ip_output.c revision 1.167.2.1 1 /* $NetBSD: ip_output.c,v 1.167.2.1 2007/01/18 13:09:33 tron Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.167.2.1 2007/01/18 13:09:33 tron Exp $");
102
103 #include "opt_pfil_hooks.h"
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_mrouting.h"
107
108 #include <sys/param.h>
109 #include <sys/malloc.h>
110 #include <sys/mbuf.h>
111 #include <sys/errno.h>
112 #include <sys/protosw.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/kauth.h>
116 #ifdef FAST_IPSEC
117 #include <sys/domain.h>
118 #endif
119 #include <sys/systm.h>
120 #include <sys/proc.h>
121
122 #include <net/if.h>
123 #include <net/route.h>
124 #include <net/pfil.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/in_offload.h>
133
134 #ifdef MROUTING
135 #include <netinet/ip_mroute.h>
136 #endif
137
138 #include <machine/stdarg.h>
139
140 #ifdef IPSEC
141 #include <netinet6/ipsec.h>
142 #include <netkey/key.h>
143 #include <netkey/key_debug.h>
144 #endif /*IPSEC*/
145
146 #ifdef FAST_IPSEC
147 #include <netipsec/ipsec.h>
148 #include <netipsec/key.h>
149 #include <netipsec/xform.h>
150 #endif /* FAST_IPSEC*/
151
152 #ifdef IPSEC_NAT_T
153 #include <netinet/udp.h>
154 #endif
155
156 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
157 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
158 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
159 static int ip_getoptval(struct mbuf *, u_int8_t *, u_int);
160
161 #ifdef PFIL_HOOKS
162 extern struct pfil_head inet_pfil_hook; /* XXX */
163 #endif
164
165 int ip_do_loopback_cksum = 0;
166
167 #define IN_NEED_CHECKSUM(ifp, csum_flags) \
168 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
169 (((csum_flags) & M_CSUM_UDPv4) != 0 && udp_do_loopback_cksum) || \
170 (((csum_flags) & M_CSUM_TCPv4) != 0 && tcp_do_loopback_cksum) || \
171 (((csum_flags) & M_CSUM_IPv4) != 0 && ip_do_loopback_cksum)))
172
173 /*
174 * IP output. The packet in mbuf chain m contains a skeletal IP
175 * header (with len, off, ttl, proto, tos, src, dst).
176 * The mbuf chain containing the packet will be freed.
177 * The mbuf opt, if present, will not be freed.
178 */
179 int
180 ip_output(struct mbuf *m0, ...)
181 {
182 struct ip *ip;
183 struct ifnet *ifp;
184 struct mbuf *m = m0;
185 int hlen = sizeof (struct ip);
186 int len, error = 0;
187 struct route iproute;
188 struct sockaddr_in *dst;
189 struct in_ifaddr *ia;
190 struct ifaddr *xifa;
191 struct mbuf *opt;
192 struct route *ro;
193 int flags, sw_csum;
194 int *mtu_p;
195 u_long mtu;
196 struct ip_moptions *imo;
197 struct socket *so;
198 va_list ap;
199 #ifdef IPSEC_NAT_T
200 int natt_frag = 0;
201 #endif
202 #ifdef IPSEC
203 struct secpolicy *sp = NULL;
204 #endif /*IPSEC*/
205 #ifdef FAST_IPSEC
206 struct inpcb *inp;
207 struct m_tag *mtag;
208 struct secpolicy *sp = NULL;
209 struct tdb_ident *tdbi;
210 int s;
211 #endif
212 u_int16_t ip_len;
213
214 len = 0;
215 va_start(ap, m0);
216 opt = va_arg(ap, struct mbuf *);
217 ro = va_arg(ap, struct route *);
218 flags = va_arg(ap, int);
219 imo = va_arg(ap, struct ip_moptions *);
220 so = va_arg(ap, struct socket *);
221 if (flags & IP_RETURNMTU)
222 mtu_p = va_arg(ap, int *);
223 else
224 mtu_p = NULL;
225 va_end(ap);
226
227 MCLAIM(m, &ip_tx_mowner);
228 #ifdef FAST_IPSEC
229 if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
230 inp = (struct inpcb *)so->so_pcb;
231 else
232 inp = NULL;
233 #endif /* FAST_IPSEC */
234
235 #ifdef DIAGNOSTIC
236 if ((m->m_flags & M_PKTHDR) == 0)
237 panic("ip_output: no HDR");
238
239 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
240 panic("ip_output: IPv6 checksum offload flags: %d",
241 m->m_pkthdr.csum_flags);
242 }
243
244 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
245 (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
246 panic("ip_output: conflicting checksum offload flags: %d",
247 m->m_pkthdr.csum_flags);
248 }
249 #endif
250 if (opt) {
251 m = ip_insertoptions(m, opt, &len);
252 if (len >= sizeof(struct ip))
253 hlen = len;
254 }
255 ip = mtod(m, struct ip *);
256 /*
257 * Fill in IP header.
258 */
259 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
260 ip->ip_v = IPVERSION;
261 ip->ip_off = htons(0);
262 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
263 ip->ip_id = ip_newid();
264 } else {
265
266 /*
267 * TSO capable interfaces (typically?) increment
268 * ip_id for each segment.
269 * "allocate" enough ids here to increase the chance
270 * for them to be unique.
271 *
272 * note that the following calculation is not
273 * needed to be precise. wasting some ip_id is fine.
274 */
275
276 unsigned int segsz = m->m_pkthdr.segsz;
277 unsigned int datasz = ntohs(ip->ip_len) - hlen;
278 unsigned int num = howmany(datasz, segsz);
279
280 ip->ip_id = ip_newid_range(num);
281 }
282 ip->ip_hl = hlen >> 2;
283 ipstat.ips_localout++;
284 } else {
285 hlen = ip->ip_hl << 2;
286 }
287 /*
288 * Route packet.
289 */
290 if (ro == 0) {
291 ro = &iproute;
292 bzero((caddr_t)ro, sizeof (*ro));
293 }
294 dst = satosin(&ro->ro_dst);
295 /*
296 * If there is a cached route,
297 * check that it is to the same destination
298 * and is still up. If not, free it and try again.
299 * The address family should also be checked in case of sharing the
300 * cache with IPv6.
301 */
302 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
303 dst->sin_family != AF_INET ||
304 !in_hosteq(dst->sin_addr, ip->ip_dst))) {
305 RTFREE(ro->ro_rt);
306 ro->ro_rt = (struct rtentry *)0;
307 }
308 if (ro->ro_rt == 0) {
309 bzero(dst, sizeof(*dst));
310 dst->sin_family = AF_INET;
311 dst->sin_len = sizeof(*dst);
312 dst->sin_addr = ip->ip_dst;
313 }
314 /*
315 * If routing to interface only,
316 * short circuit routing lookup.
317 */
318 if (flags & IP_ROUTETOIF) {
319 if ((ia = ifatoia(ifa_ifwithladdr(sintosa(dst)))) == 0) {
320 ipstat.ips_noroute++;
321 error = ENETUNREACH;
322 goto bad;
323 }
324 ifp = ia->ia_ifp;
325 mtu = ifp->if_mtu;
326 ip->ip_ttl = 1;
327 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
328 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
329 imo != NULL && imo->imo_multicast_ifp != NULL) {
330 ifp = imo->imo_multicast_ifp;
331 mtu = ifp->if_mtu;
332 IFP_TO_IA(ifp, ia);
333 } else {
334 if (ro->ro_rt == 0)
335 rtalloc(ro);
336 if (ro->ro_rt == 0) {
337 ipstat.ips_noroute++;
338 error = EHOSTUNREACH;
339 goto bad;
340 }
341 ia = ifatoia(ro->ro_rt->rt_ifa);
342 ifp = ro->ro_rt->rt_ifp;
343 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
344 mtu = ifp->if_mtu;
345 ro->ro_rt->rt_use++;
346 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
347 dst = satosin(ro->ro_rt->rt_gateway);
348 }
349 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
350 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
351 struct in_multi *inm;
352
353 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
354 M_BCAST : M_MCAST;
355 /*
356 * IP destination address is multicast. Make sure "dst"
357 * still points to the address in "ro". (It may have been
358 * changed to point to a gateway address, above.)
359 */
360 dst = satosin(&ro->ro_dst);
361 /*
362 * See if the caller provided any multicast options
363 */
364 if (imo != NULL)
365 ip->ip_ttl = imo->imo_multicast_ttl;
366 else
367 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
368
369 /*
370 * if we don't know the outgoing ifp yet, we can't generate
371 * output
372 */
373 if (!ifp) {
374 ipstat.ips_noroute++;
375 error = ENETUNREACH;
376 goto bad;
377 }
378
379 /*
380 * If the packet is multicast or broadcast, confirm that
381 * the outgoing interface can transmit it.
382 */
383 if (((m->m_flags & M_MCAST) &&
384 (ifp->if_flags & IFF_MULTICAST) == 0) ||
385 ((m->m_flags & M_BCAST) &&
386 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
387 ipstat.ips_noroute++;
388 error = ENETUNREACH;
389 goto bad;
390 }
391 /*
392 * If source address not specified yet, use an address
393 * of outgoing interface.
394 */
395 if (in_nullhost(ip->ip_src)) {
396 struct in_ifaddr *xia;
397
398 IFP_TO_IA(ifp, xia);
399 if (!xia) {
400 error = EADDRNOTAVAIL;
401 goto bad;
402 }
403 xifa = &xia->ia_ifa;
404 if (xifa->ifa_getifa != NULL) {
405 xia = ifatoia((*xifa->ifa_getifa)(xifa,
406 &ro->ro_dst));
407 }
408 ip->ip_src = xia->ia_addr.sin_addr;
409 }
410
411 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
412 if (inm != NULL &&
413 (imo == NULL || imo->imo_multicast_loop)) {
414 /*
415 * If we belong to the destination multicast group
416 * on the outgoing interface, and the caller did not
417 * forbid loopback, loop back a copy.
418 */
419 ip_mloopback(ifp, m, dst);
420 }
421 #ifdef MROUTING
422 else {
423 /*
424 * If we are acting as a multicast router, perform
425 * multicast forwarding as if the packet had just
426 * arrived on the interface to which we are about
427 * to send. The multicast forwarding function
428 * recursively calls this function, using the
429 * IP_FORWARDING flag to prevent infinite recursion.
430 *
431 * Multicasts that are looped back by ip_mloopback(),
432 * above, will be forwarded by the ip_input() routine,
433 * if necessary.
434 */
435 extern struct socket *ip_mrouter;
436
437 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
438 if (ip_mforward(m, ifp) != 0) {
439 m_freem(m);
440 goto done;
441 }
442 }
443 }
444 #endif
445 /*
446 * Multicasts with a time-to-live of zero may be looped-
447 * back, above, but must not be transmitted on a network.
448 * Also, multicasts addressed to the loopback interface
449 * are not sent -- the above call to ip_mloopback() will
450 * loop back a copy if this host actually belongs to the
451 * destination group on the loopback interface.
452 */
453 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
454 m_freem(m);
455 goto done;
456 }
457
458 goto sendit;
459 }
460 /*
461 * If source address not specified yet, use address
462 * of outgoing interface.
463 */
464 if (in_nullhost(ip->ip_src)) {
465 xifa = &ia->ia_ifa;
466 if (xifa->ifa_getifa != NULL)
467 ia = ifatoia((*xifa->ifa_getifa)(xifa, &ro->ro_dst));
468 ip->ip_src = ia->ia_addr.sin_addr;
469 }
470
471 /*
472 * packets with Class-D address as source are not valid per
473 * RFC 1112
474 */
475 if (IN_MULTICAST(ip->ip_src.s_addr)) {
476 ipstat.ips_odropped++;
477 error = EADDRNOTAVAIL;
478 goto bad;
479 }
480
481 /*
482 * Look for broadcast address and
483 * and verify user is allowed to send
484 * such a packet.
485 */
486 if (in_broadcast(dst->sin_addr, ifp)) {
487 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
488 error = EADDRNOTAVAIL;
489 goto bad;
490 }
491 if ((flags & IP_ALLOWBROADCAST) == 0) {
492 error = EACCES;
493 goto bad;
494 }
495 /* don't allow broadcast messages to be fragmented */
496 if (ntohs(ip->ip_len) > ifp->if_mtu) {
497 error = EMSGSIZE;
498 goto bad;
499 }
500 m->m_flags |= M_BCAST;
501 } else
502 m->m_flags &= ~M_BCAST;
503
504 sendit:
505 /*
506 * If we're doing Path MTU Discovery, we need to set DF unless
507 * the route's MTU is locked.
508 */
509 if ((flags & IP_MTUDISC) != 0 && ro->ro_rt != NULL &&
510 (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
511 ip->ip_off |= htons(IP_DF);
512
513 /* Remember the current ip_len */
514 ip_len = ntohs(ip->ip_len);
515
516 #ifdef IPSEC
517 /* get SP for this packet */
518 if (so == NULL)
519 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
520 flags, &error);
521 else {
522 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
523 IPSEC_DIR_OUTBOUND))
524 goto skip_ipsec;
525 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
526 }
527
528 if (sp == NULL) {
529 ipsecstat.out_inval++;
530 goto bad;
531 }
532
533 error = 0;
534
535 /* check policy */
536 switch (sp->policy) {
537 case IPSEC_POLICY_DISCARD:
538 /*
539 * This packet is just discarded.
540 */
541 ipsecstat.out_polvio++;
542 goto bad;
543
544 case IPSEC_POLICY_BYPASS:
545 case IPSEC_POLICY_NONE:
546 /* no need to do IPsec. */
547 goto skip_ipsec;
548
549 case IPSEC_POLICY_IPSEC:
550 if (sp->req == NULL) {
551 /* XXX should be panic ? */
552 printf("ip_output: No IPsec request specified.\n");
553 error = EINVAL;
554 goto bad;
555 }
556 break;
557
558 case IPSEC_POLICY_ENTRUST:
559 default:
560 printf("ip_output: Invalid policy found. %d\n", sp->policy);
561 }
562
563 #ifdef IPSEC_NAT_T
564 /*
565 * NAT-T ESP fragmentation: don't do IPSec processing now,
566 * we'll do it on each fragmented packet.
567 */
568 if (sp->req->sav &&
569 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
570 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
571 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
572 natt_frag = 1;
573 mtu = sp->req->sav->esp_frag;
574 goto skip_ipsec;
575 }
576 }
577 #endif /* IPSEC_NAT_T */
578
579 /*
580 * ipsec4_output() expects ip_len and ip_off in network
581 * order. They have been set to network order above.
582 */
583
584 {
585 struct ipsec_output_state state;
586 bzero(&state, sizeof(state));
587 state.m = m;
588 if (flags & IP_ROUTETOIF) {
589 state.ro = &iproute;
590 bzero(&iproute, sizeof(iproute));
591 } else
592 state.ro = ro;
593 state.dst = (struct sockaddr *)dst;
594
595 /*
596 * We can't defer the checksum of payload data if
597 * we're about to encrypt/authenticate it.
598 *
599 * XXX When we support crypto offloading functions of
600 * XXX network interfaces, we need to reconsider this,
601 * XXX since it's likely that they'll support checksumming,
602 * XXX as well.
603 */
604 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
605 in_delayed_cksum(m);
606 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
607 }
608
609 error = ipsec4_output(&state, sp, flags);
610
611 m = state.m;
612 if (flags & IP_ROUTETOIF) {
613 /*
614 * if we have tunnel mode SA, we may need to ignore
615 * IP_ROUTETOIF.
616 */
617 if (state.ro != &iproute || state.ro->ro_rt != NULL) {
618 flags &= ~IP_ROUTETOIF;
619 ro = state.ro;
620 }
621 } else
622 ro = state.ro;
623 dst = (struct sockaddr_in *)state.dst;
624 if (error) {
625 /* mbuf is already reclaimed in ipsec4_output. */
626 m0 = NULL;
627 switch (error) {
628 case EHOSTUNREACH:
629 case ENETUNREACH:
630 case EMSGSIZE:
631 case ENOBUFS:
632 case ENOMEM:
633 break;
634 default:
635 printf("ip4_output (ipsec): error code %d\n", error);
636 /*fall through*/
637 case ENOENT:
638 /* don't show these error codes to the user */
639 error = 0;
640 break;
641 }
642 goto bad;
643 }
644
645 /* be sure to update variables that are affected by ipsec4_output() */
646 ip = mtod(m, struct ip *);
647 hlen = ip->ip_hl << 2;
648 ip_len = ntohs(ip->ip_len);
649
650 if (ro->ro_rt == NULL) {
651 if ((flags & IP_ROUTETOIF) == 0) {
652 printf("ip_output: "
653 "can't update route after IPsec processing\n");
654 error = EHOSTUNREACH; /*XXX*/
655 goto bad;
656 }
657 } else {
658 /* nobody uses ia beyond here */
659 if (state.encap) {
660 ifp = ro->ro_rt->rt_ifp;
661 if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
662 mtu = ifp->if_mtu;
663 }
664 }
665 }
666 skip_ipsec:
667 #endif /*IPSEC*/
668 #ifdef FAST_IPSEC
669 /*
670 * Check the security policy (SP) for the packet and, if
671 * required, do IPsec-related processing. There are two
672 * cases here; the first time a packet is sent through
673 * it will be untagged and handled by ipsec4_checkpolicy.
674 * If the packet is resubmitted to ip_output (e.g. after
675 * AH, ESP, etc. processing), there will be a tag to bypass
676 * the lookup and related policy checking.
677 */
678 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
679 s = splsoftnet();
680 if (mtag != NULL) {
681 tdbi = (struct tdb_ident *)(mtag + 1);
682 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
683 if (sp == NULL)
684 error = -EINVAL; /* force silent drop */
685 m_tag_delete(m, mtag);
686 } else {
687 if (inp != NULL &&
688 IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND))
689 goto spd_done;
690 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
691 &error, inp);
692 }
693 /*
694 * There are four return cases:
695 * sp != NULL apply IPsec policy
696 * sp == NULL, error == 0 no IPsec handling needed
697 * sp == NULL, error == -EINVAL discard packet w/o error
698 * sp == NULL, error != 0 discard packet, report error
699 */
700 if (sp != NULL) {
701 #ifdef IPSEC_NAT_T
702 /*
703 * NAT-T ESP fragmentation: don't do IPSec processing now,
704 * we'll do it on each fragmented packet.
705 */
706 if (sp->req->sav &&
707 ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
708 (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
709 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
710 natt_frag = 1;
711 mtu = sp->req->sav->esp_frag;
712 goto spd_done;
713 }
714 }
715 #endif /* IPSEC_NAT_T */
716 /* Loop detection, check if ipsec processing already done */
717 IPSEC_ASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
718 for (mtag = m_tag_first(m); mtag != NULL;
719 mtag = m_tag_next(m, mtag)) {
720 #ifdef MTAG_ABI_COMPAT
721 if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
722 continue;
723 #endif
724 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
725 mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
726 continue;
727 /*
728 * Check if policy has an SA associated with it.
729 * This can happen when an SP has yet to acquire
730 * an SA; e.g. on first reference. If it occurs,
731 * then we let ipsec4_process_packet do its thing.
732 */
733 if (sp->req->sav == NULL)
734 break;
735 tdbi = (struct tdb_ident *)(mtag + 1);
736 if (tdbi->spi == sp->req->sav->spi &&
737 tdbi->proto == sp->req->sav->sah->saidx.proto &&
738 bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
739 sizeof (union sockaddr_union)) == 0) {
740 /*
741 * No IPsec processing is needed, free
742 * reference to SP.
743 *
744 * NB: null pointer to avoid free at
745 * done: below.
746 */
747 KEY_FREESP(&sp), sp = NULL;
748 splx(s);
749 goto spd_done;
750 }
751 }
752
753 /*
754 * Do delayed checksums now because we send before
755 * this is done in the normal processing path.
756 */
757 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
758 in_delayed_cksum(m);
759 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
760 }
761
762 #ifdef __FreeBSD__
763 ip->ip_len = htons(ip->ip_len);
764 ip->ip_off = htons(ip->ip_off);
765 #endif
766
767 /* NB: callee frees mbuf */
768 error = ipsec4_process_packet(m, sp->req, flags, 0);
769 /*
770 * Preserve KAME behaviour: ENOENT can be returned
771 * when an SA acquire is in progress. Don't propagate
772 * this to user-level; it confuses applications.
773 *
774 * XXX this will go away when the SADB is redone.
775 */
776 if (error == ENOENT)
777 error = 0;
778 splx(s);
779 goto done;
780 } else {
781 splx(s);
782
783 if (error != 0) {
784 /*
785 * Hack: -EINVAL is used to signal that a packet
786 * should be silently discarded. This is typically
787 * because we asked key management for an SA and
788 * it was delayed (e.g. kicked up to IKE).
789 */
790 if (error == -EINVAL)
791 error = 0;
792 goto bad;
793 } else {
794 /* No IPsec processing for this packet. */
795 }
796 #ifdef notyet
797 /*
798 * If deferred crypto processing is needed, check that
799 * the interface supports it.
800 */
801 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
802 if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
803 /* notify IPsec to do its own crypto */
804 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
805 error = EHOSTUNREACH;
806 goto bad;
807 }
808 #endif
809 }
810 spd_done:
811 #endif /* FAST_IPSEC */
812
813 #ifdef PFIL_HOOKS
814 /*
815 * Run through list of hooks for output packets.
816 */
817 if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
818 goto done;
819 if (m == NULL)
820 goto done;
821
822 ip = mtod(m, struct ip *);
823 hlen = ip->ip_hl << 2;
824 ip_len = ntohs(ip->ip_len);
825 #endif /* PFIL_HOOKS */
826
827 m->m_pkthdr.csum_data |= hlen << 16;
828
829 #if IFA_STATS
830 /*
831 * search for the source address structure to
832 * maintain output statistics.
833 */
834 INADDR_TO_IA(ip->ip_src, ia);
835 #endif
836
837 /* Maybe skip checksums on loopback interfaces. */
838 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
839 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
840 }
841 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
842 /*
843 * If small enough for mtu of path, or if using TCP segmentation
844 * offload, can just send directly.
845 */
846 if (ip_len <= mtu ||
847 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
848 #if IFA_STATS
849 if (ia)
850 ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
851 #endif
852 /*
853 * Always initialize the sum to 0! Some HW assisted
854 * checksumming requires this.
855 */
856 ip->ip_sum = 0;
857
858 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
859 /*
860 * Perform any checksums that the hardware can't do
861 * for us.
862 *
863 * XXX Does any hardware require the {th,uh}_sum
864 * XXX fields to be 0?
865 */
866 if (sw_csum & M_CSUM_IPv4) {
867 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
868 ip->ip_sum = in_cksum(m, hlen);
869 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
870 }
871 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
872 if (IN_NEED_CHECKSUM(ifp,
873 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
874 in_delayed_cksum(m);
875 }
876 m->m_pkthdr.csum_flags &=
877 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
878 }
879 }
880
881 #ifdef IPSEC
882 /* clean ipsec history once it goes out of the node */
883 ipsec_delaux(m);
884 #endif
885
886 if (__predict_true(
887 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
888 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
889 error =
890 (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
891 } else {
892 error =
893 ip_tso_output(ifp, m, sintosa(dst), ro->ro_rt);
894 }
895 goto done;
896 }
897
898 /*
899 * We can't use HW checksumming if we're about to
900 * to fragment the packet.
901 *
902 * XXX Some hardware can do this.
903 */
904 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
905 if (IN_NEED_CHECKSUM(ifp,
906 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
907 in_delayed_cksum(m);
908 }
909 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
910 }
911
912 /*
913 * Too large for interface; fragment if possible.
914 * Must be able to put at least 8 bytes per fragment.
915 */
916 if (ntohs(ip->ip_off) & IP_DF) {
917 if (flags & IP_RETURNMTU)
918 *mtu_p = mtu;
919 error = EMSGSIZE;
920 ipstat.ips_cantfrag++;
921 goto bad;
922 }
923
924 error = ip_fragment(m, ifp, mtu);
925 if (error) {
926 m = NULL;
927 goto bad;
928 }
929
930 for (; m; m = m0) {
931 m0 = m->m_nextpkt;
932 m->m_nextpkt = 0;
933 if (error == 0) {
934 #if IFA_STATS
935 if (ia)
936 ia->ia_ifa.ifa_data.ifad_outbytes +=
937 ntohs(ip->ip_len);
938 #endif
939 #ifdef IPSEC
940 /* clean ipsec history once it goes out of the node */
941 ipsec_delaux(m);
942 #endif /* IPSEC */
943
944 #ifdef IPSEC_NAT_T
945 /*
946 * If we get there, the packet has not been handeld by
947 * IPSec whereas it should have. Now that it has been
948 * fragmented, re-inject it in ip_output so that IPsec
949 * processing can occur.
950 */
951 if (natt_frag) {
952 error = ip_output(m, opt,
953 ro, flags, imo, so, mtu_p);
954 } else
955 #endif /* IPSEC_NAT_T */
956 {
957 KASSERT((m->m_pkthdr.csum_flags &
958 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
959 error = (*ifp->if_output)(ifp, m, sintosa(dst),
960 ro->ro_rt);
961 }
962 } else
963 m_freem(m);
964 }
965
966 if (error == 0)
967 ipstat.ips_fragmented++;
968 done:
969 if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt) {
970 RTFREE(ro->ro_rt);
971 ro->ro_rt = 0;
972 }
973
974 #ifdef IPSEC
975 if (sp != NULL) {
976 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
977 printf("DP ip_output call free SP:%p\n", sp));
978 key_freesp(sp);
979 }
980 #endif /* IPSEC */
981 #ifdef FAST_IPSEC
982 if (sp != NULL)
983 KEY_FREESP(&sp);
984 #endif /* FAST_IPSEC */
985
986 return (error);
987 bad:
988 m_freem(m);
989 goto done;
990 }
991
992 int
993 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
994 {
995 struct ip *ip, *mhip;
996 struct mbuf *m0;
997 int len, hlen, off;
998 int mhlen, firstlen;
999 struct mbuf **mnext;
1000 int sw_csum = m->m_pkthdr.csum_flags;
1001 int fragments = 0;
1002 int s;
1003 int error = 0;
1004
1005 ip = mtod(m, struct ip *);
1006 hlen = ip->ip_hl << 2;
1007 if (ifp != NULL)
1008 sw_csum &= ~ifp->if_csum_flags_tx;
1009
1010 len = (mtu - hlen) &~ 7;
1011 if (len < 8) {
1012 m_freem(m);
1013 return (EMSGSIZE);
1014 }
1015
1016 firstlen = len;
1017 mnext = &m->m_nextpkt;
1018
1019 /*
1020 * Loop through length of segment after first fragment,
1021 * make new header and copy data of each part and link onto chain.
1022 */
1023 m0 = m;
1024 mhlen = sizeof (struct ip);
1025 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
1026 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1027 if (m == 0) {
1028 error = ENOBUFS;
1029 ipstat.ips_odropped++;
1030 goto sendorfree;
1031 }
1032 MCLAIM(m, m0->m_owner);
1033 *mnext = m;
1034 mnext = &m->m_nextpkt;
1035 m->m_data += max_linkhdr;
1036 mhip = mtod(m, struct ip *);
1037 *mhip = *ip;
1038 /* we must inherit MCAST and BCAST flags */
1039 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
1040 if (hlen > sizeof (struct ip)) {
1041 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1042 mhip->ip_hl = mhlen >> 2;
1043 }
1044 m->m_len = mhlen;
1045 mhip->ip_off = ((off - hlen) >> 3) +
1046 (ntohs(ip->ip_off) & ~IP_MF);
1047 if (ip->ip_off & htons(IP_MF))
1048 mhip->ip_off |= IP_MF;
1049 if (off + len >= ntohs(ip->ip_len))
1050 len = ntohs(ip->ip_len) - off;
1051 else
1052 mhip->ip_off |= IP_MF;
1053 HTONS(mhip->ip_off);
1054 mhip->ip_len = htons((u_int16_t)(len + mhlen));
1055 m->m_next = m_copy(m0, off, len);
1056 if (m->m_next == 0) {
1057 error = ENOBUFS; /* ??? */
1058 ipstat.ips_odropped++;
1059 goto sendorfree;
1060 }
1061 m->m_pkthdr.len = mhlen + len;
1062 m->m_pkthdr.rcvif = (struct ifnet *)0;
1063 mhip->ip_sum = 0;
1064 if (sw_csum & M_CSUM_IPv4) {
1065 mhip->ip_sum = in_cksum(m, mhlen);
1066 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
1067 } else {
1068 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1069 m->m_pkthdr.csum_data |= mhlen << 16;
1070 }
1071 ipstat.ips_ofragments++;
1072 fragments++;
1073 }
1074 /*
1075 * Update first fragment by trimming what's been copied out
1076 * and updating header, then send each fragment (in order).
1077 */
1078 m = m0;
1079 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
1080 m->m_pkthdr.len = hlen + firstlen;
1081 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
1082 ip->ip_off |= htons(IP_MF);
1083 ip->ip_sum = 0;
1084 if (sw_csum & M_CSUM_IPv4) {
1085 ip->ip_sum = in_cksum(m, hlen);
1086 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
1087 } else {
1088 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
1089 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
1090 sizeof(struct ip));
1091 }
1092 sendorfree:
1093 /*
1094 * If there is no room for all the fragments, don't queue
1095 * any of them.
1096 */
1097 if (ifp != NULL) {
1098 s = splnet();
1099 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
1100 error == 0) {
1101 error = ENOBUFS;
1102 ipstat.ips_odropped++;
1103 IFQ_INC_DROPS(&ifp->if_snd);
1104 }
1105 splx(s);
1106 }
1107 if (error) {
1108 for (m = m0; m; m = m0) {
1109 m0 = m->m_nextpkt;
1110 m->m_nextpkt = NULL;
1111 m_freem(m);
1112 }
1113 }
1114 return (error);
1115 }
1116
1117 /*
1118 * Process a delayed payload checksum calculation.
1119 */
1120 void
1121 in_delayed_cksum(struct mbuf *m)
1122 {
1123 struct ip *ip;
1124 u_int16_t csum, offset;
1125
1126 ip = mtod(m, struct ip *);
1127 offset = ip->ip_hl << 2;
1128 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
1129 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
1130 csum = 0xffff;
1131
1132 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1133
1134 if ((offset + sizeof(u_int16_t)) > m->m_len) {
1135 /* This happen when ip options were inserted
1136 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
1137 m->m_len, offset, ip->ip_p);
1138 */
1139 m_copyback(m, offset, sizeof(csum), (caddr_t) &csum);
1140 } else
1141 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1142 }
1143
1144 /*
1145 * Determine the maximum length of the options to be inserted;
1146 * we would far rather allocate too much space rather than too little.
1147 */
1148
1149 u_int
1150 ip_optlen(struct inpcb *inp)
1151 {
1152 struct mbuf *m = inp->inp_options;
1153
1154 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
1155 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1156 else
1157 return 0;
1158 }
1159
1160
1161 /*
1162 * Insert IP options into preformed packet.
1163 * Adjust IP destination as required for IP source routing,
1164 * as indicated by a non-zero in_addr at the start of the options.
1165 */
1166 static struct mbuf *
1167 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1168 {
1169 struct ipoption *p = mtod(opt, struct ipoption *);
1170 struct mbuf *n;
1171 struct ip *ip = mtod(m, struct ip *);
1172 unsigned optlen;
1173
1174 optlen = opt->m_len - sizeof(p->ipopt_dst);
1175 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1176 return (m); /* XXX should fail */
1177 if (!in_nullhost(p->ipopt_dst))
1178 ip->ip_dst = p->ipopt_dst;
1179 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1180 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1181 if (n == 0)
1182 return (m);
1183 MCLAIM(n, m->m_owner);
1184 M_MOVE_PKTHDR(n, m);
1185 m->m_len -= sizeof(struct ip);
1186 m->m_data += sizeof(struct ip);
1187 n->m_next = m;
1188 m = n;
1189 m->m_len = optlen + sizeof(struct ip);
1190 m->m_data += max_linkhdr;
1191 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
1192 } else {
1193 m->m_data -= optlen;
1194 m->m_len += optlen;
1195 memmove(mtod(m, caddr_t), ip, sizeof(struct ip));
1196 }
1197 m->m_pkthdr.len += optlen;
1198 ip = mtod(m, struct ip *);
1199 bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
1200 *phlen = sizeof(struct ip) + optlen;
1201 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1202 return (m);
1203 }
1204
1205 /*
1206 * Copy options from ip to jp,
1207 * omitting those not copied during fragmentation.
1208 */
1209 int
1210 ip_optcopy(struct ip *ip, struct ip *jp)
1211 {
1212 u_char *cp, *dp;
1213 int opt, optlen, cnt;
1214
1215 cp = (u_char *)(ip + 1);
1216 dp = (u_char *)(jp + 1);
1217 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1218 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1219 opt = cp[0];
1220 if (opt == IPOPT_EOL)
1221 break;
1222 if (opt == IPOPT_NOP) {
1223 /* Preserve for IP mcast tunnel's LSRR alignment. */
1224 *dp++ = IPOPT_NOP;
1225 optlen = 1;
1226 continue;
1227 }
1228 #ifdef DIAGNOSTIC
1229 if (cnt < IPOPT_OLEN + sizeof(*cp))
1230 panic("malformed IPv4 option passed to ip_optcopy");
1231 #endif
1232 optlen = cp[IPOPT_OLEN];
1233 #ifdef DIAGNOSTIC
1234 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1235 panic("malformed IPv4 option passed to ip_optcopy");
1236 #endif
1237 /* bogus lengths should have been caught by ip_dooptions */
1238 if (optlen > cnt)
1239 optlen = cnt;
1240 if (IPOPT_COPIED(opt)) {
1241 bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
1242 dp += optlen;
1243 }
1244 }
1245 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1246 *dp++ = IPOPT_EOL;
1247 return (optlen);
1248 }
1249
1250 /*
1251 * IP socket option processing.
1252 */
1253 int
1254 ip_ctloutput(int op, struct socket *so, int level, int optname,
1255 struct mbuf **mp)
1256 {
1257 struct inpcb *inp = sotoinpcb(so);
1258 struct mbuf *m = *mp;
1259 int optval = 0;
1260 int error = 0;
1261 #if defined(IPSEC) || defined(FAST_IPSEC)
1262 struct lwp *l = curlwp; /*XXX*/
1263 #endif
1264
1265 if (level != IPPROTO_IP) {
1266 error = EINVAL;
1267 if (op == PRCO_SETOPT && *mp)
1268 (void) m_free(*mp);
1269 } else switch (op) {
1270
1271 case PRCO_SETOPT:
1272 switch (optname) {
1273 case IP_OPTIONS:
1274 #ifdef notyet
1275 case IP_RETOPTS:
1276 return (ip_pcbopts(optname, &inp->inp_options, m));
1277 #else
1278 return (ip_pcbopts(&inp->inp_options, m));
1279 #endif
1280
1281 case IP_TOS:
1282 case IP_TTL:
1283 case IP_RECVOPTS:
1284 case IP_RECVRETOPTS:
1285 case IP_RECVDSTADDR:
1286 case IP_RECVIF:
1287 if (m == NULL || m->m_len != sizeof(int))
1288 error = EINVAL;
1289 else {
1290 optval = *mtod(m, int *);
1291 switch (optname) {
1292
1293 case IP_TOS:
1294 inp->inp_ip.ip_tos = optval;
1295 break;
1296
1297 case IP_TTL:
1298 inp->inp_ip.ip_ttl = optval;
1299 break;
1300 #define OPTSET(bit) \
1301 if (optval) \
1302 inp->inp_flags |= bit; \
1303 else \
1304 inp->inp_flags &= ~bit;
1305
1306 case IP_RECVOPTS:
1307 OPTSET(INP_RECVOPTS);
1308 break;
1309
1310 case IP_RECVRETOPTS:
1311 OPTSET(INP_RECVRETOPTS);
1312 break;
1313
1314 case IP_RECVDSTADDR:
1315 OPTSET(INP_RECVDSTADDR);
1316 break;
1317
1318 case IP_RECVIF:
1319 OPTSET(INP_RECVIF);
1320 break;
1321 }
1322 }
1323 break;
1324 #undef OPTSET
1325
1326 case IP_MULTICAST_IF:
1327 case IP_MULTICAST_TTL:
1328 case IP_MULTICAST_LOOP:
1329 case IP_ADD_MEMBERSHIP:
1330 case IP_DROP_MEMBERSHIP:
1331 error = ip_setmoptions(optname, &inp->inp_moptions, m);
1332 break;
1333
1334 case IP_PORTRANGE:
1335 if (m == 0 || m->m_len != sizeof(int))
1336 error = EINVAL;
1337 else {
1338 optval = *mtod(m, int *);
1339
1340 switch (optval) {
1341
1342 case IP_PORTRANGE_DEFAULT:
1343 case IP_PORTRANGE_HIGH:
1344 inp->inp_flags &= ~(INP_LOWPORT);
1345 break;
1346
1347 case IP_PORTRANGE_LOW:
1348 inp->inp_flags |= INP_LOWPORT;
1349 break;
1350
1351 default:
1352 error = EINVAL;
1353 break;
1354 }
1355 }
1356 break;
1357
1358 #if defined(IPSEC) || defined(FAST_IPSEC)
1359 case IP_IPSEC_POLICY:
1360 {
1361 caddr_t req = NULL;
1362 size_t len = 0;
1363 int priv = 0;
1364
1365 #ifdef __NetBSD__
1366 if (l == 0 || kauth_authorize_generic(l->l_cred,
1367 KAUTH_GENERIC_ISSUSER, &l->l_acflag))
1368 priv = 0;
1369 else
1370 priv = 1;
1371 #else
1372 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1373 #endif
1374 if (m) {
1375 req = mtod(m, caddr_t);
1376 len = m->m_len;
1377 }
1378 error = ipsec4_set_policy(inp, optname, req, len, priv);
1379 break;
1380 }
1381 #endif /*IPSEC*/
1382
1383 default:
1384 error = ENOPROTOOPT;
1385 break;
1386 }
1387 if (m)
1388 (void)m_free(m);
1389 break;
1390
1391 case PRCO_GETOPT:
1392 switch (optname) {
1393 case IP_OPTIONS:
1394 case IP_RETOPTS:
1395 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1396 MCLAIM(m, so->so_mowner);
1397 if (inp->inp_options) {
1398 m->m_len = inp->inp_options->m_len;
1399 bcopy(mtod(inp->inp_options, caddr_t),
1400 mtod(m, caddr_t), (unsigned)m->m_len);
1401 } else
1402 m->m_len = 0;
1403 break;
1404
1405 case IP_TOS:
1406 case IP_TTL:
1407 case IP_RECVOPTS:
1408 case IP_RECVRETOPTS:
1409 case IP_RECVDSTADDR:
1410 case IP_RECVIF:
1411 case IP_ERRORMTU:
1412 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1413 MCLAIM(m, so->so_mowner);
1414 m->m_len = sizeof(int);
1415 switch (optname) {
1416
1417 case IP_TOS:
1418 optval = inp->inp_ip.ip_tos;
1419 break;
1420
1421 case IP_TTL:
1422 optval = inp->inp_ip.ip_ttl;
1423 break;
1424
1425 case IP_ERRORMTU:
1426 optval = inp->inp_errormtu;
1427 break;
1428
1429 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1430
1431 case IP_RECVOPTS:
1432 optval = OPTBIT(INP_RECVOPTS);
1433 break;
1434
1435 case IP_RECVRETOPTS:
1436 optval = OPTBIT(INP_RECVRETOPTS);
1437 break;
1438
1439 case IP_RECVDSTADDR:
1440 optval = OPTBIT(INP_RECVDSTADDR);
1441 break;
1442
1443 case IP_RECVIF:
1444 optval = OPTBIT(INP_RECVIF);
1445 break;
1446 }
1447 *mtod(m, int *) = optval;
1448 break;
1449
1450 #if 0 /* defined(IPSEC) || defined(FAST_IPSEC) */
1451 /* XXX: code broken */
1452 case IP_IPSEC_POLICY:
1453 {
1454 caddr_t req = NULL;
1455 size_t len = 0;
1456
1457 if (m) {
1458 req = mtod(m, caddr_t);
1459 len = m->m_len;
1460 }
1461 error = ipsec4_get_policy(inp, req, len, mp);
1462 break;
1463 }
1464 #endif /*IPSEC*/
1465
1466 case IP_MULTICAST_IF:
1467 case IP_MULTICAST_TTL:
1468 case IP_MULTICAST_LOOP:
1469 case IP_ADD_MEMBERSHIP:
1470 case IP_DROP_MEMBERSHIP:
1471 error = ip_getmoptions(optname, inp->inp_moptions, mp);
1472 if (*mp)
1473 MCLAIM(*mp, so->so_mowner);
1474 break;
1475
1476 case IP_PORTRANGE:
1477 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1478 MCLAIM(m, so->so_mowner);
1479 m->m_len = sizeof(int);
1480
1481 if (inp->inp_flags & INP_LOWPORT)
1482 optval = IP_PORTRANGE_LOW;
1483 else
1484 optval = IP_PORTRANGE_DEFAULT;
1485
1486 *mtod(m, int *) = optval;
1487 break;
1488
1489 default:
1490 error = ENOPROTOOPT;
1491 break;
1492 }
1493 break;
1494 }
1495 return (error);
1496 }
1497
1498 /*
1499 * Set up IP options in pcb for insertion in output packets.
1500 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1501 * with destination address if source routed.
1502 */
1503 int
1504 #ifdef notyet
1505 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
1506 #else
1507 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1508 #endif
1509 {
1510 int cnt, optlen;
1511 u_char *cp;
1512 u_char opt;
1513
1514 /* turn off any old options */
1515 if (*pcbopt)
1516 (void)m_free(*pcbopt);
1517 *pcbopt = 0;
1518 if (m == (struct mbuf *)0 || m->m_len == 0) {
1519 /*
1520 * Only turning off any previous options.
1521 */
1522 if (m)
1523 (void)m_free(m);
1524 return (0);
1525 }
1526
1527 #ifndef __vax__
1528 if (m->m_len % sizeof(int32_t))
1529 goto bad;
1530 #endif
1531 /*
1532 * IP first-hop destination address will be stored before
1533 * actual options; move other options back
1534 * and clear it when none present.
1535 */
1536 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1537 goto bad;
1538 cnt = m->m_len;
1539 m->m_len += sizeof(struct in_addr);
1540 cp = mtod(m, u_char *) + sizeof(struct in_addr);
1541 memmove(cp, mtod(m, caddr_t), (unsigned)cnt);
1542 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1543
1544 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1545 opt = cp[IPOPT_OPTVAL];
1546 if (opt == IPOPT_EOL)
1547 break;
1548 if (opt == IPOPT_NOP)
1549 optlen = 1;
1550 else {
1551 if (cnt < IPOPT_OLEN + sizeof(*cp))
1552 goto bad;
1553 optlen = cp[IPOPT_OLEN];
1554 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1555 goto bad;
1556 }
1557 switch (opt) {
1558
1559 default:
1560 break;
1561
1562 case IPOPT_LSRR:
1563 case IPOPT_SSRR:
1564 /*
1565 * user process specifies route as:
1566 * ->A->B->C->D
1567 * D must be our final destination (but we can't
1568 * check that since we may not have connected yet).
1569 * A is first hop destination, which doesn't appear in
1570 * actual IP option, but is stored before the options.
1571 */
1572 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1573 goto bad;
1574 m->m_len -= sizeof(struct in_addr);
1575 cnt -= sizeof(struct in_addr);
1576 optlen -= sizeof(struct in_addr);
1577 cp[IPOPT_OLEN] = optlen;
1578 /*
1579 * Move first hop before start of options.
1580 */
1581 bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1582 sizeof(struct in_addr));
1583 /*
1584 * Then copy rest of options back
1585 * to close up the deleted entry.
1586 */
1587 (void)memmove(&cp[IPOPT_OFFSET+1],
1588 &cp[IPOPT_OFFSET+1] + sizeof(struct in_addr),
1589 (unsigned)cnt - (IPOPT_MINOFF - 1));
1590 break;
1591 }
1592 }
1593 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1594 goto bad;
1595 *pcbopt = m;
1596 return (0);
1597
1598 bad:
1599 (void)m_free(m);
1600 return (EINVAL);
1601 }
1602
1603 /*
1604 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1605 */
1606 static struct ifnet *
1607 ip_multicast_if(struct in_addr *a, int *ifindexp)
1608 {
1609 int ifindex;
1610 struct ifnet *ifp = NULL;
1611 struct in_ifaddr *ia;
1612
1613 if (ifindexp)
1614 *ifindexp = 0;
1615 if (ntohl(a->s_addr) >> 24 == 0) {
1616 ifindex = ntohl(a->s_addr) & 0xffffff;
1617 if (ifindex < 0 || if_indexlim <= ifindex)
1618 return NULL;
1619 ifp = ifindex2ifnet[ifindex];
1620 if (!ifp)
1621 return NULL;
1622 if (ifindexp)
1623 *ifindexp = ifindex;
1624 } else {
1625 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
1626 if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
1627 (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
1628 ifp = ia->ia_ifp;
1629 break;
1630 }
1631 }
1632 }
1633 return ifp;
1634 }
1635
1636 static int
1637 ip_getoptval(struct mbuf *m, u_int8_t *val, u_int maxval)
1638 {
1639 u_int tval;
1640
1641 if (m == NULL)
1642 return EINVAL;
1643
1644 switch (m->m_len) {
1645 case sizeof(u_char):
1646 tval = *(mtod(m, u_char *));
1647 break;
1648 case sizeof(u_int):
1649 tval = *(mtod(m, u_int *));
1650 break;
1651 default:
1652 return EINVAL;
1653 }
1654
1655 if (tval > maxval)
1656 return EINVAL;
1657
1658 *val = tval;
1659 return 0;
1660 }
1661
1662 /*
1663 * Set the IP multicast options in response to user setsockopt().
1664 */
1665 int
1666 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m)
1667 {
1668 int error = 0;
1669 int i;
1670 struct in_addr addr;
1671 struct ip_mreq *mreq;
1672 struct ifnet *ifp;
1673 struct ip_moptions *imo = *imop;
1674 struct route ro;
1675 struct sockaddr_in *dst;
1676 int ifindex;
1677
1678 if (imo == NULL) {
1679 /*
1680 * No multicast option buffer attached to the pcb;
1681 * allocate one and initialize to default values.
1682 */
1683 imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1684 M_WAITOK);
1685
1686 if (imo == NULL)
1687 return (ENOBUFS);
1688 *imop = imo;
1689 imo->imo_multicast_ifp = NULL;
1690 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1691 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1692 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1693 imo->imo_num_memberships = 0;
1694 }
1695
1696 switch (optname) {
1697
1698 case IP_MULTICAST_IF:
1699 /*
1700 * Select the interface for outgoing multicast packets.
1701 */
1702 if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1703 error = EINVAL;
1704 break;
1705 }
1706 addr = *(mtod(m, struct in_addr *));
1707 /*
1708 * INADDR_ANY is used to remove a previous selection.
1709 * When no interface is selected, a default one is
1710 * chosen every time a multicast packet is sent.
1711 */
1712 if (in_nullhost(addr)) {
1713 imo->imo_multicast_ifp = NULL;
1714 break;
1715 }
1716 /*
1717 * The selected interface is identified by its local
1718 * IP address. Find the interface and confirm that
1719 * it supports multicasting.
1720 */
1721 ifp = ip_multicast_if(&addr, &ifindex);
1722 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1723 error = EADDRNOTAVAIL;
1724 break;
1725 }
1726 imo->imo_multicast_ifp = ifp;
1727 if (ifindex)
1728 imo->imo_multicast_addr = addr;
1729 else
1730 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1731 break;
1732
1733 case IP_MULTICAST_TTL:
1734 /*
1735 * Set the IP time-to-live for outgoing multicast packets.
1736 */
1737 error = ip_getoptval(m, &imo->imo_multicast_ttl, MAXTTL);
1738 break;
1739
1740 case IP_MULTICAST_LOOP:
1741 /*
1742 * Set the loopback flag for outgoing multicast packets.
1743 * Must be zero or one.
1744 */
1745 error = ip_getoptval(m, &imo->imo_multicast_loop, 1);
1746 break;
1747
1748 case IP_ADD_MEMBERSHIP:
1749 /*
1750 * Add a multicast group membership.
1751 * Group must be a valid IP multicast address.
1752 */
1753 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1754 error = EINVAL;
1755 break;
1756 }
1757 mreq = mtod(m, struct ip_mreq *);
1758 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1759 error = EINVAL;
1760 break;
1761 }
1762 /*
1763 * If no interface address was provided, use the interface of
1764 * the route to the given multicast address.
1765 */
1766 if (in_nullhost(mreq->imr_interface)) {
1767 bzero((caddr_t)&ro, sizeof(ro));
1768 ro.ro_rt = NULL;
1769 dst = satosin(&ro.ro_dst);
1770 dst->sin_len = sizeof(*dst);
1771 dst->sin_family = AF_INET;
1772 dst->sin_addr = mreq->imr_multiaddr;
1773 rtalloc(&ro);
1774 if (ro.ro_rt == NULL) {
1775 error = EADDRNOTAVAIL;
1776 break;
1777 }
1778 ifp = ro.ro_rt->rt_ifp;
1779 rtfree(ro.ro_rt);
1780 } else {
1781 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1782 }
1783 /*
1784 * See if we found an interface, and confirm that it
1785 * supports multicast.
1786 */
1787 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1788 error = EADDRNOTAVAIL;
1789 break;
1790 }
1791 /*
1792 * See if the membership already exists or if all the
1793 * membership slots are full.
1794 */
1795 for (i = 0; i < imo->imo_num_memberships; ++i) {
1796 if (imo->imo_membership[i]->inm_ifp == ifp &&
1797 in_hosteq(imo->imo_membership[i]->inm_addr,
1798 mreq->imr_multiaddr))
1799 break;
1800 }
1801 if (i < imo->imo_num_memberships) {
1802 error = EADDRINUSE;
1803 break;
1804 }
1805 if (i == IP_MAX_MEMBERSHIPS) {
1806 error = ETOOMANYREFS;
1807 break;
1808 }
1809 /*
1810 * Everything looks good; add a new record to the multicast
1811 * address list for the given interface.
1812 */
1813 if ((imo->imo_membership[i] =
1814 in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1815 error = ENOBUFS;
1816 break;
1817 }
1818 ++imo->imo_num_memberships;
1819 break;
1820
1821 case IP_DROP_MEMBERSHIP:
1822 /*
1823 * Drop a multicast group membership.
1824 * Group must be a valid IP multicast address.
1825 */
1826 if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1827 error = EINVAL;
1828 break;
1829 }
1830 mreq = mtod(m, struct ip_mreq *);
1831 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1832 error = EINVAL;
1833 break;
1834 }
1835 /*
1836 * If an interface address was specified, get a pointer
1837 * to its ifnet structure.
1838 */
1839 if (in_nullhost(mreq->imr_interface))
1840 ifp = NULL;
1841 else {
1842 ifp = ip_multicast_if(&mreq->imr_interface, NULL);
1843 if (ifp == NULL) {
1844 error = EADDRNOTAVAIL;
1845 break;
1846 }
1847 }
1848 /*
1849 * Find the membership in the membership array.
1850 */
1851 for (i = 0; i < imo->imo_num_memberships; ++i) {
1852 if ((ifp == NULL ||
1853 imo->imo_membership[i]->inm_ifp == ifp) &&
1854 in_hosteq(imo->imo_membership[i]->inm_addr,
1855 mreq->imr_multiaddr))
1856 break;
1857 }
1858 if (i == imo->imo_num_memberships) {
1859 error = EADDRNOTAVAIL;
1860 break;
1861 }
1862 /*
1863 * Give up the multicast address record to which the
1864 * membership points.
1865 */
1866 in_delmulti(imo->imo_membership[i]);
1867 /*
1868 * Remove the gap in the membership array.
1869 */
1870 for (++i; i < imo->imo_num_memberships; ++i)
1871 imo->imo_membership[i-1] = imo->imo_membership[i];
1872 --imo->imo_num_memberships;
1873 break;
1874
1875 default:
1876 error = EOPNOTSUPP;
1877 break;
1878 }
1879
1880 /*
1881 * If all options have default values, no need to keep the mbuf.
1882 */
1883 if (imo->imo_multicast_ifp == NULL &&
1884 imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1885 imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1886 imo->imo_num_memberships == 0) {
1887 free(*imop, M_IPMOPTS);
1888 *imop = NULL;
1889 }
1890
1891 return (error);
1892 }
1893
1894 /*
1895 * Return the IP multicast options in response to user getsockopt().
1896 */
1897 int
1898 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf **mp)
1899 {
1900 u_char *ttl;
1901 u_char *loop;
1902 struct in_addr *addr;
1903 struct in_ifaddr *ia;
1904
1905 *mp = m_get(M_WAIT, MT_SOOPTS);
1906
1907 switch (optname) {
1908
1909 case IP_MULTICAST_IF:
1910 addr = mtod(*mp, struct in_addr *);
1911 (*mp)->m_len = sizeof(struct in_addr);
1912 if (imo == NULL || imo->imo_multicast_ifp == NULL)
1913 *addr = zeroin_addr;
1914 else if (imo->imo_multicast_addr.s_addr) {
1915 /* return the value user has set */
1916 *addr = imo->imo_multicast_addr;
1917 } else {
1918 IFP_TO_IA(imo->imo_multicast_ifp, ia);
1919 *addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
1920 }
1921 return (0);
1922
1923 case IP_MULTICAST_TTL:
1924 ttl = mtod(*mp, u_char *);
1925 (*mp)->m_len = 1;
1926 *ttl = imo ? imo->imo_multicast_ttl
1927 : IP_DEFAULT_MULTICAST_TTL;
1928 return (0);
1929
1930 case IP_MULTICAST_LOOP:
1931 loop = mtod(*mp, u_char *);
1932 (*mp)->m_len = 1;
1933 *loop = imo ? imo->imo_multicast_loop
1934 : IP_DEFAULT_MULTICAST_LOOP;
1935 return (0);
1936
1937 default:
1938 return (EOPNOTSUPP);
1939 }
1940 }
1941
1942 /*
1943 * Discard the IP multicast options.
1944 */
1945 void
1946 ip_freemoptions(struct ip_moptions *imo)
1947 {
1948 int i;
1949
1950 if (imo != NULL) {
1951 for (i = 0; i < imo->imo_num_memberships; ++i)
1952 in_delmulti(imo->imo_membership[i]);
1953 free(imo, M_IPMOPTS);
1954 }
1955 }
1956
1957 /*
1958 * Routine called from ip_output() to loop back a copy of an IP multicast
1959 * packet to the input queue of a specified interface. Note that this
1960 * calls the output routine of the loopback "driver", but with an interface
1961 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
1962 */
1963 static void
1964 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1965 {
1966 struct ip *ip;
1967 struct mbuf *copym;
1968
1969 copym = m_copy(m, 0, M_COPYALL);
1970 if (copym != NULL
1971 && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
1972 copym = m_pullup(copym, sizeof(struct ip));
1973 if (copym != NULL) {
1974 /*
1975 * We don't bother to fragment if the IP length is greater
1976 * than the interface's MTU. Can this possibly matter?
1977 */
1978 ip = mtod(copym, struct ip *);
1979
1980 if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1981 in_delayed_cksum(copym);
1982 copym->m_pkthdr.csum_flags &=
1983 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
1984 }
1985
1986 ip->ip_sum = 0;
1987 ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1988 (void) looutput(ifp, copym, sintosa(dst), NULL);
1989 }
1990 }
1991