Home | History | Annotate | Line # | Download | only in netinet
ip_output.c revision 1.165.4.1
      1 /*	$NetBSD: ip_output.c,v 1.165.4.1 2006/11/18 21:39:36 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Public Access Networks Corporation ("Panix").  It was developed under
     38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.165.4.1 2006/11/18 21:39:36 ad Exp $");
    102 
    103 #include "opt_pfil_hooks.h"
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_mrouting.h"
    107 
    108 #include <sys/param.h>
    109 #include <sys/malloc.h>
    110 #include <sys/mbuf.h>
    111 #include <sys/errno.h>
    112 #include <sys/protosw.h>
    113 #include <sys/socket.h>
    114 #include <sys/socketvar.h>
    115 #include <sys/kauth.h>
    116 #ifdef FAST_IPSEC
    117 #include <sys/domain.h>
    118 #endif
    119 #include <sys/systm.h>
    120 #include <sys/proc.h>
    121 
    122 #include <net/if.h>
    123 #include <net/route.h>
    124 #include <net/pfil.h>
    125 
    126 #include <netinet/in.h>
    127 #include <netinet/in_systm.h>
    128 #include <netinet/ip.h>
    129 #include <netinet/in_pcb.h>
    130 #include <netinet/in_var.h>
    131 #include <netinet/ip_var.h>
    132 #include <netinet/in_offload.h>
    133 
    134 #ifdef MROUTING
    135 #include <netinet/ip_mroute.h>
    136 #endif
    137 
    138 #include <machine/stdarg.h>
    139 
    140 #ifdef IPSEC
    141 #include <netinet6/ipsec.h>
    142 #include <netkey/key.h>
    143 #include <netkey/key_debug.h>
    144 #endif /*IPSEC*/
    145 
    146 #ifdef FAST_IPSEC
    147 #include <netipsec/ipsec.h>
    148 #include <netipsec/key.h>
    149 #include <netipsec/xform.h>
    150 #endif	/* FAST_IPSEC*/
    151 
    152 #ifdef IPSEC_NAT_T
    153 #include <netinet/udp.h>
    154 #endif
    155 
    156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
    157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
    158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
    159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
    160 
    161 #ifdef PFIL_HOOKS
    162 extern struct pfil_head inet_pfil_hook;			/* XXX */
    163 #endif
    164 
    165 int	ip_do_loopback_cksum = 0;
    166 
    167 #define	IN_NEED_CHECKSUM(ifp, csum_flags) \
    168 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    169 	(((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
    170 	(((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
    171 	(((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
    172 
    173 struct ip_tso_output_args {
    174 	struct ifnet *ifp;
    175 	struct sockaddr *sa;
    176 	struct rtentry *rt;
    177 };
    178 
    179 static int ip_tso_output_callback(void *, struct mbuf *);
    180 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
    181     struct rtentry *);
    182 
    183 static int
    184 ip_tso_output_callback(void *vp, struct mbuf *m)
    185 {
    186 	struct ip_tso_output_args *args = vp;
    187 	struct ifnet *ifp = args->ifp;
    188 
    189 	return (*ifp->if_output)(ifp, m, args->sa, args->rt);
    190 }
    191 
    192 static int
    193 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
    194     struct rtentry *rt)
    195 {
    196 	struct ip_tso_output_args args;
    197 
    198 	args.ifp = ifp;
    199 	args.sa = sa;
    200 	args.rt = rt;
    201 
    202 	return tcp4_segment(m, ip_tso_output_callback, &args);
    203 }
    204 
    205 /*
    206  * IP output.  The packet in mbuf chain m contains a skeletal IP
    207  * header (with len, off, ttl, proto, tos, src, dst).
    208  * The mbuf chain containing the packet will be freed.
    209  * The mbuf opt, if present, will not be freed.
    210  */
    211 int
    212 ip_output(struct mbuf *m0, ...)
    213 {
    214 	struct ip *ip;
    215 	struct ifnet *ifp;
    216 	struct mbuf *m = m0;
    217 	int hlen = sizeof (struct ip);
    218 	int len, error = 0;
    219 	struct route iproute;
    220 	struct sockaddr_in *dst;
    221 	struct in_ifaddr *ia;
    222 	struct ifaddr *xifa;
    223 	struct mbuf *opt;
    224 	struct route *ro;
    225 	int flags, sw_csum;
    226 	int *mtu_p;
    227 	u_long mtu;
    228 	struct ip_moptions *imo;
    229 	struct socket *so;
    230 	va_list ap;
    231 #ifdef IPSEC_NAT_T
    232 	int natt_frag = 0;
    233 #endif
    234 #ifdef IPSEC
    235 	struct secpolicy *sp = NULL;
    236 #endif /*IPSEC*/
    237 #ifdef FAST_IPSEC
    238 	struct inpcb *inp;
    239 	struct m_tag *mtag;
    240 	struct secpolicy *sp = NULL;
    241 	struct tdb_ident *tdbi;
    242 	int s;
    243 #endif
    244 	u_int16_t ip_len;
    245 
    246 	len = 0;
    247 	va_start(ap, m0);
    248 	opt = va_arg(ap, struct mbuf *);
    249 	ro = va_arg(ap, struct route *);
    250 	flags = va_arg(ap, int);
    251 	imo = va_arg(ap, struct ip_moptions *);
    252 	so = va_arg(ap, struct socket *);
    253 	if (flags & IP_RETURNMTU)
    254 		mtu_p = va_arg(ap, int *);
    255 	else
    256 		mtu_p = NULL;
    257 	va_end(ap);
    258 
    259 	MCLAIM(m, &ip_tx_mowner);
    260 #ifdef FAST_IPSEC
    261 	if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
    262 		inp = (struct inpcb *)so->so_pcb;
    263 	else
    264 		inp = NULL;
    265 #endif /* FAST_IPSEC */
    266 
    267 #ifdef	DIAGNOSTIC
    268 	if ((m->m_flags & M_PKTHDR) == 0)
    269 		panic("ip_output: no HDR");
    270 
    271 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
    272 		panic("ip_output: IPv6 checksum offload flags: %d",
    273 		    m->m_pkthdr.csum_flags);
    274 	}
    275 
    276 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
    277 	    (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    278 		panic("ip_output: conflicting checksum offload flags: %d",
    279 		    m->m_pkthdr.csum_flags);
    280 	}
    281 #endif
    282 	if (opt) {
    283 		m = ip_insertoptions(m, opt, &len);
    284 		if (len >= sizeof(struct ip))
    285 			hlen = len;
    286 	}
    287 	ip = mtod(m, struct ip *);
    288 	/*
    289 	 * Fill in IP header.
    290 	 */
    291 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
    292 		ip->ip_v = IPVERSION;
    293 		ip->ip_off = htons(0);
    294 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    295 			ip->ip_id = ip_newid();
    296 		} else {
    297 
    298 			/*
    299 			 * TSO capable interfaces (typically?) increment
    300 			 * ip_id for each segment.
    301 			 * "allocate" enough ids here to increase the chance
    302 			 * for them to be unique.
    303 			 *
    304 			 * note that the following calculation is not
    305 			 * needed to be precise.  wasting some ip_id is fine.
    306 			 */
    307 
    308 			unsigned int segsz = m->m_pkthdr.segsz;
    309 			unsigned int datasz = ntohs(ip->ip_len) - hlen;
    310 			unsigned int num = howmany(datasz, segsz);
    311 
    312 			ip->ip_id = ip_newid_range(num);
    313 		}
    314 		ip->ip_hl = hlen >> 2;
    315 		ipstat.ips_localout++;
    316 	} else {
    317 		hlen = ip->ip_hl << 2;
    318 	}
    319 	/*
    320 	 * Route packet.
    321 	 */
    322 	if (ro == 0) {
    323 		ro = &iproute;
    324 		bzero((caddr_t)ro, sizeof (*ro));
    325 	}
    326 	dst = satosin(&ro->ro_dst);
    327 	/*
    328 	 * If there is a cached route,
    329 	 * check that it is to the same destination
    330 	 * and is still up.  If not, free it and try again.
    331 	 * The address family should also be checked in case of sharing the
    332 	 * cache with IPv6.
    333 	 */
    334 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    335 	    dst->sin_family != AF_INET ||
    336 	    !in_hosteq(dst->sin_addr, ip->ip_dst))) {
    337 		RTFREE(ro->ro_rt);
    338 		ro->ro_rt = (struct rtentry *)0;
    339 	}
    340 	if (ro->ro_rt == 0) {
    341 		bzero(dst, sizeof(*dst));
    342 		dst->sin_family = AF_INET;
    343 		dst->sin_len = sizeof(*dst);
    344 		dst->sin_addr = ip->ip_dst;
    345 	}
    346 	/*
    347 	 * If routing to interface only,
    348 	 * short circuit routing lookup.
    349 	 */
    350 	if (flags & IP_ROUTETOIF) {
    351 		if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
    352 			ipstat.ips_noroute++;
    353 			error = ENETUNREACH;
    354 			goto bad;
    355 		}
    356 		ifp = ia->ia_ifp;
    357 		mtu = ifp->if_mtu;
    358 		ip->ip_ttl = 1;
    359 	} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
    360 	    ip->ip_dst.s_addr == INADDR_BROADCAST) &&
    361 	    imo != NULL && imo->imo_multicast_ifp != NULL) {
    362 		ifp = imo->imo_multicast_ifp;
    363 		mtu = ifp->if_mtu;
    364 		IFP_TO_IA(ifp, ia);
    365 	} else {
    366 		if (ro->ro_rt == 0)
    367 			rtalloc(ro);
    368 		if (ro->ro_rt == 0) {
    369 			ipstat.ips_noroute++;
    370 			error = EHOSTUNREACH;
    371 			goto bad;
    372 		}
    373 		ia = ifatoia(ro->ro_rt->rt_ifa);
    374 		ifp = ro->ro_rt->rt_ifp;
    375 		if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    376 			mtu = ifp->if_mtu;
    377 		ro->ro_rt->rt_use++;
    378 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    379 			dst = satosin(ro->ro_rt->rt_gateway);
    380 	}
    381 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
    382 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
    383 		struct in_multi *inm;
    384 
    385 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
    386 			M_BCAST : M_MCAST;
    387 		/*
    388 		 * IP destination address is multicast.  Make sure "dst"
    389 		 * still points to the address in "ro".  (It may have been
    390 		 * changed to point to a gateway address, above.)
    391 		 */
    392 		dst = satosin(&ro->ro_dst);
    393 		/*
    394 		 * See if the caller provided any multicast options
    395 		 */
    396 		if (imo != NULL)
    397 			ip->ip_ttl = imo->imo_multicast_ttl;
    398 		else
    399 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
    400 
    401 		/*
    402 		 * if we don't know the outgoing ifp yet, we can't generate
    403 		 * output
    404 		 */
    405 		if (!ifp) {
    406 			ipstat.ips_noroute++;
    407 			error = ENETUNREACH;
    408 			goto bad;
    409 		}
    410 
    411 		/*
    412 		 * If the packet is multicast or broadcast, confirm that
    413 		 * the outgoing interface can transmit it.
    414 		 */
    415 		if (((m->m_flags & M_MCAST) &&
    416 		     (ifp->if_flags & IFF_MULTICAST) == 0) ||
    417 		    ((m->m_flags & M_BCAST) &&
    418 		     (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
    419 			ipstat.ips_noroute++;
    420 			error = ENETUNREACH;
    421 			goto bad;
    422 		}
    423 		/*
    424 		 * If source address not specified yet, use an address
    425 		 * of outgoing interface.
    426 		 */
    427 		if (in_nullhost(ip->ip_src)) {
    428 			struct in_ifaddr *xia;
    429 
    430 			IFP_TO_IA(ifp, xia);
    431 			if (!xia) {
    432 				error = EADDRNOTAVAIL;
    433 				goto bad;
    434 			}
    435 			xifa = &xia->ia_ifa;
    436 			if (xifa->ifa_getifa != NULL) {
    437 				xia = ifatoia((*xifa->ifa_getifa)(xifa,
    438 				    &ro->ro_dst));
    439 			}
    440 			ip->ip_src = xia->ia_addr.sin_addr;
    441 		}
    442 
    443 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
    444 		if (inm != NULL &&
    445 		   (imo == NULL || imo->imo_multicast_loop)) {
    446 			/*
    447 			 * If we belong to the destination multicast group
    448 			 * on the outgoing interface, and the caller did not
    449 			 * forbid loopback, loop back a copy.
    450 			 */
    451 			ip_mloopback(ifp, m, dst);
    452 		}
    453 #ifdef MROUTING
    454 		else {
    455 			/*
    456 			 * If we are acting as a multicast router, perform
    457 			 * multicast forwarding as if the packet had just
    458 			 * arrived on the interface to which we are about
    459 			 * to send.  The multicast forwarding function
    460 			 * recursively calls this function, using the
    461 			 * IP_FORWARDING flag to prevent infinite recursion.
    462 			 *
    463 			 * Multicasts that are looped back by ip_mloopback(),
    464 			 * above, will be forwarded by the ip_input() routine,
    465 			 * if necessary.
    466 			 */
    467 			extern struct socket *ip_mrouter;
    468 
    469 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
    470 				if (ip_mforward(m, ifp) != 0) {
    471 					m_freem(m);
    472 					goto done;
    473 				}
    474 			}
    475 		}
    476 #endif
    477 		/*
    478 		 * Multicasts with a time-to-live of zero may be looped-
    479 		 * back, above, but must not be transmitted on a network.
    480 		 * Also, multicasts addressed to the loopback interface
    481 		 * are not sent -- the above call to ip_mloopback() will
    482 		 * loop back a copy if this host actually belongs to the
    483 		 * destination group on the loopback interface.
    484 		 */
    485 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
    486 			m_freem(m);
    487 			goto done;
    488 		}
    489 
    490 		goto sendit;
    491 	}
    492 	/*
    493 	 * If source address not specified yet, use address
    494 	 * of outgoing interface.
    495 	 */
    496 	if (in_nullhost(ip->ip_src)) {
    497 		xifa = &ia->ia_ifa;
    498 		if (xifa->ifa_getifa != NULL)
    499 			ia = ifatoia((*xifa->ifa_getifa)(xifa, &ro->ro_dst));
    500 		ip->ip_src = ia->ia_addr.sin_addr;
    501 	}
    502 
    503 	/*
    504 	 * packets with Class-D address as source are not valid per
    505 	 * RFC 1112
    506 	 */
    507 	if (IN_MULTICAST(ip->ip_src.s_addr)) {
    508 		ipstat.ips_odropped++;
    509 		error = EADDRNOTAVAIL;
    510 		goto bad;
    511 	}
    512 
    513 	/*
    514 	 * Look for broadcast address and
    515 	 * and verify user is allowed to send
    516 	 * such a packet.
    517 	 */
    518 	if (in_broadcast(dst->sin_addr, ifp)) {
    519 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
    520 			error = EADDRNOTAVAIL;
    521 			goto bad;
    522 		}
    523 		if ((flags & IP_ALLOWBROADCAST) == 0) {
    524 			error = EACCES;
    525 			goto bad;
    526 		}
    527 		/* don't allow broadcast messages to be fragmented */
    528 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
    529 			error = EMSGSIZE;
    530 			goto bad;
    531 		}
    532 		m->m_flags |= M_BCAST;
    533 	} else
    534 		m->m_flags &= ~M_BCAST;
    535 
    536 sendit:
    537 	/*
    538 	 * If we're doing Path MTU Discovery, we need to set DF unless
    539 	 * the route's MTU is locked.
    540 	 */
    541 	if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
    542 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    543 		ip->ip_off |= htons(IP_DF);
    544 
    545 	/* Remember the current ip_len */
    546 	ip_len = ntohs(ip->ip_len);
    547 
    548 #ifdef IPSEC
    549 	/* get SP for this packet */
    550 	if (so == NULL)
    551 		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
    552 		    flags, &error);
    553 	else {
    554 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    555 					 IPSEC_DIR_OUTBOUND))
    556 			goto skip_ipsec;
    557 		sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    558 	}
    559 
    560 	if (sp == NULL) {
    561 		ipsecstat.out_inval++;
    562 		goto bad;
    563 	}
    564 
    565 	error = 0;
    566 
    567 	/* check policy */
    568 	switch (sp->policy) {
    569 	case IPSEC_POLICY_DISCARD:
    570 		/*
    571 		 * This packet is just discarded.
    572 		 */
    573 		ipsecstat.out_polvio++;
    574 		goto bad;
    575 
    576 	case IPSEC_POLICY_BYPASS:
    577 	case IPSEC_POLICY_NONE:
    578 		/* no need to do IPsec. */
    579 		goto skip_ipsec;
    580 
    581 	case IPSEC_POLICY_IPSEC:
    582 		if (sp->req == NULL) {
    583 			/* XXX should be panic ? */
    584 			printf("ip_output: No IPsec request specified.\n");
    585 			error = EINVAL;
    586 			goto bad;
    587 		}
    588 		break;
    589 
    590 	case IPSEC_POLICY_ENTRUST:
    591 	default:
    592 		printf("ip_output: Invalid policy found. %d\n", sp->policy);
    593 	}
    594 
    595 #ifdef IPSEC_NAT_T
    596 	/*
    597 	 * NAT-T ESP fragmentation: don't do IPSec processing now,
    598 	 * we'll do it on each fragmented packet.
    599 	 */
    600 	if (sp->req->sav &&
    601 	    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    602 	     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    603 		if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    604 			natt_frag = 1;
    605 			mtu = sp->req->sav->esp_frag;
    606 			goto skip_ipsec;
    607 		}
    608 	}
    609 #endif /* IPSEC_NAT_T */
    610 
    611 	/*
    612 	 * ipsec4_output() expects ip_len and ip_off in network
    613 	 * order.  They have been set to network order above.
    614 	 */
    615 
    616     {
    617 	struct ipsec_output_state state;
    618 	bzero(&state, sizeof(state));
    619 	state.m = m;
    620 	if (flags & IP_ROUTETOIF) {
    621 		state.ro = &iproute;
    622 		bzero(&iproute, sizeof(iproute));
    623 	} else
    624 		state.ro = ro;
    625 	state.dst = (struct sockaddr *)dst;
    626 
    627 	/*
    628 	 * We can't defer the checksum of payload data if
    629 	 * we're about to encrypt/authenticate it.
    630 	 *
    631 	 * XXX When we support crypto offloading functions of
    632 	 * XXX network interfaces, we need to reconsider this,
    633 	 * XXX since it's likely that they'll support checksumming,
    634 	 * XXX as well.
    635 	 */
    636 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    637 		in_delayed_cksum(m);
    638 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    639 	}
    640 
    641 	error = ipsec4_output(&state, sp, flags);
    642 
    643 	m = state.m;
    644 	if (flags & IP_ROUTETOIF) {
    645 		/*
    646 		 * if we have tunnel mode SA, we may need to ignore
    647 		 * IP_ROUTETOIF.
    648 		 */
    649 		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
    650 			flags &= ~IP_ROUTETOIF;
    651 			ro = state.ro;
    652 		}
    653 	} else
    654 		ro = state.ro;
    655 	dst = (struct sockaddr_in *)state.dst;
    656 	if (error) {
    657 		/* mbuf is already reclaimed in ipsec4_output. */
    658 		m0 = NULL;
    659 		switch (error) {
    660 		case EHOSTUNREACH:
    661 		case ENETUNREACH:
    662 		case EMSGSIZE:
    663 		case ENOBUFS:
    664 		case ENOMEM:
    665 			break;
    666 		default:
    667 			printf("ip4_output (ipsec): error code %d\n", error);
    668 			/*fall through*/
    669 		case ENOENT:
    670 			/* don't show these error codes to the user */
    671 			error = 0;
    672 			break;
    673 		}
    674 		goto bad;
    675 	}
    676 
    677 	/* be sure to update variables that are affected by ipsec4_output() */
    678 	ip = mtod(m, struct ip *);
    679 	hlen = ip->ip_hl << 2;
    680 	ip_len = ntohs(ip->ip_len);
    681 
    682 	if (ro->ro_rt == NULL) {
    683 		if ((flags & IP_ROUTETOIF) == 0) {
    684 			printf("ip_output: "
    685 				"can't update route after IPsec processing\n");
    686 			error = EHOSTUNREACH;	/*XXX*/
    687 			goto bad;
    688 		}
    689 	} else {
    690 		/* nobody uses ia beyond here */
    691 		if (state.encap) {
    692 			ifp = ro->ro_rt->rt_ifp;
    693 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
    694 				mtu = ifp->if_mtu;
    695 		}
    696 	}
    697     }
    698 skip_ipsec:
    699 #endif /*IPSEC*/
    700 #ifdef FAST_IPSEC
    701 	/*
    702 	 * Check the security policy (SP) for the packet and, if
    703 	 * required, do IPsec-related processing.  There are two
    704 	 * cases here; the first time a packet is sent through
    705 	 * it will be untagged and handled by ipsec4_checkpolicy.
    706 	 * If the packet is resubmitted to ip_output (e.g. after
    707 	 * AH, ESP, etc. processing), there will be a tag to bypass
    708 	 * the lookup and related policy checking.
    709 	 */
    710 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
    711 	s = splsoftnet();
    712 	if (mtag != NULL) {
    713 		tdbi = (struct tdb_ident *)(mtag + 1);
    714 		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
    715 		if (sp == NULL)
    716 			error = -EINVAL;	/* force silent drop */
    717 		m_tag_delete(m, mtag);
    718 	} else {
    719 		if (inp != NULL &&
    720 		    IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
    721 			goto spd_done;
    722 		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
    723 					&error, inp);
    724 	}
    725 	/*
    726 	 * There are four return cases:
    727 	 *    sp != NULL	 	    apply IPsec policy
    728 	 *    sp == NULL, error == 0	    no IPsec handling needed
    729 	 *    sp == NULL, error == -EINVAL  discard packet w/o error
    730 	 *    sp == NULL, error != 0	    discard packet, report error
    731 	 */
    732 	if (sp != NULL) {
    733 #ifdef IPSEC_NAT_T
    734 		/*
    735 		 * NAT-T ESP fragmentation: don't do IPSec processing now,
    736 		 * we'll do it on each fragmented packet.
    737 		 */
    738 		if (sp->req->sav &&
    739 		    ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
    740 		     (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
    741 			if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
    742 				natt_frag = 1;
    743 				mtu = sp->req->sav->esp_frag;
    744 				goto spd_done;
    745 			}
    746 		}
    747 #endif /* IPSEC_NAT_T */
    748 		/* Loop detection, check if ipsec processing already done */
    749 		IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
    750 		for (mtag = m_tag_first(m); mtag != NULL;
    751 		     mtag = m_tag_next(m, mtag)) {
    752 #ifdef MTAG_ABI_COMPAT
    753 			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
    754 				continue;
    755 #endif
    756 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
    757 			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
    758 				continue;
    759 			/*
    760 			 * Check if policy has an SA associated with it.
    761 			 * This can happen when an SP has yet to acquire
    762 			 * an SA; e.g. on first reference.  If it occurs,
    763 			 * then we let ipsec4_process_packet do its thing.
    764 			 */
    765 			if (sp->req->sav == NULL)
    766 				break;
    767 			tdbi = (struct tdb_ident *)(mtag + 1);
    768 			if (tdbi->spi == sp->req->sav->spi &&
    769 			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
    770 			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
    771 				 sizeof (union sockaddr_union)) == 0) {
    772 				/*
    773 				 * No IPsec processing is needed, free
    774 				 * reference to SP.
    775 				 *
    776 				 * NB: null pointer to avoid free at
    777 				 *     done: below.
    778 				 */
    779 				KEY_FREESP(&sp), sp = NULL;
    780 				splx(s);
    781 				goto spd_done;
    782 			}
    783 		}
    784 
    785 		/*
    786 		 * Do delayed checksums now because we send before
    787 		 * this is done in the normal processing path.
    788 		 */
    789 		if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    790 			in_delayed_cksum(m);
    791 			m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    792 		}
    793 
    794 #ifdef __FreeBSD__
    795 		ip->ip_len = htons(ip->ip_len);
    796 		ip->ip_off = htons(ip->ip_off);
    797 #endif
    798 
    799 		/* NB: callee frees mbuf */
    800 		error = ipsec4_process_packet(m, sp->req, flags, 0);
    801 		/*
    802 		 * Preserve KAME behaviour: ENOENT can be returned
    803 		 * when an SA acquire is in progress.  Don't propagate
    804 		 * this to user-level; it confuses applications.
    805 		 *
    806 		 * XXX this will go away when the SADB is redone.
    807 		 */
    808 		if (error == ENOENT)
    809 			error = 0;
    810 		splx(s);
    811 		goto done;
    812 	} else {
    813 		splx(s);
    814 
    815 		if (error != 0) {
    816 			/*
    817 			 * Hack: -EINVAL is used to signal that a packet
    818 			 * should be silently discarded.  This is typically
    819 			 * because we asked key management for an SA and
    820 			 * it was delayed (e.g. kicked up to IKE).
    821 			 */
    822 			if (error == -EINVAL)
    823 				error = 0;
    824 			goto bad;
    825 		} else {
    826 			/* No IPsec processing for this packet. */
    827 		}
    828 #ifdef notyet
    829 		/*
    830 		 * If deferred crypto processing is needed, check that
    831 		 * the interface supports it.
    832 		 */
    833 		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
    834 		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
    835 			/* notify IPsec to do its own crypto */
    836 			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
    837 			error = EHOSTUNREACH;
    838 			goto bad;
    839 		}
    840 #endif
    841 	}
    842 spd_done:
    843 #endif /* FAST_IPSEC */
    844 
    845 #ifdef PFIL_HOOKS
    846 	/*
    847 	 * Run through list of hooks for output packets.
    848 	 */
    849 	if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    850 		goto done;
    851 	if (m == NULL)
    852 		goto done;
    853 
    854 	ip = mtod(m, struct ip *);
    855 	hlen = ip->ip_hl << 2;
    856 #endif /* PFIL_HOOKS */
    857 
    858 	m->m_pkthdr.csum_data |= hlen << 16;
    859 
    860 #if IFA_STATS
    861 	/*
    862 	 * search for the source address structure to
    863 	 * maintain output statistics.
    864 	 */
    865 	INADDR_TO_IA(ip->ip_src, ia);
    866 #endif
    867 
    868 	/* Maybe skip checksums on loopback interfaces. */
    869 	if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
    870 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    871 	}
    872 	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    873 	/*
    874 	 * If small enough for mtu of path, or if using TCP segmentation
    875 	 * offload, can just send directly.
    876 	 */
    877 	if (ip_len <= mtu ||
    878 	    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
    879 #if IFA_STATS
    880 		if (ia)
    881 			ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
    882 #endif
    883 		/*
    884 		 * Always initialize the sum to 0!  Some HW assisted
    885 		 * checksumming requires this.
    886 		 */
    887 		ip->ip_sum = 0;
    888 
    889 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
    890 			/*
    891 			 * Perform any checksums that the hardware can't do
    892 			 * for us.
    893 			 *
    894 			 * XXX Does any hardware require the {th,uh}_sum
    895 			 * XXX fields to be 0?
    896 			 */
    897 			if (sw_csum & M_CSUM_IPv4) {
    898 				KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
    899 				ip->ip_sum = in_cksum(m, hlen);
    900 				m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
    901 			}
    902 			if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    903 				if (IN_NEED_CHECKSUM(ifp,
    904 				    sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    905 					in_delayed_cksum(m);
    906 				}
    907 				m->m_pkthdr.csum_flags &=
    908 				    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    909 			}
    910 		}
    911 
    912 #ifdef IPSEC
    913 		/* clean ipsec history once it goes out of the node */
    914 		ipsec_delaux(m);
    915 #endif
    916 
    917 		if (__predict_true(
    918 		    (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
    919 		    (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
    920 			error =
    921 			    (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
    922 		} else {
    923 			error =
    924 			    ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
    925 		}
    926 		goto done;
    927 	}
    928 
    929 	/*
    930 	 * We can't use HW checksumming if we're about to
    931 	 * to fragment the packet.
    932 	 *
    933 	 * XXX Some hardware can do this.
    934 	 */
    935 	if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    936 		if (IN_NEED_CHECKSUM(ifp,
    937 		    m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
    938 			in_delayed_cksum(m);
    939 		}
    940 		m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
    941 	}
    942 
    943 	/*
    944 	 * Too large for interface; fragment if possible.
    945 	 * Must be able to put at least 8 bytes per fragment.
    946 	 */
    947 	if (ntohs(ip->ip_off) & IP_DF) {
    948 		if (flags & IP_RETURNMTU)
    949 			*mtu_p = mtu;
    950 		error = EMSGSIZE;
    951 		ipstat.ips_cantfrag++;
    952 		goto bad;
    953 	}
    954 
    955 	error = ip_fragment(m, ifp, mtu);
    956 	if (error) {
    957 		m = NULL;
    958 		goto bad;
    959 	}
    960 
    961 	for (; m; m = m0) {
    962 		m0 = m->m_nextpkt;
    963 		m->m_nextpkt = 0;
    964 		if (error == 0) {
    965 #if IFA_STATS
    966 			if (ia)
    967 				ia->ia_ifa.ifa_data.ifad_outbytes +=
    968 				    ntohs(ip->ip_len);
    969 #endif
    970 #ifdef IPSEC
    971 			/* clean ipsec history once it goes out of the node */
    972 			ipsec_delaux(m);
    973 #endif /* IPSEC */
    974 
    975 #ifdef IPSEC_NAT_T
    976 			/*
    977 			 * If we get there, the packet has not been handeld by
    978 			 * IPSec whereas it should have. Now that it has been
    979 			 * fragmented, re-inject it in ip_output so that IPsec
    980 			 * processing can occur.
    981 			 */
    982 			if (natt_frag) {
    983 				error = ip_output(m, opt,
    984 				    ro, flags, imo, so, mtu_p);
    985 			} else
    986 #endif /* IPSEC_NAT_T */
    987 			{
    988 				KASSERT((m->m_pkthdr.csum_flags &
    989 				    (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
    990 				error = (*ifp->if_output)(ifp, m, sintosa(dst),
    991 				    ro->ro_rt);
    992 			}
    993 		} else
    994 			m_freem(m);
    995 	}
    996 
    997 	if (error == 0)
    998 		ipstat.ips_fragmented++;
    999 done:
   1000 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
   1001 		RTFREE(ro->ro_rt);
   1002 		ro->ro_rt = 0;
   1003 	}
   1004 
   1005 #ifdef IPSEC
   1006 	if (sp != NULL) {
   1007 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
   1008 			printf("DP ip_output call free SP:%p\n", sp));
   1009 		key_freesp(sp);
   1010 	}
   1011 #endif /* IPSEC */
   1012 #ifdef FAST_IPSEC
   1013 	if (sp != NULL)
   1014 		KEY_FREESP(&sp);
   1015 #endif /* FAST_IPSEC */
   1016 
   1017 	return (error);
   1018 bad:
   1019 	m_freem(m);
   1020 	goto done;
   1021 }
   1022 
   1023 int
   1024 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
   1025 {
   1026 	struct ip *ip, *mhip;
   1027 	struct mbuf *m0;
   1028 	int len, hlen, off;
   1029 	int mhlen, firstlen;
   1030 	struct mbuf **mnext;
   1031 	int sw_csum = m->m_pkthdr.csum_flags;
   1032 	int fragments = 0;
   1033 	int s;
   1034 	int error = 0;
   1035 
   1036 	ip = mtod(m, struct ip *);
   1037 	hlen = ip->ip_hl << 2;
   1038 	if (ifp != NULL)
   1039 		sw_csum &= ~ifp->if_csum_flags_tx;
   1040 
   1041 	len = (mtu - hlen) &~ 7;
   1042 	if (len < 8) {
   1043 		m_freem(m);
   1044 		return (EMSGSIZE);
   1045 	}
   1046 
   1047 	firstlen = len;
   1048 	mnext = &m->m_nextpkt;
   1049 
   1050 	/*
   1051 	 * Loop through length of segment after first fragment,
   1052 	 * make new header and copy data of each part and link onto chain.
   1053 	 */
   1054 	m0 = m;
   1055 	mhlen = sizeof (struct ip);
   1056 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
   1057 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1058 		if (m == 0) {
   1059 			error = ENOBUFS;
   1060 			ipstat.ips_odropped++;
   1061 			goto sendorfree;
   1062 		}
   1063 		MCLAIM(m, m0->m_owner);
   1064 		*mnext = m;
   1065 		mnext = &m->m_nextpkt;
   1066 		m->m_data += max_linkhdr;
   1067 		mhip = mtod(m, struct ip *);
   1068 		*mhip = *ip;
   1069 		/* we must inherit MCAST and BCAST flags */
   1070 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
   1071 		if (hlen > sizeof (struct ip)) {
   1072 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
   1073 			mhip->ip_hl = mhlen >> 2;
   1074 		}
   1075 		m->m_len = mhlen;
   1076 		mhip->ip_off = ((off - hlen) >> 3) +
   1077 		    (ntohs(ip->ip_off) & ~IP_MF);
   1078 		if (ip->ip_off & htons(IP_MF))
   1079 			mhip->ip_off |= IP_MF;
   1080 		if (off + len >= ntohs(ip->ip_len))
   1081 			len = ntohs(ip->ip_len) - off;
   1082 		else
   1083 			mhip->ip_off |= IP_MF;
   1084 		HTONS(mhip->ip_off);
   1085 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
   1086 		m->m_next = m_copy(m0, off, len);
   1087 		if (m->m_next == 0) {
   1088 			error = ENOBUFS;	/* ??? */
   1089 			ipstat.ips_odropped++;
   1090 			goto sendorfree;
   1091 		}
   1092 		m->m_pkthdr.len = mhlen + len;
   1093 		m->m_pkthdr.rcvif = (struct ifnet *)0;
   1094 		mhip->ip_sum = 0;
   1095 		if (sw_csum & M_CSUM_IPv4) {
   1096 			mhip->ip_sum = in_cksum(m, mhlen);
   1097 			KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
   1098 		} else {
   1099 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1100 			m->m_pkthdr.csum_data |= mhlen << 16;
   1101 		}
   1102 		ipstat.ips_ofragments++;
   1103 		fragments++;
   1104 	}
   1105 	/*
   1106 	 * Update first fragment by trimming what's been copied out
   1107 	 * and updating header, then send each fragment (in order).
   1108 	 */
   1109 	m = m0;
   1110 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
   1111 	m->m_pkthdr.len = hlen + firstlen;
   1112 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
   1113 	ip->ip_off |= htons(IP_MF);
   1114 	ip->ip_sum = 0;
   1115 	if (sw_csum & M_CSUM_IPv4) {
   1116 		ip->ip_sum = in_cksum(m, hlen);
   1117 		m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
   1118 	} else {
   1119 		KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
   1120 		KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
   1121 			sizeof(struct ip));
   1122 	}
   1123 sendorfree:
   1124 	/*
   1125 	 * If there is no room for all the fragments, don't queue
   1126 	 * any of them.
   1127 	 */
   1128 	if (ifp != NULL) {
   1129 		s = splnet();
   1130 		if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
   1131 		    error == 0) {
   1132 			error = ENOBUFS;
   1133 			ipstat.ips_odropped++;
   1134 			IFQ_INC_DROPS(&ifp->if_snd);
   1135 		}
   1136 		splx(s);
   1137 	}
   1138 	if (error) {
   1139 		for (m = m0; m; m = m0) {
   1140 			m0 = m->m_nextpkt;
   1141 			m->m_nextpkt = NULL;
   1142 			m_freem(m);
   1143 		}
   1144 	}
   1145 	return (error);
   1146 }
   1147 
   1148 /*
   1149  * Process a delayed payload checksum calculation.
   1150  */
   1151 void
   1152 in_delayed_cksum(struct mbuf *m)
   1153 {
   1154 	struct ip *ip;
   1155 	u_int16_t csum, offset;
   1156 
   1157 	ip = mtod(m, struct ip *);
   1158 	offset = ip->ip_hl << 2;
   1159 	csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
   1160 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
   1161 		csum = 0xffff;
   1162 
   1163 	offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
   1164 
   1165 	if ((offset + sizeof(u_int16_t)) > m->m_len) {
   1166 		/* This happen when ip options were inserted
   1167 		printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
   1168 		    m->m_len, offset, ip->ip_p);
   1169 		 */
   1170 		m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
   1171 	} else
   1172 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
   1173 }
   1174 
   1175 /*
   1176  * Determine the maximum length of the options to be inserted;
   1177  * we would far rather allocate too much space rather than too little.
   1178  */
   1179 
   1180 u_int
   1181 ip_optlen(struct inpcb *inp)
   1182 {
   1183 	struct mbuf *m = inp->inp_options;
   1184 
   1185 	if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
   1186 		return (m->m_len - offsetof(struct ipoption, ipopt_dst));
   1187 	else
   1188 		return 0;
   1189 }
   1190 
   1191 
   1192 /*
   1193  * Insert IP options into preformed packet.
   1194  * Adjust IP destination as required for IP source routing,
   1195  * as indicated by a non-zero in_addr at the start of the options.
   1196  */
   1197 static struct mbuf *
   1198 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
   1199 {
   1200 	struct ipoption *p = mtod(opt, struct ipoption *);
   1201 	struct mbuf *n;
   1202 	struct ip *ip = mtod(m, struct ip *);
   1203 	unsigned optlen;
   1204 
   1205 	optlen = opt->m_len - sizeof(p->ipopt_dst);
   1206 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
   1207 		return (m);		/* XXX should fail */
   1208 	if (!in_nullhost(p->ipopt_dst))
   1209 		ip->ip_dst = p->ipopt_dst;
   1210 	if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
   1211 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
   1212 		if (n == 0)
   1213 			return (m);
   1214 		MCLAIM(n, m->m_owner);
   1215 		M_MOVE_PKTHDR(n, m);
   1216 		m->m_len -= sizeof(struct ip);
   1217 		m->m_data += sizeof(struct ip);
   1218 		n->m_next = m;
   1219 		m = n;
   1220 		m->m_len = optlen + sizeof(struct ip);
   1221 		m->m_data += max_linkhdr;
   1222 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
   1223 	} else {
   1224 		m->m_data -= optlen;
   1225 		m->m_len += optlen;
   1226 		memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
   1227 	}
   1228 	m->m_pkthdr.len += optlen;
   1229 	ip = mtod(m, struct ip *);
   1230 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
   1231 	*phlen = sizeof(struct ip) + optlen;
   1232 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
   1233 	return (m);
   1234 }
   1235 
   1236 /*
   1237  * Copy options from ip to jp,
   1238  * omitting those not copied during fragmentation.
   1239  */
   1240 int
   1241 ip_optcopy(struct ip *ip, struct ip *jp)
   1242 {
   1243 	u_char *cp, *dp;
   1244 	int opt, optlen, cnt;
   1245 
   1246 	cp = (u_char *)(ip + 1);
   1247 	dp = (u_char *)(jp + 1);
   1248 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
   1249 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1250 		opt = cp[0];
   1251 		if (opt == IPOPT_EOL)
   1252 			break;
   1253 		if (opt == IPOPT_NOP) {
   1254 			/* Preserve for IP mcast tunnel's LSRR alignment. */
   1255 			*dp++ = IPOPT_NOP;
   1256 			optlen = 1;
   1257 			continue;
   1258 		}
   1259 #ifdef DIAGNOSTIC
   1260 		if (cnt < IPOPT_OLEN + sizeof(*cp))
   1261 			panic("malformed IPv4 option passed to ip_optcopy");
   1262 #endif
   1263 		optlen = cp[IPOPT_OLEN];
   1264 #ifdef DIAGNOSTIC
   1265 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
   1266 			panic("malformed IPv4 option passed to ip_optcopy");
   1267 #endif
   1268 		/* bogus lengths should have been caught by ip_dooptions */
   1269 		if (optlen > cnt)
   1270 			optlen = cnt;
   1271 		if (IPOPT_COPIED(opt)) {
   1272 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
   1273 			dp += optlen;
   1274 		}
   1275 	}
   1276 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
   1277 		*dp++ = IPOPT_EOL;
   1278 	return (optlen);
   1279 }
   1280 
   1281 /*
   1282  * IP socket option processing.
   1283  */
   1284 int
   1285 ip_ctloutput(int op, struct socket *so, int level, int optname,
   1286     struct mbuf **mp)
   1287 {
   1288 	struct inpcb *inp = sotoinpcb(so);
   1289 	struct mbuf *m = *mp;
   1290 	int optval = 0;
   1291 	int error = 0;
   1292 #if defined(IPSEC) || defined(FAST_IPSEC)
   1293 	struct lwp *l = curlwp;	/*XXX*/
   1294 #endif
   1295 
   1296 	if (level != IPPROTO_IP) {
   1297 		error = EINVAL;
   1298 		if (op == PRCO_SETOPT && *mp)
   1299 			(void) m_free(*mp);
   1300 	} else switch (op) {
   1301 
   1302 	case PRCO_SETOPT:
   1303 		switch (optname) {
   1304 		case IP_OPTIONS:
   1305 #ifdef notyet
   1306 		case IP_RETOPTS:
   1307 			return (ip_pcbopts(optname, &inp->inp_options, m));
   1308 #else
   1309 			return (ip_pcbopts(&inp->inp_options, m));
   1310 #endif
   1311 
   1312 		case IP_TOS:
   1313 		case IP_TTL:
   1314 		case IP_RECVOPTS:
   1315 		case IP_RECVRETOPTS:
   1316 		case IP_RECVDSTADDR:
   1317 		case IP_RECVIF:
   1318 			if (m == NULL || m->m_len != sizeof(int))
   1319 				error = EINVAL;
   1320 			else {
   1321 				optval = *mtod(m, int *);
   1322 				switch (optname) {
   1323 
   1324 				case IP_TOS:
   1325 					inp->inp_ip.ip_tos = optval;
   1326 					break;
   1327 
   1328 				case IP_TTL:
   1329 					inp->inp_ip.ip_ttl = optval;
   1330 					break;
   1331 #define	OPTSET(bit) \
   1332 	if (optval) \
   1333 		inp->inp_flags |= bit; \
   1334 	else \
   1335 		inp->inp_flags &= ~bit;
   1336 
   1337 				case IP_RECVOPTS:
   1338 					OPTSET(INP_RECVOPTS);
   1339 					break;
   1340 
   1341 				case IP_RECVRETOPTS:
   1342 					OPTSET(INP_RECVRETOPTS);
   1343 					break;
   1344 
   1345 				case IP_RECVDSTADDR:
   1346 					OPTSET(INP_RECVDSTADDR);
   1347 					break;
   1348 
   1349 				case IP_RECVIF:
   1350 					OPTSET(INP_RECVIF);
   1351 					break;
   1352 				}
   1353 			}
   1354 			break;
   1355 #undef OPTSET
   1356 
   1357 		case IP_MULTICAST_IF:
   1358 		case IP_MULTICAST_TTL:
   1359 		case IP_MULTICAST_LOOP:
   1360 		case IP_ADD_MEMBERSHIP:
   1361 		case IP_DROP_MEMBERSHIP:
   1362 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
   1363 			break;
   1364 
   1365 		case IP_PORTRANGE:
   1366 			if (m == 0 || m->m_len != sizeof(int))
   1367 				error = EINVAL;
   1368 			else {
   1369 				optval = *mtod(m, int *);
   1370 
   1371 				switch (optval) {
   1372 
   1373 				case IP_PORTRANGE_DEFAULT:
   1374 				case IP_PORTRANGE_HIGH:
   1375 					inp->inp_flags &= ~(INP_LOWPORT);
   1376 					break;
   1377 
   1378 				case IP_PORTRANGE_LOW:
   1379 					inp->inp_flags |= INP_LOWPORT;
   1380 					break;
   1381 
   1382 				default:
   1383 					error = EINVAL;
   1384 					break;
   1385 				}
   1386 			}
   1387 			break;
   1388 
   1389 #if defined(IPSEC) || defined(FAST_IPSEC)
   1390 		case IP_IPSEC_POLICY:
   1391 		{
   1392 			caddr_t req = NULL;
   1393 			size_t len = 0;
   1394 			int priv = 0;
   1395 
   1396 #ifdef __NetBSD__
   1397 			if (l == 0 || kauth_authorize_generic(l->l_cred,
   1398 			    KAUTH_GENERIC_ISSUSER, &l->l_acflag))
   1399 				priv = 0;
   1400 			else
   1401 				priv = 1;
   1402 #else
   1403 			priv = (in6p->in6p_socket->so_state & SS_PRIV);
   1404 #endif
   1405 			if (m) {
   1406 				req = mtod(m, caddr_t);
   1407 				len = m->m_len;
   1408 			}
   1409 			error = ipsec4_set_policy(inp, optname, req, len, priv);
   1410 			break;
   1411 		    }
   1412 #endif /*IPSEC*/
   1413 
   1414 		default:
   1415 			error = ENOPROTOOPT;
   1416 			break;
   1417 		}
   1418 		if (m)
   1419 			(void)m_free(m);
   1420 		break;
   1421 
   1422 	case PRCO_GETOPT:
   1423 		switch (optname) {
   1424 		case IP_OPTIONS:
   1425 		case IP_RETOPTS:
   1426 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1427 			MCLAIM(m, so->so_mowner);
   1428 			if (inp->inp_options) {
   1429 				m->m_len = inp->inp_options->m_len;
   1430 				bcopy(mtod(inp->inp_options, caddr_t),
   1431 				    mtod(m, caddr_t), (unsigned)m->m_len);
   1432 			} else
   1433 				m->m_len = 0;
   1434 			break;
   1435 
   1436 		case IP_TOS:
   1437 		case IP_TTL:
   1438 		case IP_RECVOPTS:
   1439 		case IP_RECVRETOPTS:
   1440 		case IP_RECVDSTADDR:
   1441 		case IP_RECVIF:
   1442 		case IP_ERRORMTU:
   1443 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1444 			MCLAIM(m, so->so_mowner);
   1445 			m->m_len = sizeof(int);
   1446 			switch (optname) {
   1447 
   1448 			case IP_TOS:
   1449 				optval = inp->inp_ip.ip_tos;
   1450 				break;
   1451 
   1452 			case IP_TTL:
   1453 				optval = inp->inp_ip.ip_ttl;
   1454 				break;
   1455 
   1456 			case IP_ERRORMTU:
   1457 				optval = inp->inp_errormtu;
   1458 				break;
   1459 
   1460 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
   1461 
   1462 			case IP_RECVOPTS:
   1463 				optval = OPTBIT(INP_RECVOPTS);
   1464 				break;
   1465 
   1466 			case IP_RECVRETOPTS:
   1467 				optval = OPTBIT(INP_RECVRETOPTS);
   1468 				break;
   1469 
   1470 			case IP_RECVDSTADDR:
   1471 				optval = OPTBIT(INP_RECVDSTADDR);
   1472 				break;
   1473 
   1474 			case IP_RECVIF:
   1475 				optval = OPTBIT(INP_RECVIF);
   1476 				break;
   1477 			}
   1478 			*mtod(m, int *) = optval;
   1479 			break;
   1480 
   1481 #if 0	/* defined(IPSEC) || defined(FAST_IPSEC) */
   1482 		/* XXX: code broken */
   1483 		case IP_IPSEC_POLICY:
   1484 		{
   1485 			caddr_t req = NULL;
   1486 			size_t len = 0;
   1487 
   1488 			if (m) {
   1489 				req = mtod(m, caddr_t);
   1490 				len = m->m_len;
   1491 			}
   1492 			error = ipsec4_get_policy(inp, req, len, mp);
   1493 			break;
   1494 		}
   1495 #endif /*IPSEC*/
   1496 
   1497 		case IP_MULTICAST_IF:
   1498 		case IP_MULTICAST_TTL:
   1499 		case IP_MULTICAST_LOOP:
   1500 		case IP_ADD_MEMBERSHIP:
   1501 		case IP_DROP_MEMBERSHIP:
   1502 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
   1503 			if (*mp)
   1504 				MCLAIM(*mp, so->so_mowner);
   1505 			break;
   1506 
   1507 		case IP_PORTRANGE:
   1508 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1509 			MCLAIM(m, so->so_mowner);
   1510 			m->m_len = sizeof(int);
   1511 
   1512 			if (inp->inp_flags & INP_LOWPORT)
   1513 				optval = IP_PORTRANGE_LOW;
   1514 			else
   1515 				optval = IP_PORTRANGE_DEFAULT;
   1516 
   1517 			*mtod(m, int *) = optval;
   1518 			break;
   1519 
   1520 		default:
   1521 			error = ENOPROTOOPT;
   1522 			break;
   1523 		}
   1524 		break;
   1525 	}
   1526 	return (error);
   1527 }
   1528 
   1529 /*
   1530  * Set up IP options in pcb for insertion in output packets.
   1531  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1532  * with destination address if source routed.
   1533  */
   1534 int
   1535 #ifdef notyet
   1536 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
   1537 #else
   1538 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
   1539 #endif
   1540 {
   1541 	int cnt, optlen;
   1542 	u_char *cp;
   1543 	u_char opt;
   1544 
   1545 	/* turn off any old options */
   1546 	if (*pcbopt)
   1547 		(void)m_free(*pcbopt);
   1548 	*pcbopt = 0;
   1549 	if (m == (struct mbuf *)0 || m->m_len == 0) {
   1550 		/*
   1551 		 * Only turning off any previous options.
   1552 		 */
   1553 		if (m)
   1554 			(void)m_free(m);
   1555 		return (0);
   1556 	}
   1557 
   1558 #ifndef	__vax__
   1559 	if (m->m_len % sizeof(int32_t))
   1560 		goto bad;
   1561 #endif
   1562 	/*
   1563 	 * IP first-hop destination address will be stored before
   1564 	 * actual options; move other options back
   1565 	 * and clear it when none present.
   1566 	 */
   1567 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
   1568 		goto bad;
   1569 	cnt = m->m_len;
   1570 	m->m_len += sizeof(struct in_addr);
   1571 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
   1572 	memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
   1573 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
   1574 
   1575 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1576 		opt = cp[IPOPT_OPTVAL];
   1577 		if (opt == IPOPT_EOL)
   1578 			break;
   1579 		if (opt == IPOPT_NOP)
   1580 			optlen = 1;
   1581 		else {
   1582 			if (cnt < IPOPT_OLEN + sizeof(*cp))
   1583 				goto bad;
   1584 			optlen = cp[IPOPT_OLEN];
   1585 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
   1586 				goto bad;
   1587 		}
   1588 		switch (opt) {
   1589 
   1590 		default:
   1591 			break;
   1592 
   1593 		case IPOPT_LSRR:
   1594 		case IPOPT_SSRR:
   1595 			/*
   1596 			 * user process specifies route as:
   1597 			 *	->A->B->C->D
   1598 			 * D must be our final destination (but we can't
   1599 			 * check that since we may not have connected yet).
   1600 			 * A is first hop destination, which doesn't appear in
   1601 			 * actual IP option, but is stored before the options.
   1602 			 */
   1603 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
   1604 				goto bad;
   1605 			m->m_len -= sizeof(struct in_addr);
   1606 			cnt -= sizeof(struct in_addr);
   1607 			optlen -= sizeof(struct in_addr);
   1608 			cp[IPOPT_OLEN] = optlen;
   1609 			/*
   1610 			 * Move first hop before start of options.
   1611 			 */
   1612 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
   1613 			    sizeof(struct in_addr));
   1614 			/*
   1615 			 * Then copy rest of options back
   1616 			 * to close up the deleted entry.
   1617 			 */
   1618 			(void)memmove(&cp[IPOPT_OFFSET+1],
   1619 			    &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
   1620 			    (unsigned)cnt - (IPOPT_MINOFF - 1));
   1621 			break;
   1622 		}
   1623 	}
   1624 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
   1625 		goto bad;
   1626 	*pcbopt = m;
   1627 	return (0);
   1628 
   1629 bad:
   1630 	(void)m_free(m);
   1631 	return (EINVAL);
   1632 }
   1633 
   1634 /*
   1635  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
   1636  */
   1637 static struct ifnet *
   1638 ip_multicast_if(struct in_addr *a, int *ifindexp)
   1639 {
   1640 	int ifindex;
   1641 	struct ifnet *ifp = NULL;
   1642 	struct in_ifaddr *ia;
   1643 
   1644 	if (ifindexp)
   1645 		*ifindexp = 0;
   1646 	if (ntohl(a->s_addr) >> 24 == 0) {
   1647 		ifindex = ntohl(a->s_addr) & 0xffffff;
   1648 		if (ifindex < 0 || if_indexlim <= ifindex)
   1649 			return NULL;
   1650 		ifp = ifindex2ifnet[ifindex];
   1651 		if (!ifp)
   1652 			return NULL;
   1653 		if (ifindexp)
   1654 			*ifindexp = ifindex;
   1655 	} else {
   1656 		LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
   1657 			if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
   1658 			    (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
   1659 				ifp = ia->ia_ifp;
   1660 				break;
   1661 			}
   1662 		}
   1663 	}
   1664 	return ifp;
   1665 }
   1666 
   1667 static int
   1668 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
   1669 {
   1670 	u_int tval;
   1671 
   1672 	if (m == NULL)
   1673 		return EINVAL;
   1674 
   1675 	switch (m->m_len) {
   1676 	case sizeof(u_char):
   1677 		tval = *(mtod(m, u_char *));
   1678 		break;
   1679 	case sizeof(u_int):
   1680 		tval = *(mtod(m, u_int *));
   1681 		break;
   1682 	default:
   1683 		return EINVAL;
   1684 	}
   1685 
   1686 	if (tval > maxval)
   1687 		return EINVAL;
   1688 
   1689 	*val = tval;
   1690 	return 0;
   1691 }
   1692 
   1693 /*
   1694  * Set the IP multicast options in response to user setsockopt().
   1695  */
   1696 int
   1697 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
   1698 {
   1699 	int error = 0;
   1700 	int i;
   1701 	struct in_addr addr;
   1702 	struct ip_mreq *mreq;
   1703 	struct ifnet *ifp;
   1704 	struct ip_moptions *imo = *imop;
   1705 	struct route ro;
   1706 	struct sockaddr_in *dst;
   1707 	int ifindex;
   1708 
   1709 	if (imo == NULL) {
   1710 		/*
   1711 		 * No multicast option buffer attached to the pcb;
   1712 		 * allocate one and initialize to default values.
   1713 		 */
   1714 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
   1715 		    M_WAITOK);
   1716 
   1717 		if (imo == NULL)
   1718 			return (ENOBUFS);
   1719 		*imop = imo;
   1720 		imo->imo_multicast_ifp = NULL;
   1721 		imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1722 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
   1723 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
   1724 		imo->imo_num_memberships = 0;
   1725 	}
   1726 
   1727 	switch (optname) {
   1728 
   1729 	case IP_MULTICAST_IF:
   1730 		/*
   1731 		 * Select the interface for outgoing multicast packets.
   1732 		 */
   1733 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
   1734 			error = EINVAL;
   1735 			break;
   1736 		}
   1737 		addr = *(mtod(m, struct in_addr *));
   1738 		/*
   1739 		 * INADDR_ANY is used to remove a previous selection.
   1740 		 * When no interface is selected, a default one is
   1741 		 * chosen every time a multicast packet is sent.
   1742 		 */
   1743 		if (in_nullhost(addr)) {
   1744 			imo->imo_multicast_ifp = NULL;
   1745 			break;
   1746 		}
   1747 		/*
   1748 		 * The selected interface is identified by its local
   1749 		 * IP address.  Find the interface and confirm that
   1750 		 * it supports multicasting.
   1751 		 */
   1752 		ifp = ip_multicast_if(&addr, &ifindex);
   1753 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1754 			error = EADDRNOTAVAIL;
   1755 			break;
   1756 		}
   1757 		imo->imo_multicast_ifp = ifp;
   1758 		if (ifindex)
   1759 			imo->imo_multicast_addr = addr;
   1760 		else
   1761 			imo->imo_multicast_addr.s_addr = INADDR_ANY;
   1762 		break;
   1763 
   1764 	case IP_MULTICAST_TTL:
   1765 		/*
   1766 		 * Set the IP time-to-live for outgoing multicast packets.
   1767 		 */
   1768 		error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
   1769 		break;
   1770 
   1771 	case IP_MULTICAST_LOOP:
   1772 		/*
   1773 		 * Set the loopback flag for outgoing multicast packets.
   1774 		 * Must be zero or one.
   1775 		 */
   1776 		error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
   1777 		break;
   1778 
   1779 	case IP_ADD_MEMBERSHIP:
   1780 		/*
   1781 		 * Add a multicast group membership.
   1782 		 * Group must be a valid IP multicast address.
   1783 		 */
   1784 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1785 			error = EINVAL;
   1786 			break;
   1787 		}
   1788 		mreq = mtod(m, struct ip_mreq *);
   1789 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1790 			error = EINVAL;
   1791 			break;
   1792 		}
   1793 		/*
   1794 		 * If no interface address was provided, use the interface of
   1795 		 * the route to the given multicast address.
   1796 		 */
   1797 		if (in_nullhost(mreq->imr_interface)) {
   1798 			bzero((caddr_t)&ro, sizeof(ro));
   1799 			ro.ro_rt = NULL;
   1800 			dst = satosin(&ro.ro_dst);
   1801 			dst->sin_len = sizeof(*dst);
   1802 			dst->sin_family = AF_INET;
   1803 			dst->sin_addr = mreq->imr_multiaddr;
   1804 			rtalloc(&ro);
   1805 			if (ro.ro_rt == NULL) {
   1806 				error = EADDRNOTAVAIL;
   1807 				break;
   1808 			}
   1809 			ifp = ro.ro_rt->rt_ifp;
   1810 			rtfree(ro.ro_rt);
   1811 		} else {
   1812 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1813 		}
   1814 		/*
   1815 		 * See if we found an interface, and confirm that it
   1816 		 * supports multicast.
   1817 		 */
   1818 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1819 			error = EADDRNOTAVAIL;
   1820 			break;
   1821 		}
   1822 		/*
   1823 		 * See if the membership already exists or if all the
   1824 		 * membership slots are full.
   1825 		 */
   1826 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1827 			if (imo->imo_membership[i]->inm_ifp == ifp &&
   1828 			    in_hosteq(imo->imo_membership[i]->inm_addr,
   1829 				      mreq->imr_multiaddr))
   1830 				break;
   1831 		}
   1832 		if (i < imo->imo_num_memberships) {
   1833 			error = EADDRINUSE;
   1834 			break;
   1835 		}
   1836 		if (i == IP_MAX_MEMBERSHIPS) {
   1837 			error = ETOOMANYREFS;
   1838 			break;
   1839 		}
   1840 		/*
   1841 		 * Everything looks good; add a new record to the multicast
   1842 		 * address list for the given interface.
   1843 		 */
   1844 		if ((imo->imo_membership[i] =
   1845 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
   1846 			error = ENOBUFS;
   1847 			break;
   1848 		}
   1849 		++imo->imo_num_memberships;
   1850 		break;
   1851 
   1852 	case IP_DROP_MEMBERSHIP:
   1853 		/*
   1854 		 * Drop a multicast group membership.
   1855 		 * Group must be a valid IP multicast address.
   1856 		 */
   1857 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
   1858 			error = EINVAL;
   1859 			break;
   1860 		}
   1861 		mreq = mtod(m, struct ip_mreq *);
   1862 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
   1863 			error = EINVAL;
   1864 			break;
   1865 		}
   1866 		/*
   1867 		 * If an interface address was specified, get a pointer
   1868 		 * to its ifnet structure.
   1869 		 */
   1870 		if (in_nullhost(mreq->imr_interface))
   1871 			ifp = NULL;
   1872 		else {
   1873 			ifp = ip_multicast_if(&mreq->imr_interface, NULL);
   1874 			if (ifp == NULL) {
   1875 				error = EADDRNOTAVAIL;
   1876 				break;
   1877 			}
   1878 		}
   1879 		/*
   1880 		 * Find the membership in the membership array.
   1881 		 */
   1882 		for (i = 0; i < imo->imo_num_memberships; ++i) {
   1883 			if ((ifp == NULL ||
   1884 			     imo->imo_membership[i]->inm_ifp == ifp) &&
   1885 			     in_hosteq(imo->imo_membership[i]->inm_addr,
   1886 				       mreq->imr_multiaddr))
   1887 				break;
   1888 		}
   1889 		if (i == imo->imo_num_memberships) {
   1890 			error = EADDRNOTAVAIL;
   1891 			break;
   1892 		}
   1893 		/*
   1894 		 * Give up the multicast address record to which the
   1895 		 * membership points.
   1896 		 */
   1897 		in_delmulti(imo->imo_membership[i]);
   1898 		/*
   1899 		 * Remove the gap in the membership array.
   1900 		 */
   1901 		for (++i; i < imo->imo_num_memberships; ++i)
   1902 			imo->imo_membership[i-1] = imo->imo_membership[i];
   1903 		--imo->imo_num_memberships;
   1904 		break;
   1905 
   1906 	default:
   1907 		error = EOPNOTSUPP;
   1908 		break;
   1909 	}
   1910 
   1911 	/*
   1912 	 * If all options have default values, no need to keep the mbuf.
   1913 	 */
   1914 	if (imo->imo_multicast_ifp == NULL &&
   1915 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
   1916 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
   1917 	    imo->imo_num_memberships == 0) {
   1918 		free(*imop, M_IPMOPTS);
   1919 		*imop = NULL;
   1920 	}
   1921 
   1922 	return (error);
   1923 }
   1924 
   1925 /*
   1926  * Return the IP multicast options in response to user getsockopt().
   1927  */
   1928 int
   1929 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
   1930 {
   1931 	u_char *ttl;
   1932 	u_char *loop;
   1933 	struct in_addr *addr;
   1934 	struct in_ifaddr *ia;
   1935 
   1936 	*mp = m_get(M_WAIT, MT_SOOPTS);
   1937 
   1938 	switch (optname) {
   1939 
   1940 	case IP_MULTICAST_IF:
   1941 		addr = mtod(*mp, struct in_addr *);
   1942 		(*mp)->m_len = sizeof(struct in_addr);
   1943 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
   1944 			*addr = zeroin_addr;
   1945 		else if (imo->imo_multicast_addr.s_addr) {
   1946 			/* return the value user has set */
   1947 			*addr = imo->imo_multicast_addr;
   1948 		} else {
   1949 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
   1950 			*addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
   1951 		}
   1952 		return (0);
   1953 
   1954 	case IP_MULTICAST_TTL:
   1955 		ttl = mtod(*mp, u_char *);
   1956 		(*mp)->m_len = 1;
   1957 		*ttl = imo ? imo->imo_multicast_ttl
   1958 			   : IP_DEFAULT_MULTICAST_TTL;
   1959 		return (0);
   1960 
   1961 	case IP_MULTICAST_LOOP:
   1962 		loop = mtod(*mp, u_char *);
   1963 		(*mp)->m_len = 1;
   1964 		*loop = imo ? imo->imo_multicast_loop
   1965 			    : IP_DEFAULT_MULTICAST_LOOP;
   1966 		return (0);
   1967 
   1968 	default:
   1969 		return (EOPNOTSUPP);
   1970 	}
   1971 }
   1972 
   1973 /*
   1974  * Discard the IP multicast options.
   1975  */
   1976 void
   1977 ip_freemoptions(struct ip_moptions *imo)
   1978 {
   1979 	int i;
   1980 
   1981 	if (imo != NULL) {
   1982 		for (i = 0; i < imo->imo_num_memberships; ++i)
   1983 			in_delmulti(imo->imo_membership[i]);
   1984 		free(imo, M_IPMOPTS);
   1985 	}
   1986 }
   1987 
   1988 /*
   1989  * Routine called from ip_output() to loop back a copy of an IP multicast
   1990  * packet to the input queue of a specified interface.  Note that this
   1991  * calls the output routine of the loopback "driver", but with an interface
   1992  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   1993  */
   1994 static void
   1995 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
   1996 {
   1997 	struct ip *ip;
   1998 	struct mbuf *copym;
   1999 
   2000 	copym = m_copy(m, 0, M_COPYALL);
   2001 	if (copym != NULL
   2002 	 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
   2003 		copym = m_pullup(copym, sizeof(struct ip));
   2004 	if (copym != NULL) {
   2005 		/*
   2006 		 * We don't bother to fragment if the IP length is greater
   2007 		 * than the interface's MTU.  Can this possibly matter?
   2008 		 */
   2009 		ip = mtod(copym, struct ip *);
   2010 
   2011 		if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2012 			in_delayed_cksum(copym);
   2013 			copym->m_pkthdr.csum_flags &=
   2014 			    ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
   2015 		}
   2016 
   2017 		ip->ip_sum = 0;
   2018 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
   2019 		(void) looutput(ifp, copym, sintosa(dst), NULL);
   2020 	}
   2021 }
   2022