST_TTL:
1933 ttl = mtod(*mp, u_char *);
1934 (*mp)->m_len = 1;
1935 *ttl = imo ? imo->imo_multicast_ttl
1936 : IP_DEFAULT_MULTICAST_TTL;
1937 return (0);
1938
1939 case IP_MULTICAST_LOOP:
1940 loop = mtod(*mp, u_char *);
1941 (*mp)->m_len = 1;
1942 *loop = imo ? imo->imo_multicast_loop
1943 : IP_DEFAULT_MULTICAST_LOOP;
1944 return (0);
1945
1946 default:
1947 return (EOPNOTSUPP);
1948 }
1949 }
1950
1951 /*
1952 * Discard the IP multicast options.
1953 */
1954 void
1955 ip_freemoptions(struct ip_moptions *imo)
1956 {
1957 int i;
1958
1959 if (imo != NULL) {
1960 for (i = 0; i < imo->imo_num_memberships; ++i)
1961 in_delmulti(imo->imo_membership[i]);
1962 free(imo, M_IPMOPTS);
1963 }
1964 }
1965
1966 /*
1967 * Routine called from ip_output() to loop back a copy of an IP multicast
1968 * packet to the input queue of a specified interface. Note that this
1969 * calls the output routine of the loopback "driver", but with an interface
1970 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1971 */
1972 static void
1973 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1974 {
1975 struct ip *ip;
1976 struct mbuf *copym;
1977
1978 copym = m_copy(m, 0, M_COPYALL);
1979 if (copym != NULL
1980 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1981 copym = m_pullup(copym, sizeof(struct ip));
1982 if (copym != NULL) {
1983 /*
1984 * We don't bother to fragment if the IP length is greater
1985 * than the interface's MTU. Can this possibly matter?
1986 */
1987 ip = mtod(copym, struct ip *);
1988
1989 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1990 in_delayed_cksum(copym);
1991 copym->m_pkthdr.csum_flags &=
1992 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1993 }
1994
1995 ip->ip_sum = 0;
1996 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1997 (void) looutput(ifp, copym, sintosa(dst), NULL);
1998 }
1999 }
2000