ip_output.c revision 1.165 1 /* $NetBSD: ip_output.c,v 1.165 2006/07/23 22:06:13 ad Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.165 2006/07/23 22:06:13 ad Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
160
161 #ifdef PFIL_HOOKS
162 extern struct pfil_head inet_pfil_hook; /* XXX */
163 #endif
164
165 int ip_do_loopback_cksum = 0;
166
167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
172
173 struct ip_tso_output_args {
174 struct ifnet *ifp;
175 struct sockaddr *sa;
176 struct rtentry *rt;
177 };
178
179 static int ip_tso_output_callback(void *, struct mbuf *);
180 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
181 struct rtentry *);
182
183 static int
184 ip_tso_output_callback(void *vp, struct mbuf *m)
185 {
186 struct ip_tso_output_args *args = vp;
187 struct ifnet *ifp = args->ifp;
188
189 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
190 }
191
192 static int
193 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
194 struct rtentry *rt)
195 {
196 struct ip_tso_output_args args;
197
198 args.ifp = ifp;
199 args.sa = sa;
200 args.rt = rt;
201
202 return tcp4_segment(m, ip_tso_output_callback, &args);
203 }
204
205 /*
206 * IP output. The packet in mbuf chain m contains a skeletal IP
207 * header (with len, off, ttl, proto, tos, src, dst).
208 * The mbuf chain containing the packet will be freed.
209 * The mbuf opt, if present, will not be freed.
210 */
211 int
212 ip_output(struct mbuf *m0, ...)
213 {
214 struct ip *ip;
215 struct ifnet *ifp;
216 struct mbuf *m = m0;
217 int hlen = sizeof (struct ip);
218 int len, error = 0;
219 struct route iproute;
220 struct sockaddr_in *dst;
221 struct in_ifaddr *ia;
222 struct mbuf *opt;
223 struct route *ro;
224 int flags, sw_csum;
225 int *mtu_p;
226 u_long mtu;
227 struct ip_moptions *imo;
228 struct socket *so;
229 va_list ap;
230 #ifdef IPSEC_NAT_T
231 int natt_frag = 0;
232 #endif
233 #ifdef IPSEC
234 struct secpolicy *sp = NULL;
235 #endif /*IPSEC*/
236 #ifdef FAST_IPSEC
237 struct inpcb *inp;
238 struct m_tag *mtag;
239 struct secpolicy *sp = NULL;
240 struct tdb_ident *tdbi;
241 int s;
242 #endif
243 u_int16_t ip_len;
244
245 len = 0;
246 va_start(ap, m0);
247 opt = va_arg(ap, struct mbuf *);
248 ro = va_arg(ap, struct route *);
249 flags = va_arg(ap, int);
250 imo = va_arg(ap, struct ip_moptions *);
251 so = va_arg(ap, struct socket *);
252 if (flags & IP_RETURNMTU)
253 mtu_p = va_arg(ap, int *);
254 else
255 mtu_p = NULL;
256 va_end(ap);
257
258 MCLAIM(m, &ip_tx_mowner);
259 #ifdef FAST_IPSEC
260 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
261 inp = (struct inpcb *)so->so_pcb;
262 else
263 inp = NULL;
264 #endif /* FAST_IPSEC */
265
266 #ifdef DIAGNOSTIC
267 if ((m->m_flags & M_PKTHDR) == 0)
268 panic("ip_output: no HDR");
269
270 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
271 panic("ip_output: IPv6 checksum offload flags: %d",
272 m->m_pkthdr.csum_flags);
273 }
274
275 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
276 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
277 panic("ip_output: conflicting checksum offload flags: %d",
278 m->m_pkthdr.csum_flags);
279 }
280 #endif
281 if (opt) {
282 m = ip_insertoptions(m, opt, &len);
283 if (len >= sizeof(struct ip))
284 hlen = len;
285 }
286 ip = mtod(m, struct ip *);
287 /*
288 * Fill in IP header.
289 */
290 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
291 ip->ip_v = IPVERSION;
292 ip->ip_off = htons(0);
293 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
294 ip->ip_id = ip_newid();
295 } else {
296
297 /*
298 * TSO capable interfaces (typically?) increment
299 * ip_id for each segment.
300 * "allocate" enough ids here to increase the chance
301 * for them to be unique.
302 *
303 * note that the following calculation is not
304 * needed to be precise. wasting some ip_id is fine.
305 */
306
307 unsigned int segsz = m->m_pkthdr.segsz;
308 unsigned int datasz = ntohs(ip->ip_len) - hlen;
309 unsigned int num = howmany(datasz, segsz);
310
311 ip->ip_id = ip_newid_range(num);
312 }
313 ip->ip_hl = hlen >> 2;
314 ipstat.ips_localout++;
315 } else {
316 hlen = ip->ip_hl << 2;
317 }
318 /*
319 * Route packet.
320 */
321 if (ro == 0) {
322 ro = &iproute;
323 bzero((caddr_t)ro, sizeof (*ro));
324 }
325 dst = satosin(&ro->ro_dst);
326 /*
327 * If there is a cached route,
328 * check that it is to the same destination
329 * and is still up. If not, free it and try again.
330 * The address family should also be checked in case of sharing the
331 * cache with IPv6.
332 */
333 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
334 dst->sin_family != AF_INET ||
335 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
336 RTFREE(ro->ro_rt);
337 ro->ro_rt = (struct rtentry *)0;
338 }
339 if (ro->ro_rt == 0) {
340 bzero(dst, sizeof(*dst));
341 dst->sin_family = AF_INET;
342 dst->sin_len = sizeof(*dst);
343 dst->sin_addr = ip->ip_dst;
344 }
345 /*
346 * If routing to interface only,
347 * short circuit routing lookup.
348 */
349 if (flags & IP_ROUTETOIF) {
350 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
351 ipstat.ips_noroute++;
352 error = ENETUNREACH;
353 goto bad;
354 }
355 ifp = ia->ia_ifp;
356 mtu = ifp->if_mtu;
357 ip->ip_ttl = 1;
358 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
359 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
360 imo != NULL && imo->imo_multicast_ifp != NULL) {
361 ifp = imo->imo_multicast_ifp;
362 mtu = ifp->if_mtu;
363 IFP_TO_IA(ifp, ia);
364 } else {
365 if (ro->ro_rt == 0)
366 rtalloc(ro);
367 if (ro->ro_rt == 0) {
368 ipstat.ips_noroute++;
369 error = EHOSTUNREACH;
370 goto bad;
371 }
372 ia = ifatoia(ro->ro_rt->rt_ifa);
373 ifp = ro->ro_rt->rt_ifp;
374 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
375 mtu = ifp->if_mtu;
376 ro->ro_rt->rt_use++;
377 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
378 dst = satosin(ro->ro_rt->rt_gateway);
379 }
380 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
381 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
382 struct in_multi *inm;
383
384 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
385 M_BCAST : M_MCAST;
386 /*
387 * IP destination address is multicast. Make sure "dst"
388 * still points to the address in "ro". (It may have been
389 * changed to point to a gateway address, above.)
390 */
391 dst = satosin(&ro->ro_dst);
392 /*
393 * See if the caller provided any multicast options
394 */
395 if (imo != NULL)
396 ip->ip_ttl = imo->imo_multicast_ttl;
397 else
398 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
399
400 /*
401 * if we don't know the outgoing ifp yet, we can't generate
402 * output
403 */
404 if (!ifp) {
405 ipstat.ips_noroute++;
406 error = ENETUNREACH;
407 goto bad;
408 }
409
410 /*
411 * If the packet is multicast or broadcast, confirm that
412 * the outgoing interface can transmit it.
413 */
414 if (((m->m_flags & M_MCAST) &&
415 (ifp->if_flags & IFF_MULTICAST) == 0) ||
416 ((m->m_flags & M_BCAST) &&
417 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
418 ipstat.ips_noroute++;
419 error = ENETUNREACH;
420 goto bad;
421 }
422 /*
423 * If source address not specified yet, use an address
424 * of outgoing interface.
425 */
426 if (in_nullhost(ip->ip_src)) {
427 struct in_ifaddr *xia;
428
429 IFP_TO_IA(ifp, xia);
430 if (!xia) {
431 error = EADDRNOTAVAIL;
432 goto bad;
433 }
434 ip->ip_src = xia->ia_addr.sin_addr;
435 }
436
437 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
438 if (inm != NULL &&
439 (imo == NULL || imo->imo_multicast_loop)) {
440 /*
441 * If we belong to the destination multicast group
442 * on the outgoing interface, and the caller did not
443 * forbid loopback, loop back a copy.
444 */
445 ip_mloopback(ifp, m, dst);
446 }
447 #ifdef MROUTING
448 else {
449 /*
450 * If we are acting as a multicast router, perform
451 * multicast forwarding as if the packet had just
452 * arrived on the interface to which we are about
453 * to send. The multicast forwarding function
454 * recursively calls this function, using the
455 * IP_FORWARDING flag to prevent infinite recursion.
456 *
457 * Multicasts that are looped back by ip_mloopback(),
458 * above, will be forwarded by the ip_input() routine,
459 * if necessary.
460 */
461 extern struct socket *ip_mrouter;
462
463 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
464 if (ip_mforward(m, ifp) != 0) {
465 m_freem(m);
466 goto done;
467 }
468 }
469 }
470 #endif
471 /*
472 * Multicasts with a time-to-live of zero may be looped-
473 * back, above, but must not be transmitted on a network.
474 * Also, multicasts addressed to the loopback interface
475 * are not sent -- the above call to ip_mloopback() will
476 * loop back a copy if this host actually belongs to the
477 * destination group on the loopback interface.
478 */
479 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
480 m_freem(m);
481 goto done;
482 }
483
484 goto sendit;
485 }
486 /*
487 * If source address not specified yet, use address
488 * of outgoing interface.
489 */
490 if (in_nullhost(ip->ip_src))
491 ip->ip_src = ia->ia_addr.sin_addr;
492
493 /*
494 * packets with Class-D address as source are not valid per
495 * RFC 1112
496 */
497 if (IN_MULTICAST(ip->ip_src.s_addr)) {
498 ipstat.ips_odropped++;
499 error = EADDRNOTAVAIL;
500 goto bad;
501 }
502
503 /*
504 * Look for broadcast address and
505 * and verify user is allowed to send
506 * such a packet.
507 */
508 if (in_broadcast(dst->sin_addr, ifp)) {
509 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
510 error = EADDRNOTAVAIL;
511 goto bad;
512 }
513 if ((flags & IP_ALLOWBROADCAST) == 0) {
514 error = EACCES;
515 goto bad;
516 }
517 /* don't allow broadcast messages to be fragmented */
518 if (ntohs(ip->ip_len) > ifp->if_mtu) {
519 error = EMSGSIZE;
520 goto bad;
521 }
522 m->m_flags |= M_BCAST;
523 } else
524 m->m_flags &= ~M_BCAST;
525
526 sendit:
527 /*
528 * If we're doing Path MTU Discovery, we need to set DF unless
529 * the route's MTU is locked.
530 */
531 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
532 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
533 ip->ip_off |= htons(IP_DF);
534
535 /* Remember the current ip_len */
536 ip_len = ntohs(ip->ip_len);
537
538 #ifdef IPSEC
539 /* get SP for this packet */
540 if (so == NULL)
541 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
542 flags, &error);
543 else {
544 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
545 IPSEC_DIR_OUTBOUND))
546 goto skip_ipsec;
547 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
548 }
549
550 if (sp == NULL) {
551 ipsecstat.out_inval++;
552 goto bad;
553 }
554
555 error = 0;
556
557 /* check policy */
558 switch (sp->policy) {
559 case IPSEC_POLICY_DISCARD:
560 /*
561 * This packet is just discarded.
562 */
563 ipsecstat.out_polvio++;
564 goto bad;
565
566 case IPSEC_POLICY_BYPASS:
567 case IPSEC_POLICY_NONE:
568 /* no need to do IPsec. */
569 goto skip_ipsec;
570
571 case IPSEC_POLICY_IPSEC:
572 if (sp->req == NULL) {
573 /* XXX should be panic ? */
574 printf("ip_output: No IPsec request specified.\n");
575 error = EINVAL;
576 goto bad;
577 }
578 break;
579
580 case IPSEC_POLICY_ENTRUST:
581 default:
582 printf("ip_output: Invalid policy found. %d\n", sp->policy);
583 }
584
585 #ifdef IPSEC_NAT_T
586 /*
587 * NAT-T ESP fragmentation: don't do IPSec processing now,
588 * we'll do it on each fragmented packet.
589 */
590 if (sp->req->sav &&
591 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
592 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
593 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
594 natt_frag = 1;
595 mtu = sp->req->sav->esp_frag;
596 goto skip_ipsec;
597 }
598 }
599 #endif /* IPSEC_NAT_T */
600
601 /*
602 * ipsec4_output() expects ip_len and ip_off in network
603 * order. They have been set to network order above.
604 */
605
606 {
607 struct ipsec_output_state state;
608 bzero(&state, sizeof(state));
609 state.m = m;
610 if (flags & IP_ROUTETOIF) {
611 state.ro = &iproute;
612 bzero(&iproute, sizeof(iproute));
613 } else
614 state.ro = ro;
615 state.dst = (struct sockaddr *)dst;
616
617 /*
618 * We can't defer the checksum of payload data if
619 * we're about to encrypt/authenticate it.
620 *
621 * XXX When we support crypto offloading functions of
622 * XXX network interfaces, we need to reconsider this,
623 * XXX since it's likely that they'll support checksumming,
624 * XXX as well.
625 */
626 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
627 in_delayed_cksum(m);
628 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
629 }
630
631 error = ipsec4_output(&state, sp, flags);
632
633 m = state.m;
634 if (flags & IP_ROUTETOIF) {
635 /*
636 * if we have tunnel mode SA, we may need to ignore
637 * IP_ROUTETOIF.
638 */
639 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
640 flags &= ~IP_ROUTETOIF;
641 ro = state.ro;
642 }
643 } else
644 ro = state.ro;
645 dst = (struct sockaddr_in *)state.dst;
646 if (error) {
647 /* mbuf is already reclaimed in ipsec4_output. */
648 m0 = NULL;
649 switch (error) {
650 case EHOSTUNREACH:
651 case ENETUNREACH:
652 case EMSGSIZE:
653 case ENOBUFS:
654 case ENOMEM:
655 break;
656 default:
657 printf("ip4_output (ipsec): error code %d\n", error);
658 /*fall through*/
659 case ENOENT:
660 /* don't show these error codes to the user */
661 error = 0;
662 break;
663 }
664 goto bad;
665 }
666
667 /* be sure to update variables that are affected by ipsec4_output() */
668 ip = mtod(m, struct ip *);
669 hlen = ip->ip_hl << 2;
670 ip_len = ntohs(ip->ip_len);
671
672 if (ro->ro_rt == NULL) {
673 if ((flags & IP_ROUTETOIF) == 0) {
674 printf("ip_output: "
675 "can't update route after IPsec processing\n");
676 error = EHOSTUNREACH; /*XXX*/
677 goto bad;
678 }
679 } else {
680 /* nobody uses ia beyond here */
681 if (state.encap) {
682 ifp = ro->ro_rt->rt_ifp;
683 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
684 mtu = ifp->if_mtu;
685 }
686 }
687 }
688 skip_ipsec:
689 #endif /*IPSEC*/
690 #ifdef FAST_IPSEC
691 /*
692 * Check the security policy (SP) for the packet and, if
693 * required, do IPsec-related processing. There are two
694 * cases here; the first time a packet is sent through
695 * it will be untagged and handled by ipsec4_checkpolicy.
696 * If the packet is resubmitted to ip_output (e.g. after
697 * AH, ESP, etc. processing), there will be a tag to bypass
698 * the lookup and related policy checking.
699 */
700 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
701 s = splsoftnet();
702 if (mtag != NULL) {
703 tdbi = (struct tdb_ident *)(mtag + 1);
704 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
705 if (sp == NULL)
706 error = -EINVAL; /* force silent drop */
707 m_tag_delete(m, mtag);
708 } else {
709 if (inp != NULL &&
710 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
711 goto spd_done;
712 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
713 &error, inp);
714 }
715 /*
716 * There are four return cases:
717 * sp != NULL apply IPsec policy
718 * sp == NULL, error == 0 no IPsec handling needed
719 * sp == NULL, error == -EINVAL discard packet w/o error
720 * sp == NULL, error != 0 discard packet, report error
721 */
722 if (sp != NULL) {
723 #ifdef IPSEC_NAT_T
724 /*
725 * NAT-T ESP fragmentation: don't do IPSec processing now,
726 * we'll do it on each fragmented packet.
727 */
728 if (sp->req->sav &&
729 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
730 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
731 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
732 natt_frag = 1;
733 mtu = sp->req->sav->esp_frag;
734 goto spd_done;
735 }
736 }
737 #endif /* IPSEC_NAT_T */
738 /* Loop detection, check if ipsec processing already done */
739 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
740 for (mtag = m_tag_first(m); mtag != NULL;
741 mtag = m_tag_next(m, mtag)) {
742 #ifdef MTAG_ABI_COMPAT
743 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
744 continue;
745 #endif
746 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
747 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
748 continue;
749 /*
750 * Check if policy has an SA associated with it.
751 * This can happen when an SP has yet to acquire
752 * an SA; e.g. on first reference. If it occurs,
753 * then we let ipsec4_process_packet do its thing.
754 */
755 if (sp->req->sav == NULL)
756 break;
757 tdbi = (struct tdb_ident *)(mtag + 1);
758 if (tdbi->spi == sp->req->sav->spi &&
759 tdbi->proto == sp->req->sav->sah->saidx.proto &&
760 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
761 sizeof (union sockaddr_union)) == 0) {
762 /*
763 * No IPsec processing is needed, free
764 * reference to SP.
765 *
766 * NB: null pointer to avoid free at
767 * done: below.
768 */
769 KEY_FREESP(&sp), sp = NULL;
770 splx(s);
771 goto spd_done;
772 }
773 }
774
775 /*
776 * Do delayed checksums now because we send before
777 * this is done in the normal processing path.
778 */
779 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
780 in_delayed_cksum(m);
781 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
782 }
783
784 #ifdef __FreeBSD__
785 ip->ip_len = htons(ip->ip_len);
786 ip->ip_off = htons(ip->ip_off);
787 #endif
788
789 /* NB: callee frees mbuf */
790 error = ipsec4_process_packet(m, sp->req, flags, 0);
791 /*
792 * Preserve KAME behaviour: ENOENT can be returned
793 * when an SA acquire is in progress. Don't propagate
794 * this to user-level; it confuses applications.
795 *
796 * XXX this will go away when the SADB is redone.
797 */
798 if (error == ENOENT)
799 error = 0;
800 splx(s);
801 goto done;
802 } else {
803 splx(s);
804
805 if (error != 0) {
806 /*
807 * Hack: -EINVAL is used to signal that a packet
808 * should be silently discarded. This is typically
809 * because we asked key management for an SA and
810 * it was delayed (e.g. kicked up to IKE).
811 */
812 if (error == -EINVAL)
813 error = 0;
814 goto bad;
815 } else {
816 /* No IPsec processing for this packet. */
817 }
818 #ifdef notyet
819 /*
820 * If deferred crypto processing is needed, check that
821 * the interface supports it.
822 */
823 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
824 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
825 /* notify IPsec to do its own crypto */
826 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
827 error = EHOSTUNREACH;
828 goto bad;
829 }
830 #endif
831 }
832 spd_done:
833 #endif /* FAST_IPSEC */
834
835 #ifdef PFIL_HOOKS
836 /*
837 * Run through list of hooks for output packets.
838 */
839 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
840 goto done;
841 if (m == NULL)
842 goto done;
843
844 ip = mtod(m, struct ip *);
845 hlen = ip->ip_hl << 2;
846 #endif /* PFIL_HOOKS */
847
848 m->m_pkthdr.csum_data |= hlen << 16;
849
850 #if IFA_STATS
851 /*
852 * search for the source address structure to
853 * maintain output statistics.
854 */
855 INADDR_TO_IA(ip->ip_src, ia);
856 #endif
857
858 /* Maybe skip checksums on loopback interfaces. */
859 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
860 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
861 }
862 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
863 /*
864 * If small enough for mtu of path, or if using TCP segmentation
865 * offload, can just send directly.
866 */
867 if (ip_len <= mtu ||
868 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
869 #if IFA_STATS
870 if (ia)
871 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
872 #endif
873 /*
874 * Always initialize the sum to 0! Some HW assisted
875 * checksumming requires this.
876 */
877 ip->ip_sum = 0;
878
879 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
880 /*
881 * Perform any checksums that the hardware can't do
882 * for us.
883 *
884 * XXX Does any hardware require the {th,uh}_sum
885 * XXX fields to be 0?
886 */
887 if (sw_csum & M_CSUM_IPv4) {
888 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
889 ip->ip_sum = in_cksum(m, hlen);
890 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
891 }
892 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
893 if (IN_NEED_CHECKSUM(ifp,
894 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
895 in_delayed_cksum(m);
896 }
897 m->m_pkthdr.csum_flags &=
898 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
899 }
900 }
901
902 #ifdef IPSEC
903 /* clean ipsec history once it goes out of the node */
904 ipsec_delaux(m);
905 #endif
906
907 if (__predict_true(
908 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
909 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
910 error =
911 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
912 } else {
913 error =
914 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
915 }
916 goto done;
917 }
918
919 /*
920 * We can't use HW checksumming if we're about to
921 * to fragment the packet.
922 *
923 * XXX Some hardware can do this.
924 */
925 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
926 if (IN_NEED_CHECKSUM(ifp,
927 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
928 in_delayed_cksum(m);
929 }
930 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
931 }
932
933 /*
934 * Too large for interface; fragment if possible.
935 * Must be able to put at least 8 bytes per fragment.
936 */
937 if (ntohs(ip->ip_off) & IP_DF) {
938 if (flags & IP_RETURNMTU)
939 *mtu_p = mtu;
940 error = EMSGSIZE;
941 ipstat.ips_cantfrag++;
942 goto bad;
943 }
944
945 error = ip_fragment(m, ifp, mtu);
946 if (error) {
947 m = NULL;
948 goto bad;
949 }
950
951 for (; m; m = m0) {
952 m0 = m->m_nextpkt;
953 m->m_nextpkt = 0;
954 if (error == 0) {
955 #if IFA_STATS
956 if (ia)
957 ia->ia_ifa.ifa_data.ifad_outbytes +=
958 ntohs(ip->ip_len);
959 #endif
960 #ifdef IPSEC
961 /* clean ipsec history once it goes out of the node */
962 ipsec_delaux(m);
963 #endif /* IPSEC */
964
965 #ifdef IPSEC_NAT_T
966 /*
967 * If we get there, the packet has not been handeld by
968 * IPSec whereas it should have. Now that it has been
969 * fragmented, re-inject it in ip_output so that IPsec
970 * processing can occur.
971 */
972 if (natt_frag) {
973 error = ip_output(m, opt,
974 ro, flags, imo, so, mtu_p);
975 } else
976 #endif /* IPSEC_NAT_T */
977 {
978 KASSERT((m->m_pkthdr.csum_flags &
979 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
980 error = (*ifp->if_output)(ifp, m, sintosa(dst),
981 ro->ro_rt);
982 }
983 } else
984 m_freem(m);
985 }
986
987 if (error == 0)
988 ipstat.ips_fragmented++;
989 done:
990 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
991 RTFREE(ro->ro_rt);
992 ro->ro_rt = 0;
993 }
994
995 #ifdef IPSEC
996 if (sp != NULL) {
997 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
998 printf("DP ip_output call free SP:%p\n", sp));
999 key_freesp(sp);
1000 }
1001 #endif /* IPSEC */
1002 #ifdef FAST_IPSEC
1003 if (sp != NULL)
1004 KEY_FREESP(&sp);
1005 #endif /* FAST_IPSEC */
1006
1007 return (error);
1008 bad:
1009 m_freem(m);
1010 goto done;
1011 }
1012
1013 int
1014 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
1015 {
1016 struct ip *ip, *mhip;
1017 struct mbuf *m0;
1018 int len, hlen, off;
1019 int mhlen, firstlen;
1020 struct mbuf **mnext;
1021 int sw_csum = m->m_pkthdr.csum_flags;
1022 int fragments = 0;
1023 int s;
1024 int error = 0;
1025
1026 ip = mtod(m, struct ip *);
1027 hlen = ip->ip_hl << 2;
1028 if (ifp != NULL)
1029 sw_csum &= ~ifp->if_csum_flags_tx;
1030
1031 len = (mtu - hlen) &~ 7;
1032 if (len < 8) {
1033 m_freem(m);
1034 return (EMSGSIZE);
1035 }
1036
1037 firstlen = len;
1038 mnext = &m->m_nextpkt;
1039
1040 /*
1041 * Loop through length of segment after first fragment,
1042 * make new header and copy data of each part and link onto chain.
1043 */
1044 m0 = m;
1045 mhlen = sizeof (struct ip);
1046 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1047 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1048 if (m == 0) {
1049 error = ENOBUFS;
1050 ipstat.ips_odropped++;
1051 goto sendorfree;
1052 }
1053 MCLAIM(m, m0->m_owner);
1054 *mnext = m;
1055 mnext = &m->m_nextpkt;
1056 m->m_data += max_linkhdr;
1057 mhip = mtod(m, struct ip *);
1058 *mhip = *ip;
1059 /* we must inherit MCAST and BCAST flags */
1060 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1061 if (hlen > sizeof (struct ip)) {
1062 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1063 mhip->ip_hl = mhlen >> 2;
1064 }
1065 m->m_len = mhlen;
1066 mhip->ip_off = ((off - hlen) >> 3) +
1067 (ntohs(ip->ip_off) & ~IP_MF);
1068 if (ip->ip_off & htons(IP_MF))
1069 mhip->ip_off |= IP_MF;
1070 if (off + len >= ntohs(ip->ip_len))
1071 len = ntohs(ip->ip_len) - off;
1072 else
1073 mhip->ip_off |= IP_MF;
1074 HTONS(mhip->ip_off);
1075 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1076 m->m_next = m_copy(m0, off, len);
1077 if (m->m_next == 0) {
1078 error = ENOBUFS; /* ??? */
1079 ipstat.ips_odropped++;
1080 goto sendorfree;
1081 }
1082 m->m_pkthdr.len = mhlen + len;
1083 m->m_pkthdr.rcvif = (struct ifnet *)0;
1084 mhip->ip_sum = 0;
1085 if (sw_csum & M_CSUM_IPv4) {
1086 mhip->ip_sum = in_cksum(m, mhlen);
1087 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1088 } else {
1089 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1090 m->m_pkthdr.csum_data |= mhlen << 16;
1091 }
1092 ipstat.ips_ofragments++;
1093 fragments++;
1094 }
1095 /*
1096 * Update first fragment by trimming what's been copied out
1097 * and updating header, then send each fragment (in order).
1098 */
1099 m = m0;
1100 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1101 m->m_pkthdr.len = hlen + firstlen;
1102 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1103 ip->ip_off |= htons(IP_MF);
1104 ip->ip_sum = 0;
1105 if (sw_csum & M_CSUM_IPv4) {
1106 ip->ip_sum = in_cksum(m, hlen);
1107 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1108 } else {
1109 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1110 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1111 sizeof(struct ip));
1112 }
1113 sendorfree:
1114 /*
1115 * If there is no room for all the fragments, don't queue
1116 * any of them.
1117 */
1118 if (ifp != NULL) {
1119 s = splnet();
1120 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1121 error == 0) {
1122 error = ENOBUFS;
1123 ipstat.ips_odropped++;
1124 IFQ_INC_DROPS(&ifp->if_snd);
1125 }
1126 splx(s);
1127 }
1128 if (error) {
1129 for (m = m0; m; m = m0) {
1130 m0 = m->m_nextpkt;
1131 m->m_nextpkt = NULL;
1132 m_freem(m);
1133 }
1134 }
1135 return (error);
1136 }
1137
1138 /*
1139 * Process a delayed payload checksum calculation.
1140 */
1141 void
1142 in_delayed_cksum(struct mbuf *m)
1143 {
1144 struct ip *ip;
1145 u_int16_t csum, offset;
1146
1147 ip = mtod(m, struct ip *);
1148 offset = ip->ip_hl << 2;
1149 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1150 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1151 csum = 0xffff;
1152
1153 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1154
1155 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1156 /* This happen when ip options were inserted
1157 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1158 m->m_len, offset, ip->ip_p);
1159 */
1160 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1161 } else
1162 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1163 }
1164
1165 /*
1166 * Determine the maximum length of the options to be inserted;
1167 * we would far rather allocate too much space rather than too little.
1168 */
1169
1170 u_int
1171 ip_optlen(struct inpcb *inp)
1172 {
1173 struct mbuf *m = inp->inp_options;
1174
1175 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1176 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1177 else
1178 return 0;
1179 }
1180
1181
1182 /*
1183 * Insert IP options into preformed packet.
1184 * Adjust IP destination as required for IP source routing,
1185 * as indicated by a non-zero in_addr at the start of the options.
1186 */
1187 static struct mbuf *
1188 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1189 {
1190 struct ipoption *p = mtod(opt, struct ipoption *);
1191 struct mbuf *n;
1192 struct ip *ip = mtod(m, struct ip *);
1193 unsigned optlen;
1194
1195 optlen = opt->m_len - sizeof(p->ipopt_dst);
1196 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1197 return (m); /* XXX should fail */
1198 if (!in_nullhost(p->ipopt_dst))
1199 ip->ip_dst = p->ipopt_dst;
1200 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1201 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1202 if (n == 0)
1203 return (m);
1204 MCLAIM(n, m->m_owner);
1205 M_MOVE_PKTHDR(n, m);
1206 m->m_len -= sizeof(struct ip);
1207 m->m_data += sizeof(struct ip);
1208 n->m_next = m;
1209 m = n;
1210 m->m_len = optlen + sizeof(struct ip);
1211 m->m_data += max_linkhdr;
1212 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1213 } else {
1214 m->m_data -= optlen;
1215 m->m_len += optlen;
1216 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1217 }
1218 m->m_pkthdr.len += optlen;
1219 ip = mtod(m, struct ip *);
1220 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1221 *phlen = sizeof(struct ip) + optlen;
1222 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1223 return (m);
1224 }
1225
1226 /*
1227 * Copy options from ip to jp,
1228 * omitting those not copied during fragmentation.
1229 */
1230 int
1231 ip_optcopy(struct ip *ip, struct ip *jp)
1232 {
1233 u_char *cp, *dp;
1234 int opt, optlen, cnt;
1235
1236 cp = (u_char *)(ip + 1);
1237 dp = (u_char *)(jp + 1);
1238 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1239 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1240 opt = cp[0];
1241 if (opt == IPOPT_EOL)
1242 break;
1243 if (opt == IPOPT_NOP) {
1244 /* Preserve for IP mcast tunnel's LSRR alignment. */
1245 *dp++ = IPOPT_NOP;
1246 optlen = 1;
1247 continue;
1248 }
1249 #ifdef DIAGNOSTIC
1250 if (cnt < IPOPT_OLEN + sizeof(*cp))
1251 panic("malformed IPv4 option passed to ip_optcopy");
1252 #endif
1253 optlen = cp[IPOPT_OLEN];
1254 #ifdef DIAGNOSTIC
1255 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1256 panic("malformed IPv4 option passed to ip_optcopy");
1257 #endif
1258 /* bogus lengths should have been caught by ip_dooptions */
1259 if (optlen > cnt)
1260 optlen = cnt;
1261 if (IPOPT_COPIED(opt)) {
1262 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1263 dp += optlen;
1264 }
1265 }
1266 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1267 *dp++ = IPOPT_EOL;
1268 return (optlen);
1269 }
1270
1271 /*
1272 * IP socket option processing.
1273 */
1274 int
1275 ip_ctloutput(int op, struct socket *so, int level, int optname,
1276 struct mbuf **mp)
1277 {
1278 struct inpcb *inp = sotoinpcb(so);
1279 struct mbuf *m = *mp;
1280 int optval = 0;
1281 int error = 0;
1282 #if defined(IPSEC) || defined(FAST_IPSEC)
1283 struct lwp *l = curlwp; /*XXX*/
1284 #endif
1285
1286 if (level != IPPROTO_IP) {
1287 error = EINVAL;
1288 if (op == PRCO_SETOPT && *mp)
1289 (void) m_free(*mp);
1290 } else switch (op) {
1291
1292 case PRCO_SETOPT:
1293 switch (optname) {
1294 case IP_OPTIONS:
1295 #ifdef notyet
1296 case IP_RETOPTS:
1297 return (ip_pcbopts(optname, &inp->inp_options, m));
1298 #else
1299 return (ip_pcbopts(&inp->inp_options, m));
1300 #endif
1301
1302 case IP_TOS:
1303 case IP_TTL:
1304 case IP_RECVOPTS:
1305 case IP_RECVRETOPTS:
1306 case IP_RECVDSTADDR:
1307 case IP_RECVIF:
1308 if (m == NULL || m->m_len != sizeof(int))
1309 error = EINVAL;
1310 else {
1311 optval = *mtod(m, int *);
1312 switch (optname) {
1313
1314 case IP_TOS:
1315 inp->inp_ip.ip_tos = optval;
1316 break;
1317
1318 case IP_TTL:
1319 inp->inp_ip.ip_ttl = optval;
1320 break;
1321 #define OPTSET(bit) \
1322 if (optval) \
1323 inp->inp_flags |= bit; \
1324 else \
1325 inp->inp_flags &= ~bit;
1326
1327 case IP_RECVOPTS:
1328 OPTSET(INP_RECVOPTS);
1329 break;
1330
1331 case IP_RECVRETOPTS:
1332 OPTSET(INP_RECVRETOPTS);
1333 break;
1334
1335 case IP_RECVDSTADDR:
1336 OPTSET(INP_RECVDSTADDR);
1337 break;
1338
1339 case IP_RECVIF:
1340 OPTSET(INP_RECVIF);
1341 break;
1342 }
1343 }
1344 break;
1345 #undef OPTSET
1346
1347 case IP_MULTICAST_IF:
1348 case IP_MULTICAST_TTL:
1349 case IP_MULTICAST_LOOP:
1350 case IP_ADD_MEMBERSHIP:
1351 case IP_DROP_MEMBERSHIP:
1352 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1353 break;
1354
1355 case IP_PORTRANGE:
1356 if (m == 0 || m->m_len != sizeof(int))
1357 error = EINVAL;
1358 else {
1359 optval = *mtod(m, int *);
1360
1361 switch (optval) {
1362
1363 case IP_PORTRANGE_DEFAULT:
1364 case IP_PORTRANGE_HIGH:
1365 inp->inp_flags &= ~(INP_LOWPORT);
1366 break;
1367
1368 case IP_PORTRANGE_LOW:
1369 inp->inp_flags |= INP_LOWPORT;
1370 break;
1371
1372 default:
1373 error = EINVAL;
1374 break;
1375 }
1376 }
1377 break;
1378
1379 #if defined(IPSEC) || defined(FAST_IPSEC)
1380 case IP_IPSEC_POLICY:
1381 {
1382 caddr_t req = NULL;
1383 size_t len = 0;
1384 int priv = 0;
1385
1386 #ifdef __NetBSD__
1387 if (l == 0 || kauth_authorize_generic(l->l_cred,
1388 KAUTH_GENERIC_ISSUSER, &l->l_acflag))
1389 priv = 0;
1390 else
1391 priv = 1;
1392 #else
1393 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1394 #endif
1395 if (m) {
1396 req = mtod(m, caddr_t);
1397 len = m->m_len;
1398 }
1399 error = ipsec4_set_policy(inp, optname, req, len, priv);
1400 break;
1401 }
1402 #endif /*IPSEC*/
1403
1404 default:
1405 error = ENOPROTOOPT;
1406 break;
1407 }
1408 if (m)
1409 (void)m_free(m);
1410 break;
1411
1412 case PRCO_GETOPT:
1413 switch (optname) {
1414 case IP_OPTIONS:
1415 case IP_RETOPTS:
1416 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1417 MCLAIM(m, so->so_mowner);
1418 if (inp->inp_options) {
1419 m->m_len = inp->inp_options->m_len;
1420 bcopy(mtod(inp->inp_options, caddr_t),
1421 mtod(m, caddr_t), (unsigned)m->m_len);
1422 } else
1423 m->m_len = 0;
1424 break;
1425
1426 case IP_TOS:
1427 case IP_TTL:
1428 case IP_RECVOPTS:
1429 case IP_RECVRETOPTS:
1430 case IP_RECVDSTADDR:
1431 case IP_RECVIF:
1432 case IP_ERRORMTU:
1433 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1434 MCLAIM(m, so->so_mowner);
1435 m->m_len = sizeof(int);
1436 switch (optname) {
1437
1438 case IP_TOS:
1439 optval = inp->inp_ip.ip_tos;
1440 break;
1441
1442 case IP_TTL:
1443 optval = inp->inp_ip.ip_ttl;
1444 break;
1445
1446 case IP_ERRORMTU:
1447 optval = inp->inp_errormtu;
1448 break;
1449
1450 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1451
1452 case IP_RECVOPTS:
1453 optval = OPTBIT(INP_RECVOPTS);
1454 break;
1455
1456 case IP_RECVRETOPTS:
1457 optval = OPTBIT(INP_RECVRETOPTS);
1458 break;
1459
1460 case IP_RECVDSTADDR:
1461 optval = OPTBIT(INP_RECVDSTADDR);
1462 break;
1463
1464 case IP_RECVIF:
1465 optval = OPTBIT(INP_RECVIF);
1466 break;
1467 }
1468 *mtod(m, int *) = optval;
1469 break;
1470
1471 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1472 /* XXX: code broken */
1473 case IP_IPSEC_POLICY:
1474 {
1475 caddr_t req = NULL;
1476 size_t len = 0;
1477
1478 if (m) {
1479 req = mtod(m, caddr_t);
1480 len = m->m_len;
1481 }
1482 error = ipsec4_get_policy(inp, req, len, mp);
1483 break;
1484 }
1485 #endif /*IPSEC*/
1486
1487 case IP_MULTICAST_IF:
1488 case IP_MULTICAST_TTL:
1489 case IP_MULTICAST_LOOP:
1490 case IP_ADD_MEMBERSHIP:
1491 case IP_DROP_MEMBERSHIP:
1492 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1493 if (*mp)
1494 MCLAIM(*mp, so->so_mowner);
1495 break;
1496
1497 case IP_PORTRANGE:
1498 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1499 MCLAIM(m, so->so_mowner);
1500 m->m_len = sizeof(int);
1501
1502 if (inp->inp_flags & INP_LOWPORT)
1503 optval = IP_PORTRANGE_LOW;
1504 else
1505 optval = IP_PORTRANGE_DEFAULT;
1506
1507 *mtod(m, int *) = optval;
1508 break;
1509
1510 default:
1511 error = ENOPROTOOPT;
1512 break;
1513 }
1514 break;
1515 }
1516 return (error);
1517 }
1518
1519 /*
1520 * Set up IP options in pcb for insertion in output packets.
1521 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1522 * with destination address if source routed.
1523 */
1524 int
1525 #ifdef notyet
1526 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1527 #else
1528 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1529 #endif
1530 {
1531 int cnt, optlen;
1532 u_char *cp;
1533 u_char opt;
1534
1535 /* turn off any old options */
1536 if (*pcbopt)
1537 (void)m_free(*pcbopt);
1538 *pcbopt = 0;
1539 if (m == (struct mbuf *)0 || m->m_len == 0) {
1540 /*
1541 * Only turning off any previous options.
1542 */
1543 if (m)
1544 (void)m_free(m);
1545 return (0);
1546 }
1547
1548 #ifndef __vax__
1549 if (m->m_len % sizeof(int32_t))
1550 goto bad;
1551 #endif
1552 /*
1553 * IP first-hop destination address will be stored before
1554 * actual options; move other options back
1555 * and clear it when none present.
1556 */
1557 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1558 goto bad;
1559 cnt = m->m_len;
1560 m->m_len += sizeof(struct in_addr);
1561 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1562 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1563 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1564
1565 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1566 opt = cp[IPOPT_OPTVAL];
1567 if (opt == IPOPT_EOL)
1568 break;
1569 if (opt == IPOPT_NOP)
1570 optlen = 1;
1571 else {
1572 if (cnt < IPOPT_OLEN + sizeof(*cp))
1573 goto bad;
1574 optlen = cp[IPOPT_OLEN];
1575 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1576 goto bad;
1577 }
1578 switch (opt) {
1579
1580 default:
1581 break;
1582
1583 case IPOPT_LSRR:
1584 case IPOPT_SSRR:
1585 /*
1586 * user process specifies route as:
1587 * ->A->B->C->D
1588 * D must be our final destination (but we can't
1589 * check that since we may not have connected yet).
1590 * A is first hop destination, which doesn't appear in
1591 * actual IP option, but is stored before the options.
1592 */
1593 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1594 goto bad;
1595 m->m_len -= sizeof(struct in_addr);
1596 cnt -= sizeof(struct in_addr);
1597 optlen -= sizeof(struct in_addr);
1598 cp[IPOPT_OLEN] = optlen;
1599 /*
1600 * Move first hop before start of options.
1601 */
1602 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1603 sizeof(struct in_addr));
1604 /*
1605 * Then copy rest of options back
1606 * to close up the deleted entry.
1607 */
1608 (void)memmove(&cp[IPOPT_OFFSET+1],
1609 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1610 (unsigned)cnt - (IPOPT_MINOFF - 1));
1611 break;
1612 }
1613 }
1614 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1615 goto bad;
1616 *pcbopt = m;
1617 return (0);
1618
1619 bad:
1620 (void)m_free(m);
1621 return (EINVAL);
1622 }
1623
1624 /*
1625 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1626 */
1627 static struct ifnet *
1628 ip_multicast_if(struct in_addr *a, int *ifindexp)
1629 {
1630 int ifindex;
1631 struct ifnet *ifp = NULL;
1632 struct in_ifaddr *ia;
1633
1634 if (ifindexp)
1635 *ifindexp = 0;
1636 if (ntohl(a->s_addr) >> 24 == 0) {
1637 ifindex = ntohl(a->s_addr) & 0xffffff;
1638 if (ifindex < 0 || if_indexlim <= ifindex)
1639 return NULL;
1640 ifp = ifindex2ifnet[ifindex];
1641 if (!ifp)
1642 return NULL;
1643 if (ifindexp)
1644 *ifindexp = ifindex;
1645 } else {
1646 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1647 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1648 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1649 ifp = ia->ia_ifp;
1650 break;
1651 }
1652 }
1653 }
1654 return ifp;
1655 }
1656
1657 static int
1658 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1659 {
1660 u_int tval;
1661
1662 if (m == NULL)
1663 return EINVAL;
1664
1665 switch (m->m_len) {
1666 case sizeof(u_char):
1667 tval = *(mtod(m, u_char *));
1668 break;
1669 case sizeof(u_int):
1670 tval = *(mtod(m, u_int *));
1671 break;
1672 default:
1673 return EINVAL;
1674 }
1675
1676 if (tval > maxval)
1677 return EINVAL;
1678
1679 *val = tval;
1680 return 0;
1681 }
1682
1683 /*
1684 * Set the IP multicast options in response to user setsockopt().
1685 */
1686 int
1687 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1688 {
1689 int error = 0;
1690 int i;
1691 struct in_addr addr;
1692 struct ip_mreq *mreq;
1693 struct ifnet *ifp;
1694 struct ip_moptions *imo = *imop;
1695 struct route ro;
1696 struct sockaddr_in *dst;
1697 int ifindex;
1698
1699 if (imo == NULL) {
1700 /*
1701 * No multicast option buffer attached to the pcb;
1702 * allocate one and initialize to default values.
1703 */
1704 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1705 M_WAITOK);
1706
1707 if (imo == NULL)
1708 return (ENOBUFS);
1709 *imop = imo;
1710 imo->imo_multicast_ifp = NULL;
1711 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1712 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1713 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1714 imo->imo_num_memberships = 0;
1715 }
1716
1717 switch (optname) {
1718
1719 case IP_MULTICAST_IF:
1720 /*
1721 * Select the interface for outgoing multicast packets.
1722 */
1723 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1724 error = EINVAL;
1725 break;
1726 }
1727 addr = *(mtod(m, struct in_addr *));
1728 /*
1729 * INADDR_ANY is used to remove a previous selection.
1730 * When no interface is selected, a default one is
1731 * chosen every time a multicast packet is sent.
1732 */
1733 if (in_nullhost(addr)) {
1734 imo->imo_multicast_ifp = NULL;
1735 break;
1736 }
1737 /*
1738 * The selected interface is identified by its local
1739 * IP address. Find the interface and confirm that
1740 * it supports multicasting.
1741 */
1742 ifp = ip_multicast_if(&addr, &ifindex);
1743 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1744 error = EADDRNOTAVAIL;
1745 break;
1746 }
1747 imo->imo_multicast_ifp = ifp;
1748 if (ifindex)
1749 imo->imo_multicast_addr = addr;
1750 else
1751 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1752 break;
1753
1754 case IP_MULTICAST_TTL:
1755 /*
1756 * Set the IP time-to-live for outgoing multicast packets.
1757 */
1758 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1759 break;
1760
1761 case IP_MULTICAST_LOOP:
1762 /*
1763 * Set the loopback flag for outgoing multicast packets.
1764 * Must be zero or one.
1765 */
1766 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1767 break;
1768
1769 case IP_ADD_MEMBERSHIP:
1770 /*
1771 * Add a multicast group membership.
1772 * Group must be a valid IP multicast address.
1773 */
1774 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1775 error = EINVAL;
1776 break;
1777 }
1778 mreq = mtod(m, struct ip_mreq *);
1779 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1780 error = EINVAL;
1781 break;
1782 }
1783 /*
1784 * If no interface address was provided, use the interface of
1785 * the route to the given multicast address.
1786 */
1787 if (in_nullhost(mreq->imr_interface)) {
1788 bzero((caddr_t)&ro, sizeof(ro));
1789 ro.ro_rt = NULL;
1790 dst = satosin(&ro.ro_dst);
1791 dst->sin_len = sizeof(*dst);
1792 dst->sin_family = AF_INET;
1793 dst->sin_addr = mreq->imr_multiaddr;
1794 rtalloc(&ro);
1795 if (ro.ro_rt == NULL) {
1796 error = EADDRNOTAVAIL;
1797 break;
1798 }
1799 ifp = ro.ro_rt->rt_ifp;
1800 rtfree(ro.ro_rt);
1801 } else {
1802 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1803 }
1804 /*
1805 * See if we found an interface, and confirm that it
1806 * supports multicast.
1807 */
1808 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1809 error = EADDRNOTAVAIL;
1810 break;
1811 }
1812 /*
1813 * See if the membership already exists or if all the
1814 * membership slots are full.
1815 */
1816 for (i = 0; i < imo->imo_num_memberships; ++i) {
1817 if (imo->imo_membership[i]->inm_ifp == ifp &&
1818 in_hosteq(imo->imo_membership[i]->inm_addr,
1819 mreq->imr_multiaddr))
1820 break;
1821 }
1822 if (i < imo->imo_num_memberships) {
1823 error = EADDRINUSE;
1824 break;
1825 }
1826 if (i == IP_MAX_MEMBERSHIPS) {
1827 error = ETOOMANYREFS;
1828 break;
1829 }
1830 /*
1831 * Everything looks good; add a new record to the multicast
1832 * address list for the given interface.
1833 */
1834 if ((imo->imo_membership[i] =
1835 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1836 error = ENOBUFS;
1837 break;
1838 }
1839 ++imo->imo_num_memberships;
1840 break;
1841
1842 case IP_DROP_MEMBERSHIP:
1843 /*
1844 * Drop a multicast group membership.
1845 * Group must be a valid IP multicast address.
1846 */
1847 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1848 error = EINVAL;
1849 break;
1850 }
1851 mreq = mtod(m, struct ip_mreq *);
1852 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1853 error = EINVAL;
1854 break;
1855 }
1856 /*
1857 * If an interface address was specified, get a pointer
1858 * to its ifnet structure.
1859 */
1860 if (in_nullhost(mreq->imr_interface))
1861 ifp = NULL;
1862 else {
1863 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1864 if (ifp == NULL) {
1865 error = EADDRNOTAVAIL;
1866 break;
1867 }
1868 }
1869 /*
1870 * Find the membership in the membership array.
1871 */
1872 for (i = 0; i < imo->imo_num_memberships; ++i) {
1873 if ((ifp == NULL ||
1874 imo->imo_membership[i]->inm_ifp == ifp) &&
1875 in_hosteq(imo->imo_membership[i]->inm_addr,
1876 mreq->imr_multiaddr))
1877 break;
1878 }
1879 if (i == imo->imo_num_memberships) {
1880 error = EADDRNOTAVAIL;
1881 break;
1882 }
1883 /*
1884 * Give up the multicast address record to which the
1885 * membership points.
1886 */
1887 in_delmulti(imo->imo_membership[i]);
1888 /*
1889 * Remove the gap in the membership array.
1890 */
1891 for (++i; i < imo->imo_num_memberships; ++i)
1892 imo->imo_membership[i-1] = imo->imo_membership[i];
1893 --imo->imo_num_memberships;
1894 break;
1895
1896 default:
1897 error = EOPNOTSUPP;
1898 break;
1899 }
1900
1901 /*
1902 * If all options have default values, no need to keep the mbuf.
1903 */
1904 if (imo->imo_multicast_ifp == NULL &&
1905 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1906 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1907 imo->imo_num_memberships == 0) {
1908 free(*imop, M_IPMOPTS);
1909 *imop = NULL;
1910 }
1911
1912 return (error);
1913 }
1914
1915 /*
1916 * Return the IP multicast options in response to user getsockopt().
1917 */
1918 int
1919 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1920 {
1921 u_char *ttl;
1922 u_char *loop;
1923 struct in_addr *addr;
1924 struct in_ifaddr *ia;
1925
1926 *mp = m_get(M_WAIT, MT_SOOPTS);
1927
1928 switch (optname) {
1929
1930 case IP_MULTICAST_IF:
1931 addr = mtod(*mp, struct in_addr *);
1932 (*mp)->m_len = sizeof(struct in_addr);
1933 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1934 *addr = zeroin_addr;
1935 else if (imo->imo_multicast_addr.s_addr) {
1936 /* return the value user has set */
1937 *addr = imo->imo_multicast_addr;
1938 } else {
1939 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1940 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1941 }
1942 return (0);
1943
1944 case IP_MULTICAST_TTL:
1945 ttl = mtod(*mp, u_char *);
1946 (*mp)->m_len = 1;
1947 *ttl = imo ? imo->imo_multicast_ttl
1948 : IP_DEFAULT_MULTICAST_TTL;
1949 return (0);
1950
1951 case IP_MULTICAST_LOOP:
1952 loop = mtod(*mp, u_char *);
1953 (*mp)->m_len = 1;
1954 *loop = imo ? imo->imo_multicast_loop
1955 : IP_DEFAULT_MULTICAST_LOOP;
1956 return (0);
1957
1958 default:
1959 return (EOPNOTSUPP);
1960 }
1961 }
1962
1963 /*
1964 * Discard the IP multicast options.
1965 */
1966 void
1967 ip_freemoptions(struct ip_moptions *imo)
1968 {
1969 int i;
1970
1971 if (imo != NULL) {
1972 for (i = 0; i < imo->imo_num_memberships; ++i)
1973 in_delmulti(imo->imo_membership[i]);
1974 free(imo, M_IPMOPTS);
1975 }
1976 }
1977
1978 /*
1979 * Routine called from ip_output() to loop back a copy of an IP multicast
1980 * packet to the input queue of a specified interface. Note that this
1981 * calls the output routine of the loopback "driver", but with an interface
1982 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1983 */
1984 static void
1985 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1986 {
1987 struct ip *ip;
1988 struct mbuf *copym;
1989
1990 copym = m_copy(m, 0, M_COPYALL);
1991 if (copym != NULL
1992 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1993 copym = m_pullup(copym, sizeof(struct ip));
1994 if (copym != NULL) {
1995 /*
1996 * We don't bother to fragment if the IP length is greater
1997 * than the interface's MTU. Can this possibly matter?
1998 */
1999 ip = mtod(copym, struct ip *);
2000
2001 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2002 in_delayed_cksum(copym);
2003 copym->m_pkthdr.csum_flags &=
2004 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2005 }
2006
2007 ip->ip_sum = 0;
2008 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2009 (void) looutput(ifp, copym, sintosa(dst), NULL);
2010 }
2011 }
2012