ip_output.c revision 1.165.4.1 1 /* $NetBSD: ip_output.c,v 1.165.4.1 2006/11/18 21:39:36 ad Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.165.4.1 2006/11/18 21:39:36 ad Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
160
161 #ifdef PFIL_HOOKS
162 extern struct pfil_head inet_pfil_hook; /* XXX */
163 #endif
164
165 int ip_do_loopback_cksum = 0;
166
167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
172
173 struct ip_tso_output_args {
174 struct ifnet *ifp;
175 struct sockaddr *sa;
176 struct rtentry *rt;
177 };
178
179 static int ip_tso_output_callback(void *, struct mbuf *);
180 static int ip_tso_output(struct ifnet *, struct mbuf *, struct sockaddr *,
181 struct rtentry *);
182
183 static int
184 ip_tso_output_callback(void *vp, struct mbuf *m)
185 {
186 struct ip_tso_output_args *args = vp;
187 struct ifnet *ifp = args->ifp;
188
189 return (*ifp->if_output)(ifp, m, args->sa, args->rt);
190 }
191
192 static int
193 ip_tso_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *sa,
194 struct rtentry *rt)
195 {
196 struct ip_tso_output_args args;
197
198 args.ifp = ifp;
199 args.sa = sa;
200 args.rt = rt;
201
202 return tcp4_segment(m, ip_tso_output_callback, &args);
203 }
204
205 /*
206 * IP output. The packet in mbuf chain m contains a skeletal IP
207 * header (with len, off, ttl, proto, tos, src, dst).
208 * The mbuf chain containing the packet will be freed.
209 * The mbuf opt, if present, will not be freed.
210 */
211 int
212 ip_output(struct mbuf *m0, ...)
213 {
214 struct ip *ip;
215 struct ifnet *ifp;
216 struct mbuf *m = m0;
217 int hlen = sizeof (struct ip);
218 int len, error = 0;
219 struct route iproute;
220 struct sockaddr_in *dst;
221 struct in_ifaddr *ia;
222 struct ifaddr *xifa;
223 struct mbuf *opt;
224 struct route *ro;
225 int flags, sw_csum;
226 int *mtu_p;
227 u_long mtu;
228 struct ip_moptions *imo;
229 struct socket *so;
230 va_list ap;
231 #ifdef IPSEC_NAT_T
232 int natt_frag = 0;
233 #endif
234 #ifdef IPSEC
235 struct secpolicy *sp = NULL;
236 #endif /*IPSEC*/
237 #ifdef FAST_IPSEC
238 struct inpcb *inp;
239 struct m_tag *mtag;
240 struct secpolicy *sp = NULL;
241 struct tdb_ident *tdbi;
242 int s;
243 #endif
244 u_int16_t ip_len;
245
246 len = 0;
247 va_start(ap, m0);
248 opt = va_arg(ap, struct mbuf *);
249 ro = va_arg(ap, struct route *);
250 flags = va_arg(ap, int);
251 imo = va_arg(ap, struct ip_moptions *);
252 so = va_arg(ap, struct socket *);
253 if (flags & IP_RETURNMTU)
254 mtu_p = va_arg(ap, int *);
255 else
256 mtu_p = NULL;
257 va_end(ap);
258
259 MCLAIM(m, &ip_tx_mowner);
260 #ifdef FAST_IPSEC
261 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
262 inp = (struct inpcb *)so->so_pcb;
263 else
264 inp = NULL;
265 #endif /* FAST_IPSEC */
266
267 #ifdef DIAGNOSTIC
268 if ((m->m_flags & M_PKTHDR) == 0)
269 panic("ip_output: no HDR");
270
271 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
272 panic("ip_output: IPv6 checksum offload flags: %d",
273 m->m_pkthdr.csum_flags);
274 }
275
276 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
277 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
278 panic("ip_output: conflicting checksum offload flags: %d",
279 m->m_pkthdr.csum_flags);
280 }
281 #endif
282 if (opt) {
283 m = ip_insertoptions(m, opt, &len);
284 if (len >= sizeof(struct ip))
285 hlen = len;
286 }
287 ip = mtod(m, struct ip *);
288 /*
289 * Fill in IP header.
290 */
291 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
292 ip->ip_v = IPVERSION;
293 ip->ip_off = htons(0);
294 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
295 ip->ip_id = ip_newid();
296 } else {
297
298 /*
299 * TSO capable interfaces (typically?) increment
300 * ip_id for each segment.
301 * "allocate" enough ids here to increase the chance
302 * for them to be unique.
303 *
304 * note that the following calculation is not
305 * needed to be precise. wasting some ip_id is fine.
306 */
307
308 unsigned int segsz = m->m_pkthdr.segsz;
309 unsigned int datasz = ntohs(ip->ip_len) - hlen;
310 unsigned int num = howmany(datasz, segsz);
311
312 ip->ip_id = ip_newid_range(num);
313 }
314 ip->ip_hl = hlen >> 2;
315 ipstat.ips_localout++;
316 } else {
317 hlen = ip->ip_hl << 2;
318 }
319 /*
320 * Route packet.
321 */
322 if (ro == 0) {
323 ro = &iproute;
324 bzero((caddr_t)ro, sizeof (*ro));
325 }
326 dst = satosin(&ro->ro_dst);
327 /*
328 * If there is a cached route,
329 * check that it is to the same destination
330 * and is still up. If not, free it and try again.
331 * The address family should also be checked in case of sharing the
332 * cache with IPv6.
333 */
334 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
335 dst->sin_family != AF_INET ||
336 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
337 RTFREE(ro->ro_rt);
338 ro->ro_rt = (struct rtentry *)0;
339 }
340 if (ro->ro_rt == 0) {
341 bzero(dst, sizeof(*dst));
342 dst->sin_family = AF_INET;
343 dst->sin_len = sizeof(*dst);
344 dst->sin_addr = ip->ip_dst;
345 }
346 /*
347 * If routing to interface only,
348 * short circuit routing lookup.
349 */
350 if (flags & IP_ROUTETOIF) {
351 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
352 ipstat.ips_noroute++;
353 error = ENETUNREACH;
354 goto bad;
355 }
356 ifp = ia->ia_ifp;
357 mtu = ifp->if_mtu;
358 ip->ip_ttl = 1;
359 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
360 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
361 imo != NULL && imo->imo_multicast_ifp != NULL) {
362 ifp = imo->imo_multicast_ifp;
363 mtu = ifp->if_mtu;
364 IFP_TO_IA(ifp, ia);
365 } else {
366 if (ro->ro_rt == 0)
367 rtalloc(ro);
368 if (ro->ro_rt == 0) {
369 ipstat.ips_noroute++;
370 error = EHOSTUNREACH;
371 goto bad;
372 }
373 ia = ifatoia(ro->ro_rt->rt_ifa);
374 ifp = ro->ro_rt->rt_ifp;
375 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
376 mtu = ifp->if_mtu;
377 ro->ro_rt->rt_use++;
378 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
379 dst = satosin(ro->ro_rt->rt_gateway);
380 }
381 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
382 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
383 struct in_multi *inm;
384
385 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
386 M_BCAST : M_MCAST;
387 /*
388 * IP destination address is multicast. Make sure "dst"
389 * still points to the address in "ro". (It may have been
390 * changed to point to a gateway address, above.)
391 */
392 dst = satosin(&ro->ro_dst);
393 /*
394 * See if the caller provided any multicast options
395 */
396 if (imo != NULL)
397 ip->ip_ttl = imo->imo_multicast_ttl;
398 else
399 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
400
401 /*
402 * if we don't know the outgoing ifp yet, we can't generate
403 * output
404 */
405 if (!ifp) {
406 ipstat.ips_noroute++;
407 error = ENETUNREACH;
408 goto bad;
409 }
410
411 /*
412 * If the packet is multicast or broadcast, confirm that
413 * the outgoing interface can transmit it.
414 */
415 if (((m->m_flags & M_MCAST) &&
416 (ifp->if_flags & IFF_MULTICAST) == 0) ||
417 ((m->m_flags & M_BCAST) &&
418 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
419 ipstat.ips_noroute++;
420 error = ENETUNREACH;
421 goto bad;
422 }
423 /*
424 * If source address not specified yet, use an address
425 * of outgoing interface.
426 */
427 if (in_nullhost(ip->ip_src)) {
428 struct in_ifaddr *xia;
429
430 IFP_TO_IA(ifp, xia);
431 if (!xia) {
432 error = EADDRNOTAVAIL;
433 goto bad;
434 }
435 xifa = &xia->ia_ifa;
436 if (xifa->ifa_getifa != NULL) {
437 xia = ifatoia((*xifa->ifa_getifa)(xifa,
438 &ro->ro_dst));
439 }
440 ip->ip_src = xia->ia_addr.sin_addr;
441 }
442
443 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
444 if (inm != NULL &&
445 (imo == NULL || imo->imo_multicast_loop)) {
446 /*
447 * If we belong to the destination multicast group
448 * on the outgoing interface, and the caller did not
449 * forbid loopback, loop back a copy.
450 */
451 ip_mloopback(ifp, m, dst);
452 }
453 #ifdef MROUTING
454 else {
455 /*
456 * If we are acting as a multicast router, perform
457 * multicast forwarding as if the packet had just
458 * arrived on the interface to which we are about
459 * to send. The multicast forwarding function
460 * recursively calls this function, using the
461 * IP_FORWARDING flag to prevent infinite recursion.
462 *
463 * Multicasts that are looped back by ip_mloopback(),
464 * above, will be forwarded by the ip_input() routine,
465 * if necessary.
466 */
467 extern struct socket *ip_mrouter;
468
469 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
470 if (ip_mforward(m, ifp) != 0) {
471 m_freem(m);
472 goto done;
473 }
474 }
475 }
476 #endif
477 /*
478 * Multicasts with a time-to-live of zero may be looped-
479 * back, above, but must not be transmitted on a network.
480 * Also, multicasts addressed to the loopback interface
481 * are not sent -- the above call to ip_mloopback() will
482 * loop back a copy if this host actually belongs to the
483 * destination group on the loopback interface.
484 */
485 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
486 m_freem(m);
487 goto done;
488 }
489
490 goto sendit;
491 }
492 /*
493 * If source address not specified yet, use address
494 * of outgoing interface.
495 */
496 if (in_nullhost(ip->ip_src)) {
497 xifa = &ia->ia_ifa;
498 if (xifa->ifa_getifa != NULL)
499 ia = ifatoia((*xifa->ifa_getifa)(xifa, &ro->ro_dst));
500 ip->ip_src = ia->ia_addr.sin_addr;
501 }
502
503 /*
504 * packets with Class-D address as source are not valid per
505 * RFC 1112
506 */
507 if (IN_MULTICAST(ip->ip_src.s_addr)) {
508 ipstat.ips_odropped++;
509 error = EADDRNOTAVAIL;
510 goto bad;
511 }
512
513 /*
514 * Look for broadcast address and
515 * and verify user is allowed to send
516 * such a packet.
517 */
518 if (in_broadcast(dst->sin_addr, ifp)) {
519 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
520 error = EADDRNOTAVAIL;
521 goto bad;
522 }
523 if ((flags & IP_ALLOWBROADCAST) == 0) {
524 error = EACCES;
525 goto bad;
526 }
527 /* don't allow broadcast messages to be fragmented */
528 if (ntohs(ip->ip_len) > ifp->if_mtu) {
529 error = EMSGSIZE;
530 goto bad;
531 }
532 m->m_flags |= M_BCAST;
533 } else
534 m->m_flags &= ~M_BCAST;
535
536 sendit:
537 /*
538 * If we're doing Path MTU Discovery, we need to set DF unless
539 * the route's MTU is locked.
540 */
541 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
542 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
543 ip->ip_off |= htons(IP_DF);
544
545 /* Remember the current ip_len */
546 ip_len = ntohs(ip->ip_len);
547
548 #ifdef IPSEC
549 /* get SP for this packet */
550 if (so == NULL)
551 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
552 flags, &error);
553 else {
554 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
555 IPSEC_DIR_OUTBOUND))
556 goto skip_ipsec;
557 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
558 }
559
560 if (sp == NULL) {
561 ipsecstat.out_inval++;
562 goto bad;
563 }
564
565 error = 0;
566
567 /* check policy */
568 switch (sp->policy) {
569 case IPSEC_POLICY_DISCARD:
570 /*
571 * This packet is just discarded.
572 */
573 ipsecstat.out_polvio++;
574 goto bad;
575
576 case IPSEC_POLICY_BYPASS:
577 case IPSEC_POLICY_NONE:
578 /* no need to do IPsec. */
579 goto skip_ipsec;
580
581 case IPSEC_POLICY_IPSEC:
582 if (sp->req == NULL) {
583 /* XXX should be panic ? */
584 printf("ip_output: No IPsec request specified.\n");
585 error = EINVAL;
586 goto bad;
587 }
588 break;
589
590 case IPSEC_POLICY_ENTRUST:
591 default:
592 printf("ip_output: Invalid policy found. %d\n", sp->policy);
593 }
594
595 #ifdef IPSEC_NAT_T
596 /*
597 * NAT-T ESP fragmentation: don't do IPSec processing now,
598 * we'll do it on each fragmented packet.
599 */
600 if (sp->req->sav &&
601 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
602 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
603 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
604 natt_frag = 1;
605 mtu = sp->req->sav->esp_frag;
606 goto skip_ipsec;
607 }
608 }
609 #endif /* IPSEC_NAT_T */
610
611 /*
612 * ipsec4_output() expects ip_len and ip_off in network
613 * order. They have been set to network order above.
614 */
615
616 {
617 struct ipsec_output_state state;
618 bzero(&state, sizeof(state));
619 state.m = m;
620 if (flags & IP_ROUTETOIF) {
621 state.ro = &iproute;
622 bzero(&iproute, sizeof(iproute));
623 } else
624 state.ro = ro;
625 state.dst = (struct sockaddr *)dst;
626
627 /*
628 * We can't defer the checksum of payload data if
629 * we're about to encrypt/authenticate it.
630 *
631 * XXX When we support crypto offloading functions of
632 * XXX network interfaces, we need to reconsider this,
633 * XXX since it's likely that they'll support checksumming,
634 * XXX as well.
635 */
636 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
637 in_delayed_cksum(m);
638 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
639 }
640
641 error = ipsec4_output(&state, sp, flags);
642
643 m = state.m;
644 if (flags & IP_ROUTETOIF) {
645 /*
646 * if we have tunnel mode SA, we may need to ignore
647 * IP_ROUTETOIF.
648 */
649 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
650 flags &= ~IP_ROUTETOIF;
651 ro = state.ro;
652 }
653 } else
654 ro = state.ro;
655 dst = (struct sockaddr_in *)state.dst;
656 if (error) {
657 /* mbuf is already reclaimed in ipsec4_output. */
658 m0 = NULL;
659 switch (error) {
660 case EHOSTUNREACH:
661 case ENETUNREACH:
662 case EMSGSIZE:
663 case ENOBUFS:
664 case ENOMEM:
665 break;
666 default:
667 printf("ip4_output (ipsec): error code %d\n", error);
668 /*fall through*/
669 case ENOENT:
670 /* don't show these error codes to the user */
671 error = 0;
672 break;
673 }
674 goto bad;
675 }
676
677 /* be sure to update variables that are affected by ipsec4_output() */
678 ip = mtod(m, struct ip *);
679 hlen = ip->ip_hl << 2;
680 ip_len = ntohs(ip->ip_len);
681
682 if (ro->ro_rt == NULL) {
683 if ((flags & IP_ROUTETOIF) == 0) {
684 printf("ip_output: "
685 "can't update route after IPsec processing\n");
686 error = EHOSTUNREACH; /*XXX*/
687 goto bad;
688 }
689 } else {
690 /* nobody uses ia beyond here */
691 if (state.encap) {
692 ifp = ro->ro_rt->rt_ifp;
693 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
694 mtu = ifp->if_mtu;
695 }
696 }
697 }
698 skip_ipsec:
699 #endif /*IPSEC*/
700 #ifdef FAST_IPSEC
701 /*
702 * Check the security policy (SP) for the packet and, if
703 * required, do IPsec-related processing. There are two
704 * cases here; the first time a packet is sent through
705 * it will be untagged and handled by ipsec4_checkpolicy.
706 * If the packet is resubmitted to ip_output (e.g. after
707 * AH, ESP, etc. processing), there will be a tag to bypass
708 * the lookup and related policy checking.
709 */
710 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
711 s = splsoftnet();
712 if (mtag != NULL) {
713 tdbi = (struct tdb_ident *)(mtag + 1);
714 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
715 if (sp == NULL)
716 error = -EINVAL; /* force silent drop */
717 m_tag_delete(m, mtag);
718 } else {
719 if (inp != NULL &&
720 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
721 goto spd_done;
722 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
723 &error, inp);
724 }
725 /*
726 * There are four return cases:
727 * sp != NULL apply IPsec policy
728 * sp == NULL, error == 0 no IPsec handling needed
729 * sp == NULL, error == -EINVAL discard packet w/o error
730 * sp == NULL, error != 0 discard packet, report error
731 */
732 if (sp != NULL) {
733 #ifdef IPSEC_NAT_T
734 /*
735 * NAT-T ESP fragmentation: don't do IPSec processing now,
736 * we'll do it on each fragmented packet.
737 */
738 if (sp->req->sav &&
739 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
740 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
741 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
742 natt_frag = 1;
743 mtu = sp->req->sav->esp_frag;
744 goto spd_done;
745 }
746 }
747 #endif /* IPSEC_NAT_T */
748 /* Loop detection, check if ipsec processing already done */
749 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
750 for (mtag = m_tag_first(m); mtag != NULL;
751 mtag = m_tag_next(m, mtag)) {
752 #ifdef MTAG_ABI_COMPAT
753 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
754 continue;
755 #endif
756 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
757 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
758 continue;
759 /*
760 * Check if policy has an SA associated with it.
761 * This can happen when an SP has yet to acquire
762 * an SA; e.g. on first reference. If it occurs,
763 * then we let ipsec4_process_packet do its thing.
764 */
765 if (sp->req->sav == NULL)
766 break;
767 tdbi = (struct tdb_ident *)(mtag + 1);
768 if (tdbi->spi == sp->req->sav->spi &&
769 tdbi->proto == sp->req->sav->sah->saidx.proto &&
770 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
771 sizeof (union sockaddr_union)) == 0) {
772 /*
773 * No IPsec processing is needed, free
774 * reference to SP.
775 *
776 * NB: null pointer to avoid free at
777 * done: below.
778 */
779 KEY_FREESP(&sp), sp = NULL;
780 splx(s);
781 goto spd_done;
782 }
783 }
784
785 /*
786 * Do delayed checksums now because we send before
787 * this is done in the normal processing path.
788 */
789 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
790 in_delayed_cksum(m);
791 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
792 }
793
794 #ifdef __FreeBSD__
795 ip->ip_len = htons(ip->ip_len);
796 ip->ip_off = htons(ip->ip_off);
797 #endif
798
799 /* NB: callee frees mbuf */
800 error = ipsec4_process_packet(m, sp->req, flags, 0);
801 /*
802 * Preserve KAME behaviour: ENOENT can be returned
803 * when an SA acquire is in progress. Don't propagate
804 * this to user-level; it confuses applications.
805 *
806 * XXX this will go away when the SADB is redone.
807 */
808 if (error == ENOENT)
809 error = 0;
810 splx(s);
811 goto done;
812 } else {
813 splx(s);
814
815 if (error != 0) {
816 /*
817 * Hack: -EINVAL is used to signal that a packet
818 * should be silently discarded. This is typically
819 * because we asked key management for an SA and
820 * it was delayed (e.g. kicked up to IKE).
821 */
822 if (error == -EINVAL)
823 error = 0;
824 goto bad;
825 } else {
826 /* No IPsec processing for this packet. */
827 }
828 #ifdef notyet
829 /*
830 * If deferred crypto processing is needed, check that
831 * the interface supports it.
832 */
833 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
834 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
835 /* notify IPsec to do its own crypto */
836 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
837 error = EHOSTUNREACH;
838 goto bad;
839 }
840 #endif
841 }
842 spd_done:
843 #endif /* FAST_IPSEC */
844
845 #ifdef PFIL_HOOKS
846 /*
847 * Run through list of hooks for output packets.
848 */
849 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
850 goto done;
851 if (m == NULL)
852 goto done;
853
854 ip = mtod(m, struct ip *);
855 hlen = ip->ip_hl << 2;
856 #endif /* PFIL_HOOKS */
857
858 m->m_pkthdr.csum_data |= hlen << 16;
859
860 #if IFA_STATS
861 /*
862 * search for the source address structure to
863 * maintain output statistics.
864 */
865 INADDR_TO_IA(ip->ip_src, ia);
866 #endif
867
868 /* Maybe skip checksums on loopback interfaces. */
869 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
870 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
871 }
872 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
873 /*
874 * If small enough for mtu of path, or if using TCP segmentation
875 * offload, can just send directly.
876 */
877 if (ip_len <= mtu ||
878 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
879 #if IFA_STATS
880 if (ia)
881 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
882 #endif
883 /*
884 * Always initialize the sum to 0! Some HW assisted
885 * checksumming requires this.
886 */
887 ip->ip_sum = 0;
888
889 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
890 /*
891 * Perform any checksums that the hardware can't do
892 * for us.
893 *
894 * XXX Does any hardware require the {th,uh}_sum
895 * XXX fields to be 0?
896 */
897 if (sw_csum & M_CSUM_IPv4) {
898 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
899 ip->ip_sum = in_cksum(m, hlen);
900 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
901 }
902 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
903 if (IN_NEED_CHECKSUM(ifp,
904 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
905 in_delayed_cksum(m);
906 }
907 m->m_pkthdr.csum_flags &=
908 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
909 }
910 }
911
912 #ifdef IPSEC
913 /* clean ipsec history once it goes out of the node */
914 ipsec_delaux(m);
915 #endif
916
917 if (__predict_true(
918 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
919 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
920 error =
921 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
922 } else {
923 error =
924 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
925 }
926 goto done;
927 }
928
929 /*
930 * We can't use HW checksumming if we're about to
931 * to fragment the packet.
932 *
933 * XXX Some hardware can do this.
934 */
935 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
936 if (IN_NEED_CHECKSUM(ifp,
937 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
938 in_delayed_cksum(m);
939 }
940 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
941 }
942
943 /*
944 * Too large for interface; fragment if possible.
945 * Must be able to put at least 8 bytes per fragment.
946 */
947 if (ntohs(ip->ip_off) & IP_DF) {
948 if (flags & IP_RETURNMTU)
949 *mtu_p = mtu;
950 error = EMSGSIZE;
951 ipstat.ips_cantfrag++;
952 goto bad;
953 }
954
955 error = ip_fragment(m, ifp, mtu);
956 if (error) {
957 m = NULL;
958 goto bad;
959 }
960
961 for (; m; m = m0) {
962 m0 = m->m_nextpkt;
963 m->m_nextpkt = 0;
964 if (error == 0) {
965 #if IFA_STATS
966 if (ia)
967 ia->ia_ifa.ifa_data.ifad_outbytes +=
968 ntohs(ip->ip_len);
969 #endif
970 #ifdef IPSEC
971 /* clean ipsec history once it goes out of the node */
972 ipsec_delaux(m);
973 #endif /* IPSEC */
974
975 #ifdef IPSEC_NAT_T
976 /*
977 * If we get there, the packet has not been handeld by
978 * IPSec whereas it should have. Now that it has been
979 * fragmented, re-inject it in ip_output so that IPsec
980 * processing can occur.
981 */
982 if (natt_frag) {
983 error = ip_output(m, opt,
984 ro, flags, imo, so, mtu_p);
985 } else
986 #endif /* IPSEC_NAT_T */
987 {
988 KASSERT((m->m_pkthdr.csum_flags &
989 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
990 error = (*ifp->if_output)(ifp, m, sintosa(dst),
991 ro->ro_rt);
992 }
993 } else
994 m_freem(m);
995 }
996
997 if (error == 0)
998 ipstat.ips_fragmented++;
999 done:
1000 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
1001 RTFREE(ro->ro_rt);
1002 ro->ro_rt = 0;
1003 }
1004
1005 #ifdef IPSEC
1006 if (sp != NULL) {
1007 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1008 printf("DP ip_output call free SP:%p\n", sp));
1009 key_freesp(sp);
1010 }
1011 #endif /* IPSEC */
1012 #ifdef FAST_IPSEC
1013 if (sp != NULL)
1014 KEY_FREESP(&sp);
1015 #endif /* FAST_IPSEC */
1016
1017 return (error);
1018 bad:
1019 m_freem(m);
1020 goto done;
1021 }
1022
1023 int
1024 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
1025 {
1026 struct ip *ip, *mhip;
1027 struct mbuf *m0;
1028 int len, hlen, off;
1029 int mhlen, firstlen;
1030 struct mbuf **mnext;
1031 int sw_csum = m->m_pkthdr.csum_flags;
1032 int fragments = 0;
1033 int s;
1034 int error = 0;
1035
1036 ip = mtod(m, struct ip *);
1037 hlen = ip->ip_hl << 2;
1038 if (ifp != NULL)
1039 sw_csum &= ~ifp->if_csum_flags_tx;
1040
1041 len = (mtu - hlen) &~ 7;
1042 if (len < 8) {
1043 m_freem(m);
1044 return (EMSGSIZE);
1045 }
1046
1047 firstlen = len;
1048 mnext = &m->m_nextpkt;
1049
1050 /*
1051 * Loop through length of segment after first fragment,
1052 * make new header and copy data of each part and link onto chain.
1053 */
1054 m0 = m;
1055 mhlen = sizeof (struct ip);
1056 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1057 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1058 if (m == 0) {
1059 error = ENOBUFS;
1060 ipstat.ips_odropped++;
1061 goto sendorfree;
1062 }
1063 MCLAIM(m, m0->m_owner);
1064 *mnext = m;
1065 mnext = &m->m_nextpkt;
1066 m->m_data += max_linkhdr;
1067 mhip = mtod(m, struct ip *);
1068 *mhip = *ip;
1069 /* we must inherit MCAST and BCAST flags */
1070 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1071 if (hlen > sizeof (struct ip)) {
1072 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1073 mhip->ip_hl = mhlen >> 2;
1074 }
1075 m->m_len = mhlen;
1076 mhip->ip_off = ((off - hlen) >> 3) +
1077 (ntohs(ip->ip_off) & ~IP_MF);
1078 if (ip->ip_off & htons(IP_MF))
1079 mhip->ip_off |= IP_MF;
1080 if (off + len >= ntohs(ip->ip_len))
1081 len = ntohs(ip->ip_len) - off;
1082 else
1083 mhip->ip_off |= IP_MF;
1084 HTONS(mhip->ip_off);
1085 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1086 m->m_next = m_copy(m0, off, len);
1087 if (m->m_next == 0) {
1088 error = ENOBUFS; /* ??? */
1089 ipstat.ips_odropped++;
1090 goto sendorfree;
1091 }
1092 m->m_pkthdr.len = mhlen + len;
1093 m->m_pkthdr.rcvif = (struct ifnet *)0;
1094 mhip->ip_sum = 0;
1095 if (sw_csum & M_CSUM_IPv4) {
1096 mhip->ip_sum = in_cksum(m, mhlen);
1097 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1098 } else {
1099 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1100 m->m_pkthdr.csum_data |= mhlen << 16;
1101 }
1102 ipstat.ips_ofragments++;
1103 fragments++;
1104 }
1105 /*
1106 * Update first fragment by trimming what's been copied out
1107 * and updating header, then send each fragment (in order).
1108 */
1109 m = m0;
1110 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1111 m->m_pkthdr.len = hlen + firstlen;
1112 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1113 ip->ip_off |= htons(IP_MF);
1114 ip->ip_sum = 0;
1115 if (sw_csum & M_CSUM_IPv4) {
1116 ip->ip_sum = in_cksum(m, hlen);
1117 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1118 } else {
1119 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1120 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1121 sizeof(struct ip));
1122 }
1123 sendorfree:
1124 /*
1125 * If there is no room for all the fragments, don't queue
1126 * any of them.
1127 */
1128 if (ifp != NULL) {
1129 s = splnet();
1130 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1131 error == 0) {
1132 error = ENOBUFS;
1133 ipstat.ips_odropped++;
1134 IFQ_INC_DROPS(&ifp->if_snd);
1135 }
1136 splx(s);
1137 }
1138 if (error) {
1139 for (m = m0; m; m = m0) {
1140 m0 = m->m_nextpkt;
1141 m->m_nextpkt = NULL;
1142 m_freem(m);
1143 }
1144 }
1145 return (error);
1146 }
1147
1148 /*
1149 * Process a delayed payload checksum calculation.
1150 */
1151 void
1152 in_delayed_cksum(struct mbuf *m)
1153 {
1154 struct ip *ip;
1155 u_int16_t csum, offset;
1156
1157 ip = mtod(m, struct ip *);
1158 offset = ip->ip_hl << 2;
1159 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1160 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1161 csum = 0xffff;
1162
1163 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1164
1165 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1166 /* This happen when ip options were inserted
1167 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1168 m->m_len, offset, ip->ip_p);
1169 */
1170 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1171 } else
1172 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1173 }
1174
1175 /*
1176 * Determine the maximum length of the options to be inserted;
1177 * we would far rather allocate too much space rather than too little.
1178 */
1179
1180 u_int
1181 ip_optlen(struct inpcb *inp)
1182 {
1183 struct mbuf *m = inp->inp_options;
1184
1185 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1186 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1187 else
1188 return 0;
1189 }
1190
1191
1192 /*
1193 * Insert IP options into preformed packet.
1194 * Adjust IP destination as required for IP source routing,
1195 * as indicated by a non-zero in_addr at the start of the options.
1196 */
1197 static struct mbuf *
1198 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1199 {
1200 struct ipoption *p = mtod(opt, struct ipoption *);
1201 struct mbuf *n;
1202 struct ip *ip = mtod(m, struct ip *);
1203 unsigned optlen;
1204
1205 optlen = opt->m_len - sizeof(p->ipopt_dst);
1206 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1207 return (m); /* XXX should fail */
1208 if (!in_nullhost(p->ipopt_dst))
1209 ip->ip_dst = p->ipopt_dst;
1210 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1211 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1212 if (n == 0)
1213 return (m);
1214 MCLAIM(n, m->m_owner);
1215 M_MOVE_PKTHDR(n, m);
1216 m->m_len -= sizeof(struct ip);
1217 m->m_data += sizeof(struct ip);
1218 n->m_next = m;
1219 m = n;
1220 m->m_len = optlen + sizeof(struct ip);
1221 m->m_data += max_linkhdr;
1222 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1223 } else {
1224 m->m_data -= optlen;
1225 m->m_len += optlen;
1226 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1227 }
1228 m->m_pkthdr.len += optlen;
1229 ip = mtod(m, struct ip *);
1230 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1231 *phlen = sizeof(struct ip) + optlen;
1232 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1233 return (m);
1234 }
1235
1236 /*
1237 * Copy options from ip to jp,
1238 * omitting those not copied during fragmentation.
1239 */
1240 int
1241 ip_optcopy(struct ip *ip, struct ip *jp)
1242 {
1243 u_char *cp, *dp;
1244 int opt, optlen, cnt;
1245
1246 cp = (u_char *)(ip + 1);
1247 dp = (u_char *)(jp + 1);
1248 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1249 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1250 opt = cp[0];
1251 if (opt == IPOPT_EOL)
1252 break;
1253 if (opt == IPOPT_NOP) {
1254 /* Preserve for IP mcast tunnel's LSRR alignment. */
1255 *dp++ = IPOPT_NOP;
1256 optlen = 1;
1257 continue;
1258 }
1259 #ifdef DIAGNOSTIC
1260 if (cnt < IPOPT_OLEN + sizeof(*cp))
1261 panic("malformed IPv4 option passed to ip_optcopy");
1262 #endif
1263 optlen = cp[IPOPT_OLEN];
1264 #ifdef DIAGNOSTIC
1265 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1266 panic("malformed IPv4 option passed to ip_optcopy");
1267 #endif
1268 /* bogus lengths should have been caught by ip_dooptions */
1269 if (optlen > cnt)
1270 optlen = cnt;
1271 if (IPOPT_COPIED(opt)) {
1272 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1273 dp += optlen;
1274 }
1275 }
1276 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1277 *dp++ = IPOPT_EOL;
1278 return (optlen);
1279 }
1280
1281 /*
1282 * IP socket option processing.
1283 */
1284 int
1285 ip_ctloutput(int op, struct socket *so, int level, int optname,
1286 struct mbuf **mp)
1287 {
1288 struct inpcb *inp = sotoinpcb(so);
1289 struct mbuf *m = *mp;
1290 int optval = 0;
1291 int error = 0;
1292 #if defined(IPSEC) || defined(FAST_IPSEC)
1293 struct lwp *l = curlwp; /*XXX*/
1294 #endif
1295
1296 if (level != IPPROTO_IP) {
1297 error = EINVAL;
1298 if (op == PRCO_SETOPT && *mp)
1299 (void) m_free(*mp);
1300 } else switch (op) {
1301
1302 case PRCO_SETOPT:
1303 switch (optname) {
1304 case IP_OPTIONS:
1305 #ifdef notyet
1306 case IP_RETOPTS:
1307 return (ip_pcbopts(optname, &inp->inp_options, m));
1308 #else
1309 return (ip_pcbopts(&inp->inp_options, m));
1310 #endif
1311
1312 case IP_TOS:
1313 case IP_TTL:
1314 case IP_RECVOPTS:
1315 case IP_RECVRETOPTS:
1316 case IP_RECVDSTADDR:
1317 case IP_RECVIF:
1318 if (m == NULL || m->m_len != sizeof(int))
1319 error = EINVAL;
1320 else {
1321 optval = *mtod(m, int *);
1322 switch (optname) {
1323
1324 case IP_TOS:
1325 inp->inp_ip.ip_tos = optval;
1326 break;
1327
1328 case IP_TTL:
1329 inp->inp_ip.ip_ttl = optval;
1330 break;
1331 #define OPTSET(bit) \
1332 if (optval) \
1333 inp->inp_flags |= bit; \
1334 else \
1335 inp->inp_flags &= ~bit;
1336
1337 case IP_RECVOPTS:
1338 OPTSET(INP_RECVOPTS);
1339 break;
1340
1341 case IP_RECVRETOPTS:
1342 OPTSET(INP_RECVRETOPTS);
1343 break;
1344
1345 case IP_RECVDSTADDR:
1346 OPTSET(INP_RECVDSTADDR);
1347 break;
1348
1349 case IP_RECVIF:
1350 OPTSET(INP_RECVIF);
1351 break;
1352 }
1353 }
1354 break;
1355 #undef OPTSET
1356
1357 case IP_MULTICAST_IF:
1358 case IP_MULTICAST_TTL:
1359 case IP_MULTICAST_LOOP:
1360 case IP_ADD_MEMBERSHIP:
1361 case IP_DROP_MEMBERSHIP:
1362 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1363 break;
1364
1365 case IP_PORTRANGE:
1366 if (m == 0 || m->m_len != sizeof(int))
1367 error = EINVAL;
1368 else {
1369 optval = *mtod(m, int *);
1370
1371 switch (optval) {
1372
1373 case IP_PORTRANGE_DEFAULT:
1374 case IP_PORTRANGE_HIGH:
1375 inp->inp_flags &= ~(INP_LOWPORT);
1376 break;
1377
1378 case IP_PORTRANGE_LOW:
1379 inp->inp_flags |= INP_LOWPORT;
1380 break;
1381
1382 default:
1383 error = EINVAL;
1384 break;
1385 }
1386 }
1387 break;
1388
1389 #if defined(IPSEC) || defined(FAST_IPSEC)
1390 case IP_IPSEC_POLICY:
1391 {
1392 caddr_t req = NULL;
1393 size_t len = 0;
1394 int priv = 0;
1395
1396 #ifdef __NetBSD__
1397 if (l == 0 || kauth_authorize_generic(l->l_cred,
1398 KAUTH_GENERIC_ISSUSER, &l->l_acflag))
1399 priv = 0;
1400 else
1401 priv = 1;
1402 #else
1403 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1404 #endif
1405 if (m) {
1406 req = mtod(m, caddr_t);
1407 len = m->m_len;
1408 }
1409 error = ipsec4_set_policy(inp, optname, req, len, priv);
1410 break;
1411 }
1412 #endif /*IPSEC*/
1413
1414 default:
1415 error = ENOPROTOOPT;
1416 break;
1417 }
1418 if (m)
1419 (void)m_free(m);
1420 break;
1421
1422 case PRCO_GETOPT:
1423 switch (optname) {
1424 case IP_OPTIONS:
1425 case IP_RETOPTS:
1426 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1427 MCLAIM(m, so->so_mowner);
1428 if (inp->inp_options) {
1429 m->m_len = inp->inp_options->m_len;
1430 bcopy(mtod(inp->inp_options, caddr_t),
1431 mtod(m, caddr_t), (unsigned)m->m_len);
1432 } else
1433 m->m_len = 0;
1434 break;
1435
1436 case IP_TOS:
1437 case IP_TTL:
1438 case IP_RECVOPTS:
1439 case IP_RECVRETOPTS:
1440 case IP_RECVDSTADDR:
1441 case IP_RECVIF:
1442 case IP_ERRORMTU:
1443 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1444 MCLAIM(m, so->so_mowner);
1445 m->m_len = sizeof(int);
1446 switch (optname) {
1447
1448 case IP_TOS:
1449 optval = inp->inp_ip.ip_tos;
1450 break;
1451
1452 case IP_TTL:
1453 optval = inp->inp_ip.ip_ttl;
1454 break;
1455
1456 case IP_ERRORMTU:
1457 optval = inp->inp_errormtu;
1458 break;
1459
1460 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1461
1462 case IP_RECVOPTS:
1463 optval = OPTBIT(INP_RECVOPTS);
1464 break;
1465
1466 case IP_RECVRETOPTS:
1467 optval = OPTBIT(INP_RECVRETOPTS);
1468 break;
1469
1470 case IP_RECVDSTADDR:
1471 optval = OPTBIT(INP_RECVDSTADDR);
1472 break;
1473
1474 case IP_RECVIF:
1475 optval = OPTBIT(INP_RECVIF);
1476 break;
1477 }
1478 *mtod(m, int *) = optval;
1479 break;
1480
1481 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1482 /* XXX: code broken */
1483 case IP_IPSEC_POLICY:
1484 {
1485 caddr_t req = NULL;
1486 size_t len = 0;
1487
1488 if (m) {
1489 req = mtod(m, caddr_t);
1490 len = m->m_len;
1491 }
1492 error = ipsec4_get_policy(inp, req, len, mp);
1493 break;
1494 }
1495 #endif /*IPSEC*/
1496
1497 case IP_MULTICAST_IF:
1498 case IP_MULTICAST_TTL:
1499 case IP_MULTICAST_LOOP:
1500 case IP_ADD_MEMBERSHIP:
1501 case IP_DROP_MEMBERSHIP:
1502 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1503 if (*mp)
1504 MCLAIM(*mp, so->so_mowner);
1505 break;
1506
1507 case IP_PORTRANGE:
1508 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1509 MCLAIM(m, so->so_mowner);
1510 m->m_len = sizeof(int);
1511
1512 if (inp->inp_flags & INP_LOWPORT)
1513 optval = IP_PORTRANGE_LOW;
1514 else
1515 optval = IP_PORTRANGE_DEFAULT;
1516
1517 *mtod(m, int *) = optval;
1518 break;
1519
1520 default:
1521 error = ENOPROTOOPT;
1522 break;
1523 }
1524 break;
1525 }
1526 return (error);
1527 }
1528
1529 /*
1530 * Set up IP options in pcb for insertion in output packets.
1531 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1532 * with destination address if source routed.
1533 */
1534 int
1535 #ifdef notyet
1536 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1537 #else
1538 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1539 #endif
1540 {
1541 int cnt, optlen;
1542 u_char *cp;
1543 u_char opt;
1544
1545 /* turn off any old options */
1546 if (*pcbopt)
1547 (void)m_free(*pcbopt);
1548 *pcbopt = 0;
1549 if (m == (struct mbuf *)0 || m->m_len == 0) {
1550 /*
1551 * Only turning off any previous options.
1552 */
1553 if (m)
1554 (void)m_free(m);
1555 return (0);
1556 }
1557
1558 #ifndef __vax__
1559 if (m->m_len % sizeof(int32_t))
1560 goto bad;
1561 #endif
1562 /*
1563 * IP first-hop destination address will be stored before
1564 * actual options; move other options back
1565 * and clear it when none present.
1566 */
1567 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1568 goto bad;
1569 cnt = m->m_len;
1570 m->m_len += sizeof(struct in_addr);
1571 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1572 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1573 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1574
1575 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1576 opt = cp[IPOPT_OPTVAL];
1577 if (opt == IPOPT_EOL)
1578 break;
1579 if (opt == IPOPT_NOP)
1580 optlen = 1;
1581 else {
1582 if (cnt < IPOPT_OLEN + sizeof(*cp))
1583 goto bad;
1584 optlen = cp[IPOPT_OLEN];
1585 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1586 goto bad;
1587 }
1588 switch (opt) {
1589
1590 default:
1591 break;
1592
1593 case IPOPT_LSRR:
1594 case IPOPT_SSRR:
1595 /*
1596 * user process specifies route as:
1597 * ->A->B->C->D
1598 * D must be our final destination (but we can't
1599 * check that since we may not have connected yet).
1600 * A is first hop destination, which doesn't appear in
1601 * actual IP option, but is stored before the options.
1602 */
1603 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1604 goto bad;
1605 m->m_len -= sizeof(struct in_addr);
1606 cnt -= sizeof(struct in_addr);
1607 optlen -= sizeof(struct in_addr);
1608 cp[IPOPT_OLEN] = optlen;
1609 /*
1610 * Move first hop before start of options.
1611 */
1612 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1613 sizeof(struct in_addr));
1614 /*
1615 * Then copy rest of options back
1616 * to close up the deleted entry.
1617 */
1618 (void)memmove(&cp[IPOPT_OFFSET+1],
1619 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1620 (unsigned)cnt - (IPOPT_MINOFF - 1));
1621 break;
1622 }
1623 }
1624 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1625 goto bad;
1626 *pcbopt = m;
1627 return (0);
1628
1629 bad:
1630 (void)m_free(m);
1631 return (EINVAL);
1632 }
1633
1634 /*
1635 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1636 */
1637 static struct ifnet *
1638 ip_multicast_if(struct in_addr *a, int *ifindexp)
1639 {
1640 int ifindex;
1641 struct ifnet *ifp = NULL;
1642 struct in_ifaddr *ia;
1643
1644 if (ifindexp)
1645 *ifindexp = 0;
1646 if (ntohl(a->s_addr) >> 24 == 0) {
1647 ifindex = ntohl(a->s_addr) & 0xffffff;
1648 if (ifindex < 0 || if_indexlim <= ifindex)
1649 return NULL;
1650 ifp = ifindex2ifnet[ifindex];
1651 if (!ifp)
1652 return NULL;
1653 if (ifindexp)
1654 *ifindexp = ifindex;
1655 } else {
1656 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1657 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1658 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1659 ifp = ia->ia_ifp;
1660 break;
1661 }
1662 }
1663 }
1664 return ifp;
1665 }
1666
1667 static int
1668 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1669 {
1670 u_int tval;
1671
1672 if (m == NULL)
1673 return EINVAL;
1674
1675 switch (m->m_len) {
1676 case sizeof(u_char):
1677 tval = *(mtod(m, u_char *));
1678 break;
1679 case sizeof(u_int):
1680 tval = *(mtod(m, u_int *));
1681 break;
1682 default:
1683 return EINVAL;
1684 }
1685
1686 if (tval > maxval)
1687 return EINVAL;
1688
1689 *val = tval;
1690 return 0;
1691 }
1692
1693 /*
1694 * Set the IP multicast options in response to user setsockopt().
1695 */
1696 int
1697 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1698 {
1699 int error = 0;
1700 int i;
1701 struct in_addr addr;
1702 struct ip_mreq *mreq;
1703 struct ifnet *ifp;
1704 struct ip_moptions *imo = *imop;
1705 struct route ro;
1706 struct sockaddr_in *dst;
1707 int ifindex;
1708
1709 if (imo == NULL) {
1710 /*
1711 * No multicast option buffer attached to the pcb;
1712 * allocate one and initialize to default values.
1713 */
1714 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1715 M_WAITOK);
1716
1717 if (imo == NULL)
1718 return (ENOBUFS);
1719 *imop = imo;
1720 imo->imo_multicast_ifp = NULL;
1721 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1722 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1723 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1724 imo->imo_num_memberships = 0;
1725 }
1726
1727 switch (optname) {
1728
1729 case IP_MULTICAST_IF:
1730 /*
1731 * Select the interface for outgoing multicast packets.
1732 */
1733 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1734 error = EINVAL;
1735 break;
1736 }
1737 addr = *(mtod(m, struct in_addr *));
1738 /*
1739 * INADDR_ANY is used to remove a previous selection.
1740 * When no interface is selected, a default one is
1741 * chosen every time a multicast packet is sent.
1742 */
1743 if (in_nullhost(addr)) {
1744 imo->imo_multicast_ifp = NULL;
1745 break;
1746 }
1747 /*
1748 * The selected interface is identified by its local
1749 * IP address. Find the interface and confirm that
1750 * it supports multicasting.
1751 */
1752 ifp = ip_multicast_if(&addr, &ifindex);
1753 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1754 error = EADDRNOTAVAIL;
1755 break;
1756 }
1757 imo->imo_multicast_ifp = ifp;
1758 if (ifindex)
1759 imo->imo_multicast_addr = addr;
1760 else
1761 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1762 break;
1763
1764 case IP_MULTICAST_TTL:
1765 /*
1766 * Set the IP time-to-live for outgoing multicast packets.
1767 */
1768 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1769 break;
1770
1771 case IP_MULTICAST_LOOP:
1772 /*
1773 * Set the loopback flag for outgoing multicast packets.
1774 * Must be zero or one.
1775 */
1776 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1777 break;
1778
1779 case IP_ADD_MEMBERSHIP:
1780 /*
1781 * Add a multicast group membership.
1782 * Group must be a valid IP multicast address.
1783 */
1784 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1785 error = EINVAL;
1786 break;
1787 }
1788 mreq = mtod(m, struct ip_mreq *);
1789 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1790 error = EINVAL;
1791 break;
1792 }
1793 /*
1794 * If no interface address was provided, use the interface of
1795 * the route to the given multicast address.
1796 */
1797 if (in_nullhost(mreq->imr_interface)) {
1798 bzero((caddr_t)&ro, sizeof(ro));
1799 ro.ro_rt = NULL;
1800 dst = satosin(&ro.ro_dst);
1801 dst->sin_len = sizeof(*dst);
1802 dst->sin_family = AF_INET;
1803 dst->sin_addr = mreq->imr_multiaddr;
1804 rtalloc(&ro);
1805 if (ro.ro_rt == NULL) {
1806 error = EADDRNOTAVAIL;
1807 break;
1808 }
1809 ifp = ro.ro_rt->rt_ifp;
1810 rtfree(ro.ro_rt);
1811 } else {
1812 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1813 }
1814 /*
1815 * See if we found an interface, and confirm that it
1816 * supports multicast.
1817 */
1818 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1819 error = EADDRNOTAVAIL;
1820 break;
1821 }
1822 /*
1823 * See if the membership already exists or if all the
1824 * membership slots are full.
1825 */
1826 for (i = 0; i < imo->imo_num_memberships; ++i) {
1827 if (imo->imo_membership[i]->inm_ifp == ifp &&
1828 in_hosteq(imo->imo_membership[i]->inm_addr,
1829 mreq->imr_multiaddr))
1830 break;
1831 }
1832 if (i < imo->imo_num_memberships) {
1833 error = EADDRINUSE;
1834 break;
1835 }
1836 if (i == IP_MAX_MEMBERSHIPS) {
1837 error = ETOOMANYREFS;
1838 break;
1839 }
1840 /*
1841 * Everything looks good; add a new record to the multicast
1842 * address list for the given interface.
1843 */
1844 if ((imo->imo_membership[i] =
1845 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1846 error = ENOBUFS;
1847 break;
1848 }
1849 ++imo->imo_num_memberships;
1850 break;
1851
1852 case IP_DROP_MEMBERSHIP:
1853 /*
1854 * Drop a multicast group membership.
1855 * Group must be a valid IP multicast address.
1856 */
1857 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1858 error = EINVAL;
1859 break;
1860 }
1861 mreq = mtod(m, struct ip_mreq *);
1862 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1863 error = EINVAL;
1864 break;
1865 }
1866 /*
1867 * If an interface address was specified, get a pointer
1868 * to its ifnet structure.
1869 */
1870 if (in_nullhost(mreq->imr_interface))
1871 ifp = NULL;
1872 else {
1873 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1874 if (ifp == NULL) {
1875 error = EADDRNOTAVAIL;
1876 break;
1877 }
1878 }
1879 /*
1880 * Find the membership in the membership array.
1881 */
1882 for (i = 0; i < imo->imo_num_memberships; ++i) {
1883 if ((ifp == NULL ||
1884 imo->imo_membership[i]->inm_ifp == ifp) &&
1885 in_hosteq(imo->imo_membership[i]->inm_addr,
1886 mreq->imr_multiaddr))
1887 break;
1888 }
1889 if (i == imo->imo_num_memberships) {
1890 error = EADDRNOTAVAIL;
1891 break;
1892 }
1893 /*
1894 * Give up the multicast address record to which the
1895 * membership points.
1896 */
1897 in_delmulti(imo->imo_membership[i]);
1898 /*
1899 * Remove the gap in the membership array.
1900 */
1901 for (++i; i < imo->imo_num_memberships; ++i)
1902 imo->imo_membership[i-1] = imo->imo_membership[i];
1903 --imo->imo_num_memberships;
1904 break;
1905
1906 default:
1907 error = EOPNOTSUPP;
1908 break;
1909 }
1910
1911 /*
1912 * If all options have default values, no need to keep the mbuf.
1913 */
1914 if (imo->imo_multicast_ifp == NULL &&
1915 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1916 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1917 imo->imo_num_memberships == 0) {
1918 free(*imop, M_IPMOPTS);
1919 *imop = NULL;
1920 }
1921
1922 return (error);
1923 }
1924
1925 /*
1926 * Return the IP multicast options in response to user getsockopt().
1927 */
1928 int
1929 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1930 {
1931 u_char *ttl;
1932 u_char *loop;
1933 struct in_addr *addr;
1934 struct in_ifaddr *ia;
1935
1936 *mp = m_get(M_WAIT, MT_SOOPTS);
1937
1938 switch (optname) {
1939
1940 case IP_MULTICAST_IF:
1941 addr = mtod(*mp, struct in_addr *);
1942 (*mp)->m_len = sizeof(struct in_addr);
1943 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1944 *addr = zeroin_addr;
1945 else if (imo->imo_multicast_addr.s_addr) {
1946 /* return the value user has set */
1947 *addr = imo->imo_multicast_addr;
1948 } else {
1949 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1950 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1951 }
1952 return (0);
1953
1954 case IP_MULTICAST_TTL:
1955 ttl = mtod(*mp, u_char *);
1956 (*mp)->m_len = 1;
1957 *ttl = imo ? imo->imo_multicast_ttl
1958 : IP_DEFAULT_MULTICAST_TTL;
1959 return (0);
1960
1961 case IP_MULTICAST_LOOP:
1962 loop = mtod(*mp, u_char *);
1963 (*mp)->m_len = 1;
1964 *loop = imo ? imo->imo_multicast_loop
1965 : IP_DEFAULT_MULTICAST_LOOP;
1966 return (0);
1967
1968 default:
1969 return (EOPNOTSUPP);
1970 }
1971 }
1972
1973 /*
1974 * Discard the IP multicast options.
1975 */
1976 void
1977 ip_freemoptions(struct ip_moptions *imo)
1978 {
1979 int i;
1980
1981 if (imo != NULL) {
1982 for (i = 0; i < imo->imo_num_memberships; ++i)
1983 in_delmulti(imo->imo_membership[i]);
1984 free(imo, M_IPMOPTS);
1985 }
1986 }
1987
1988 /*
1989 * Routine called from ip_output() to loop back a copy of an IP multicast
1990 * packet to the input queue of a specified interface. Note that this
1991 * calls the output routine of the loopback "driver", but with an interface
1992 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1993 */
1994 static void
1995 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1996 {
1997 struct ip *ip;
1998 struct mbuf *copym;
1999
2000 copym = m_copy(m, 0, M_COPYALL);
2001 if (copym != NULL
2002 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
2003 copym = m_pullup(copym, sizeof(struct ip));
2004 if (copym != NULL) {
2005 /*
2006 * We don't bother to fragment if the IP length is greater
2007 * than the interface's MTU. Can this possibly matter?
2008 */
2009 ip = mtod(copym, struct ip *);
2010
2011 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2012 in_delayed_cksum(copym);
2013 copym->m_pkthdr.csum_flags &=
2014 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
2015 }
2016
2017 ip->ip_sum = 0;
2018 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
2019 (void) looutput(ifp, copym, sintosa(dst), NULL);
2020 }
2021 }
2022